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In memory of V. I. Arnold, a troublemaker

Mathematicians who are only mathematicians have exact minds,
provided all things are explained to them by means of definitions
and axioms; otherwise they are inaccurate and insufferable, for they
are only right when the principles are quite clear.

Blaise Pascal, Thoughts, English translation by W. F. Trotter

Dedication. Dima Arnold (as well as me) was very fond of B. Pascal, and
disliked R. Descartes, seeing him as a forerunner of Bourbakism he hated
so much. As to me, in my youth I had great respect for Bourbaki, a very
high opinion of his 5th volume, and even once wrote to him (N. Bourbaki) a
long eulogistic letter, of which Dima did not approve. In reply, N. Bourbaki
(impersonated by J. Dieudonné) presented me the next volume Integration,
which had just appeared; the topic was close to my interests, but the volume
turned out to be a failure. I was distressed and started to believe that perhaps
Arnold was right.

The keen interest to combinatorics and asymptotic problems, which ap-
peared in the last years of V. I. Arnold’s life and made us even closer, was, I
believe, another manifestation of the fact that his mind revolted at any lim-
its and prohibitions, he always violated canons, or, better to say, introduced
new canons; and he was able to do this, because he was (according to Pascal)
not only a mathematician.
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Abstract

In this paper, we describe the Pascal automorphism and present a
sketch of the proof that its spectrum is continuous in the orthogonal
complement of the constants.

1 Introduction: the definition of the adic Pas-

cal automorphism

The transformations generated by classical graded graphs, such as the or-
dinary and multidimensional Pascal graphs, the Young graph, the graph of
walks in Weyl chambers, etc., provide examples of combinatorial origin of
the new, very interesting class of adic transformations, introduced back in
[3].

In this paper, we study the Pascal automorphism. It is a natural trans-
formation in the path space of the Pascal graph (= the infinite-dimensional
Pascal triangle), i.e., in the infinite-dimensional cube. If we realize this au-
tomorphism as a shift in the space of sequences of zeros and ones, then a
stationary measure arises, which was called the Pascal measure; we study
the properties of this measure. In particular, it turns out that the set of
Besicovitch–Hamming almost periodic sequences has zero Pascal measure,
which eventually implies the continuity at least of the spectrum of the cor-
responding operator.

A crucial role in the sketched proof of the continuity of a part of the spec-
trum of the Pascal automorphism is played by combinatorial considerations
related to the structure of repeated occurrences of growing self-similar words.
These considerations are universal for a wide class of adic automorphisms.
Our exposition follows the tradition maintained by V. I. Arnold (see, e.g.,
[1, 2]), which is to reveal the nature of a phenomenon rather than to formally
describe it.

1.1 A linear order and other structures on the set of
vertices of the cube

The definition of the Pascal automorphism, which is an example of an adic
transformation, was given in [3, 4]; in the same papers, the problem of find-
ing its spectrum was suggested. The definition is based on introducing a
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lexicographic (linear) order on the set of paths of the finite or infinite Pascal
graph.1 In turn, introducing this lexicographic order reduces to introducing
a natural linear order on the set of all subsets of given cardinality in the set
of n elements, or, in the geometric language, on the set of vertices of the
n-dimensional cube with a given number of nonzero coordinates. We begin
with several versions of the definition of this order.

1. Let In = {0, 1}n be the set of vertices of the unit n-dimensional cube.
Consider the hyperplanes that contain vertices with the sum of coordinates
equal to k, where k = 0, 1, . . . , n, and denote by Cn,k the set of vertices on
the kth hyperplane; these vertices have m = n − k coordinates equal to 0
and k = n −m coordinates equal to 1. We define a linear order on all Cn,k

by induction. For n = 2, the order on the one-point sets C2,0, C2,2 is trivial,
and on C2,1 it is defined as follows: (0, 1) � (1, 0). Now assume that the
order is defined on Cn,k for all k = 0, 1, . . . , n; then on Cn+1,k we define it
by the following rule. Given a pair of vertices with the same last coordinate,
they are ordered in the same way as the pair of vertices from Cn,k obtained
from them by deleting the common last coordinate; if the last coordinates
are different, then the greater vertex is the one for which it is equal to 1.
With this order, the smallest vertex in Cm+k,k is ( 1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
m

), and
the greatest one is ( 0, . . . , 0︸ ︷︷ ︸

m

, 1, . . . , 1︸ ︷︷ ︸
k

).

2. The same definition in slightly different terms reads as follows. Setting
k = n−m, consider the family Cn,k of all Ck

n subsets of cardinality k in the
linearly ordered set of m + k elements {1,. . . , k, k+1, . . . , k+m}, and
introduce a linear lexicographic order on this set by the following rule: a
subset F is greater than a subset G if the maximum index of an element
from F that does not belong to G is greater that the maximum index of an
element from G that does not belong to F . Thus we have linearly ordered
all elements of Cn,k.

3. Finally, the “numerical” interpretation of this order is as follows. A

1The term “Pascal triangle” is used more widely, but it applies mainly to the finite
object; at the vertices of this graph, one usually writes the binomial coefficients. Thus
it is not quite natural to call the infinite Pascal graph a triangle. But there are also
objections to using the term “Pascal triangle” for the finite graph: first of all, because the
discovery of this graph is attributed also to the Indian Pingala (10th century), the Persian
Omar Khayyam (12th century), and the Chinese Yang Hui (13th century). On the other
hand, the results of the Google search “Pascal graph” are related mainly to graphics in
the programming language Pascal.
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vertex of a finite-dimensional unit cube (with ordered coordinates) is a 0-1
vector, which we regard as the binary expansion of an integer. Consider the
set of all integers with a given (equal) number of zeros (and ones) in the
binary expansion, and introduce the standard order < on this set regarded
just as a set of positive integers.

