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EQUIPPED GRADED GRAPHS, PROJECTIVE LIMITS

OF SIMPLICES, AND THEIR BOUNDARIES

§1. Introduction

In functional analysis, probability theory, geometry one considers differ-
ent notions of boundary. That of Martin boundary is popular in potential
theory, the theory of harmonic functions, the theory of Markov processes.
This notion, which appeared in the 1940s, gave rise to an extensive litera-
ture. It is the notion of Martin boundary that was one of the motivations
for developing the Choquet theory (the other one being the famous Krein–
Milman theorem about convex compact subsets in a locally convex space).
Here we want to establish a direct connection between the two theories:
the theory of boundaries of Markov processes, which is in fact the theory
of invariant measures on path spaces of graded graphs (or, which is the
same, on the spaces of trajectories of Markov compacta) and the geometry
of projective limits of simplices. This simple connection helps in solving
the problem of finding boundaries, which, in turn, includes the general the-
ory of invariant measures for hyperfinite actions of groups and hyperfinite
equivalence relations. From an algebraic point of view, these problems con-
cern lists of traces on algebras or characters on groups. In fact, already in
the first papers by the author and S. V. Kerov, D. Voiculescu, and others,
a connection was established between the theory of central measures on
path spaces of graded graphs and the theory of traces on locally semisimple
algebras. The main nontrivial example was, of course, that of the Young
graph, as well as the Kingman graph, etc. Then other examples were con-
sidered. The Martin boundary was studied in [11, 10] in connection with
several concrete graphs. Here we want to describe a general interpreta-
tion and a more direct connection of different boundaries with the convex
geometry of projective limits of simplices. We relate the exit boundary,
which was introduced in the framework of Markov theory in remarkable
papers by E. B. Dynkin in the 1960s, directly with the Choquet boundary.

: equipped Bratteli diagrams, projective limits of simplices, ergodic measures, Mar-
tin boundary.
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Other boundaries also find natural interpretations in the framework of the
geometry of simplices. But the main results of this paper, in continuation
of the recent paper [3], are presented in §4; there we introduce new general
notions, those of the intrinsic metric (topology), standardness, etc. We use
and apply ideas and results of the theory of metric filtrations ([2]). The
final goal is to find the boundaries in the (numerous) cases where this can
be done (standard graphs) and to recognize the cases where the problem is
unsolvable (totally nonstandard graphs). One of the obvious applications
is to the essentially new problem from the theory of random walks on
groups, that of describing all conditional walks with uniform cotransition
probabilities. In a joint paper with A. V. Malyutin, which is currently in
preparation, we will consider one of such examples.

§2. The input data of the problem

2.1. A graded graph, the path space, topology. Consider a locally
finite, infinite N-graded graph Γ (a Bratteli diagram). The set of vertices
of degree n, n = 0, 1, . . . , will be denoted by Γn and called the nth level
of Γ:

Γ =
∐
n∈N

Γn;

the level Γ0 consists of the single initial vertex {∅}. We assume that every
vertex has at least one successor, and every vertex except the initial one
has at least one predecessor. In what follows, we also assume that the edges
of Γ are simple.1 No other assumptions are imposed. A locally semisimple
algebra A(Γ) over C is canonically associated to a graded graph Γ; however,
here we do not consider this algebra and do not discuss the relation of the
notions introduced below with this algebra and its representations; this
problem is worth a separate study.

A path in Γ is a (finite or infinite) sequence of vertices of Γ in which every
pair of neighboring vertices is connected by an edge (for graphs without
multiple edges, this is the same as a sequence of edges). The space of all
infinite paths in Γ is denoted by T (Γ); it is, in a natural sense, the inverse
limit of the spaces of finite paths (leading from the initial vertex to vertices
of some fixed level), and thus is a Cantor-like compact set. Cylinder sets
in T (Γ) are sets defined in terms of conditions on initial segments of paths

1For our purposes, allowing Bratteli diagrams to have multiple edges does not give
anything new, since cotransition probabilities introduced below replace and generalize

multiplicities of edges.
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up to level n; they are clopen and determine a base of the topology of
T (Γ). There is a natural notion of tail equivalence relation τΓ on T (Γ):
two infinite paths are tail-equivalent if they eventually coincide; one also
says that such paths lie in the same block of the tail partition. The tail
filtration Ξ(Γ) = {A0 ⊃ A1 ⊃ . . . } is the decreasing sequence of σ-algebras
An, n ∈ N, where An consists of all Borel sets A ⊂ T (Γ) such that along
with every path A contains all paths coinciding with it up to the nth level.
In an obvious sense, An is complementary to the finite σ-algebra of cylinder
sets of order n. The key idea of [3, 4] is to apply the theory of decreasing
filtrations (see, e.g., [2]) to the analysis of the structure of path spaces and
measures on them. Below we touch on this problem.

