
Unspeci�ed Book Proceedings SeriesOn the scienti�c work of M. Sh. Birman in 1998{2007M. Solomyak and T. SuslinaJanuary 17, 2008 is the 80-th birthday of the outstanding mathematicianMikhail Shl�emovich Birman. He is the author of many most important results inthe spectral theory of abstract and di�erential operators and in the scattering the-ory. He contributed much to other areas of Real Analysis: to approximation theory,function theory, theory of integral operators, etc.Papers [1�;3�;4�] are devoted to the scienti�c achievements of M. Birman. Inthe present paper, we give a survey of his results obtained during the last ten years(in 1998{2007). The list of publications of M. Birman for the period before 1998can be found in [2�]. The next item of this collection is the continuation of this list.Herewith, the numbering of publications continues numbering from [2�]. References[130, 131], which will be discussed below in detail, are repeated. We also repeatreferences [138, 139, 140, 141] from [2�], since they contained non-complete data.The main subject which M. Birman was working on during the last ten years(and is currently working on) is the spectral theory of periodic di�erential operators(DO's). Precisely, the following three themes can be named: 1) the problem ofabsolute continuity of the spectrum of periodic operators of mathematical physics;2) threshold properties and homogenization of periodic DO's; 3) discrete spectrumin the gaps of a periodic elliptic operator perturbed by potential decaying at in�nity.Besides, M. Birman returned to his "old" subject, namely, to the study ofasymptotics of discrete spectrum for the Maxwell operator in a resonator in non-smooth situation.x1. Absolute continuity of the spectrum of periodic operators ofmathematical physicsWe start with the series of papers [131, 138, 140, 141, 142, 143, 148]devoted to the problem of absolute continuity of the spectrum of periodic di�erentialoperators. All papers of this series are joint with T. Suslina. Below in Subsections1.1{1.3 we give necessary preliminary information.1.1. Direct integral. Let P be a self-adjoint elliptic (in an appropriate sense)lower semi-bounded operator in L2(Rd) generated by a second order linear di�er-ential expression P(x;D) (x 2 Rd, D = �ir), which is periodic in x with respect2000 Mathematics Subject Classi�cation. Primary 01A70. c0000 (copyright holder)1



2 M. SOLOMYAK AND T. SUSLINAto some lattice � � Rd. By 
 we denote the elementary cell of the lattice �. Let e�be the dual lattice, and let e
 be the central Brillouin zone of the lattice e�.The operator P is decomposed in the direct integral of the operators P (k)acting in L2(
) and depending on the parameter k 2 Rd (the quasi-momentum).The operator P (k) is given by the di�erential expression P(x;D+k) with periodicboundary conditions. The operator P is unitarily equivalent to the direct integralof operators P (k): UPU�1 = Ze
 �P (k) dk: (1:1)Here U is the Gelfand transformation.The spectrum of each operator P (k) is discrete. Let Ej(k), j 2 N, be theeigenvalues of the operator P (k) numbered in non-decreasing order counting mul-tiplicities. The band functions Ej(�) are continuous and e�-periodic. The spectrumof the operator P has a band structure: it consists of the closed intervals RanEj ,j 2 N. Spectral bands can overlap. The intervals free of the spectrum are calledgaps.1.2. The problem of the absence of degenerate spectral bands. Ifsome band function is constant: Ej(k) = � = Const, then the corresponding banddegenerates into the point �, which is an eigenvalue of in�nite multiplicity for theoperator P . For instance, such case can be realized for elliptic fourth order operator(an example of such an operator is given in the book by P. Kuchment), and also forthe operator �div g(x)r with d � 3 and a non-Lipschitz matrix g (such examplewas found in 2001 by N. Filonov).If a periodic elliptic operator has no degenerate bands, then its spectrum isabsolutely continuous.1.3. The Thomas approach. For the �rst time, the absence of degeneratespectral bands for the Schr�odinger operator H = �� + V (x) in L2(R3) with areal-valued periodic potential V was proved in the famous paper by L. Thomas in1973. (For arbitrary dimension d � 2, the Thomas proof is presented in the book byM. Reed and B. Simon.) Later the general Thomas approach was used in almost allpapers on this subject. The operator family H(k) = (D+k)2+V (x) (with periodicboundary conditions) acting in L2(
) is analytically extended to complex values ofthe parameter k 2 Cd. We �x a unit vector e 2 Rd and a vector k0 2 Rd, k0 ? e,and put k = k1e + k0, where k1 2 C. With respect to the parameter k1 2 C, thefamily H(k) = H(k1e+ k0) is an analytic operator family with compact resolvent.Let k1 = �+ iy, where � 2 R is �xed, and y 2 R is the main parameter. We denoteH(k) = H(y). Thomas showed that, for appropriate e and �, the operator H(y)is invertible for large values of jyj, and kH(y)�1k ! 0 as jyj ! 1. Precisely, thefollowing Thomas estimate is true:kH(y)�1k � Cjyj�1; jyj � y0 > 0: (1:2)By the analytic Fredholm alternative, this easily implies the absence of degeneratebands.First, estimate (1.2) is proved (by the Fourier series) for the "free" operatorH0(y) corresponding to the case V = 0. Next, the potential V can be taken intoaccount as an additive perturbation, and estimate (1.2) is carried over to the case ofthe "perturbed" operator H(y) = H0(y)+V . Herewith, the smaller assumptions on