The equivalence of all three independent definitions of the lexicographic
order is easy to verify.

Since a path in the finite Pascal triangle of height n can be identified with
a 0-1 sequence, we have in fact linearly ordered each set of paths leading to
a finite vertex of the triangle.

Definition 1. Given positive integers m, k, we define the supporting word
O(m, k) as the 0-1-vector consisting from the first coordinates of the ordered
sequence of vertices of the set Cm+k,m; equivalently, O(m, k) is the vector of
parities of the set of positive integers whose binary expansion contains exactly
k ones and m zeros written in increasing order. By O(0, 0) we understand
the word (1). The length of the vector O(m, k) is equal to Cm

m+k.

Example:

O(1, 1) = (1, 0), O(2, 2) = (1, 1, 0, 1, 0, 0),

O(4, 3) = (1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0,

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0).

1.2 The infinite-dimensional cube and the Pascal au-
tomorphism

Now consider the set of vertices of the infinite-dimensional unit cube, i.e.,
the countable product of two-point sets: I∞ = {0, 1}∞; in short, we will
call it the infinite-dimensional cube. On this remarkable object, there is a
huge number of important mathematical structures, which have many useful
interpretations and various applications.

First of all, we regard the infinite-dimensional cube as the compact ad-
ditive group of dyadic integers Z2. We realize it as the group of sequences
of residues modulo 2n and use the additive notation. In our interpretation,
a dyadic integer is also an infinite one-sided sequence of zeros and ones.
The weak topology on I∞ gives rise to the structure of a standard measure
space. The Bernoulli measure µ is the infinite product of the measures with
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probabilities (1/2, 1/2) on the factors {0, 1}. It is simultaneously the Haar
measure on the cube regarded as the group Z2. One can also consider other
Bernoulli measures µp, each of which is the countable product of equal factors
(p, 1−p), where 0 < p < 1; they are no longer invariant (only quasi-invariant)
under the addition (but are invariant under the Pascal automorphism, see
below). The infinite-dimensional cube can be naturally identified with the
set of infinite paths in the Pascal graph (a zero corresponds to choosing the
left direction, and a one, to choosing the right direction). It is this space
that will be the phase space of the Pascal automorphism defined below. All
these interpretations are identical, and the measure is the same; the choice
of a convenient realization is a matter of taste. For us, it is usually conve-
nient to use the infinite-dimensional cube; the topology of the space is not
of importance.

It is convenient to write dyadic integers in the form

0, . . ., 0︸ ︷︷ ︸
m1

1, . . ., 1︸ ︷︷ ︸
k1

∗∗ = 0m11k1 ∗ ∗.

Obviously, the translation T on the additive group Z2 defined by the
formula Tx = x + 1 preserves the Haar–Bernoulli measure; in dynamical
systems, it is called the odometer, or the dyadic automorphism. This is one of
the simplest ergodic automorphisms; its spectrum (= the set of eigenvalues)
is the group of all roots of unity of order 2n, n = 1, 2, . . . . The orbits of the
odometer are the cosets of the (dense) subgroup Z ⊂ Z2. The general adic
model of measure-preserving transformations is a far-reaching generalization
of the odometer (see [3, 4]).

Consider the dyadic metric ρ on the additive group Z2 of dyadic integers;
it induces the weak topology on I∞. The metric ρ looks as follows: ρ(x, y) =
‖x− x′‖, where ‖g‖ = 2−t(g) is the canonical normalization; here t(g) is the
index of the first nonzero coordinate of g. The metric ρ is obviously invariant
with respect to the odometer; however, as we will see, it is not invariant with
respect to the Pascal automorphism.

Now we introduce an order on Z2 ∼ I∞ = {0, 1}∞ as follows. We say
that two vertices (points) of the infinite-dimensional cube are comparable
if their coordinates coincide from some index on (i.e., they have “the same
tail”) and the number of ones among the coordinates with smaller indices in
both sequences is the same. Given two comparable sequences, the greater
one is, by definition, the sequence whose initial finite segment is greater in
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the sense of the order defined above. This is the lexicographic order on the
infinite-dimensional cube we need; denote it by ≺. One can easily extend all
descriptions of the order on the finite-dimensional cube given above to the
infinite-dimensional cube.

But every vertex of the infinite-dimensional cube can be regarded as an
infinite path in the Pascal graph. In the order we have introduced, paths are
comparable if they have the same “tail,” i.e., their coordinates coincide from
some index on. Thus we have defined a linear order on the set of paths in
the Pascal graph.

Definition 2. The order introduced on the set of vertices of the (finite- or
infinite-dimensional) cube will be called the adic order.

The order type of the class of comparable paths is that of the one-sided
(N) or two-sided (Z) infinite chain; it is infinite to the left if the corresponding
vertex of the cube has only finitely many zeros, and infinite to the right if it
has finitely many ones. For all other points (paths), the order type is that
of Z; they constitute a set of full Bernoulli measure. One may say that we
have redefined the order on the cosets of the subgroup Z; each coset breaks
into countably many linearly ordered subsets.

