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ANNOTATION

We introduce a notion of ”standard approximation” of AF -algebras, and
correspondingly notion of standard tale filtration on Cantor sets. This no-
tion mark out so called ”smooth” problem of the description of the inde-
composable traces for corresponding AF -algebras, (or invariant measures for
tale filtration): which means that there is a good parametrization of those
traces or measures. In the opposite (non standard) case in general we have
no suitable parametrization of indecomposable traces. The parallelism be-
tween the case of AF -algebras and invariant measures based on the fact that
AF -algebras are cross-products of commutative C∗-algebra and an action of
amenable countable group (f.e.action of adic transformation for example).
Our definition of standardness based on the property of filtrations of sigma-
fields which approximate the orbit partition; that notion was defined by the
author in 60-th in framework of ergodic theory. The example of nonstandard
approximation (and non-smooth problem) is given.1

∗St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg State
University, and Institute of the Problem of Transmission of Information, Moscow.

1add in proofThis article was written in 2013, during this time I had published several
publication in this direction -see Reference: [20, 21, 22]
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1 INTRODUCTION

This text is more or less the detailed version of the part of my talk on the
School on Probability and Statistical Physics at St.Petersburg (June 2012);
so it preserves the properties of oral presentations. I have discussed sev-
eral problems about the combinatorial and probabilistic structures which are
related to representation theory of the locally finite groups and locally semi-
simple and AF -algebras, as well of asymptotic combinatorics and dynamics.
In this note I emphasize only one problem of that list which I consider as the
main one; namely: the description of the characters of locally finite groups,
or traces of AF -algebras, and with invariant measures for ergodic equivalence
relations. It connected with various mathematical areas. Most known ex-
ample of this type is the problem about the characters of infinite symmetric
group. More general setting is the theory of the central measures on the
set of paths of Bratteli diagram and the the problem about description of
invariant probability measures with respect to the hyperfinite action of the
countable group (for example adic transformation)

The final goal was to distinguish so called ”smooth” and ”non-smooth”
cases in the problems and correspondingly to distinguish the approximation
of AF -algebras onto several classes. Our classes can be formally expressed
in terms of K-theory, namely, of K0-functor and its dual K0 ([3]). But we
will not use this language and try to formulate the tools which can be easily
calculated. We show some typical examples of those classes and formulate a
Conjecture which perhaps will help to solve some old problems. In particulary
we give the prediction which concerns to the list of characters for many
dimensional Young graphs.

More concretely, our goal is to investigate the structure of the invariant
measures on the Cantor sets, rather than explicit formulas for them. We
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explain the difference between two classes: for non-smooth case there are no
reasons to expect regular formulas for the traces or invariant measures. But
it is important to know whether given case is smooth or not and to give a
criteria for that. I have started to think about two-dimensional (ordinary)
Young graph) just after I became familiar with Thoma’s result and tried to
understand when and why such nice answer exists.

In particular I want to emphasize that the pure combinatorial or proba-
bilistic proof of the existence of borel parametrization of the list of indecom-
posable characters (even for AF (S∞)-algebra) does not exist up-to now. I
mean the question here is not about precise formulas for invariant (central)
measures or traces for AF -algebras, which are rather concrete problems, but
about the reason why such formula can exist and what are the sufficient con-
ditions for existence.

More deep features of the problem is discovered if we connect it with the
orbit theory and with my theory of decreasing sequences of sigma-algebras
(filtration). Shortly, the difference between smooth and non-smooth cases
look as a difference between standard and nonstandard semi-homogeneous
filtrations.

We conclude the Introduction with the claim that the problem of the
description of the traces ofAF -algebra (characters of the locally finite groups)
is the analog of Fourier duality in classical analysis.

In the second paragraph we explain the problem and the links between
traces of AF -algebras and invariant measures. The third paragraph devoted
to definition of smooth and non-smooth AF -algebras and smooth and non-
smooth actions on the Cantor space which is invariant property. In the
fourth paragraph we gave the nontrivial algebraic examples of both cases
— smooth case: the group algebra of symmetric group (Young graph as
Bratteli diagram) and non-smooth case: the group algebra of second order
of solvability locally finite group. In the fifth paragraph we shortly defined
the notion of standardness of approximation of AF -algebra an of the tale
filtration— those properties are not invariant of AF -algebra but helps to
check the smoothness. In the last paragraph we formulate our conjecture
about smoothness of the case of Bratteli diagram which are Hasse diagram
of the countable distributive lattices in particular - many dimensional Young
graphs.
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2 CENTRALMEASURES, TRACES, CHAR-

ACTERS, ACTIONS.