ON THE SCIENTIFIC WORK OF M. SH. BIRMAN 3V are, the bigger e�orts are needed for adding V . In the initial paper by Thomas,it was assumed that V 2 L2(
) (for d = 3).1.4. Two-dimensional magnetic Schr�odinger operator. The periodicmagnetic Schr�odinger operator M = (D � A(x))2 + V (x) (the magnetic Hamil-tonian) is a much more di�cult case. Here A(x) is the vector-valued (magnetic)potential. Due to the gauge transformation, the potential A can be subject to thegauge conditions divA = 0, R
A(x) dx = 0. If M is considered as a perturbed op-erator with respect to H0, then the perturbation M �H0 is a �rst order di�erentialoperator. For the corresponding operators in L2(
) depending on the parametery, the perturbation M (y) � H0(y) contains term of order jyj. That is why it isimpossible to prove estimate of the form (1.2) for the operator M (y) consideringM (y) as an additive perturbation of the "free" operator H0(y). This di�culty wasnot overcome for almost 25 years.In 1997 in the break-through paper [131], absolute continuity of the spectrumof the periodic magnetic Hamiltonian was proved in dimension d = 2. The magneticoperator M was interpreted as a "multiplicative perturbation" of the operator H0.Let us explain this in detail. For simplicity, suppose that A 2 C1. Approach of[131] is based on the study of the operator P = (D�A(x))2+ @1A2(x)� @2A1(x)(one of two blocks of the corresponding Pauli operator). The operator P admitsa convenient factorization. Indeed, there exists a real-valued periodic function'(x) such that r' = fA2;�A1g. In terms of ', the operator P is factorizedin �ve factors: P = e�'(D1 + iD2)e2'(D1 � iD2)e�': Each of them is eithera di�erential operator with constant coe�cients, or multiplication by a positivefunction. This allows one to consider the operator P (y) (acting in L2(
)) as amultiplicative perturbation of the operator H0(y) and to prove an analogue ofestimate (1.2) for the operator P (y). After that, it is easy to take the scalarpotential W = V � @1A2 + @2A1 into account as an additive perturbation and toprove the required estimate for the operator M (y) = P (y) +W .In [131], it was assumed that the vector-valued potential A is continuous,and that V 2 L2(
). Later in [138] the scheme was modi�ed and adapted tothe operators de�ned in terms of quadratic forms. This allowed the authors torelax conditions on coe�cients: in [138] it was assumed that A 2 L�(
) with� > 2 and V 2 Lr(
) with r > 1. These conditions are optimal in the Lp-scale.Thus, the result on absolute continuity of the spectrum of the two-dimensionalperiodic magnetic Hamiltonian was extended to the case of discontinuous vector-valued potentials.1.5. Further development of the subject. After almost 25 years of stag-nation, the paper [131] gave rise to a series of papers by many authors on absolutecontinuity of the spectrum of periodic operators.For d � 3, the problem of absolute continuity of the spectrum of periodic mag-netic Hamiltonian turned out to be much more di�cult than for d = 2. (If d � 3,the Pauli operator does not admit a convenient factorization.) This problem hasbeen solved in 1997 in the remarkable paper by A. Sobolev. He applied the tech-nique of pseudodi�erential operators on torus and showed that, for an appropriatechoice of the direction of complex quasi-momentum (i. e., the direction of the vectore) depending on the potential A, an analogue of estimate (1.2) for the operatorM (y) is still true for d � 3. It turned out that a certain analogue of factorization(up to lower terms) still takes place, but on the "pseudodi�erential level".



4 M. SOLOMYAK AND T. SUSLINAIn [141], a survey of the results known at that time on absolute continuityof the spectrum of periodic operators was given. Besides, the result on absolutecontinuity of the spectrum of the magnetic Schr�odinger operator for d � 3 wasextended to a wider class of potentials. In particular, for d = 3;4 the conditionV 2 L0d=2;1(
) from [141] is optimal in the Lorentz scale.Later conditions on coe�cients were relaxed in the papers by I. Lapin,R. Shterenberg and in a series of papers by Z. Shen.The most di�cult case is an operator with variable leading coe�cients. How-ever, the case of a scalar metric analyzed in [141] is relatively simple. Then theoperator has the formH(g;A; V ) = (D�A(x))�g(x)(D�A(x)) + V (x); (1:3)where g(x) = !2(x)a, a is a constant positive matrix, and !(x) is a bounded andpositive de�nite (scalar) function. In [141], it was shown that the result on absolutecontinuity can be easily carried over from the case of the magnetic Schr�odingeroperator to this case (under some smoothness assumptions on !), by using theidentity H(!2a;A; V ) = !�1H(a;A; !�2V + V!)!�1; where V! = !