Definition 3 ([4]). The Pascal automorphism is the map P from the infinite-
dimensional cube (in any interpretation) to itself that sends every point to
its immediate successor in the sense of the adic order (≺).

The immediate successor, as well as the immediate predecessor, exists for
all points except for countably many. Thus the Pascal automorphism and
its inverse are defined everywhere except for countably many points (more
exactly, except for the elements of the group Z regarded as a subgroup in Z2).
It is easy to see that the transformation P is measurable and even continuous
in the weak topology everywhere apart from the above-mentioned exceptions.

Proposition 1. The Pascal automorphism preserves the Bernoulli measures
µp =

∏∞
1 {p, 1 − p}, 0 < p < 1, on the infinite-dimensional cube and is

ergodic with respect to all µp, 0 < p < 1.

The ergodicity follows from the Hewitt–Savage 0-1 law, or, alternatively,
from the ergodicity of the action of the group S∞ on the same space. For a
more detailed analysis, see below.
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2 The Pascal automorphism as the result of a

time change in the odometer, and random

substitutions on the group Z
Now we proceed to a more detailed study of the Pascal adic automorphism.
We will show that it is measure-preserving. Indeed, taking the immediate
successor of a point results in a substitution of finitely many coordinates,
so the measure-preserving property follows from the fact that the Bernoulli
measure with equal factors is invariant under the action of the infinite sym-
metric group by substitutions of coordinates. It is clear from above that
every orbit of the Pascal automorphism lies in one orbit of the odometer,
namely, in the same coset of Z. Hence an element of the group of dyadic
integers of the form x− Px lies in the subgroup Z ⊂ Z2, and, consequently,
the Pascal automorphism can be regarded as the result of a time change in
the odometer.

We emphasize again that the partition into the orbits of the Pascal au-
tomorphism coincides mod0 with respect to any Bernoulli measure with the
partition into the orbits of the group of finite substitutions of positive in-
tegers, and the set of Bernoulli measures coincides with the set of ergodic
invariant measures with respect to the Pascal automorphism.

If, using binary expansions, we identify (up to a set of zero measure) the
group Z2 with the unit interval, then the Pascal automorphism turns into a
transformation of the interval which belongs to the class of so-called rational
countable rearrangements.

Below we will write down explicit formulas for the time change that should
be made in the odometer in order to obtain the Pascal automorphism. As
we will see, the Pascal automorphism reorders the points on cosets of the
subgroup Z (i.e., on orbits of the odometer) in a quite complicated way.

The analysis below is similar to that made in [11] in a simpler case;
namely, a detailed comparison of the standard order with the so-called Morse
order arising from the study of the Morse automorphism.

It is easy to deduce from the definition of the Pascal automorphism that
it is given by the following formula:

x 7→ Px; P (0m1k10 ∗ ∗) = 1k0m01 ∗ ∗, m, k = 0, 1 . . . .

7



It is convenient to write the automorphism P−1 in a similar form:

P−1(1k0m01 ∗ ∗) = 0m1k10 ∗ ∗, m, k = 0, 1 . . . .

The passage from P to P−1 swaps m and k, i.e., 0 and 1. The automor-
phism P and its inverse P−1 are defined for all x with infinitely many zeros
and ones, i.e., on the set Z2 \ Z. On the other hand, since P (x) lies in the
same coset as x, one may ask what is the difference P (x)−x. We summarize
the answer in the following lemma.

Lemma 1. The Pascal automorphism is given by the formula

P (0m1k10 ∗ ∗) = 1k0m+11 ∗ ∗, m, k ≥ 0,

or, in the numerical representation,

P (2m+k − 2m + r) = 2m+k+1 + 2k − 1 + r, m, k ≥ 0, r ∈ Ker(θm+k+1);

here θn is the homomorphism defined by the formula θn : Z2 → Z2/Z2n, and
its kernel consists of the sequences with the first n coordinates equal to zero.

Correspondingly, the time change that transforms the odometer T into
the Pascal automorphism P is given by the formula

Px = T n(x)x ≡ x+ n(x),

where x = 0m1k10 ∗ ∗ and

n(x) = P (x)− x = 1min(k,m)0|m−k|10∞,

or, in numerical form,

n(2m+k+1 − 2m) = 2m + 2k − 1.

These formulas define the Pascal automorphism for any element x ∈ Z2

whose expansion contains a fragment of the form 10 and a fragment of the
form 01, i.e., for any dyadic integer that is not of the form 0m1∞, m ≥ 0 (a
negative integer) and not of the form 1k0∞ (a positive integer). The above
formulas for n(x) are easy to verify in either of the cases m > k and m ≤ k.

Now consider the functions nk(x) defined by the formula P kx = T nk(x)x =
nk(x) + x for all positive integers k = 0, 1, 2 . . . :

n0(x) = 0, n1(x) = n(x), nk(x) = P kx− x, . . . .

A recurrence formula for nk(x) follows from the definition, as described in
the lemma below.
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Lemma 2. nk+1 = n1(nk(x) + x) + nk(x).

Proof. We have P k+1x ≡ T nk+1(x)x = nk+1(x) + x. But P k+1x = P (P k)x =
T n1(P kx)P kx, so that P k+1x = T n1(P kx)+nk(x)x, i.e., x+ nk+1(x) = n1(P

kx) +
nk(x) + x = n1(x+ nk(x)) + nk(x) + x.