2.2. A system of cotransition matrices, an equipped graph. Given
a graded graph Γ, we introduce an additional structure on this graph,
namely, a system of cotransition probabilities

Λ = {λ = λuv ; u ∈ Γn, v ∈ Γn+1, (u, v) ∈ edge(Γn,Γn+1), n = 0, 1, . . . },

by associating with each vertex v ∈ Γn a probability vector whose compo-
nent λuv is the probability of an edge u ≺ v entering v from the previous
level; here

∑
u:u≺v

λuv = 1 and λuv ≥ 0.

Definition 1. An equipped graph is a pair (Γ,Λ) where Γ is a graded graph
and Λ is a system of cotransition probabilities on its edges.

The term “cotransition probabilities” is borrowed from the theory of
Markov chains ([7]): if we regard the vertices of Γ as the states of a Markov
chain starting from the state ∅ at time t = 0, and the numbers of levels
as moments of time, then Λ = {λuv} is interpreted as the system of cotran-
sition probabilities for this Markov chain:

Prob{xt = u|xt+1 = v} = λuv .

It is convenient to regard the system of cotransition probabilities as a
system of dn × dn+1 Markov matrices:

{λuv}, u ∈ Γn, v ∈ Γn+1; |Γn| = dn, |Γn+1| = dn+1, n ∈ N;

these matrices generalize the (0∨1) incidence matrices of the graph Γ. Our
main interest lies in the asymptotic properties of this sequence of matrices.
In this sense, the whole theory developed here is a part of the asymptotic
theory of infinite products of Markov matrices, which is important in itself.
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Every Borel measure µ on the path space of a graph determines a sys-
tem of cotransition probabilities as the system of conditional measures of
natural measurable partitions. One says that µ agrees with a given system
Λ of cotransition probabilities if the collection of cotransition probabilities
of µ (for all vertices) coincides with Λ. Recall that in general a system
of cotransition probabilities does not allow one to uniquely determine the
system of transition probabilities

Prob{xt+1 = v|xt = u};

in other words, it does not uniquely determine the Markov chain.
A measure on the path space of a graph is called ergodic if the tail

σ-algebra (i.e., the intersection of all σ-algebras of the tail filtration) is
trivial mod0, i.e., consists of two elements.

Our aim is to enumerate all Markov measures, i.e., all possible transi-
tion probabilities of ergodic Markov chains with a given system of cotran-
sition probabilities Λ. It is natural to call the corresponding list the Dynkin
boundary of the system of cotransition probabilities Λ, or the Dynkin bound-
ary of the equipped graph (Γ,Λ). This is a topological boundary, and, as
we will see, it is the Choquet boundary of a certain simplex (a projective
limit of finite-dimensional simplices).

In the probability literature (e.g., in the theory of random walks), co-
transition probabilities are usually defined not explicitly, but as the cotran-
sition probabilities of a given Markov process. We prefer to define them
directly, i.e., include them into the input data of the problem. And if such
a Markov chain, i.e., a Markov measure µ on the path space with these
cotransition probabilities is already defined, we can consider the metric
Poisson–Furstenberg boundary of this measure, a space with a measure de-
fined on the tail σ-algebra and induced by µ. This boundary, regarded as a
measure space, is a part of the Dynkin boundary. The system of cotransi-
tion probabilities determines a cocycle on the tail equivalence relation, i.e.,
a function (γ1, γ2)→ c(γ1, γ2) of a pair of equivalent paths, which is equal
to the ratio of the products of cotransition probabilities along these paths
(such a ratio is finite, since the paths are equivalent). In statistical physics
and the theory of configurations, one also considers more general cocycles
called Radon–Nikodym cocycles. In our case, the cocycle has a special form
(the product of probabilities over edges) and is called a Markov cocycle.
A measure with given cotransition probabilities is a measure with a given
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Radon–Nikodym cocycle for a transformation group whose orbit partition
coincides with the tail partition.2

The most important special case of a system of cotransition probabili-
ties, which is studied in combinatorics, representation theory, and algebraic
settings, is as follows:

λuv =
dim(u)∑

u:u≺v
dim(u)

,

where dim(u) is the number of paths leading from the initial vertex ∅ to u
(i.e., the dimension of the representation of the algebra A(Γ) corresponding
to the vertex u). In other words, the probability to get from v to u is equal
to the fraction of paths that lead from ∅ to u among all the paths that lead
from ∅ to v. This system of cotransition probabilities is canonical, in that it
is determined only by the graph. The corresponding Markov measures on
the path space T (Γ) are called central measures; up to now, they have been
studied only in the literature on Bratteli diagrams. In terms of the theory of
C∗-algebras, central measures are traces on the algebra A(Γ), and ergodic
central measures are indecomposable traces. For more details on the case
of central measures, see [3] and the extensive literature of the 1980s–2000s.
However, further development of the whole theory requires considering an
arbitrary system of cotransition probabilities. Note that already for central
measures, the asymptotic behavior can be very different; the example of
the graph of unordered pairs from [3] shows how much the answer can
differ from the case of familiar graphs, such as the Young graph.