�1div ar!.The case of metric g(x) of general type turned out to be much more di�cult. Upto now, the problem of absolute continuity for the operator with variable metric issolved only in the two-dimensional case (here the �rst result belongs to A. Morame,1998), and for d � 3 in the case where the operator has a special symmetry: it mustbe invariant under reection with respect to some axis (the result of L. Friedlander,2001). For d � 3, the problem of absolute continuity of the spectrum of the operator(1.3) with metric g of general type still remains open.1.6. Singular potentials. In [142], the absolute continuity of the spectrumwas established for the two-dimensional Schr�odinger operator of the formH� = (D�A)2 + V (x) + �(x)��(x): (1:4)Potential in (1.4) includes the delta-like term �(x)��(x) supported on a periodicsystem � of piecewise-smooth curves. Such operators are of interest in the theoryof photonic crystals. Using the version of the Thomas approach adapted for theoperators de�ned in terms of quadratic forms (this version was suggested in [138]),it is possible to take a delta-like potential into account as an additive perturbation.Later, absolute continuity of the spectrum for the operator (1.4) was obtained indimension d � 3 by T. Suslina and R. Shterenberg in 2001 (under some restrictionson a periodic system � of (d � 1)-dimensional surfaces). For d = 2, the caseof more general singular potentials (given in terms of measures) was studied byR. Shterenberg (2000, 2001).1.7. Vector periodic problems. A progress for the magnetic Schr�odingeroperator allowed one to prove absolute continuity of the spectrum also for theperiodic Dirac operator containing both electric and magnetic potentials. This wasdone in [140] on the basis of a relation between the square of the Dirac operatorand the magnetic Schr�odinger operator. (For the Dirac operator with periodicelectric potential only, absolute continuity of the spectrum was obtained in 1990 byL. Danilov.)In [148], absolute continuity of the spectrum was proved for the periodicisotropic operator of elasticity theory in the case where the shear modulus is con-stant (the so called "Hill body"). In this case, it is possible to reduce the problem to



ON THE SCIENTIFIC WORK OF M. SH. BIRMAN 5the known results for a scalar elliptic operator. If the shear modulus is variable, theproblem of absolute continuity of the spectrum for the isotropic periodic operatorof elasticity theory remains open.Note that, in spite of the considerable progress, there remain many unsolvedproblems on absolute continuity of the spectrum of periodic operators.x2. Threshold properties and homogenization for periodic di�erentialoperatorsImportant series of papers [139, 145, 150, 151, 153, 155, 156, 158, 159,161] by M. Birman and T. Suslina is devoted to the study of threshold propertiesand homogenization problems for periodic di�erential operators. The starting pointwas the paper [139], where the spectral characteristics of the two-dimensional pe-riodic Pauli operator at the bottom of the spectrum (the threshold characteristics)were studied. It became clear that "good" properties of the threshold character-istics are related not only to speci�c features of the Pauli operator, but also toexistence of factorization of the form X �X , where X is a homogeneous �rst orderDO. This led to singling out of a wide class of matrix periodic DO's admitting afactorization of the form X �X and to the study of their threshold characteristics(see Subsection 2.3). During this work the idea was born that threshold propertiesof periodic DO's must be related to the homogenization theory in the small periodlimit. It was realized that the homogenization procedure for a periodic operatorcan be studied as a threshold e�ect at the bottom of the spectrum. In this way,the results of new type in the homogenization theory were obtained.2.1. Di�erential operators in L2(Rd;Cn). In the papers [145, 151, 156,158], the class of matrix periodic di�erential operators A acting in L2(Rd;Cn) andadmitting a factorization of the form A = X �X was introduced and studied indetail. Here X is a homogeneous �rst order DO. Suppose that X = h(x)b(D)f (x),where an (n�n)-matrix-valued function f (x) and an (m�m)-matrix-valued func-tion h(x) are periodic with respect to some lattice � and bounded together withtheir inverses. It is assumed that m � n. The operator b(D) is a homogeneous �rstorder DO; its symbol b(�) is a linear homogeneous (m� n)-matrix-valued functionof � 2 Rd such that rank b(�) = n for � 6= 0. Formally, the operator A is given bythe di�erential expressionA = A(g; f ) = f(x)�b(D)�g(x)b(D)f (x); g(x) = h(x)�h(x): (2:1)The precise de�nition of A is given in terms of the corresponding quadratic form.Below, in the case where f = 1n, we use the notationbA = bA(g) = b(D)�g(x)b(D): (2:2)Many operators of mathematical physics admit such factorization. The acousticsoperator and the operator of elasticity theory have the form (2.2), while the periodicSchr�odinger operator and the two-dimensional Pauli operator can be written in theform (2.1) (with non-trivial f ).2.2. Main results on homogenization. We use the notation �"(x) =�("�1x) for any �-periodic function � and put A" = A(g"; f"), bA" = bA(g"). Co-e�cients of these operators are rapidly oscillating as " ! 0. The homogenizationproblem for the operator A" is to study the behavior of the resolvent (A"+ I)�1 as"! 0.