Thus

P kx = n1(nk−1(x) + x) + nk−1(x) = . . .

= x+ n1(x) + n1(n1(x) + x) + . . .+ n1(nk−1(x) + x).

Observe that the formulas expressing the functions nk(x), k > 1, in terms
of the function n1(x) = n(x) are, of course, universal: they hold for a time
change in an arbitrary automorphism. We will use only the function n(·) =
n1(·).

The distinguished orbit Z ⊂ Z2 of the odometer breaks into countably
many finite orbits of the Pascal automorphism; namely, every positive integer
x ∈ N belongs to the finite orbit that ends at 2s−1 where s is the number of
ones in the binary expansion of x; and every negative integer belongs to the
finite orbit that begins at −2s + 1. All the other orbits of the automorphism
P , regarded as linearly ordered sets, are of order type Z.

In connection with the formula for Px, an important question arises which
we have already mentioned above: how do the cosets of Z, i.e., the orbits of
the odometer, transform under the action of the Pascal automorphism? We
introduce the following substitution on the set Z of all integers:

σx : k 7→ n(x+ k), k ∈ Z.

Thus the Pascal automorphism determines a random (the randomness
parameter is x ∈ Z2) infinite substitution σx that maps Z (as a countable set)
to itself and has infinitely many infinite cycles. The image of the Bernoulli
measure on Z2 under the map x 7→ σx is a measure on the group SZ of all
infinite substitutions of Z. It differs substantially from the measure arising in
a similar analysis of the Morse transformation [11] (in that case, the measure
is supported by one-cycle substitutions); the analysis of this measure is of
considerable interest and can be used in the study of the properties of the
Pascal automorphism.

A general principle says that every time change in a dynamical system
with invariant measure determines a measure on the group of infinite sub-
stitutions of time, and the properties of this measure allow one to derive
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conclusions about the system. It is this observation that gives meaning to
the statement that an action of a group with invariant measure can be re-
garded as an action of a random substitution on this group. But for this
we should choose a reference action, an initial dynamical system to make a
time change in. In our case (the group Z), this reference action is that of the
odometer.

3 The Pascal automorphism and a σ-finite in-

variant measure

It turns out that the Pascal automorphism (without mentioning either this
term or the link to the Pascal triangle) was defined and used in 1972 in
the paper [7] by Hajian, Ito, and Kakutani and in 1976 in the paper [8] by
Kakutani.2 The authors of [7] use the product (Bernoulli) measures with
nonequal probabilities ((p, 1− p), 0 < p < 1/2) on the product of two-point
sets; these measures are invariant under the Pascal automorphism, but only
quasi-invariant under the odometer. Using the Radon–Nikodym cocycle, the
authors construct a new automorphism R of the direct product Z2 ×Z with
an R-invariant σ-finite measure. This automorphism R is also a special au-
tomorphism over the base where the Pascal automorphism acts, and the
ceiling function coincides with the function n(x) defined above. Recall that,
since

∫
n(x) dm(x) = ∞, the global measure is σ-finite. The ergodicity of

R follows from the ergodicity of the Pascal automorphism, i.e, from the 0-1
law, or from the triviality of the “substitutional” σ-algebra. This example
was the first to demonstrate that some ergodic automorphisms with infinite
measure may commute with non-measure-preserving automorphisms; for au-
tomorphisms preserving a finite measure, this cannot happen. It is essential
that the orbit partition of the Pascal automorphism in the natural represen-
tation is a subpartition of the orbit partition of the odometer into finitely
many parts. In the other paper [8], the Pascal automorphism and the for-
mula P (0m1k10∗) = 1k0m+11∗ mentioned above were used in the study of a
statistical problem (the so-called Kakutani problem). We will return to this
link elsewhere and relate this problem to random walks on the group Z.

2I am grateful to Professor Hajian for informing me about this paper after my talk
about the Pascal automorphism at the Northeastern University (Boston) in April 2011.
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4 The stationary model and encoding of the

Pascal automorphism; the Pascal measure

Now we describe the action of the Pascal automorphism in more traditional
terms, namely, as the shift in the space of two-sided sequences of zeros and
ones (i.e., again in the two-sided infinite-dimensional cube) equipped with
some shift-invariant measure. It is this representation that will be used in
what follows.

Consider a stationary model of the Pascal automorphism.

Definition 4. Given x ∈ Z2, define a new two-sided sequence yn(x) of zeros
and ones as follows:

yn = (P nx)1, n ∈ Z;

here (·)1 is the first digit (0 or 1) of the dyadic number in the parentheses.
Thus we have a map

S :
∞∏
1

{0, 1} ≡ Z2 → Y = 2Z =
∞∏
−∞

{0, 1},

which is given by the formula

Z2 3 x 7→ Sx = y ≡ {yn}n∈Z : yn(x) = (P nx)1, n ∈ Z.

The map S sends the Bernoulli measure ν on the infinite-dimensional
cube to some measure S∗ν ≡ π on another (two-sided infinite-dimensional)
cube Y =

∏∞
−∞{0, 1}, which we will call the Pascal measure.

In terms of paths in the Pascal graph, the map S can be described as
follows. Given such a path, regarded as a sequence of vertices in the Pascal
graph, this map associates with it the sequence of changes of the first edge
in the course of the adic evolution of the path.