An analog of a system of cotransition probabilities, i.e., the notion of
an equipped graph, can also be defined in greater generality: instead of
a graded graph, it suffices to have a directed graph or multigraph whose
each vertex (except possibly one) has a nonempty set of ingoing edges;
one can define an arbitrary system of probabilities on the set of ingoing
edges of every vertex; the problem is still to describe the Dynkin boundary,

2The path space T (Γ) of a graded graph Γ has another additional structure, namely,

a linear order on the edges entering each vertex. It allows one to introduce a lexico-

graphic order on each class of tail-equivalent paths, and then define the so-called adic
transformation on T (Γ), which sends a path to the next path in the sense of this order.
In this paper, we do not use this structure, restricting ourselves to the following remark:

a measure is central if and only if it is invariant under the adic transformation, and, as
observed above, a measure has a given system of cotransition probabilities if and only

if the adic transformation has a given Radon–Nikodym cocycle.



6 A. M. VERSHIK

i.e., the collection of all measures on the set of directed paths with given
conditional entrance probabilities.

2.3. Operators, the Martin boundary, terminology. An equipped
graph, or a pair (Γ,Λ), gives rise naturally to two linear operators. The
first operator L = L(Γ,Λ) acts on the space F (Γ) = {f : Γ → R} of all
real functions on the set of vertices of Γ:

(Lf)(v) =
∑
u:u≺v

λuvf(u);

it is the operator of averaging a function over the cotransition probabilities.
The other operator L∗ acts on the simplex Σ(Γ) of all probability measures
on the set of vertices of Γ:

L∗(µ)(u) =
∑
v:v�u

λuvµ(v).

The first operator sends functions on the (n + 1)th level of the graph
(i.e., functions vanishing at all levels except n + 1) to functions on the
nth level, and the second one sends probability measures on the nth level
to probability measures on the (n + 1)th level. It is these restrictions of
operators that are determined by the transition and cotransition matrices
mentioned above.

It is also clear that every vertex v of the (n+1)th level (more exactly, the
corresponding δ-measure δv) correctly defines a unique probability measure
L∗(δv) = λ·v on the nth level and (by induction, repeatedly applying the
operator L∗) measures on all previous levels Γk, k < n+ 1. We will denote
these measures by µkv , v ∈ Γn+1, k < n+ 1.

Following the tradition, by the Martin kernel we mean the function
K(u, v) of pairs of vertices u, v from different levels that can be connected
by at least one path (otherwise K(u, v) = 0):

K(u, v) =
∑
{wi}

∏
i

p(wi, wi+1); u = w0 ≺ w1 ≺ · · · ≺ wk = v,

where the sum is over all paths leading from u ∈ Γn to v ∈ Γn+1.
As usual, the Martin kernel allows one to define the Martin compactifi-

cation M̃(Γ,Λ) of the set of functions Γ′ = {v 7→ K(u, v);u ∈ Γ} ⊂ F (Γ)

with respect to the pointwise convergence. The difference M̃(Γ,Λ) r Γ′ is
called the Martin boundary of the pair (Γ,Λ). In more detail, this means
the following: a sequence of vertices vk ∈ Γ, k = 1, 2, . . . , is a Cauchy
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sequence if for every vertex u ∈ Γ the numerical sequence of the probabil-
ities Prob{u|vk} is a Cauchy sequence as k →∞. More simply stated, the
sequence of the measures µnvk induced by vk at an arbitrary level n of Γ
weakly converges to a measure µn determined by the sequence {vk}. We
identify sequences that determine the same measure. Thus a point of the
Martin boundary is a probability measure on the space of infinite paths
in Γ that has given cotransition probabilities and is the weak limit of an
infinite sequence of measures µn, n = 1, 2, . . . . This is the conventional
definition of the Martin boundary of a Markov chain, but stated in terms
related to a graded graph. Below we will give an equivalent abstract def-
inition of the Martin boundary in terms of projective limits of simplices
and return to the question posed above.

Remark 1. In the context of Markov chains and processes, Dynkin (see
one of the first papers [7]) uses the terms “exit boundary” and “entrance
boundary.” What we have called above the Dynkin boundary can be in-
terpreted as the exit boundary for the system of cotransition probabilities
under consideration, since it refers to the final behavior of trajectories of
Markov chains; and a point of the boundary is a class of trajectories that
have the same final behavior and thus determine the same (conditional)
ergodic Markov chain.

Unfortunately, confusion in terminology is likely to arise here: the opera-
tor conjugate to that of averaging functions over the cotransition probabil-
ities (the “Laplace operator”) determines a boundary, which, not without
reason, is usually called the entrance boundary. The papers [10, 11] use
exactly this terminology. The thing is, what we consider to be primary, the
generator (Laplace operator) and Green’s function acting in the space of
functions, as in potential theory, or the projection operator on measures,
which determines the geometry of the Markov chain in a more general
context. On the other hand, of course, time inversion turns the problem of
describing all ergodic measures with given cotransition probabilities into
the problem of describing all measures with given transition probabilities,
which, according to our definition, should be called the entrance bound-
ary. We try to avoid this confusion and do not use these terms. Our new
definitions – those of standardness, compactness, lacunarity, intrinsic met-
ric and topology – apply both to systems of transition and cotransition
probabilities, and to the theory of ordinary and reverse martingales.