6 M. SOLOMYAK AND T. SUSLINAWe start with the results for the simpler operator bA". There exists an operatorbA0 = b(D)�g0b(D) with constant coe�cients such thatk( bA" + I)�1 � ( bA0 + I)�1kL2!L2 � C": (2:3)The constant positive matrix g0 is called the e�ective matrix, and the operator bA0 iscalled the e�ective operator. The existence of the e�ective operator and the strongresolvent convergence in L2 have been known in the traditional homogenizationtheory. However, the resolvent convergence in the operator norm was not knownbefore. The estimate (2.3) established for the �rst time in [145, 151] is order-sharp;the constant C is controlled explicitly in terms of the problem data.The e�ective matrix g0 is de�ned by the following rule. Let �(x) be the periodic(n�m)-matrix-valued function satisfying the equationb(D)�g(x)(b(D)�(x) + 1m) = 0; Z
 �(x) dx = 0: (2:4)We put eg(x) = g(x)(b(D)�(x) + 1m). Then g0 = j
j�1 R
 eg(x) dx:For the operator A" (with f 6= 1n), it is impossible to �nd a DO with con-stant coe�cients such that the resolvent (A" + I)�1 converges to the resolvent ofthis operator. However, it is possible to approximate the resolvent (A" + I)�1 bythe generalized resolvent of the e�ective operator bA0 sandwiched between rapidlyoscillating factors. The following approximation was found in [151]:k(A" + I)�1 � (f ")�1( bA0 +Q)�1((f ")�)�1kL2!L2 � C": (2:5)Here Q(x) = (f (x)f (x)�)�1 and Q = j
j�1 R
Q(x) dx. It is important that, inthe approximation (2.5), the inverse is taken for the DO with constant coe�cients,though this approximation contains rapidly oscillating factors from both sides. Onecan get rid of these factors only by passing to the weak operator limit.In the paper [156], a qualitatively new result in the homogenization theory hasbeen obtained. Namely, a more precise approximation for the resolvent (A"+ I)�1in the operator norm in L2(Rd;Cn) with error estimate of order "2 was found. Herewe describe this result only for the simpler operator bA". The term "K(") shouldbe added to the resolvent of the e�ective operator, where K(") is the so calledcorrector. The following estimate holds:k( bA" + I)�1 � ( bA0 + I)�1 � "K(")kL2!L2 � C"2: (2:6)The operator K(") is the sum of three terms: K(") = K1(")+K1(")�+K3: The �rsttwo terms of the corrector are mutually adjoint and contain a rapidly oscillatingfactor �", where � is the periodic solution of the equation (2.4). The operatorK1(") is given by K1(") = �"�"b(D)( bA0+ I)�1: Here �" is an auxiliary smoothingoperator. (In some cases it is possible to get rid of the smoothing operator andto put K1(") = �"b(D)( bA0 + I)�1.) The third term of the corrector does notdepend on " and is given by K3 = �( bA0 + I)�1b(D)�L(D)b(D)( bA0 + I)�1; whereL(D) is the �rst order DO with the symbol L(�) = j
j�1 R
(�(x)�b(�)�eg(x) +eg(x)�b(�)�(x)) dx:The estimate (2.6) is order-sharp. As " ! 0, the weak limit of the correctorK(") is equal to K3. In this respect, the third term of the corrector is the mostimportant. In some cases, it may happen that K3 = 0. In particular, this isthe case for the scalar operator bA = �div g(x)r, where the matrix g has real



ON THE SCIENTIFIC WORK OF M. SH. BIRMAN 7entries. However, in the general case the third term of the corrector is non-trivial.This is typical for matrix operators, and also for scalar operators with complex-valued coe�cients. Note that the traditional corrector used in the homogenizationtheory corresponds to the term K1("). The estimate (2.6) shows that, in order toapproximate the resolvent in the L2-operator norm with error term of order O("2),it is not su�cient to take into account only the traditional corrector K1("), but itis necessary to include all the three terms in the corrector. This result was quiteunexpected.In [156], an analogue of estimate (2.6) for more general operator A" was alsoobtained. In this case, approximation contains rapidly oscillating factors from bothsides.In [158], the resolvent ( bA" + I)�1 was approximated in the norm of operatorsacting from L2 to the Sobolev space H1, with the error term of order ". It turnedout that, to this end, it su�ces to take into account only the �rst term of thecorrector. The following estimate is true:k( bA" + I)�1 � ( bA0 + I)�1 � "K1(")kL2!H1 � C": (2:7)Comparing estimates (2.6) and (2.7), we see that the form of the correctordepends on the question considered. All the estimates under consideration areorder-sharp, and constants in estimates are controlled explicitly in terms of L1-norms of the coe�cients g, g�1, f , f�1, the lower and upper bounds for the symbolb(�)�b(�) on the sphere j�j = 1, and parameters of the lattice �.2.3. Method of investigation. Let T" be the unitary scaling transformationin L2(Rd;Cn) given by (T"u)(x) = "d=2u("x). The identity(A" + I)�1 = "2T �" (A + "2I)�1T"shows that, in order to approximate the resolvent (A" + I)�1 in the L2-operatornorm with error of order O("), it su�ces to approximate the operator (A+ "2I)�1with error term of order O("�1). The presence of the unitary factors T" is notan obstacle for proving estimates in the operator norm. At the same time, in thestudy of weak or strong convergence, the inuence of these operators can not becontrolled.The bottom of the spectrum of the operator A is the point � = 0. It is naturalthat the behavior of the resolvent of A in the point � = �"2 (close to the bottom ofthe spectrum) can be described in terms of the threshold characteristics of A. Thus,the homogenization procedure can be studied as a threshold e�ect at the bottom ofthe spectrum.The operator A expands in the direct integral of operators A(k) acting inL2(
