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On the scientific work of M. Sh. Birman in 1998-2007

M. Solomyak and T. Suslina

January 17, 2008 is the 80-th birthday of the outstanding mathematician
Mikhail Shlémovich Birman. He is the author of many most important results in
the spectral theory of abstract and differential operators and in the scattering the-
ory. He contributed much to other areas of Real Analysis: to approximation theory,
function theory, theory of integral operators, etc.

Papers [1*,3%,4%] are devoted to the scientific achievements of M. Birman. In
the present paper, we give a survey of his results obtained during the last ten years
(in 1998 2007). The list of publications of M. Birman for the period before 1998
can be found in [2*]. The next item of this collection is the continuation of this list.
Herewith, the numbering of publications continues numbering from [2*]. References
[130, 131], which will be discussed below in detail, are repeated. We also repeat
references [138, 139, 140, 141] from [2*], since they contained non-complete data.

The main subject which M. Birman was working on during the last ten years
(and is currently working on) is the spectral theory of periodic differential operators
(DO’s). Precisely, the following three themes can be named: 1) the problem of
absolute continuity of the spectrum of periodic operators of mathematical physics;
2) threshold properties and homogenization of periodic DO’s; 3) discrete spectrum
in the gaps of a periodic elliptic operator perturbed by potential decaying at infinity.

Besides, M. Birman returned to his ”"o0ld” subject, namely, to the study of
asymptotics of discrete spectrum for the Maxwell operator in a resonator in non-
smooth situation.

§1. Absolute continuity of the spectrum of periodic operators of
mathematical physics

We start with the series of papers [131, 138, 140, 141, 142, 143, 148
devoted to the problem of absolute continuity of the spectrum of periodic differential
operators. All papers of this series are joint with T. Suslina. Below in Subsections
1.1 1.3 we give necessary preliminary information.

1.1. Direct integral. Let P be a self-adjoint elliptic (in an appropriate sense)
lower semi-bounded operator in L,(R?) generated by a second order linear differ-
ential expression P(x,D) (x € R?, D = —iV), which is periodic in x with respect
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to some lattice I' C R?. By Q we denote the elementary cell of the lattice I'. Let r
be the dual lattice, and let Q be the central Brillouin zone of the lattice I'.

The operator P is decomposed in the direct integral of the operators P(k)
acting in Ly(Q) and depending on the parameter k € R? (the quasi-momentum).
The operator P(k) is given by the differential expression P(x,D +k) with periodic
boundary conditions. The operator P is unitarily equivalent to the direct integral
of operators P(k):

urPU=! =/@P(k)dk. (1.1)

&
Here U4 is the Gelfand transformation.

The spectrum of each operator P(k) is discrete. Let E;(k), j € N, be the
eigenvalues of the operator P(k) numbered in non-decreasing order counting mul-
tiplicities. The band functions E;(-) are continuous and f—periodic. The spectrum
of the operator P has a band structure: it consists of the closed intervals Ran F;,
7 € N. Spectral bands can overlap. The intervals free of the spectrum are called

gaps.

1.2. The problem of the absence of degenerate spectral bands. If
some band function is constant: E;(k) = A = Const, then the corresponding band
degenerates into the point A, which is an eigenvalue of infinite multiplicity for the
operator P. For instance, such case can be realized for elliptic fourth order operator
(an example of such an operator is given in the book by P. Kuchment), and also for
the operator —div ¢(x)V with d > 3 and a non-Lipschitz matrix ¢ (such example
was found in 2001 by N. Filonov).

If a periodic elliptic operator has no degenerate bands, then its spectrum is
absolutely continuous.

1.3. The Thomas approach. For the first time, the absence of degenerate
spectral bands for the Schrédinger operator H = —A + V(x) in Ly(R?) with a
real-valued periodic potential V' was proved in the famous paper by L. Thomas in
1973. (For arbitrary dimension d > 2, the Thomas proof is presented in the book by
M. Reed and B. Simon.) Later the general Thomas approach was used in almost all
papers on this subject. The operator family H (k) = (D +k)?+ V(x) (with periodic
boundary conditions) acting in L,(£2) is analytically extended to complex values of
the parameter k € C?. We fix a unit vector ¢ € R? and a vector k’ ¢ R%, k/ L e,
and put k = kje + k’, where k; € C. With respect to the parameter ky € C, the
family H(k) = H(kje + k') is an analytic operator family with compact resolvent.
Let k1 = p+ ¢y, where p € R is fixed, and y € R is the main parameter. We denote
H(k) = H(y). Thomas showed that, for appropriate e and p, the operator H(y)
is invertible for large values of |y|, and ||H(y)~!|| — 0 as |y| — oo. Precisely, the
following Thomas estimate is true:

1)~ < Clyl ™ Tyl > 50 > 0. (1.2)

By the analytic Fredholm alternative, this easily implies the absence of degenerate
bands.