Another remark concerns the notion of the entropy of a (nonstationary)
Markov chain. There should exist general theorems that would relate the
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normalized entropy of a Markov chain on the path space of a graph (cf.
the definition of the entropy of a Young diagram in [6]) with the entropy
of random walks (see, e.g., [9]).

Finally, note another very important fact. The theory of boundaries of
Markov processes we develop should be constructed separately for σ-finite
measures. In a sense, this is even more natural, since for interesting Markov
chains there are usually no invariant finite measures.3 In the theory of AF-
algebras, this problem is very important and related to representations of
type II∞ and to σ-finite traces. However, the theory of σ-finite Markov
chains is not sufficiently developed.

§3. The geometry of projective limits of simplices

3.1. Projective limits of simplices and the equivalence of the
languages. An equivalent and rather geometric version of the theory of
equipped graphs (a Bratteli diagram Γ + a system of cotransition proba-
bilities Λ) is the theory of projective limits of finite-dimensional simplices.

First we will show how, given a pair (Γ,Λ), i.e., an equipped graph, one
can canonically define a projective limit of finite-dimensional simplices.
Then we will see that one can also pass in the opposite direction, from
projective limits to equipped graphs.

Denote by Σn the finite-dimensional simplex of formal convex combina-
tions of vertices v ∈ Γn of the nth level. It is natural to regard this simplex
as the set of all probability measures on its vertex set Γn. We introduce
affine projections πn,n−1 : Σn → Σn−1; it suffices to define them for each
vertex v ∈ Γn. Obviously, these projections can be regarded as a system
of cotransition probabilities Λ, and the images of vertices v are points of
the previous simplex, i.e., probability vectors:

πn,n−1(δv) =
∑
u:u≺v

λuvδu;

this map is extended by linearity to the whole simplex Γn. The vertex ∅
corresponds to the zero-dimensional simplex consisting of a single point.
Degeneracies are allowed (i.e., vertices may coalesce under the projection).
Projections πn,m : Σn → Σm of simplices with arbitrary numbers m < n,

m,n ∈ N, are defined as follows: πn,m =
∏n+1
i=m πi,i−1. Having the data

{Σn, πn,m}, we can, on the one hand, define the projective limit of the
simplices and, on the other hand, recover the corresponding graph (and

3The necessity of considering σ-finite measures was indicated in the early paper [9].
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then paths in this graph): the vertices of Γn coincide with the vertices of
the simplex Σn, and the edges are found from the nonzero components of
the vectors πn,n−1, n ∈ N .

Denote byM =
∏∞
n=0 Σn the direct product of the simplices Σn, n ∈ N,

with the product topology.

Definition 2. The projective limit space of a sequence {Σn}n of simplices
with respect to a system of projections {πn,m} is the following subset of the
direct product M:

lim
n→∞

(Σn, πn,m) ≡
{
{xn}n; πn,n−1(xn) = xn−1; n = 1, 2, . . .

}
≡ (Σ∞,Λ) ⊂

∞∏
n=0

Σn =M.

Proposition 1. The projective limit space Σ∞ is always a nonempty, con-
vex, closed, and hence compact subset in M, which is a (possibly, infinite-
dimensional) Choquet simplex.

The affine structure of the direct productM determines the affine struc-
ture of the limiting space; the fact that it is nonempty and closed is obvi-
ous. It remains only to check that every point of the limiting space has a
unique decomposition over its Choquet boundary. This is done in the next
subsection.

We differentiate between the projective limit space and the “projec-
tive limit structure,” meaning that it is important to consider not only
the limiting space itself, i.e., an infinite-dimensional simplex, but also the
structure of prelimit simplices and their projections.

We will show that, given a projective limit of simplices, one can recover
the corresponding graph, the path space, and the system of cotransition
probabilities; and the projective limit constructed from this system accord-
ing to the above rule coincides with the original one. This will establish
a tautological relation between two languages: that of pairs {a Bratteli
diagram, a system of cotransition probabilities} on the one hand, and that
of projective limits of finite-dimensional simplices on the other hand.

Indeed, let {Σn}, n ∈ N, be a projective limit of finite-dimensional
simplices and {πn,m} be a coherent system of projections:

πn,m : Σn → Σm, n ≥ m, n,m ∈ N.
Take the vertices of Σn as the vertices of the nth level of Γ; a vertex u of
the nth level precedes a vertex v of the (n + 1)th level if the projection
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πn+1,n sends v to a point of Σn whose barycentric coordinate with respect
to u is positive. As a system of transition probabilities we take the system
of vectors {λuv} related to the projections πn+1,n as described above.

In what follows, given a projective limit of simplices, we will use the
graph (of vertices of all simplices) canonically associated with this limit,
its path space, etc., and, similarly, speak about the projections of simplices
canonically associated with an equipped graph.

3.2. Properties of the limiting space, extremality and almost ex-
tremality. Consider an arbitrary projective limit of finite-dimensional
simplices

Σ1 ← Σ2 ← · · · ← Σn ← Σn+1 ← · · · ← Σ∞ ≡ Σ(Γ,Λ).