;Cn) (cf. Subsection 1.1). Let Ej(k), j 2 N; be the consecutive eigenvaluesof the operator A(k) (band functions). It turns out that for the operator (2.1)the �rst n spectral bands overlap and have the common bottom � = 0. Herewith,minimum of band functions Ej(k) is reached only at the point k = 0:mink2e
Ej(k) = Ej(0) = 0; j = 1; : : : ; n:The edge of the (n + 1)-th band is separated from zero: minEn+1(k) > 0. Theminimum point k = 0 for each function Ej is non-degenerate: Ej(k) � c�jkj2,j = 1; : : : ; n; c� > 0. By the threshold characteristics of the operator A we mean the



8 M. SOLOMYAK AND T. SUSLINAasymptotic behavior of the eigenvalues Ej(k), j = 1; : : : ; n; and the correspondingeigenfunctions of the operator A(k) near k = 0.The study of the resolvent (A+ "2I)�1 is reduced to the study of the resolvent(A(k) + "2I)�1 of the operator family A(k). This family depends on the parameterk 2 Rd analytically. For k = 0, the kernel N of the operator A(0) is n-dimensional.The natural desire is to use methods of the analytic perturbation theory. However,for d > 1 and n > 1 (multidimensional parameter and multiple eigenvalue) theanalytic perturbation theory is not applicable. The solution suggested in [145, 151]is to introduce the one-dimensional parameter t = jkj, putting k = t�, � 2 Sd�1.The operator family A(k) = A(t�) = A(t; �) is studied by methods of the analyticperturbation theory with respect to the one-dimensional parameter t.Herewith, a great deal of constructions can be carried over in abstract operator-theoretic terms. A crucial notion of the abstract scheme is the notion of the spectralgerm S(�) of the operator family A(t;�). The germ is a self-adjoint operator actingin the n-dimensional space N = KerA(0). Let us give the spectral de�nition ofthe germ. By the analytic perturbation theory, for t � t0 there exist real-analyticbranches of eigenvalues �l(t;�) and real-analytic branches of eigenvectors 'l(t;�)(orthonormal in L2(
;Cn)), l = 1; : : : ; n, of the operator A(t;�). For su�cientlysmall t�, the following convergent power series expansions hold:�l(t;�) = l(�)t2 + �l(�)t3 + : : : ;'l(t;�) = !l(�) + '(1)l (�) t + : : : ; l = 1; : : : ; n; t � t�: (2:8)The coe�cients l(�) are positive: l(�) � c� > 0. The vectors f!1(�); : : : ; !n(�)gform an orthonormal basis in N. The coe�cients l(�) and the vectors !l(�) arethreshold characteristics of the operator A near the bottom of the spectrum.According to [145, 151], the self-adjoint operator S(�) : N! N such thatS(�)!l(�) = l(�)!l(�); l = 1; : : : ; n;is called the spectral germ of the operator family A(t; �). Thus, the spectral germcontains information about threshold characteristics of the operator A. Therefore,the germ is responsible for threshold e�ects.The key result from [145, 151] is the following approximation for the resolventof the operator A(t;�) by �nite rank operators given in terms of the spectral germk(A(t;�) + "2I)�1 � (t2S(�) + "2IN)�1PkL2(
)!L2(
) � C"�1; t � t0: (2:9)Here P is the orthogonal projection of the space L2(
;Cn) onto N. Constants Cand t0 are controlled explicitly.It is possible to calculate the spectral germ. Here we formulate the result forthe simpler operator bA. In this case, the germ is represented as S(�) = b(�)�g0b(�),� 2 Sd�1, where g0 is the e�ective matrix. It turns out that the e�ective operatorbA0 has the same spectral germ as bA. Then, using estimate (2.9), it is possible toapproximate the resolvent of the operator bA by the resolvent of bA0:k( bA+ "2I)�1 � ( bA0 + "2I)�1kL2(Rd)!L2(Rd) � C"�1:This implies estimate (2.3) by the simple scale transformation.In order to obtain more precise approximation (2.6), one has to re�ne (2.9)and to �nd approximation of the resolvent (A(t; �) + "2I)�1 by some �nite rankoperators with an error term of order O(1). In abstract terms, such result wasobtained in [155]. For this, it is necessary to take into account terms up to order



ON THE SCIENTIFIC WORK OF M. SH. BIRMAN 9t3 in the expansions for eigenvalues and terms up to order t in the expansions foreigenvectors in (2.8). In [156], these abstract results were applied for the proof ofestimate (2.6).In order to approximate the resolvent in the norm of operators acting from L2to H1, it is necessary to approximate the operator A(t;�)1=2(A(t;�) + "2I)�1 inthe operator norm in L2(