We will mention briefly some notions: Bratteli diagrams, space of the paths,
AF -algebra, skew-product structure, central measures, traces etc. It is easy
to find this in the literature (see f.e.[3] and references their).

Recall that Bratteli diagram is a locally finite N-graded graph Γ with
one initial vertex ∅, with no final vertices and edges (could be multiple with
finite multiplicity) which join the vertices of successive levels. The important
object is the space T (Γ) of all infinite pathes of the graph Γ - this sequence of
edges (not vertices!) started in the from initial vertex without breaks. This
space has natural structure of inverse limit of the finite sets and consequently
has topology of Cantor space. A cylindric complex functions on T (Γ) are the
functions which depend on finite parts of the path. The algebra of all cylin-
dric functions on T (Γ) with pointwise multiplication called Gel’fand-Zetlin
GZ(Γ) this is commutative algebra (see [11]) which is maximal if there is no
multiplicity of edges. Because Γ is N-graded graph it supplied with so called
tail equivalence relation, and correspondingly, tail partition — two paths are
equivalent if they coincided at infinity, more exactly, both paths have the
same vertices on the sufficiently large levels. Denote this tail partition on
the space of the paths as ξ. In the interesting cases this is not measur-
able partition. It is possible to define a transformation of the path space,
whose orbit partition coincides with tail partition -I mean adic transforma-
tion which depend on ordering of the set of edges coming to the each vertex.
For our goals instead of Bratteli diagrams we can consider Cantor set with
filtration of all cylindric functions and tail equivalence relation.

Thus instead of Bratteli diagram and the space of paths we can consider a
standard Cantor space with a filtration in the space of all cylindric functions
corresponding tail partition and invariant (homogeneous) measures on that
partition. It happened that we are in the situation with the decreasing se-
quences of cylindric (measurable) partitions in the Cantor set (as topological
space), and we can use the analogy with measure-theoretical results about
decreasing sequences of the partitions (see [12]). We use this analogy below.

But first of all recall the connection of combinatorics with AF -algebras.
It is well-known that each Bratteli diagram Γ generates canonically a locally-
semi simple C-algebra C(Γ). By theorem which independently was proved in
[2, 3] this algebra has natural structure of skew-product of Gel’fand-Zetlin
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subalgebra GZ(Γ) and some group G of the tail-preserving transformations
of space T (Γ). We can choose as that group the group Z, generated by
one transformation which is defined on the set of almost all paths — adic
transformation [4]. The completion of this algebra C(Γ) with respect to
C∗-norm is so-called approximately finite-dimensional algebra — AF -algebra.
We denote it as AF (Γ). The theory of AF -algebras considers the connections
between properties of the graph Γ itself and algebra AF (Γ), including K-
theory, classification and so on [5, 16]. But here we consider only very rough
difference between AF -algebras.

Definition 1. The central measure on the space of paths T (Γ) of the graded
graph Γ is a Borel probability measure on T (Γ) which is invariant with respect
to partition ξ. In another words, this is a measure induces a homogeneous
conditional measure on the any measurable subpartition of ξ. This is equiva-
lent to the fact that this measure is invariant under the adic transformation
(see [4]) or any group of the transformations whose partition on the orbits
coincides with partition ξ.

Recall that the trace on C∗-algebra A is positive definite linear functional
φ : φ(hh∗) ≥ 0), which has property: φ(hgh∗) = φ(g), φ(e) = 1 for all
g, h ∈ A. If A is a group algebra then trace define a normalized character on
the group.

Theorem 1. ([2, 3]) There is a canonical one-to-one correspondence between
the traces on the algebra C∗(Γ) and central measure on T (Γ).

This identification is defined by the restriction of the trace on C∗(Γ) to the
Gelfand-Zetlin subalgebra GZ(Γ), and trace on this commutative subalgebra
is a Borel probability measure on the spectra e.g. on the space T (Γ). It is
easy to check that this measure must be central because of invariance of the
trace with respect to inner automorphisms. And vice versa, each central
measure generates trace as measure-type trace skew-product algebras.