First of all, we define the limiting projections π∞,m : Σ∞ → Σm for every
m as the limits limn πn,m: obviously, the images πn,mΣn, regarded as sub-
sets in Σm, decrease monotonically as n grows, and their intersection is a
set denoted by Ωm =

⋂
n:n>m πn,mΣn; the sets Ωm are convex closed sub-

sets of the finite-dimensional simplices Σm, m = 1, 2, . . . , and the limiting
projections are epimorphic maps of the limiting space Σ∞ onto these sets:

π∞,m : Σ∞ → Ωm.

It would be more economical to consider the projective limit

Ω1 ← Ω2 ← · · · ← Ωn ← · · · ← Ω∞ = Σ(Γ,Λ)

with the epimorphic projections πn,m restricted to Ωn and, by definition,
with the same limiting space. However, finding the sets Ωn explicitly is an
interesting problem equivalent to the main problem of finding all invariant
measures.4

Every point of the limiting space, i.e., a sequence {xm} with xm ∈ Σm,
πm,m−1xm = xm−1, defines, for every m, a sequence of measures {νmn }n
on the simplex Σm, namely, νmn = πn,m(µn), where the measure µn is the
(unique) decomposition of xn in terms of the extreme points of the simplex
Σn. Of course, the barycenter of each of the measures νmn in Σm is xm,
and this sequence of measures is coarsening in a natural sense and weakly
converges in Σm as n → ∞ to a measure νxm

concentrated on the subset

4In particular, an explicit form of the compact sets Ωn is known in very few cases,

even among those ones where one knows the central measures. Even for the Pascal graph,
they are interesting and rather complicated convex compact sets; and, for instance, in

the case of the Young graph, the author does not know a description of these sets as
clear as in the case of the Pascal graph.
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Ωm ⊂ Σm. Obviously, in this way one can obtain all points of the limiting
space, i.e., all measures with given cotransition probabilities.

A point of an arbitrary convex compact space K is called extreme if
there is no nontrivial convex combination of points of K representing this
point; the set of extreme points is called the Choquet boundary of K and
denoted by exK. A point is called almost extreme if it lies in the closure
ex(K) of the Choquet boundary. Recall that an affine compact space in
which every point has a unique decomposition into a convex combination
of extreme points is called a Choquet simplex.

Now we give a general criterion of extremality and almost extremality
for points of a projective limit of simplices.

Proposition 2. 1. A point {xn} of a projective limit of simplices is ex-
treme if and only if for every m the weak limit of the measures νxm

on the
simplex Σm is the δ-measure at xm: limn ν

m
n ≡ νxm

= δxm
.

2. A point {xn} is almost extreme if for every m and every neighborhood
V (xm) of xm ∈ Σm there exists an extreme point {yn} of the limiting space
such that ym ∈ V (xm).

3. Every point {xn} of a projective limit of simplices has a unique de-
composition in terms of extreme points (Choquet decomposition), which is
defined via the measures νxm

.

Corollary 1. A projective limit of finite-dimensional simplices is a (in
general, infinite-dimensional) Choquet simplex.

One can easily prove that the converse is also true: every separable Cho-
quet simplex can be represented as a projective limit of finite-dimensional
simplices, but, of course, such a representation is far from being unique.
However, it is worth noting that the simplex of invariant measures for an
action of a nonamenable group on a compact space is separable, though
its possible approximation is not generated by finite approximations of the
action; thus there arises a nontrajectory finite-dimensional approximation
of the action, which, apparently, has not been studied.

Remark 2. Most probably, the first two claims of the proposition can be
extended to projective limits of arbitrary convex compact spaces.

Recall that among separable Choquet simplices one singles out so-called
Poulsen simplices for which the set of extreme points is dense; such a
simplex is unique up to an affine isomorphism and universal in the class
of all separable simplices. One can easily give an example of a Poulsen
simplex in our terms.
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Proposition 3. Consider a projective limit of simplices Σn satisfying the
following property: for every m the union⋃

n;t

{
πn,m(t); t ∈ ex(Σn), n = m,m+ 1, . . .

}
over all vertices of Σn and all n > m is dense in Σm. Then the limiting
space is a Poulsen simplex.

Clearly, such a simplex can be constructed by induction, and the crite-
rion obviously implies that the set of its extreme points is dense.

Simplices with closed Choquet boundary are called Bauer simplices.
Between Bauer and Poulsen simplices, there are many intermediate types
of simplices. In the literature on convex geometry and the theory of in-
variant measures, this subject has been repeatedly discussed. However, it
seems that these and similar properties of infinite-dimensional simplices
have never been considered in relation to projective limits and the theory
of graded graphs and corresponding algebras. Each of these properties has
an interesting interpretaion in the framework of these theories. The au-
thor believes that the following class of simplices (or even convex compact
spaces) is useful for applications: an almost Bauer simplex is a simplex
whose Choquet boundary is open in its closure.

3.3. All boundaries in geometric terms. The following definition is
a paraphrase of the definition of Martin boundary in terms of projective
limits.