Theorem 1. The partition of the space Z2 into two sets according to the
value of the first coordinate is a (one-sided) generator of the Pascal auto-
morphism. In other words, almost every point is uniquely determined by the
sequence of the first coordinates of its images under the action of the positive
powers of the Pascal automorphism:

x↔ {(P nx)1}n∈N
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is a bijection for almost all x ∈ Z2. Thus S is an isomorphism of measure
spaces which sends the Pascal automorphism P of the space Z2 with the
Bernoulli measure ν to the two-sided (right) shift in the space Y = 2Z with
the stationary measure π = S∗ν.

Proof. It is easy to see that two noncoinciding elements of the group Z2

whose first distinct digits have index n generate sequences (P kx)1 that have
at least one noncoinciding digit with index less than 2n.

Remarks. 1. The same partition according to the first coordinate is obvi-
ously not a generator for the odometer.
2. The support of the Pascal measure is of great interest, and we study it
below. In [16] (see also [10]) it is proved that the number of cylinders in the
image (the “complexity of the Pascal automorphism”), i.e., the number of
words of length n, is asymptotically equal to n3/6.

Definition 5. The S-image of a point x will be called its Pascal image. It
is defined for all x ∈ Z2 with infinitely many zeros and ones.

In order to study the Pascal automorphism, it is convenient to param-
eterize dyadic integers (i.e., elements of Z2) with infinitely many zeros and
ones by sequences of pairs of positive integers (mi(x), ki(x)) in the following
way:

x = (0m1(x)1k1(x)100m2(x)1k2(x)100m3(x)1k3(x) . . . ).

In other words, the numbers mi(x) ≥ 0 (respectively, ki(x) ≥ 0) are the
lengths of the words consisting of zeros (respectively, ones) between two (the
(i− 1)th and the ith) occurrences of the word “10” in the binary expansion
of the number x. The sequence of pairs (mi(x), ki(x)) will be called the pair
coordinates of x. Obviously, the ordinary coordinates can be recovered from
them in a trivial way.

It is clear that the vectors (mi(x), ki(x)), regarded as functions of x,
form a sequence (in i) of independent identically distributed random two-
dimensional vectors, with the distribution

Pr{mi = m, ki = k} = 2−(m+k−2), m, k = 0, 1, 2 . . . ,

for every i.
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The map S : Z2 → Y =
∏∞
−∞{0, 1} defined above can be written in a

more specific form. This leads to the notion of supporting words introduced
above.

Assume that the first pair coordinate of an element x ∈ Z2 is m1(x) =
m ≥ 0, k1(x) = k ≥ 0; consider the elements x, Px, P 2x, . . . P sx, with
s = Cm

m+k+1, and write down the first coordinates of these elements. We
will obtain a word of length s, which, by definition, is the beginning of the
S-image of x.

Lemma 3. The first coordinates of the elements x, Px, P 2x, . . . , P sx, s =
Cm

m+k+1, form the supporting word O(m+ 1, k) in the sense of the definition
from § 1.

The rules describing the transformation of the pair coordinates under
the Pascal automorphism, i.e., the expressions for mi(Px), ki(Px) in terms
of mi(x), ki(x), are easy to formulate; however, for our purposes, only the
transformation rule for the first coordinate is of importance.

The following recurrence rule for the transformation of the pair coordi-
nates can be checked straightforwardly:

if m1(x) = 0, then m1(Px) = δk1(x), k1(Px) = k1(x) + 1;
if m1(x) > 0, then m1(Px) = (m1(x)− 1)δk1(x), k1(Px) = k1(x)− 1.
However, it is most important to study the structure of supporting words,

whose concatenations form almost all orbits with respect to the Pascal mea-
sure (i.e., the Pascal ensemble).

Example. The exotic sequence. Consider the S-image of a simplest
(1/2, 1/2)-sequence, namely, of the point x = (10)∞ ∈ Z2 (regarded as a real
number, x is equal to 2/3). The corresponding path in the Pascal graph is the
central path passing through the vertices with coordinates (n, [(n + 1)/2]),
n = 0, 1, . . . :

00→ 11→ 21→ 32→ · · · → 43→ 54.

Here is the beginning of the Pascal image of the point x = (10)∞ (or the
corresponding path in the Pascal graph):

x = 1010101010∗ → Px = 01101010∗ → . . .

→ P 5x = 11000110∗ → · · · → P 14x = 00011110 ∗ .

The corresponding concatenation of supporting words constituting the
sequence Sx in the Pascal ensemble is

Sx = O(0, 0)O(1, 0)O(2, 1)O(3, 2)O(4, 3) . . . O(n, n+ 1) . . . .
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An explicit form of the supporting word O(4, 3) is given below.
In other words, the Pascal (S-)image of this sequence is the sequence of

the first coordinates of the adically ordered vertices of the middle hyperplanes
of the cubes whose dimensions successively increase by one, n = 1, 2, . . . .

It is easier to describe this sequence as follows. Consider the set Fn of all
positive integers whose binary expansion contains exactly 2n+ 1 digits (the
highest digit is equal to 1), i.e., of all integers in the interval (22n, 22n+1− 1),
with the number of zeros equal to n + 1, i.e., exceeding the number of ones
(equal to n) by one; arrange these numbers in each set Fn according to the
adic order, and then join them into a single sequence F1, F2, . . . . We obtain
a sequence of positive integers, which starts as follows:

F0 = {0}, F1 = {1, 2, 4}, F2 = {3, 5, 6, 9, 10, 12, 17, 18, 20, 24}, F3 = . . . ,

i.e.,
0, 1, 2, 4, 3, 5, 6, 9, 10, 12, 17, 18, 20, 24, . . . .

