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NUMERICAL EXPERIMENTS IN PROBLEMS OF ASYMPTOTIC REPRESENTATION
THEORY

A. Vershik* and D. Pavlov' UDC 5196

The article presents the results of numerical computations of statistics related to Young diagrams, including estimates
on the mazimum and average (with respect to the Plancherel distribution) dimension of irreducible representations of
the symmetric group Sn. The computed limit shapes of two-dimensional and three-dimensional diagrams distributed
according to the Richardson statistics are also presented. Bibliography: 14 titles.

1. INTRODUCTION

The classical definition of a Young diagram (see [1]) is as follows: a Young diagram of size n is a finite
descending ideal in the lattice Z<o X Z<o, i €, a set of cells in the positive quadrant that along with a cell (4, 5)
contains also all the cells that are less than (7, j) in the natural partial order

A standard Young tableau of size n is a Young diagram whose cells are filled with the numbers from 1 to n
that increase along each row and each column In other words, a Young tableau is a path in the lattice of Young
diagrams that starts at the empty (zero size) diagram and ends at a given diagram

Young diagrams correspond to irreducible representations of S,, (see, e g, [1, 2]), and the number of Young
tableaux that fit into a given Young diagram A is equal to the dimension of the corresponding irreducible
representation For brevity, we call this number the dimension of the diagram A and denote it by dim(A)

This paper is organized as follows In Sec 2, we present the results of numerical experiments with the
asymptotics of the typical (with respect to the Plancherel measure) dimension of an irreducible representation
of the symmetric group This measure was introduced in [3]; for further details, see [4]

Section 3 is devoted to similar computations for the maximum dimension of an irreducible representation of
the symmetric group

The results of Sec 2 should be regarded as supporting the conjecture from [4] on the existence of the limit value
of the normalized dimension of a typical diagram A with respect to the Plancherel measure This hypothetical
limit value is denoted by ¢, and in [4] it was called the “specific entropy of an irreducible representation ”

At the same time, on the ground of our computations described in Sec 3, nothing conclusive can be said
about the asymptotic behavior of the maximum dimension More exactly, we cannot claim that ¢, stabilizes for
accessible values of n

In Sec 4, we consider another distribution on Young diagrams: the Richardson distribution, which was studied
in [5] We give an experimental evidence for the proved theorem on the limit shape of typical Young diagrams
Then we present the results of similar experiments in three dimensions (in which the dimension of a diagram
has nothing to do with S,,), and state a conjecture on the three dimensional limit shape

2. THE ASYMPTOTIC BEHAVIOR OF THE TYPICAL DIMENSION OF AN IRREDUCIBLE
REPRESENTATION OF S,, WITH RESPECT TO THE PLANCHEREL MEASURE

Let E‘\n be the set of equivalence classes of complex irreducible representations of S,, For A,, € S‘\n, we denote
by dim A,, the dimension of the representation A,, and by

_ dim® A,

fin(An) nl

: (1)
its Plancherel measure, see [3] This is actually a probability measure on 3‘; , as follows from Burnside’s formula
Z dim? A,, = n!
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The set S, and the dimension dim A, have the following interpretation (see [1]): S, is the ensemble of all
Young diagrams of size n, and dim A,, is the number of standard Young tableaux that fit into the diagram A,,
In the present article, we make no difference between A,, and the corresponding irreducible representation

The following normalization of the dimension of diagrams with n cells (see [4]) allows one to study the
asymptotics of the dimension as n — oo:

-2 dim A,,

c(Ay) = n log Jnl (2)

We call ¢(A,,) the normalized dimension From [4], the following two sided estimates are known for ¢(A,):

lim un{An tco < c(Ay) < cl} =1

n—oo

2 09313 0 = T~ 25651
CO_TF 7_‘_2’\’ ,01_\/6~

In other words, asymptotically almost all diagrams are of dimension lying in the following range:
Vnle™ 2Vn < dim A, <Vnle™ SVn