Definition 3. A point {xn} ∈ Σn of a projective limit of simplices belongs
to the Martin boundary if there is a sequence of vertices αn ∈ ex(Σn), n =
1, 2, . . . , such that for every m and an arbitrary neighborhood Vε(xm) ⊂ Σm
there exists N such that

πn,m(αn) ∈ Vε(xm)

for all n > N . Less formally, a point of the limiting simplex belongs to the
Martin boundary if there exists a sequence of vertices that weakly converges
to this point (“from the outside”).

This sequence itself does not in general correspond to a point of the
projective limit Σ∞, but it is a point of the spaceM (the direct product of
the simplices Σn), and it makes sense to say that its components approach
the components of a point of the projective limit, which belongs to the
Martin boundary by definition. The condition of belonging to the Martin
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boundary is a weakening of the almost extremality criterion, hence the
following assertion is obvious.

Proposition 4. The Martin boundary contains the closure of the Choquet
boundary.

However, there are examples where the Martin boundary contains the
closure of the Choquet boundary as a proper subset. Such an example,
related to random walks, will be described in a joint paper by the author
and A. V. Malyutin, which is now in preparation. A question arises: can
one describe the Martin boundary in terms of the limiting simplex itself?
In other words, can one say what other points (except those lying in the
closure of the Choquet boundary) belong to the Martin boundary? The
author tends to believe that this cannot be done, since the answer to the
latter question depends not only on the geometry of the limiting simplex
itself, but also on how it is represented as a projective limit.

3.4. The probabilistic interpretation of properties of projective
limits. Parallelism between considering pairs {a graded graph, a system
of cotransition probabilities} on the one hand and considering projective
limits of simplices on the other hand means that the latter subject has a
probabilistic interpretation. It is useful to describe it without appealing to
the language of pairs. Recall that in the context of projective limits a path
is a sequence {tn}n of vertices tn ∈ ex Σn that agrees with the projections
πn,n−1 for all n ∈ N in the following sense: πn,n−1tn has a nonzero barycen-
tric coordinate with respect to tn−1. First of all, every point x∞ ∈ Σ∞ of
the limiting simplex is a sequence {xn} of points of the simplices Σn that
agrees with the projections: πn,n−1xn = xn−1, n ∈ N. As an element of
the simplex, xn determines a measure on its vertices, and, since all these
measures agree with the projections, x∞ determines a measure µx on the
path space with fixed cotransition probabilities. Conversely, every such
measure comes from a point x∞. Thus the limiting simplex is the simplex
of all measures on the path space with given cotransition probabilities. The
extremality of a point µ ∈ ex(Σ∞) means the ergodicity of the measure µ,
i.e., the triviality with respect to µ of the tail σ-algebra on the path space.
The above extremality criterion has a simple geometric interpretation, on
which we do not dwell.

So, we have considered the following boundaries of a projective limit of
simplices (or an equipped graph):
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the Poisson–Furtsenberg boundary ⊂ the Dynkin boundary = the Cho-
quet boundary ⊂ the closure of the Choquet boundary ⊂ the Martin bound-
ary ⊂ the limiting simplex.

The first boundary is understood as a measure space; all inclusions are in
general strict; the answer to the question of whether the Martin boundary
is a geometric object (i.e., whether it can be defined in purely geometric
terms, rather than via approximation) is most probably negative.

We summarize this section with the following conclusion: the theory of
equipped graded graphs (i.e., pairs {a graded graph + a system of cotransi-
tion propabilities}) is identical to the theory of Choquet simplices regarded
as projective limits of finite-dimensional simplices.

§4. The intrinsic topology on a projective limit of
simplices

4.1. The definition of the intrinsic topology on an inductive lim-
it. We proceed to our main goal, which is to construct an approximation
of a projective limit of simplices, i.e., a simplex of measures with a giv-
en cocycle, and to define the “intrinsic metric (topology)” on this limit.
This metric was defined in [3] on path spaces of graphs, only for central
measures and under some additional conditions on the graph (the absence
of vertices with the same predecessors). Here we give this definition in its
natural generality, for an arbitrary graded graph and an arbitrary system
of cotransition probabilities (see Sec. 2), and, most importantly, we con-
sider the whole limiting simplex and not only its Choquet boundary. This
allows us to study the boundary for graphs with nonstandard (noncom-
pact) intrinsic metrics. We formulate definitions and results both in terms
of equipped graded graphs and in terms of projective limits of simplices
spanned by the vertices of different levels.

We start with the definition of an important topological operation which
will be repeatedly used, that of “transferring a metric.”

Let (X, ρX) be a metric space and φ : X → Y be a (Borel-)measurable
map from X to a Borel space Y ; assume that the preimages of points
φ−1(y), y ∈ φ(X) ⊂ Y , are endowed with Borel probability measures νy
that depend on y in a Borel-measurable way; φ will be called an equipped
map.
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Definition 4. The result of transferring the metric ρX on the space X to
the Borel space Y along the equipped map

φ : X → Y

is the metric ρY on Y defined by the formula

ρY (y1, y2) = kρX (νy1 , νy2),

where kρ is the classical Kantorovich metric on Borel probability measures
on (X, ρX).