The C∗(Γ) — group algebra of the locally-finite group — is AF -algebra.
In this can we can apply the theorem. For example the infinite symmetric
group has Young graph of the Young diagrams as branching graph of the
simple modules and then the central measures are normalized character of
the group and vice versa.

We have two identical problems:
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To describe the set of ergodic central measures for given Brat-
teli diagram, or equivalently to describe all invariant measures for
the tail partition of a cylindric filtration of the Cantor set.

and

To describe the set of indecomposable traces for given AF -
algebra.

As a special case of the last problem we have the following problem:

To describe the set of the normalized indecomposable characters
of the given locally finite group.

From point of view of representation theory the normalized traces on
the C∗-algebras generate the representations of the C∗-algebra (group) of
finite type in the sense of von Neumann: either type In or type II1. The
same is true for normalized characters on the countable groups: if the trace
or character is indecomposable (which means that the central measure is
ergodic), then it is factor-representation of the group is of type In or type
II1 and vice versa.

The decomposable trace or character decomposable can be represent as
integral over indecomposable ones, this decomposition corresponds to central
decomposition of the von Neumann algebra of finite type; in terms of invari-
ant measure it corresponds to ergodic decomposition of invariant measures.

3 DEFINITIONS OF SMOOTH AND NON-

SMOOTH AF -ALGEBRAS AND GROUP

ACTIONS

3.1 Main definition

The set of all normalized traces of the C∗-algebra is convex compact in the
weak topology on the state space, (=normalized linear positive functionals
on the algebra), moreover it is affine simplex. The extremal points of this
compact is indecomposable traces which means can’t be proper convex com-
bination of the other traces. The set of invariant probability Borel measures
on the topological compact X under the action of the countable group Γ is
also affine compact simplex and the set of ergodic measures coincide with its
Choquet boundary.
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Recall that Poulsen simplex is affine compact simplex in which the Cho-
quet boundary (=the set of extremal points) is every where dense in the
simplex. Such a simplex is unique up-to affine isomorphism (universality
of Poulsen simplex). The simplex with closed Choquet boundary called as
Bauer simplex, and there are uncountable many non-isomorphic Bauer sim-
plecies.

Denote as Tr(A) the simplex of all traces on the C∗-algebra A and the set
of indecomposable traces as ExTr(A) traces (=Choquet boundary of that
simplex). In parallel, denote the set of invariant measure on the Cantor set
K with hyperfinite Borel equivalence relation with countable blocks – ξ —as
Inv(K, ξ); denote the set of the ergodic measures of Inv(K, ξ) as Erg(K, ξ).
Partial case - ξ is the orbit equivalence relation for the measure preserving
action of the countable group. We consider only hyper-finite ξ which means
that group (if acts freely) is amenable.

Definition 2. AF -algebra A is called completely non-smooth if the set of
normalized traces Tr(A) as affine compact is Poulsen simplex. We say that
A is completely smooth if the Choquet boundary ExTr(F) is open subset in
its weak closure.

The hyper-finite equivalence relation ξ of the Cantor space K called com-
pletely non-smooth if Inv(K, ξ) is Poulsen simplex. We say that equivalence
relation ξ (or action of the group with this orbit equivalence relation) is com-
pletely smooth if the set of ergodic measures (Choquet boundary) Erg(K, ξ)
is open subset in its weak closure in Inv(K, ξ). 2

Proposition 1. The above property (of smooth and non-smooth) of AF -
algebra are invariant: the existence of isomorphism between to algebras means
that both algebras are smooth or both algebras are not-smooth.

It is clear that those properties do not depend on the choice of Bratteli
diagrams for given AF -algebra. In the same time the notion of standardness
(see paragraph 4) does depend on the choice of diagram.

3.2 Some remarks

The condition: ”The set ExTr(A) (correspondingly Erg(K, ξ)) is weakly
closed in Tr(A) (correspondingly in Inv(K, ξ))” e.g. the simplex is Bauer

2We omit some time the word ”completely” in all definitions. It needs strictly speaking
only if we consider also the intermediate case -when AF -algebra action of the group) has
simultaneously both parts, but we will not consider intermediate cases here.
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simplex, — seems too strong for our goals. In another words we allow the
cases which is often ha been appeared when there are some (not so many)
decomposable traces (correspondingly- non-ergodic measures) which is a limit
of indecomposable traces (ergodic measures). In our Conjecture — see below
— we assume just the case of the weak closure. I do not know name for the
simplex with that property weaker that Bauer property.