Then the S-image of the point x = (10)∞ is the sequence of the parities of
these numbers; in our case,

Sx = (0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, . . . ).

Definition 6. The Pascal image Sx of the point x = (10)∞ will be called
the exotic sequence of zeros and ones.

Now we can easily find the Pascal image of a general element x ∈ Z2,
i.e., a general path in the Pascal graph. To this end, for a given x (i.e., a
given path in the Pascal graph), write down all indices ri(x), i = 1, 2, . . . ,
for which xri

xri+1 = 10. Set

ri(x)∑
t=1

xt = k̄i(x), m̄i(x) = ri(x)− k̄i(x).

It is not difficult to express m̄i, k̄i in terms of sums of the pair coordinates
mi(x), ki(x), i = 1, 2, . . . . In the above example with x = (10)∞, we obvi-
ously have ri = 2i− 1, k̄i = i− 1, m̄i = i.

Theorem 2. For x ∈ Z2, the image Sx ∈
∏∞
−∞{0; 1} is a sequence of

concatenations of supporting words with monotonically increasing indices.
For positive indices, it looks as follows:

O(m̄1(x), k̄1(x))O(m̄2(x), k̄2(x)) . . . ,
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where the parameters m̄i, k̄i are defined above.
Thus the Pascal image Sx of a point x is the corresponding sequence of

the first coordinates (or the parities, in the numerical interpretation). In
particular, for the point x = (10)∞ we obtain the exotic sequence.

The growth of the parameters of the supporting words O(m̄, k̄) is con-
trolled by the following simple rule.

Lemma 4. The parameters (m̄i, k̄i) of the current supporting word O(m̄i, k̄i)
can be expressed in terms of the parameters of the preceding supporting word
(m̄i−1, ki−1) as follows:

m̄i = m̄i−1 + 1, k̄i = k̄i−1 + δmi
ki,

where mi = mi(x), ki = ki(x) are the pair coordinates defined above (δt = 1
if t = 0, and δt = 0 if t > 0).

Recall that mi(x), ri(x) are independent (of each other and in i) random
variables with geometric distribution. Curiously, the coordinate m (the first
pair coordinate) grows deterministically, increasing by one at each step, m 7→
m + 1, while the second coordinate k grows randomly, with the mean value
of the increment equal to +1.

Thus almost every sequence with respect to the Pascal measure is the
concatenation of supporting words O(m+1, k) of growing length constructed
from an element x ∈ Z2, i.e., a path in the Pascal graph; more exactly,
from its pair coordinates mi(x), ki(x), i ∈ Z. It suffices to study only the
positive part of the sequence (with i > 0), since it allows us to make a
conclusion about the discreteness or continuity of the spectrum of the Pascal
automorphism. It is not difficult to prove that the coordinates with negative
indices are uniquely determined by the coordinates with positive indices for
almost all points with respect to the Pascal measure.

An example of the dynamics of the Pascal automorphism. Consider
an example of a fragment of an orbit of the Pascal automorphism:

m1 = 3, k1 = 3, x = 00011110.

The length of this fragment is equal to Ck1
m1+k1+1, but it is more convenient

to begin it with the last word of the previous fragment, so that the number
of words we consider is equal to C3

7 = 36: x → Px = 11100001 → P 2x →
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· · · → P 35x = 00001111 (recall that we should find the first occurrence of the
word 10 and then apply the algorithm described above). We arrange the 36
successive images of the point x in a 6× 6 table:

00011110 11100001 11010001 10110001 01110001 11001001
10101001 01101001 10011001 01011001 00111001 11000101
10100101 01100101 10011001 01010101 00110101 10001101
01001101 00101101 00011101 11000011 10100011 10001101
10010011 01010011 00011101 10001011 01001011 00101011
00011011 10000111 01000111 00100111 00010111 00001111

The sequence of the first digits of this fragment is the supporting word
O(4, 3); see § 1.

The data in Table 1 shed some light on the distribution of probabilities
of cylinders of lengths 6 to 10 with respect to the Pascal measure.3

One can observe that the cylinders are divided into several groups such
that inside each group the probabilities are equal. This simplifies obtaining
lower bounds on the growth of the scaling entropy needed for proving the
continuity of the spectrum of the Pascal automorphism within the entropy
approach [6] described below.

5 Criteria for the continuity of the spectrum

of an automorphism

We formulate several necessary and sufficient conditions for the spectrum of
an automorphism to be purely continuous; more exactly, for the spectrum of
the unitary operator UP associated with the automorphism by the formula
UPf(x) = f(Px) to be continuous in the orthogonal complement of the con-
stants in the space L2(I∞, µ). This problem for the Pascal automorphism,
along with its definition, was suggested by the author [6] in 1980 and sub-
sequently considered in a series of papers (e.g., [14, 16, 18, 17, 19]), where
various useful properties of the Pascal automorphism were studied; however,
the problem has not been solved up to now.