1. Consider an equipped graph (Γ,Λ) and the corresponding projective
limit of simplices Σ∞(Γ). Define an arbitrary metric ρ = ρ1 on the path
space T (Γ) that agrees with the Cantor topology on T (Γ); denote by kρ1
the Kantorovich metric on the space ∆(Γ) of all Borel probability measures
on T (Γ) constructed from the metric ρ1 (see the definition below).

2. Given an arbitrary path v ≡ {vn}, consider the finite set of paths
v(u) = {u, v2, . . . } whose coordinates coincide with the corresponding co-
ordinates of v starting from the second one, and assign each of these paths
the measure λuv2 . We have defined an equipped map φ1 : T (Γ) → ∆(Γ) =
∆1, which sends a path to the measure

∑
u:u≺v2

λuv2δv(u). It is more conve-

nient to regard it as a map from the simplex ∆(Γ) to itself, by identifying
a path with the δ-measure at it.

Transferring the metric ρ1 along the equipped map φ1, we obtain a
metric ρ2 on a subset ∆2 = φ(∆1) of the simplex ∆(≡ ∆1(Γ)).

3. In a similar way we define the map φ2 that sends every measure
from ∆2 concentrated on paths of the form {u1, v2, . . . }, u1≺v2, to the
measure on the finite collection of paths of the form {u1, u2, v3, . . . } whose
coordinates coincide with vi starting from the third one and the second
coordinate u2 runs over all vertices u2 ≺ v3 with probabilities λu2

v3 . Again
transferring the metric ρ2 from the space ∆2 along the equipped map φ2,
we obtain a metric ρ3 on the image ∆3 ≡ φ2(∆2) = φ2φ1(∆).

Note that the images of the maps φn, i.e., the sets ∆n, are simplices, but
their vertices are no longer δ-measures on the path space, but measures
with finite supports of the form

∑
u1,u2,...,uk

λu1
u2
· · ·λuk

vk+1
·δu1,...,uk,vk+1,.... The

definition of the simplices ∆n does not depend on the metrics ρn.
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4. Continuing this process indefinitely, we obtain an infinite sequence of
metrics on the decreasing sequence of simplices

∆n = φn−1(∆n−1) = φnφn−1 . . . φ1(∆1),

∆ = ∆1 ⊃ ∆2 ⊃ ∆3 . . . ,
⋂
n

∆n = ∆∞.

Thus we have a sequence of equipped maps of the decreasing sequence of
simplices

∆1 → ∆2 → · · · → ∆n → · · · → ∆∞.

First we mention an assertion that does not involve the metric.

Proposition 5. The intersection ∆∞ of all simplices ∆n consists exactly
of those measures on the path space T (Γ) (i.e., those points of the simplex
∆(Γ) of all measures) that have given cotransition probabilities (given co-
cycle), and, therefore, this intersection coincides with the projective limit
of the simplices:

∆∞ = Σ∞(Γ).

Of more importance is the following fact.

Theorem 1. There exists a limit limn→∞ ρn = ρ∞ of metrics on the space
∆∞(= Σ∞(Γ)). The limiting simplex Σ∞(Γ) equipped with this metric is
not in general compact, so that ρ∞ does not generate the projective limit
topology.

. We will give an explicit description of the limiting “intrinsic” metric,
using more detailed information on the metrics ρn. To this end, we should
remind the definition of the Kantorovich metric on measures and the notion
of coupling, which is actually used in the definition of transferring metrics.

Definition 5. A coupling of two Borel probability measures µ1, µ2 defined
on two (in general, different) Borel spaces X1, X2 is an arbitrary Borel
measure ψ on the product X1×X2 whose projections to the factors X1, X2

coincide with µ1, µ2. The set of all couplings for µ1, µ2 will be denoted
by Ψ(µ1, µ2). (Other names for this notion are “bistochastic measure,”
“polymorphism,” “Young measure,” “correspondence,” etc.)

The Kantorovich metric on the simplex of measures on a metric space
(X,µ) is defined as follows:

kρ(µ1, µ2) = inf


∫

X×X

ρ(x1, x2) dψ(x1, x2) : ψ ∈ Ψ(µ1, µ2)

 .
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Above we defined metrics (i.e., distances between measures) by recur-
sion on n, each time applying coupling. But one can do this consistently,
combining all conditions on successive couplings together. In the infinite
case, this gives at once a formula for the limiting metric.

Assume that the metric space X in the previous definition is endowed
with a sequence of equipped maps

X = X1 → X2(⊂ X1)→ X3(⊂ X2)→ · · · → Xn(⊂ Xn−1)

(here n is finite or infinite; in the second case, the last space should be
replaced by the intersection

⋂
nXn ≡ X∞) and we want to define the

distance between measures on the last space (Xn or X∞). This is exactly
our situation, where the spaces Xn = ∆n are the simplices determined by
the maps that replace an initial segment of a path by a measure distributed
on initial segments. The formula remains the same as in the classical case,
the difference being in what one means by a coupling:

Kn(µ1, µ2) = inf


∫

X×X

ρ(x1, x2) dψ(x1, x2) : ψn ∈ Ψn(or ∈ Ψ∞)

 .