The definition above put the main problem: how to distinguish those two
cases in both situations in concrete examples, how to verify that given AF -
algebra (given equivalence relation or action) belongs to one of two classes.
We will illustrate such kind of problems below. The most interesting example
concerns of Young diagrams of different dimensions, distributive lattices and
special graphs.

The smoothness of the description above means that we can give a good
parametrization of the set of indecomposable traces (correspondingly - er-
godic invariant measures). But of course, to find such parametrization is
nontrivial problem.

3.3 Connection with other topics: boundary, classifi-
cation of equivalence relations

Remark that the definition of the ergodic central measures includes the infor-
mation about co-transition probability of the Markov chain which is unform
distribution. It does not include the transition probabilities of Markov chain
and those probabilities could be very different. In this sense our problem is
NOT the problem of the calculation of Poisson-Furstenberg boundary (see
[10]), rather -close to calculation of Martin boundary. We can say that the
problem about description of central measure is the problem about descrip-
tion of all transition probabilities. But the attempt of direct calculation of it
is not fruitful approach because it is too cumbersome. Centrality of measures
(or invariance) can be generalized to the problem ”to find all measures with
given cocycle” - in our case this cocycle equal to 1. 3

In measure theoretical category all ergodic homogeneous hyper-finite par-
titions are isomorphic (Dye’s theorem and lacunary isomorphism theorem).
In topological category it is not true:we have various tail partitions which are
not (even Borel) isomorphic; they have the different structure of the set of

3In the theory of the stationary Markov compact the central measures called ”measure
with maximal entropy”
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invariant measures. The result in [14] claim that the cardinality of the num-
ber of invariant measures is complete invariant of Borel hyperfinite minimal
equivalence relation upto Borel equivalence 4. So we need in formulation in-
termediate category between measure-theoretical and borel in which we can
take in account some properties of the simplex of traces (invariant measures).
K-theory by definition gave us such possibility for AF -algebras, but without
concrete tools and this is the main difficulty in our problem.

3.4 Filtration an standardness

It seems that more important link of the problem concerns to the theory of
filtration. In our situation we have the following useful fact:

Proposition 2. ([3]) Each ergodic central measure on the N -graded graph
Γ is a Markov measure with respect to the graded structure of graph.

So we must consider the tail (hyperfinite) equivalence relation and its
Markov approximation. This is the question of the theory of the decreasing
sequence of finite partitions (filtration). More exactly we have as a Cantor set
(space of paths of the Bratelli diagram) a Markov (non-stationary) compact
X with finite state spaces on each coordinate:

X = {{xn}∞n=0;xn ∈ Xn, |Xn| < ∞,mxn,xn+1 = 1, Mn = {mn
i,k} ∈ Matn{0; 1}, n ∈ N.}

We have a filtration of the sigma-fields: {AN} (which are generated by
coordinates with number greater than N) Conjecturally we can formulate the
answer on the question about smoothness of of the tail equivalence relation
in terms standardness of that filtration. Recall [12], that stationary Markov
filtration is standard. The same is true for the case of group algebra of S∞
-see theorem 2.

3.5 Link with general theory of C∗-algebras

The notions which was defined make sense for the arbitrary C∗-algebras and
arbitrary equivalence relations as actions. So, we can compare our definition
with analog in the theory of C∗-algebras — of the sharing of the C∗-algebras

4I am grateful to professor A.Kechris for this reference.
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on liminaire and anti-liminaire (see [9] corresponds to the sharing of the
AF -algebras onto

1)AF -algebras for which description of the indecomposable traces is ”smooth
problem” (this class contains all liminaire AF -algebras)

and
2)other AF -algebras (which must be anti-liminaire). Equivalently, we

divide the problem of the description of ergodic invariant measures onto two
classes.

It is naturally to compare this question with the question about clas-
sification of irreducible representations of groups or algebras. It is well-
known (see[9]) that the problem of the classification of all irreducible ∗-
representation for C∗-algebra or group up-to unitary equivalence or? equiva-
lently – the description of the pure states of the algebra up-to equivalence, —
is tame or ”smooth” iff this algebra so called ”liminaire”. By classical results
by Glimm the problem is wild (not smooth) for ”anti-liminaire” algebras.
For countable groups the analog of this by Thoma’s theorem is the following:
for the groups which are finite extension of commutative groups (=virtually
commutative) and only those groups the problem of the description of the
characters is tame (smooth). The notion of the smooth and non-smooth
AF -algebras allow to consider the further classification of ”anti-liminaire”
algebras. So the meaningful question is: for what kind of anti-liminaire al-
gebras (or non virtually commutative groups) the description of the traces
(characters) is smooth problem?