;Cn). In this way, estimate (2.7) was obtained in [158] .Finally, in order to study the operator A" (with f 6= 1), the identity(A" + I)�1 = (f ")�1( bA" +Q")�1((f ")�)�1was used, and the generalized resolvent ( bA" + Q")�1 of bA" was studied. For thegeneralized resolvent the analogues of estimates (2.3), (2.6), (2.7) were obtained.2.4. In [145, 151, 156, 158], general results were applied to speci�c periodicoperators of mathematical physics: to the acoustics operator, the operator of elas-ticity theory, the Schr�odinger operator, the two-dimensional Pauli operator, andalso to the stationary Maxwell system.Homogenization for the stationary periodic Maxwell system is the most di�-cult problem. In the case where one of the coe�cients (dielectric permittivity ormagnetic permeability) is constant, the problem is (partially) reduced to the studyof the second order operator bA = rot �(x)�1rot �rdiv ; which admits factorizationof the form (2.2). Then general results for this class of operators are applicable.Such case was studied in [151, Chapter 7], but only in [159] approximations in theL2(R3)-norm for all physical �elds were obtained.The problem is even more di�cult, if both coe�cients are not constant. Thecorresponding "model" second order operator does not belong to the class of opera-tors of the form (2.2) or (2.1). Nevertheless, it is possible to apply the results of theabstract scheme from [151, 158]. The homogenization problem for the Maxwellsystem in the case where both coe�cients are variable periodic matrix-valued func-tions was studied in the papers by T. Suslina (2004, 2007), where approximationsin the L2(R3)-norm for all �elds were obtained.We also mention the papers [150, 153], where an analogue of homogenizationprocedure for the scalar elliptic operator A = �div g(x)r+ p(x) (with real-valuedperiodic coe�cients) near the edge of an internal gap was considered. Let A" =�div g"r+ "�2p". Let � be the right edge of a gap in the spectrum of the operatorA. For the operator A", the edge of the corresponding gap turns into the point"�2� (lying in the high-energy area). The problem is to approximate the operator(A"�("�2��{2)I)�1 for small " in the operator norm in L2(Rd). (Here the number{ is such that the point �� {2 lies in the initial gap in the spectrum of A.) Suchapproximation with sharp-order error estimate was obtained in [153] under someassumptions about the spectral characteristics of A near the edge of the gap. (Theone-dimensional case was studied before in [150].) In the problems of this typeinteraction between the threshold e�ects and the high-energetic e�ects is observed.2.5. The papers [145, 151] stimulated interest in the homogenization the-ory to approximations of the resolvent with error estimates in the operator norm.V. Zhikov suggested a di�erent method of obtaining operator estimates in the ho-mogenization theory. By this method estimates of the form (2.3) and (2.7) wereobtained for the scalar operator bA = �div g(x)r (V. Zhikov, 2005) and for theoperator of elasticity theory (V. Zhikov and S. Pastukhova, 2005). In the recent



10 M. SOLOMYAK AND T. SUSLINApaper by D. Borisov (2008), estimates of the form (2.3) and (2.7) were obtained foran operator with coe�cients depending both on rapid and slow variables.x3. Discrete spectrum of a perturbed periodic elliptic operatorAfter 1998, M. Birman continued to study the discrete spectrum in the gapsof a periodic elliptic operator perturbed by a potential decaying at in�nity. Twopapers by M. Birman were devoted to this subject. One of them is the paper [144]joint with A. Laptev and T. Suslina and the second one is the paper [146] jointwith M. Solomyak.3.1. Setting of the problem. Consider the operator A(�) = A��V actingin L2(Rd), where A is an "unperturbed" operator, V is a "perturbation", and � � 0is a coupling constant.The unperturbed operator A is an elliptic second order operator of the formA = �div g(x)r+ p(x) with real-valued coe�cients that are periodic with respectto some lattice � � Rd. The matrix-valued function g(x) is bounded and uniformlypositive de�nite, and the potential p(x) is bounded. The precise de�nition of theoperator is given in terms of the quadratic form. One may assume that the bottomof the spectrum of A is the point � = 0. The spectrum of the operator A hasa band structure (see Subsection 1.1). There exists a semi-bounded gap (�1; 0);there may be also internal gaps in the spectrum of A.The perturbation V is the operator of multiplication by a real-valued functionV (x). It is assumed that V (x) ! 0 as jxj ! 1, in an appropriate sense. Ingeneral, for the perturbed operator A(�) eigenvalues appear in the semi-boundedgap (�1;0) and also in the internal gaps. Let us discuss the negative discretespectrum. If the potential V+ decays su�ciently fast, then the number of negativeeigenvalues is �nite. Here 2V+(x) = jV (x)j + V (x). Let N (�; �) be the numberof eigenvalues (counting multiplicities) of the operator A(�) lying below a point� � 0 called the observation point. The full number of negative eigenvalues N(�) =N (�;0) is of a special interest. Asymptotics of N (�;�) as �! +1 is studied.The corresponding asymptotic formulas are rather diverse, depending on di-mension d, on the rate of decay of V and on the nature of operator A. They werestudied in a series of papers of M. Birman in 1991{1997. See, e. g., [110, 127, 130,134] and, especially, the survey [128] and references therein. (Here and in whatfollows, references correspond to the list [2�]). The cases d � 3 and d = 2 turn outto be essentially di�erent.3.2. The case d � 3. For d � 3, a "regular" case is distinguished by thecondition V 2 Ld=2(Rd). If this condition is satis�ed, then the following Rozenblum-Lieb-Cwikel estimate is true:N (�;�) � c(d)�d=2 ZRd V+(x)d=2 dx; � � 0; (3:1)and the Weyl asymptotics holds:N (�;�) � �d=2Jd(V; g); �! +1; � � 0;Jd(V; g) = !d(2�)d�d=2 ZRd V+(x)d=2(det g(x))�1=2 dx: (3:2)Here !d is the volume of the unit ball in Rd.