Here the coupling ψn runs over the set Ψn consisting of measures on the
space X × X that not only have given projections but are such that the
projection of ψn to each component agrees with the structure of the se-
quence of projections of the space X = X1 → X2 → . . . itself. In other
words, for every n the coupling ψn is a mixture of the couplings ψn−1: this
strict constraint is the difference with the usual procedure. Thus the above
formula correctly defines all metrics, including the limiting metric on the
simplex ∆∞ = Σ∞(Γ).

Although the limiting intrinsic metric depends on the initial metric,
nevertheless the formula shows also that the topology determined by the
limiting metric is the same for all initial metrics that agree with the topol-
ogy of the simplex. �

4.2. Standardness.

Definition 6. An equipped graph (Γ,Λ), as well as a projective limit of
simplices limn(Σ, πn,m), are called standard if the limiting simplex of mea-
sures Σ∞ endowed with the intrinsic metric is compact. In this (and only
this) case the projective limit topology coincides with the intrinsic topology.
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A (nonequipped) graph will be called standard if the limiting simplex of
central measures is compact in the intrinsic metric. The standardness or
nonstandardness of an equipped graph depends in general on the system Λ.

This definition generalizes the definition of a standard graph given in
[3]: a standard graph in the sense of [3] is standard in the sense of the
above definition. More exactly, if we restrict Definition 6 to the spaces of
paths of length n regarded as sequences of vertices, then we obtain the
definition from [3]. One may say that the new definition is a linearization
(extending to linear combinations) of the previous one. This can also be
stated as follows: we consider (instead of vertices of a given level) mea-
sures on the set of paths leading to these vertices with given cotransition
probabilities. Therefore, all metrics and their limit are defined on sets of
measures (rather than sets of vertices), which provides a natural gener-
ality for the definition removing the restrictions on the graph previously
imposed. From a practical point of view, of course, it is more convenient
to check the standardness by considering vertices (diagrams) if this is pos-
sible.

An example of a graph with a noncompact intrinsic metric is given in
[3]; we only mention that this is, for instance, the graph of unordered pairs
related to the notion of tower of measures.

We state without proofs the main facts, which were partially reported
in [3] under additional assumptions.

1. For a standard graph (projective limit of simplices), every ergodic
measure on paths enjoys a concentration property: for every ε > 0, for all
sufficiently large n, the nth level vertices lying on a set of paths of measure
> 1−ε are contained in a ball of radius at most ε > 0 in the intrinsic metric
(this is also called the “limit shape” property). This allows one, in the case
of an arbitrary standard equipped graph, to search for all ergodic measures
among the limits along paths in the intrinsic metric (rather than among
the weak limits, according to the ergodic method). In the nonstandard
situation, the ergodic method cannot be strengthened in this way: the set
of weak limits in this case is in fact greater than the set of limits in the
intrinsic metric.

2. The tail filtration on the path space of a standard graph with respect
to every ergodic measure is standard in the metric sense. (For the defini-
tion of a standard filtration and the standardness criterion in the metric
category, see [2].)
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3. The most important fact, which reproduces the theorem on lacunary
isomorphism [1] in the topological situation is as follows.

Theorem 2 (Lacunarization theorem). For every equipped graph (Γ =⋃
n Γn,Λ) (respectively, for every projective limit of simplices limn{Σn, {πn,m}n,m}),

one can choose a subsequence of positive integers nk, k = 1, 2, . . . , such
that the equipped multigraph Γ′ =

⋃
k Γnk

obtained by removing all lev-
els between nk and nk+1, k = 1, 2, . . . , and preserving all paths connecting
them (respectively, the projective limit limk{Σnk

, {π′k,s}k,s} with the lumped

system of projections π′k,s, where

π′k,k+1 =

i=nk+1−1∏
i=nk

πi,i+1)

is standard.

This means that standardness is a property of the projective limit, and
not of the limiting simplex: by changing (lumping) the approximation one
can change the intrinsic topology and make it equivalent to the projective
limit topology, even if they were distinct before lumping.

The interrelations between standardness and Bauerness of the limiting
simplex need further study.
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In this paper, we develop a theory of equipped graded graphs (or Brat-
teli diagrams) and an alternative theory of projective limits of finite-
dimensional simplices. An equipment is an additional structure on the
graph, namely, a system of “cotransition” probabilities on the set of its
paths. The main problem is to describe all probability measures on the
path space of a graph with given cotransition probabilities; it goes back to
the problem, posed by E. B. Dynkin in the 1960s, of describing exit and
entrance boundaries for Markov chains. The most important example is
the problem of describing all central measures, to which one can reduce
the problems of describing states on AF-algebras or characters on locally
finite groups. We suggest an unification of the whole theory, an interpreta-
tion of the notions of Martin, Choquet, and Dynkin boundaries in terms of
equipped graded graphs and in terms of the theory of projective limits of
simplices. In the last section, we study the new notion of “standardness”
of projective limits of simplices and of equipped Bratteli diagrams, as well
as the notion of “lacunarization.”
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