4 EXAMPLES OF SMOOTH AND NON-

SMOOTH CASES, AND CONJECTURE.

4.1 SMOOTH EXAMPLE: GROUP ALGEBRA OF
INFINITE SYMMETRIC GROUP ANDYOUNG
GRAPH.

It is very easy to give example of completely smooth AF -algebra or smooth
hyperfinite equivalence relation - For example Glimm algebra (UHF) like⊗∞

1 M2C has only one trace, and tail equivalence relation in the Cantor
space

∏∞
1 Z/2 has only one invariant measure (Haar measure). In this case

the filtration of tail partitions is standard diadic sequence ([12]). The Pascal
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graph ([13]) as Bratteli diagram defines well-known AF -algebra which is also
smooth. Perhaps the Pascal filtration is also standard. Here we give more
complicate examples and to prove smoothness. Namely we consider the group
algebra symmetric group which is very popular now and became years ago
the starting point for further investigations. The cases of infinite unitary and
orthogonal groups are also smooth in our sense, — for all these groups we
also have full list of the characters.

Concerning to Young graph that problem about characters of infinite sym-
metric group had several solutions: the first one was pure analytical solution
by E.Thoma ([1]) who posed firstly the question. His solution contained
noting about combinatorial or group-type feature of the problem. The sec-
ond proof by A.Vershik-S.Kerov ([3]) used group approximation; the third
approach due to A.Okounkov (1992), based on operator theory method. It
is interesting that the problem itself in all this cases had considered from
different point of view: Thoma’s formulate it as a problem about description
of the positive definite functions on infinite symmetric group, Vershik-Kerov
approach was about central measures on the space of the infinite paths of
Young graphs, the approach suggested by Ol’shansky [8] and realized by
A.Okounkov [6] concerned so called admissible representations of the that
group. We have used with S.Kerov my ergodic method which gives a general
approach to similar problems but needs in complicate calculations.

We start with canonical example of the completely smooth case -group
algebra of infinite symmetric group. The group algebra is of course anti-
liminaire (no smooth classification of the irreducible representations) but
completely smooth -list of traces has nice parametrization.

Consider Young graph Y as Bratteli diagram of the group algebra of
the infinite symmetric group = C(S∞). The vertices of the Young graph
Y is Young diagrams and number of cells is graduation; the finite path in
Young graph Y is ordinary Young tableaux; we will consider infinite paths
which are infinite Young tableau. On the space of all infinite paths T (Y) we
have tail equivalence relation, and we can define the set of central measures
on T (Y), which, as we saw, in the canonical correspondence with space of
traces on C(S∞), or characters on S∞. Ergodic measures corresponds to
indecomposable traces (characters).

As we have mentioned the list of indecomposable characters Char(S∞)
of infinite symmetric group was found by Thoma [1] in pure analytical way
(see formula below). Ergodic method [3] in direct formulation for this case
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asserts that any ergodic central measure µ on the space T (Y) is weak limit
of the sequence of the elementary invariant measures mn(λn) where the last
measure is uniform distribution on the the set of all Young tableaux with
given Young diagrams λn) with n cells. In order to find all ergodic central
measures we must consider all possible sequences of Young diagrams {λn}∞n=1.
The problem is to choose enough such sequences of λn) in order to obtain
all central measure, and then to make calculations of the weak limits for the
obtaining of final Thoma’s formula.

The key argument in the proof of [3] was that it is enough to consider the
sequences of λn) which have frequencies of the growth of rows and columns
in the diagrams:

αk = lim
n

rk(λn)

n
; k ∈ Z \ 0,

where rk(λ) is length of k-th row (when k > 0) and length of −k-column
(when r < 0) of the diagram λ.