ON THE SCIENTIFIC WORK OF M. SH. BIRMAN 11If V (x) � 0, then the following properties are true: 1) the �niteness of theWeyl coe�cient Jd (which is equivalent to the condition V 2 Ld=2) implies theWeyl asymptotics; 2) the asymptotics (3.2) is uniform in � up to the edge � = 0;3) if N (�; �) � C�d=2 for some �, then V 2 Ld=2, and hence, the asymptotics (3.2)holds (i. e., the Weyl order �d=2 ensures the Weyl asymptotics).In the "non-regular" case V 62 Ld=2(Rd), the Weyl asymptotics is violated.Moreover, the Weyl asymptotic order �d=2 is impossible. However, for any q > d=2there are examples of potentials V such that N (�) � C�q.In the regular case asymptotics has a "high-energetic" origin, and in the non-regular case it has a "threshold" origin. The regular asymptotics was studied in[127], and the non-regular asymptotics was studied in [134].3.3. Two-dimensional case. First, let V (x) � 0. If d = 2, the three proper-ties mentioned above are violated: 1) the condition V 2 L1(R2) (which is equivalentto the �niteness of the Weyl coe�cient J2) is not su�cient for the validity of theWeyl asymptotics; 2) asymptotics is not uniform in � � 0 (for any q > 1 thereare examples of potentials such that N (�;�) has the Weyl asymptotics for � < 0,but N (�;�) is of order �q for � = 0); 3) the estimate N (�) � C� does not ensurethe Weyl asymptotics (there are examples of potentials such that N (�) � c�, butc 6= J2).All these e�ects were discovered in the paper [130] by M. Birman and A. Laptevin the case where A = ��. It is assumed that the potential V (x) satis�es thecondition� Zjxj�1 jV j� dx�1=� + 1Xk=1� Zek�1�jxj�ek jV j�jxj2(��1) dx�1=� <1; � > 1; (3:3)with some � > 1. Relation (3.3) implies that V 2 L1(R2). Condition (3.3) ensuresthe Weyl asymptotics for the function N (�;�) if � < 0, but not for N (�). In [130],for each q > 1, the class of potentials V such that asymptotics of the functionN (�) is of order �q was distinguished. Then asymptotics has a threshold origin,and the answer is formulated in terms of an auxiliary problem on the semi-axis,which is obtained by restricting the operator ����V on the subspace of functionsdepending only on r = jxj. Simultaneously, the potential V is averaged over thepolar angle. In [130], the class of potentials such that the asymptotics of N (�)is of order �, and the asymptotic coe�cient is the sum of the Weyl term and thethreshold term, was also distinguished.For the case where d = 2 and A is a periodic elliptic operator, the non-regularasymptotics was studied in [144]. Here two di�erent cases are observed: the caseof the purely threshold asymptotics of order q > 1, and the case of a competi-tion between the Weyl asymptotics and the threshold asymptotics. The thresholdterm is described in terms of the auxiliary problem on the semi-axis which is nowdetermined not only by potential V , but also by the threshold characteristics ofthe operator A at the bottom of the spectrum. By the threshold characteristics,we mean the positive matrix g0 and the periodic function '(x) de�ned as follows.The matrix g0 determines asymptotics of the �rst band function E1(k) as jkj ! 0(asymptotics has the form E1(k) � hg0k;ki), and '(x) is a positive periodic solu-tion of the equation A' = 0.



12 M. SOLOMYAK AND T. SUSLINAFor d = 2, the non-regular asymptotics for the spectrum in internal gaps wasstudied by T. Suslina (2003).3.4. Periodic waveguide. The paper [146] is close to [144] both by thenature of the problem considered and by the character of results. The main dif-ference is in geometry: in [146] the operators act in the space L2(X), where thedomain X � Rd is periodic in only one direction. The unperturbed operator isagain A = �div g(x)r + p(x), with the Dirichlet or the Neumann boundary con-dition on @X. The functions g(x) and p(x) are also assumed to be periodic, whichgives one the possibility to apply the Floquet-Bloch theory. By adding a constantto p(x), one can always assume that � = 0 is the lower point of spectrum of A.The perturbation is introduced by the potential V (x) decaying, in appropriatesense, along the same direction. The assumptions about V (x) guarantee that forthe operator A��V the function N (�; �) (see its de�nition in Subsection 3.1) hasthe Weyl-type asymptotic behavior (as �! +1) for any � < 0. The main problemconsists in studying N (�;0).Unlike the case X = Rd, here the threshold e�ect arises in any dimensiond > 1. To describe its inuence on the spectrum, one introduces an auxiliarySchr�odinger operator A0�Q = �@2t � �Q acting in L2(R). The "e�ective potential"Q(t) is expressed in terms of the original potential V (x) and the Floquet data forthe unperturbed operator A.The main result can be written in the formN (�; 0) � [Weyl's term] + N 0(�; 0); �! +1;where the second term corresponds to the operator A0�Q. All the e�ects mentionedin Subsection 3.3 exhibit here. So, as in [144] (and earlier, in [130]), one encountersa sort of competition between the Weyl term in asymptotics and another term, ofthe threshold origin.x4. Asymptotic behavior of the spectrum of the non-smooth MaxwelloperatorFor the empty electro-magnetic resonator in a bounded domain 
 with smooth,ideally conducting boundary, the behavior of the eigenfrequencies was found byH. Weyl as far ago as in 1912. Results for the non-smooth situation (�lled resonatorwith non-smooth dielectric permittivity "(x) and magnetic permeability �(x), inthe case of non-smooth boundary) were obtained only recently by M. Birman andhis colleagues and students. The reason of such a long delay is not purely technical,its roots are of a rather fundamental nature.Formally, the stationary Maxwell operator M";� acts asM";�fu;vg = fi"�1rotv;�i��1rotug;under the divergence free conditionsdiv ("u) = 0; div (�v) = 0;and the boundary conditionsu� j@
 = 0; (�v)� j@
 = 0:Here u and v stand for the electric and the magnetic component of an electro-magnetic �eld, and � and � indicate the tangent and the normal component of avector �eld on @
. However, all the operations involved have to be de�ned in an