Vershik and Kerov [4] put forward the conjecture that the limit lim ¢(A,) exists almost everywhere (with
n—oo

respect to the Plancherel measure) on the set of infinite Young tableaux An infinite Young tableau is an infinite
sequence of nested Young diagrams Ay C Ay C A3 C of sizes 1,2, 3,

We study the behavior of the coefficient ¢(A,) with respect to n  Some experiments in this area were
undertaken in [6], where the expectation and variance of ¢(A,) are given for five values of n, with maximum
of 1600 (for n = 1600, the sample under investigation contained only 14 diagrams) We performed the same
computations on modern hardware, which is much more powerful than 25 years ago

Note. After we had carried out the described experiments, we learned about a new unpublished paper by
Alexander Bufetov, which contains a proof of the existence of the limit C' of ¢(A,,) in L?(Y") with respect to the
Plancherel measure:

lim [ (c(An) = C)?d(pn(An)) =0
The actual value of C' is not likely to be obtainable by the methods used in Bufetov’s proof In should also
be noted that the conjecture from [4] about the existence of the a e limit of ¢(A,,) is still open
In the next two sections of the paper, we describe well known auxiliary routines: generating random diagrams
with the Plancherel distribution by the RSK algorithm and counting the dimension of a diagram

2.1. The hook-length formula

The hook length formula (see, for example, [1, 7]) allows one to compute the dimension dim A of a Young
diagram A without enumerating all Young tableaux that fit into A:

n!
dimA = 0 hy(ij) (3)

(i,4)EA

where (i,7) is a cell of A and hy (7, j) is the length of the hook associated with this cell The hook associated
with a cell (7,7) consists of the cell itself and all cells that lie in the jth row to the right of (i, ) or in the ith
column above (i, j) (see Fig 1)

~J Ot =
.
IS )
W =
—_

Fia. 1. The Hook lengths of a Young diagram.
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2.2. RSK-random diagrams

Even having the hook length formula, the straightforward generation of random diagrams distributed accord
ing to the Plancherel measure would be very computationally expensive The Robinson Schensted Knuth (RSK)
correspondence and the row insertion algorithm come to the rescue

The RSK algorithm [1] takes as input an arbitrary permutation s € S,,, performs a sequence of row insertions,
and produces a pair of standard Young tableaux (P, Q) with the same diagrams; moreover, there is a one to one
(RSK) correspondence between such pairs and permutations Hence the uniform distribution (Haar measure)
on S, transforms into the Plancherel measure on the set of left (or right) Young tableaux Applying the RSK
correspondence to a random permutation in S, and taking the Young diagram Y (P) of the left Young tableau
in the pair, we obtain a random Young tableau distributed according to the Plancherel measure

2.3. Results
For n < 120, the expectations of ¢(A,) for the Plancherel measure were computed directly by the formula
dim? A,
Cn = Z c(Ay) !

The results are presented in the next section: see Table 3 and Fig 5

TABLE 1. The expected values and standard deviation of ¢(A,,)

1.9

n sample size ~ Cp, ~ oy,
1000 2000 16984314 | 010431497
2000 2000 1 746588 | 0 091339454
3000 2000 17644972 | 0 08351989
4000 2000 17750576 | 007747431
5000 2000 17873781 | 007282907
6000 2000 17917556 | 007022077
7000 2000 17969893 | 0 06630529
8000 2000 18000197 | 0 06586118
9000 2000 1 8070668 | 0 06243244
10000 10000 18102994 | 0 061589677
11000 10000 1 8118591 | 0 059796795
12000 10000 18147597 | 0 057941828
13000 10000 18162445 | 005743194
14000 10000 1 8187699 | 0 056453623
15000 20000 1820125 | 005504108
16000 20000 1 8181555 | 0 054255717
17000 20000 18197316 | 0 053651392
18000 20000 18249108 | 0 052745327