First, estimate (1.2) is proved (by the Fourier series) for the ”free” operator
Ho(y) corresponding to the case V' = 0. Next, the potential V' can be taken into
account as an additive perturbation, and estimate (1.2) is carried over to the case of
the "perturbed” operator H(y) = Ho(y)+V . Herewith, the smaller assumptions on
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V are, the bigger efforts are needed for adding V. In the initial paper by Thomas,
it was assumed that V' € Ly(Q) (for d = 3).

1.4. Two-dimensional magnetic Schrodinger operator. The periodic
magnetic Schrédinger operator M = (D — A(x))? + V(x) (the magnetic Hamil-
tonian) is a much more difficult case. Here A(x) is the vector-valued (magnetic)
potential. Due to the gauge transformation, the potential A can be subject to the
gauge conditions div A = 0, fQ A(x)dx =0. If M is considered as a perturbed op-
erator with respect to Hg, then the perturbation M — Hy is a first order differential
operator. For the corresponding operators in Ly(£2) depending on the parameter
y, the perturbation M(y) — Hy(y) contains term of order |y|. That is why it is
impossible to prove estimate of the form (1.2) for the operator M (y) considering
M (y) as an additive perturbation of the "free” operator Hy(y). This difficulty was
not overcome for almost 25 years.

In 1997 in the break-through paper [131], absolute continuity of the spectrum
of the periodic magnetic Hamiltonian was proved in dimension d = 2. The magnetic
operator M was interpreted as a ”multiplicative perturbation” of the operator Hy.
Let us explain this in detail. For simplicity, suppose that A € C'. Approach of
[131] is based on the study of the operator P = (D — A(x))% + 0, A3(x) — 0y A1 (x)
(one of two blocks of the corresponding Pauli operator). The operator P admits
a convenient factorization. Indeed, there exists a real-valued periodic function
p(x) such that Voo = {43, —A1}. In terms of ¢, the operator P is factorized
in five factors: P = e ¥(Dy + iD3)e??(D; — iDy)e™%. Each of them is either
a differential operator with constant coefficients, or multiplication by a positive
function. This allows one to consider the operator P(y) (acting in Ly(Q)) as a
multiplicative perturbation of the operator Hy(y) and to prove an analogue of
estimate (1.2) for the operator P(y). After that, it is easy to take the scalar
potential W =V — 91 A3 + 0, Ay into account as an additive perturbation and to
prove the required estimate for the operator M(y) = P(y) + W.

In [181], it was assumed that the vector-valued potential A is continuous,
and that V € L,(Q). Later in [138] the scheme was modified and adapted to
the operators defined in terms of quadratic forms. This allowed the authors to
relax conditions on coefficients: in [138] it was assumed that A € L,(Q) with
p>2and V € L.() with r > 1. These conditions are optimal in the L,-scale.
Thus, the result on absolute continuity of the spectrum of the two-dimensional
periodic magnetic Hamiltonian was extended to the case of discontinuous vector-
valued potentials.

1.5. Further development of the subject. After almost 25 years of stag-
nation, the paper [131] gave rise to a series of papers by many authors on absolute
continuity of the spectrum of periodic operators.

For d > 3, the problem of absolute continuity of the spectrum of periodic mag-
netic Hamiltonian turned out to be much more difficult than for d = 2. (If d > 3,
the Pauli operator does not admit a convenient factorization.) This problem has
been solved in 1997 in the remarkable paper by A. Sobolev. He applied the tech-
nique of pseudodifferential operators on torus and showed that, for an appropriate
choice of the direction of complex quasi-momentum (i. e., the direction of the vector
e) depending on the potential A, an analogue of estimate (1.2) for the operator
M (y) is still true for d > 3. It turned out that a certain analogue of factorization
(up to lower terms) still takes place, but on the ”pseudodifferential level”.
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In [141], a survey of the results known at that time on absolute continuity
of the spectrum of periodic operators was given. Besides, the result on absoclute
continuity of the spectrum of the magnetic Schrédinger operator for d > 3 was
extended to a wider class of potentials. In particular, for d = 3,4 the condition
Ve Lg/%m(ﬂ) from [141] is optimal in the Lorentz scale.