ON THE SCIENTIFIC WORK OF M. SH. BIRMAN 13appropriate way, and this turns out to be non-trivial if the boundary @
 or thepositive de�nite matrix-valued functions "(x); �(x) are non-smooth. Such non-smooth situations are important for many applications (strati�ed media, domainswith edges, conical points, or screens, etc.)Prior to calculating the spectrum, one has to de�ne M";� as a self-adjointoperator acting in an appropriate Hilbert space. In the case of �lled resonator, thelatter is an L2-space of vector-valued functions, with the matrix weight generatedby "(x); �(x). The di�culties arise when one attempts to describe the operatordomain of M";�. The standard approaches, which include using the Sobolev spacesand quadratic forms, do not work here, since the operator is neither elliptic, norsemi-bounded. The choice of the "correct" self-adjoint realization is determined bythe condition of �niteness of the electromagnetic energy. In the non-smooth casesit cannot be described in terms of Sobolev spaces. Ignoring these important factsled to errors in several papers, whose authors claimed that they found the spectralasymptotics of the Maxwell operator in the non-smooth domains.Due to the block structure of the Maxwell operator, its spectrum is symmetricwith respect to zero. For its calculation it is su�cient to work with the electric com-ponent of the electro-magnetic �eld. The above mentioned condition of �nitenessof the energy dictates that this component must belong to the space�(�; ") = fu 2 L2(
;C3) : rotu 2 L2(
;C3); div ("u) = 0; u� j@
 = 0g:Here the operators rot and div are de�ned in the sense of distributions, and theequality u� j@
 = 0 is understood in an appropriate generalized sense.If the boundary @
 and the matrix-valued function "(x) are smooth, the space�(�; ") can be easily described in classical terms. Then the asymptotic behaviorof the eigenfrequencies can be studied by various standard tools. The resultingasymptotic formula looks as follows. Let r(�) be the symbol of rot , i.e.r(�) = i0@ 0 �3 ��2��3 0 �1�2 ��1 0 1A :Denote by �1(x;�);�2(x;�) the positive eigenvalues of the algebraic problemr(�)�(x)�1r(�)h = �"(x)h; h 2 C3; x 2 
; � 2 R3;the third eigenvalue is equal to zero. We put�("; �;
) = 124�3 Z
 Zj�j=1 ��1(x; �)�3=2 +�2(x;�)�3=2� dS(�)dx;where dS denotes the area element on the unit sphere. Then the eigenfrequenciesmk satisfy the asymptotic formulalimk!1 k�1m3k = �(";�;
): (4:1)Under some, rather general assumptions this formula remains valid also in thenon-smooth case. Its justi�cation needs a careful study of the structure of thespace �(�; "). First of all, A. Alekseev and M. Birman [65, 66] established ageneral geometric scheme (in the sense of geometry of Hilbert spaces), showingthat the problem in a �lled resonator can be always reduced to the case of theempty one. For resonators with smooth boundary this led to the formula (4.1)for any measurable and bounded matrices "(x); �(x), having the bounded inverse.The case of non-smooth boundary turned out to be more di�cult. The further



14 M. SOLOMYAK AND T. SUSLINAprogress was achieved on the basis of the results on the analytic structure of vector�elds belonging to the space �(�; "). This analysis was developed by M. Birmanand M. Solomyak in the papers [90, 93, 97, 117]. Namely, it was shown thatin domains with Lipschitz boundary, and also in domains with screens, any vector�eld u 2 �(�;1) can be decomposed into the sum of a term from the Sobolev spaceH10 (
;C3) and another term which is the gradient of a weak solution of the Poissonequation ��w = f; wj@
 = 0, with some f 2 L2(
). This fact allowed theseauthors to justify (in [91]) the formula (4.1) for an empty resonator with Lipschitzboundary.Recently it was shown by M. Birman and N. Filonov [160] that the existenceof the above decomposition alone, without any explicit requirements about @
,already implies the formula (4.1). This is a crucial result, since it reduces theproblem of the calculation of spectral asymptotics for Maxwell operator to theproblem (of Real Analysis) of describing singularities of vector �elds of a certainclass. In particular, this led to the proof of (4.1) for a �lled resonator with Lipschitzboundary, under the same assumptions about "(x); �(x) as in [65, 66], that ismeasurability and boundedness of the matrices and their inverses. Some technicaltools, which are necessary for the proof of this result, were developed by M. Birman,A. Alekseev, and N. Filonov in [157].A programme of studying spectral properties of the "non-smooth" Maxwelloperator was initiated by M. Birman in early 70-tees, though his �rst papers onthe subject are [65] and [66], joint with his student A. Alekseev. The papers [157]and [160] can be considered as concluding the long series of results devoted torealization of this programme. References[1�] V. Buslaev, M. Solomyak, D. Yafaev, On the scienti�c work of Mikhail Shlemovich Birman,Di�erential Operators and Spectral Theory (V. Buslaev, M. Solomyak, D. Yafaev, eds.), Amer.Math. Soc. Transl. Ser. 2, vol. 189, Amer. Math. Soc., Providence, RI, 1999, pp. 1{15.[2�] V. Buslaev, M. Solomyak, D. Yafaev (eds.), List of publications of M. Sh. Birman, Di�erentialOperators and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, vol. 189, Amer. Math. Soc.,Providence, RI, 1999, pp. 17{26.[3�] V. S. Buslaev, A. M. Vershik, I. M. Gelfand, et al., Mikhail Shlemovich Birman (on occationof his 70-th birthday), (Russian) Uspekhi Matem. Nauk 55 (2000), no. 1, 204{207; English transl.,Russian Math. Surveys 55 (2000), no. 1, 201{205.[4�] V. S. Buslaev, M. Z. Solomyak, D. R. Yafaev, Mikhail Shlemovich Birman (on occation of his75-th birthday), Algebra i Analiz 16 (2004), no. 1, 5{14; English transl., St. Petersburg Math. J.16 (2005), no. 1, 1{8.Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100,IsraelE-mail address: solom@wisdom.weizmann.ac.ilDepartment of Physics, St. Petersburg State University, Ul'yanovskaya 3, Petrod-vorets, St. Petersburg, 198504, RUSSIAE-mail address: suslina@list.ru