0

F1G. 2. The expected values of ¢(A;,)
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There are 1,844,349,560 Young diagrams of size 120 For larger n, the expectations of ¢(A,,) were calculated
by the Monte Carlo method, using a sample of RSK random diagrams The normalized dimension of each
diagram was computed by formula (2), using the hook length formula (3) for obtaining dim A The procedure
was run for various n in the range from 1000 to 18000 The expectation ¢, = E(c(A,)) and the standard
deviation o, = o(¢(A,)) of ¢(A,,) are listed in Table 1 and Fig 2 From these results we see that the values of
¢, asymptotically increase and presumably have a limit To be quite honest, ¢, do not increase monotonically
in the selected range: for example, they decrease from n = 15000 to n = 16000 This fact was rechecked and
confirmed with a sample of size 40000 The third decimal place remained constant after the size of the sample
reached 20000

2.4. The individual evolution of the dimension of a typical diagram

The Plancherel measure on infinite Young tableaux is defined as a Markov measure having the following
property: the corresponding measure on Young diagrams of size n is the Plancherel measure (1) on diagrams
It is not difficult to find the transition probabilities for this Markov measure Given that tableaux with equal
diagrams have equal measures, we can say that the measure of a )\ shaped Young tableau is dig})‘ Therefore,
the probability of the transition from A to A is

dim(A)

PAN = (n + 1) dim())

(4)

(see, for example, [8]) Thus the conjecture from [4] on the existence of the ae limit of ¢(A,) means that
for almost all infinite Young tableaux {A,,n = 1,2, } generated by the described Markov process, ¢(Ay)
converges to some common limit value, which is obviously equal to the limit value for the expectation of the
normalized dimension Using formula (4) for the transition probability, we simulate the Markov process and
obtain a sequence of Young diagrams of increasing size, each distributed according to the Plancherel measure
and containing all the previous ones

Our experiments show that the behavior of the normalized dimension of such a sequence is very chaotic, which
probably indicates that the Vershik Kerov conjecture on the existence of the a e limit of ¢(A,) is not easy to
prove nor disprove

The nonregular behavior of the normalized dimension is illustrated on Fig 3, which depicts the values of ¢(\;,)
for two Markov sequences of Young diagrams The values are computed for n € [100 7000] (only multiples of
100 were taken)

e(A) ——
el
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n

F1a. 3. The values of ¢(A,,) for two random sequences of Young diagrams
distributed according to the Plancherel measure
3. THE ASYMPTOTIC BEHAVIOR OF THE MAXIMUM DIMENSION OF AN IRREDUCIBLE REPRESENTATION OF S,
In this section, we study the behavior of the mazimum dimension of a diagram of size n,
m, = max dimA,,

An €S,
354



and its normalized value
en = c(Ay),

where A, is the diagram of size n that has the maximum dimension over all diagrams of size n
The problem of computing the maximum dimension was posed in 1968 (see [9]) McKay [10] presented the
values of max dim A,, for n up to 75 Relying on these results, he conjectured that

dim A, < 1
Vol T n

This was opposite to an alternative conjecture, according to which there are irreducible representations of
arbitrary large dimension for which inequality (5) is not true Just before his paper was published, McKay sadly
admitted that the alternative conjecture is true for n = 81 Nevertheless, as shown in [4], McKay’s conjecture

is asymptotically true, and an even stronger fact holds: as n — oo, max\‘/ﬁ’fl An decreases as e~ V™, ie , not only
n:

faster than 1/n, but faster than any polynomial fraction The estimates on the normalized dimension given in [4]
for a typical Young diagram coincide with the estimates for the maximum dimension; while both have the same
logarithmic order, experiments show that the constants are different

For n up to 130, we find maxdim A,, by enumerating all Young diagrams of size n In fact, we enumerate
not diagrams, but partitions of n, using the trivial correspondence between Young diagrams and partitions of
integers (see [1]) The dimension of each diagram is computed using the hook length formula (3)