The explicit formula of the characters (traces) includes only sequence
α = {αk}k∈Z\0, and looks as a function χ on the group as follow:

χα(g) =
∏
n>1

sn(α)
cn(g),

where cn is (finite) number of cycles of length n > 1 in the (finite) per-
mutation g, and

sn =
∑
k∈Z\0

sgn(k)(n−1) · αk
n, n > 1

(super newtonian sum).
Here

α = {αk}k∈Z\0 : α1 ≥ α2 ≥ · · · ≥ 0, α−1 ≥ α−2 ≥ · · · ≥ 0;
∑
k∈Z\0

αk ≤ 1

Interpretation of the value χα(g) is a measure of fixed points of the action of
the element g in appropriate measure space depending of α (see [?]). Most
important case is the case of αk ≡ 0; in the case χα(g) = δe (delta function
at identity element of the group), and corresponding central measure on the
space of Young tableaux T (Y) is Plancherel measure. The corresponding
representation is regular representation of the group S∞.

An important observation.
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Theorem 2. Consider any central measure as measure on Markov compact
of the paths (Young tableaux) and look at the sequence of the sigma-field
Fn, n = 1 . . . ( or measurable partitions) generated by the coordinate of the
paths with number more that n. Than this sequence (as homogenous parti-
tions) is standard in the sense of [12].

It is difficult to explain all the notion here, but the notion of the standard-
ness is easy to formulate when we consider it in the framework of measure
theory: the sequence of homogeneous partition is standard if normalized
entropy equal to zero. As we had noticed in this case it is possible to connect
the standardness with smoothness.

4.2 NON-SMOOTH EXAMPLE: GROUP ALGEBRA
OF A SOLVABLE GROUP.

The following skew-product gives the example of the ”non-smooth” situation:
let us consider the group

G =
∞∑
1

Z/2; G =
∪

Gn; Gn =
n∑
1

Z/2

and its Bernoulli action group G on X = 2G =
∏

g∈G Z/2. The semi-product
of the group G and space X is a group

Ĝ = Gi 2G

which is locally compact solvable group. More convenient instead of X to
consider its dense countable subgroup X0 =

∑
g∈G Z/2 and the semi-product

of the group G and space X0, e.g. group

Ḡ = Gi
∑
g∈G

Z/2

with natural action of G on X0.
Of course Ḡ is locally finite countable solvable group, its group algebra

C(Ḡ) is locally semi-simple algebra, and C∗(Ḡ) is its C∗-group-algebra, which
is an AF -algebra. Each finite dimensional simple subalgebra is a matrix
algebra generated by the irreducible representations of Gn on 2Gn for some
n ∈ N. Remark that matrix algebra is semidirect product of the action of Gn

on the group of character 2Gn). The result of this is the following theorem:
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Theorem 3. The Bratteli diagram Γ(Ḡ) of the group algebra C(Ḡ) has the
following form; the set of vertices (simple modules) of the graph of the level n
are parameterized by the orbits of the natural action of group Gn on the space
2Gn. The edges of the graph between orbits O of the level n and orbit O′ of
the level n + 1 of the diagram has multiplicity 0,1 or 2 as follow: recall that
the orbit O′ is non ordered union of two orbits of the level n; so multiplicity
equal zero, if orbit O is not part of the orbit of O′; if O is a part of the orbit
of O′, say O = O′ ∪ O′′ then the multiplicity equal 1 if O′ = O′′, and 2 if
O′ ̸= O′′.

It is easy to conclude from this that the space of all paths in the graph
Γ(Ḡ) coincides with group X = 2G and partition on the orbits of the action of
G on X are the same as the tail partition on the paths. The combinatorics
of these graph in terms of combinatorics of diadic decreasing sequences of
measurable partitions has been studied in [12].

This description show us what is the Gelfand-Zetlin algebra GZ of C(Ĝ).
Observe that the canonical structure of semi-direct product of AF -algebra
does not coincide in general with the structure of semi-direct product on the
group, but in our case this is true. More exactly Gelfand-Zetlin subalgebra
GZ of C(Ĝ) does coincide with Group algebra of the group X = 2G.

Theorem 4. There is a bijection between the list of the traces of the AF -
group algebra C(Ḡ) of the group Ḡ and the list of Borel probability measures
on the space X =

∏
g∈G Z/2 with respect to the natural action of the group

G.

Corollary 1. The AF -algebra C(Ĝ) of the group Ĝ is non-smooth in the
sense of the definition which was given above.

Proof. The simplex of the invariant measures on the space X =
∏

g∈G Z/2
with respect to action of the group G is Poulsen simplex because there are
everywhere dense set δ of the discrete invariant measures with finite support,
namely, measures whose support is finite set of the characteristic functions
of the cosets over subgroups of finite index.