3These computations were performed on my request by the PhD students I. E. Manaev
and A. R. Minabutdinov.
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Table 1:
Length of the word Number of groups Cardinality of the groups Measure of the groups
6 3 5 0,312484741

12 0,374969482
20 0,312213898

7 4 2 0,124998093
14 0,437492371
16 0,249990463
24 0,187408447

8 5 1 0,062498093
12 0,374994278
19 0,296865463
20 0,156238556
28 0,109274864

9 5 10 0,312494278
22 0,343740463
24 0,187488556
24 0,093736649
32 0,062393188

10 6 8 0,249994278
21 0,328117371
28 0,218738556
29 0,113267899
28 0,054672241
36 0,03504467
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5.1 Entropy approach

The original plan for solving this problem was related to the scaling entropy,
average metrics, etc. (see [6, 10]). The method suggested by the author for
proving the continuity of the spectrum (see [6]) relied on the following fact:
the spectrum is purely continuous if and only if the result of averaging an
arbitrary semimetric along an orbit is a trivial (constant) metric, i.e.,

lim
n→∞

n−1

n−1∑
s=0

ρ(P sx, P sx′) = const

for almost all pairs x, x′ with respect to the measure µ× µ.
In particular, in [6] the following theorem is proved. Let T be an auto-

morphism of a Lebesgue space (X,µ). The spectrum of the corresponding
unitary operator UT in L2(X,µ) is purely continuous in the orthogonal com-
plement of the constants if and only if for every admissible semimetric for
which the limiting average metric is also admissible, the scaling sequence for
the entropy is bounded.

The assumption about the admissibility of the limiting average metric is
superfluous, because, as shown in [6], it holds for every admissible initial met-
ric. Originally, the admissibility of the limiting average metric was proved
for the class of compact and bounded admissible semimetrics. On the other
hand, in [6] it is proved that the average semimetric is constant if and only if
the scaling sequence for the entropy is unbounded, i.e., the ε-entropy of the
spaces obtained by successive averagings tends to infinity. For the Hamming
metric, a close result was earlier proved in [15]. Thus one might prove the
continuity of the spectrum by bounding the growth of the entropy of the
prelimit average metrics from below by some growing sequence. Moreover,
it would suffice to do this only for cut semimetrics, which have always been
regarded in ergodic theory not as metrics, but rather as generating parti-
tions. Recall that a cut semimetric is a semimetric determined by a finite
partition of a measure space into measurable subsets {Ai}, i = 1, . . . , k, by
the following formula: ρ(x, y) = δi(x)i(y), where i(x) is the index of the set
Ai that contains x.

Summarizing, we can formulate the following criterion for the continuity
of the spectrum of an automorphism.

Theorem 3. Given an automorphism T , the spectrum of the operator UT in
the orthogonal complement of the constants is continuous if and only if any
of the following equivalent conditions is satisfied:
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1. For an arbitrary cut semimetric ρ, the limit of the average metrics is
a constant metric:

lim
n
n−1

n−1∑
k=0

ρ(T kx, T ky) = const a.e.

2. For an arbitrary initial semimetric, the ε-entropy of its averages grows
unboundedly.

We emphasize that the partition determining a cut metric in this theorem
is not at all assumed to be a generator.

5.2 Besicovitch–Hamming almost periodicity and the
NBH property

Consider the following semimetric in the spaces of (one- or two-sided) infinite
sequences {xn}n∈N (or {xn}n∈Z) of symbols xn ∈ A in a finite alphabet A:

ρ(x, y) = lim inf
|n|→∞

1

2n+ 1
#{k : |k| ≤ n, {xk 6= yk}}

for two-sided infinite sequences;

ρ(x, y) = lim inf
n→∞

1

n
#{k : k = 1, . . . , n, {xk 6= yk}}

for one-sided infinite sequences. It should be called the Besicovitch–Hamming
(BH) metric, since it is the limit of the Besicovitch metrics Bp as p→∞, as
well as the limit (as n→∞) of the Hamming metrics on finite sequences.

For any stationary (i.e., invariant under the one- or two-sided shift) mea-
sure µ on the space AZ (or AN), one can replace lim inf in the definition of
this metric with lim for almost all sequences (by the ergodic theorem).

Definition 7. A sequence {xn} is called Besicovitch–Hamming (BH) almost
periodic if the set of its images under the (one- or two-sided) shift is relatively
compact in the BH semimetric.

Our sketch of the proof that the spectrum is not discrete relies on the
following well-known fact.
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Lemma 5. The shift S in the space AZ of sequences in a finite alphabet
A = {1, 2, . . . , l} with stationary (shift-invariant) measure µ has a pure point
spectrum if and only if almost all realizations {xn} ∈ AZ (or {xn} ∈ AN) are
BH almost periodic A-valued functions on Z (respectively, N).

Indeed, it suffices to apply von Neumann’s discrete spectrum theorem
and observe that the restriction of any bounded measurable function on a
compact Abelian group to a countable Z-subgroup, regarded as a function
on Z, is BH almost periodic.4

Since the BH almost periodicity of an orbit is equivalent to the relative
compactness of the set of translations of this orbit, in order to establish the
existence of a continuous component in the spectrum, one should verify that
the translations of almost every orbit are not compact. Thus the procedure
is to prove that almost every, with respect to a given stationary measure,
orbit is bounded away from the periodic orbits by a nonzero BH distance not
depending on the length of the period. In fact, it suffices to prove that it
is bounded away not from all periodic sequences, but only from sequences
whose periods are arbitrary finite subwords of a given sequence.

Usually, it suffices to prove this property only for one typical orbit.