There are 5,371,315,400 Young diagrams of size n = 130 For larger n, since we have limited computational
resources and cannot enumerate all Young diagrams, we considered only symmetric diagrams, or diagrams that
can be obtained from symmetric ones by adding one cell Often, this restriction does not affect the final result;
but, for example, for n = 14 the diagram of maximum dimension does not satisfy it However, this restriction is
not substantial Table 2 contains the values of ¢;, For n = 310, we enumerated 151,982,627 diagrams

(5)

max

n Cn n ~ Cp,

10 | 057453286 | 140 | 1 05010306
20 | 08198125 | 150 | 1 0839802
30 | 07912792 | 160 | 1 05304872
40 | 086301332 | 170 | 10784368
50 | 090097636 | 180 | 10775954
60 | 094780416 | 190 | 10940416
70 | 098343194 | 200 | 1 0953336
80 | 096466594 | 210 | 11026434
90 | 09749938 | 220 | 1 11596048
100 | 1035376 | 230 | 11106038
110 | 1 02168428 | 240 | 11273114
120 | 1 02246392 | 250 | 1 11251032
130 | 10514124 | 260 | 1 11878812
270 | 11175388
280 | 11173389
290 | 1 13589692
300 | 1 12641788
310 | 1148327

TABLE 2. The values of ¢(A,,) for the diagrams of maximum dimension
The first column contains exact values, while the second one contains
the values obtained by enumerating the restricted sets of diagrams

While the two sided estimates given by Vershik and Kerov [4] for the maximum dimension are the same as for
the typical dimension, these two statistics have different behavior, and the limit of the sequence ¢,, is not likely
to exist (see Fig 4) We also emphasize that the maximum dimension is much greater than the typical one (and
vice versa for the normalized values, because of the minus sign in the exponent)
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F1a. 4. The values of ¢(A,) for the diagrams of maximum dimension
The values starting from n = 140 are approximate, because of the above
mentioned restriction

n Cn Cn
10 | 0 57453287 | 0 9348365
20 | 0 81981254 | 1 1238908
30 | 07912792 | 12205664
40 | 08630133 | 1283057
50 | 090097636 | 1 3281072
60 | 094780415 | 1 3622344
70 | 098343194 | 1 3878295
80 | 096466595 | 1 4042087
90 | 09749938 | 14061089
100 | 1035376 | 1 3848866
110 | 10216843 | 1 3299882
120 | 10224639 | 12363929

TABLE 3. The normalized dimensions, maximum and typical

0 20 40 60 80 100 120

n

FiGc. 5. The normalized dimensions, maximum and typical

Table 3 and Fig 5 present the results of comparing the exact values of ¢,, and ¢,, Neither function is monotone
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4. RANDOM DIAGRAMS WITH THE RICHARDSON DISTRIBUTION

Rost [5] considers a Markov process describing the behavior of a particle in {0, 1}Z that can be interpreted as
the process of increasing a Young diagram cell by cell starting from the empty diagram The transition to the
next state (increasing the diagram by one cell) is performed in the following way

Among all diagrams of size n + 1 that contain the given diagram, one diagram is chosen randomly and
uniformly In other words, from all the k positions for a diagram of size n where a cell can be added, one position
is picked with probability 1/k This growth process was introduced by Richardson [11] Rost [5] found and
proved the limit shape for Young diagrams distributed according to the Richardson measure (see below)
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Fic. 6. Building a random Young diagram with the Richardson distri
bution Each of the k dashed positions has the probability 1/k

We computed the values of the normalized dimension ¢(A,,) for sequences of nested Young diagrams generated
by the Richardson process (see Fig 7) The difference between these values and the values obtained for the
Plancherel measure (Fig 3) makes it clear that these measures are totally different
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F1a. 7. The values of ¢(A,,) for two random sequences of Young diagrams
distributed according to the Richardson measure