The fact that the action of the for any countable group G which has
no Kazhdan property T the simplex of the invariant measures with respect
to action G in 2G is Poulsen simplex was proved in [15]. For the group
G =

∑∞
1 Z/2 this is evident. But now we need to identify that simplex with

the simplex of the traces on group algebra C(Ĝ). Let us identify the central
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measures as the invariant measures on the groupX with traces and characters
on the algebra and group. It is evident that the regular representation of
the group Ḡ corresponds to Haar (Lebesgue) measure on X and the action
of the group G is Bernoulli action of this group with Bernoulli measure µ.
Moreover the regular representation in usual formulation (in the space l2(Ḡ))
is isomorphic to von Neumann model of II1 factor - as representation of semi-
direct product G i 2G (with left and right action of the group Ḡ. A very
good exercise is to calculate the Plancherel measure as measure on the space
of orbit, and its when order of orbits tends to infinity.

Now let us interpret this measure in terms of Markov compact of the
sequences of orbits (= edges of Bratteli diagram; remember that central
measure is a measure on the paths e.g. sequences of edges of that diagram).
Crucial fact is the following:

Theorem 5. Consider the image of invariant Bernoulli measure µ on the
space X = 2G as a measure on the paths of the Markov compact (see def-
inition in paragraph 2). Consider the decreasing sequences {ξn}∞n=1 of the
sigma-fields (measurable partitions) where ξn is sigma-algebra generated by
the coordinates with numbers more than nn (correspondingly partition on the
paths with the same n-tail – coordinates wit numbers more that n) Than de-
creasing sequences {ξn}∞n=1 is not standard in the sense of [12]. Moreover,
this is is example of the decreasing sequences with positive entropy in that
sense.

It is enough to mention that this example literally the same as in the
paper [12], but it was considered at that paper in the framework of completely
different reasons (theory of diadic sequences of measurable partitions, no any
groups, AF -algebras and so on).

4.3 CONJECTURE: SMOOTHNESS OF THE HASSE-
BRATTELI DIAGRAM FORDISTRIBUTIVE LAT-
TICES.

Consider a countable distributive lattice Γ; by well-known G.Birkhoff’s the-
orem there exist such a poset (=partial ordered set) ζ for which Γ is the set
of all finite ideals with usual order Γ = IDf (ζ). F.e. Young graph Y is a
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Hasse diagram for the distributive lattice of finite ideals of the poset Z2
+

5.
The generalization of Young graph is the lattice of finite ideals of the poset
Zn

+, n = 3, . . . -its Hasse diagram is ”Young” graphs of higher order – Yn. We
can consider the AF -algebra which corresponds to is Yn — A(Yn). For n > 2
this algebra is not group algebra of any group. Suppose A(Γ) is AF -algebra
corresponded to the Hasse-Bratteli diagram of distributive lattice Γ.

Conjcture 1. The list of indecomposable traces of AF -Algebra A(Γ) is weakly
closed and consequently AF -algebra is completely smooth; In particular the
same is true for A(Yn).

Possible proof of this Conjecture must use the list of infinite minimal
ideals of the corresponding posets Zn

+ which give the ”frequencies” of min-
imal ideals for these measures. It is not difficult to prove the existence of
frequencies, but the problem is to prove that the set of frequencies uniquely
defines central measure and consequently the trace. One can apply combi-
natorial technique of ordinary Young diagram (contents etc.) but there is no
tools like Symmetric Functions and no good description of the corresponding
AF -algebra.

For n = 2 the Conjecture about Young Graph Y is true – this is equivalent
to the Thoma’s theorem [?] in our formulation [3]. For n = 3 the equivalent
conjecture was considered by me with S.Kerov in 80-th.

The last remark - all this problems concern to the limit behavior of the
product of adjacent matrices of Markov compact of the paths in Bratteli
diagrams; this is the link with the typical problems in statistical physics.

5 STANDARDANDNON-STANDARDAP-

PROXIMATION OF AF -ALGEBRAS; THE

PROBLEM.