Example. In order to prove the existence of a continuous component in the
spectrum of the Morse automorphism (see [11]), it suffices first to check that
the distance between the famous Morse–Thue sequence 0110100110010110 . . .
(the fixed point of the Morse–Hedlund substitution) and any periodic se-
quence is at least 1/2. Extending this fact to almost all, with respect to the
Morse measure, orbits presents no difficulties, since the structure of almost
every orbit is similar to that of the Morse–Thue sequence. Indeed, to obtain
almost every sequence from the Morse–Thue sequence, one should make the
change (“fault”) 0 ↔ 1 at independent moments of time of the form 2n(ω)

with geometric distribution in n. Under this operation, the bound on the
distance discussed above between the modified words and the periodic words
remains the same. This fact does not depend even on the distribution of the
moments of “faults.”

4It is worth mentioning that there is a great amount of confusion in the terminology
related to almost periodic functions. For instance, by almost periodic sequences one means
(see [13]) minimal or recurrent sequences, i.e., sequences x such that every word occurring
in x occurs infinitely many times. But, in general, such sequences are even not BH almost
periodic, though the BH condition should be considered as the weakest almost periodicity
condition. According to the tradition introduced by von Neumann, almost periodicity is
always related to the relative compactness of the set of group translations.
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At the same time, the spectrum of the Morse automorphism has a discrete
component, which agrees with the fact that after identifying every orbit with
its “antipode,” {xn} ↔ {x̄n}, 0̄ = 1, 1̄ = 0, the factor automorphism of the
Morse automorphism in the quotient space coincides with the odometer.

To prove the pure continuity of the spectrum in our situation, one needs
to verify a more complicated property (which does not hold for the Morse
automorphism), namely, the uniform almost periodicity.

Consider an arbitrary cylinder function f(·), say {0; 1}-valued, depending
on finitely many coordinates x1, . . . , xk and all its translations f(T k·), k ∈ Z.
Divide the words of length k into m groups, denoting them b1, . . . , bm, bi ∈ B.
A cylinder partition of the space AZ is a finite partition of AZ whose elements
are unions of elementary cylinders (an elementary cylinder is defined as the
set of all sequences whose coordinates with given indices, say n = 1, 2, . . . , k,
are words belonging to some bi for a fixed i). A cylinder partition gives rise
to a cylinder factorization, i.e., a natural map from AZ to BZ commuting
with the shift. If m > 1 (i.e., B consists of at least two collections of words),
the cylinder factorization is called nontrivial.

Definition 8. An NBH-sequence is a sequence {xn}, xn ∈ A, enjoying the
following property: for every cylinder function f = f(x1, . . . , xk) with zero
integral, the sequence {f(T k·)}, k ∈ Z, is not BH almost periodic (in k); of
course, the sequence {xn} itself is not almost periodic either.

Theorem 4. The shift S in the space AZ of sequences in a finite alphabet
A = {1, . . . , l} with a stationary (shift-invariant) measure µ has a purely
continuous spectrum (in the orthogonal complement of the constants) if and
only if almost all realizations {xn} ∈ AZ are NBH-sequences.

Proof. It follows from the definition and the previous theorem that for every
cylinder factorization, the spectrum of the factor automorphism contains a
continuous component. We need to verify this for an arbitrary factorization,
i.e., for a factorization constructed from an arbitrary finite partition. We use
the following argument. First of all, any finite partition can be approximated
with arbitrary accuracy by cylinder partitions. In terms of the corresponding
cut semimetrics, this means that in the topology of convergence in measure,

(µ× µ){(x, y) : |ρ(x, y)− ρ′(x, y)| > ε} < ε.

The average distance between points for all semimetrics ρε may be as-
sumed fixed and equal to the average distance D with respect to the metric
ρ.
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Averaging these inequalities and applying the ergodic theorem, we obtain

(µ× µ)

{
(x, y) : lim

n

n−1∑
k=0

|ρ(T kx, T ky)− ρ′(T kx, T ky)| > ε

}
< ε(1− ε) + 2Dε.

Since the limiting average of ρε is a constant metric, equal to the average
distance D for almost all pairs, and since ε is arbitrary, the limiting average
of ρ is also a constant metric. By the result mentioned above, this means
that the spectrum of the odometer T is continuous.

5.3 The main lemma

The main combinatorial property of almost every (with respect to the Pascal
measure) sequence, i.e., that of the parities of concatenations of supporting
words corresponding to almost all points of Z2, is as follows.

Lemma 6. The Pascal image of almost every, with respect to the Bernoulli
measure µp, 0 < p < 1, point x ∈ Z2 is a sequence of zeros and ones enjoying
the NBH property.

The proof will be published elsewhere; its structure is identical for almost
all points of the type under consideration, so that it can be reduced to proving
the desired assertion for only one sequence, e.g., for the sequence that we have
called exotic. In brief, everything is based on the fact that every sufficiently
long finite periodic sequence with period composed from any fragment of
the exotic (or similar) sequence is bounded away in the BH metric from
a sufficiently long fragment of this sequence itself by a universal constant.
This fact is of purely combinatorial (or numerical) nature. In the simpler
example considered above, that of the Morse automorphism, the proof of the
non-almost periodicity was based on a similar property.

Corollary 1. The Pascal automorphism (with respect to the image of any
Bernoulli measure) has a continuous spectrum in the orthogonal complement
of the constants.

Translated by N. V. Tsilevich.
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