Let us consider the process of infinite growth of a Young diagram, normalizing it by \/ln along each axis at
each step; thus the area of the diagram remains constant As shown in [5], as n — oo the process converges to a
limit shape, which is given by the equation \/z + ,/y = h The exact value of h depends on the normalization
In [5], h is equal to one: \/z +,/y =1 Another normalization that makes sense is the normalization by the area
of the resulting figure, which is equal to 1/6 of the area of the circumscribed square The side of the square is
equal to h2, so

h2
S = /(h —Vz)?dr = h'/6
0
357



If we take the area S as 1, then the value of h is equal to v/6, and the equation for the limit shape takes the
form

Vo + y =6 (6)
4.1. d-Dimensional Young diagrams

A d dimensional Young diagram is a finite descending ideal in the lattice (Z<o)? Unless specified otherwise,
a “Young diagram” means a two dimensional Young diagram

Vershik and Kerov [3] introduced a convenient coordinate system for presenting Young diagrams: one should
rotate by 45° the so called French notation of a diagram, which corresponds to the Cartesian coordinates

Similarly, d dimensional Young diagrams can be represented as functions defined on the (d — 1) dimensional
hyperplane passing through the origin and orthogonal to the main diagonal The value of the function at a point
of the hyperplane is the length of the interval parallel to the main diagonal starting at this point and ending at
the border of the Young diagram

Having this representation of Young diagrams, we can easily define the average shape of a collection of diagrams
by averaging the corresponding functions This definition trivially extends to multidimensional Young diagrams

Although the function corresponding to a diagram is defined in the “rotated” coordinate system, we still depict
Young diagrams and their average shapes in the Cartesian coordinates, by applying the inverse transformation

The average shape of 2200 random diagrams of size n = 100000 is shown in Fig 8 A visual verification of
Rost’s theorem can be obtained by plotting the average shape in the coordinates (v/z,/y) (see Fig 9)
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FiGg. 8. The average shape of 2200 diagrams of size 100000
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Fic. 9. The average shape of 2200 diagrams of size 100000 in the
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Fic. 10. The average shape of 2200 diagrams of size 100000 scaled

by 1/v/n

Scaling this shape by 1/4/n, we obtain a close approximation to the plot shown in Eq (6) The area of the
shape in Fig 10 is equal to 1

4.2. The standard deviation of the main diagonal segment

In the previous section, we showed that the average shape complies with Eq (6) To verify that the average
shape is actually the limit shape, we computed the standard deviation of the so called main diagonal segment,
ie, the length of the interval of the main diagonal starting at the origin and ending at the average shape In
Table 4, the values of the standard deviation d(n) are listed for n from 10000 to 40000, along with the normalized
values d(n)/+/n Figure 11 shows the decrease of the normalized standard deviation as n — oo

n | samplesize | ~d(n) | ~d(n)/vn
10000 2000 18262177 | 0 018262176
15000 2000 19742892 | 0 016120004
20000 3000 2 0621564 | 0 014581648
25000 4000 21949573 | 0 013882129
30000 5000 2203268 | 0012720575
35000 6000 2 3289392 | 0 012448704
40000 7000 2 3589768 | 0 011794884

TABLE 4. The standard deviation of the main diagonal segment
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Fia. 11. The normalized standard deviation of the main diagonal seg
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F1G. 12. The average shape of 400 diagrams of size 10000 drawn
in the (y/z,./y,/2) coordinates

4.3. The average shape in three dimensions

The definition of a random Young diagram with the Richardson distribution can easily be generalized to the
three dimensional case There are no known results about the limit shape in this case, but Fig 12, obtained by our
computations, leads to the assumption that the limit shape satisfies the analogous equation \/z +,/y ++/z = h3

This result shows that the limit shape of three dimensional Young diagrams generated by the Richardson
process are probably different from the limit shape for uniformly distributed diagrams, which was studied in [12]
and finally found in [13, 14]

The first author is supported by the grants NSh 2460 2008 1 and RFBR 08 01 00379
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