Classification of AF -algebras by the theorem by G.Elliott and others ([17,
18]) was reduced to the calculation of the K0-functor (Grothendick group of

5Each distributive lattices is a N-graded poset; Hasse diagram of the graded poset is
graded graph vertices of which is elements of poset and edges joins to elements on of
which directly preceded to the second element; Hasse diagram of the graded poset can be
considered as Bratteli diagram of some AF -algebra.
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the classes of projective modules) with additional structure of Riesz group
(ordering by the cone of true modules), and fixed element (one-dimensional
free module). Sometimes it called as ”dimension group”). Unfortunately,
it is difficult to apply this very important theorem because the calculations
are very complicate. F.e. for group algebra of infinite symmetric group the
answer which was done in [19], is rather cumbersome. The answer on the
question whether AF -algebra is smooth or not of course is contained in the
K0-functor, but we need to extract it and it is not so easy.6

Perhaps, it is difficult to give necessary and sufficient conditions for AF -
algebras (or for actions of the groups) which guarantee the belonging to
completely smooth class or to other classes. It is important to have at
least sufficient conditions for smooth case. Hopefully such a condition gives
us the hope to find precise formula for all characters and invariant mea-
sures. K-theoretical approach to AF -algebra can be considered as approxi-
mating approach with finite dimensional algebras. But there is a dual (”co-
approximating”) approach, which means that instead of increasing sequences
of finite dimensional algebras we consider decreasing sequence (filtration) of
infinite dimensional algebras.

In combinatorial term it means that we consider the sequence of the tail
sigma-fields of sets of the paths which coincide after n− th level, n = 1, . . . .
For given Bratteli diagram Γ define this filtration (=decreasing sequence of
the co-finite partitions) as An(Γ), n = 1 . . . .. For two different Bratteli
diagrams of the given AF -algebra it is easy to formulate what kind of iso-
morphism of corresponding filtration. Let us call it lacunary isomorphism;
and consider all such filtrations as filtrations on the ordinary Cantor space.
The intersection of the partitions is hyperfinite tail equivalence relation about
which we have discussed in the previous paragraphs. In the series of the pa-
pers of author (see [12]) the notion of STANDARDNESS was done. The
first definition took deals with so called homogeneous (dyadic) case; now
we can extend this notion to the general filtration (=decreasing sequence of
sigma-fields or measurable partitions). That notion uses the metric on the
space of paths of Bratteli diagram (Cantor set). It is not invariant under
the isomorphism of F -algebras. In order to give ”invariant envelope” of this
notion we must consider not one diagram for given algebra but a family of

6Remember that the list of traces (invariant measures) gives only a part of invariants of
AF -algebra, because K0-functor could have the infinitesimal modules part of which does
not separate by the traces.
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coherent diagrams: two diagrams are coherent if each of two is sub-diagram
of other. The first step in the direction is to solve:

PROBLEM To classify the set of Bratteli diagrams or set of hyperfinite
equivalence relations of the Cantor or se of filtrations — up to lacunary Borel
equivalence.

More or less clear that this problem is ”wild” in the sense of classifica-
tion theory. But K0-theory shows that the classification can be reformulate
in other terms. More important that wildness does not contradict to have
constructive answer on some natural questions like completely smoothness or
non-smoothness.

The analog of this Problem in measure theoretical category was done
in the papers by author ([12]) one of the main result is lacunary theorem
which is claim that two ergodic diadic filtrations are lacunary equivalent up
to measure preserving transformation. But in Borel category it is not true.
Moreover as we mentioned (in paragrph3.3) that even intersection of the fil-
tration (corresponding equivalence relation) has additional invariant (number
of invariant measures) see [14]. But the isomorphism of the equivalence re-
lation is too rough because the set of invariant measures could be infinite,
nevertheless the A-algebras could be smooth or non-smooth cases which are
not isomorphic in our sense.7

So we need to develop the analog of the measure-theoretical approach
to the filtration in Borel category. The main tool in that theory is notion
of standardness and criteria of standardness (see [12]) That approach was
developed mainly for homogeneous partition (like diadic) which means that
the blocks of n− th partitions in the filtration has the same number of points
in almost all blocks and the conditional measure is uniform. It is important
to generalize the main tools to the case semi-homogeneous partitions - the
uniform conditional measure on the blocks (centrality), but number of points
is arbitrary finite. Hopefully, these tools can help to obtain the information
about invariant measures and traces of AF -algebras. Our example of the
completely non-smooth action (paragraph 5) shows the connection of non-
standardness of the tail sequence and non-smoothness ofAF -algebra.

I will consider the analog of measure-theoretical approach elsewhere but
here I formulate a Conjecture of this type for very concrete case. 8

7Added in proof: see [21, 22].
8Added in proof: see previous footnote
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