Later conditions on coefficients were relaxed in the papers by I. Lapin,
R. Shterenberg and in a series of papers by Z. Shen.

The most difficult case is an operator with variable leading coefficients. How-
ever, the case of a scalar metric analyzed in [141] is relatively simple. Then the
operator has the form

H(g,A,V) = (D - A(x))"9(x)(D - A(x)) + V(x), (1.3)

where g(x) = w?(x)a, a is a constant positive matrix, and w(x) is a bounded and
positive definite (scalar) function. In [141], it was shown that the result on absolute
continuity can be easily carried over from the case of the magnetic Schrédinger
operator to this case (under some smoothness assumptions on w), by using the
identity H(w?a, A, V) =w 'H(a, A, w2V + V,)w~!, where V,, = w™ldivaVw.

The case of metric g(x) of general type turned out to be much more difficult. Up
to now, the problem of absolute continuity for the operator with variable metric is
solved only in the two-dimensional case (here the first result belongs to A. Morame,
1998), and for d > 3 in the case where the operator has a special symmetry: it must
be invariant under reflection with respect to some axis (the result of L. Friedlander,
2001). For d > 3, the problem of absolute continuity of the spectrum of the operator
(1.3) with metric g of general type still remains open.

1.6. Singular potentials. In [142], the absolute continuity of the spectrum
was established for the two-dimensional Schrédinger operator of the form

Hy =(D - A)2 +V(x) + o(x)on(x). (1.4)

Potential in (1.4) includes the delta-like term o(x)ds(x) supported on a periodic
system Y of piecewise-smooth curves. Such operators are of interest in the theory
of photonic crystals. Using the version of the Thomas approach adapted for the
operators defined in terms of quadratic forms (this version was suggested in [138]),
it is possible to take a delta-like potential into account as an additive perturbation.

Later, absolute continuity of the spectrum for the operator (1.4) was obtained in
dimension d > 3 by T. Suslina and R. Shterenberg in 2001 (under some restrictions
on a periodic system 3 of (d — 1)-dimensional surfaces). For d = 2, the case
of more general singular potentials (given in terms of measures) was studied by
R. Shterenberg (2000, 2001).

1.7. Vector periodic problems. A progress for the magnetic Schrédinger
operator allowed one to prove absclute continuity of the spectrum also for the
periodic Dirac operator containing both electric and magnetic potentials. This was
done in [140] on the basis of a relation between the square of the Dirac operator
and the magnetic Schrédinger operator. (For the Dirac operator with periodic
electric potential only, absolute continuity of the spectrum was obtained in 1990 by
L. Danilov.)

In [148], absolute continuity of the spectrum was proved for the periodic
isotropic operator of elasticity theory in the case where the shear modulus is con-
stant (the so called "Hill body”). In this case, it is possible to reduce the problem to
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the known results for a scalar elliptic operator. If the shear modulus is variable, the
problem of absolute continuity of the spectrum for the isotropic periodic operator
of elasticity theory remains open.

Note that, in spite of the considerable progress, there remain many unsolved
problems on absolute continuity of the spectrum of periodic operators.

§2. Threshold properties and homogenization for periodic differential
operators

Important series of papers [139, 145, 150, 151, 153, 155, 156, 158, 159,
161] by M. Birman and T. Suslina is devoted to the study of threshold properties
and homogenization problems for periodic differential operators. The starting point
was the paper [139], where the spectral characteristics of the two-dimensional pe-
riodic Pauli operator at the bottom of the spectrum (the threshold characteristics)
were studied. It became clear that ”good” properties of the threshold character-
istics are related not only to specific features of the Pauli operator, but also to
existence of factorization of the form X*X, where X is a homogeneous first order
DO. This led to singling out of a wide class of matrix periodic DO’s admitting a
factorization of the form X*A and to the study of their threshold characteristics
(see Subsection 2.3). During this work the idea was born that threshold properties
of periodic DO’s must be related to the homogenization theory in the small period
limit. It was realized that the homogenization procedure for a periodic operator
can be studied as a threshold effect at the bottom of the spectrum. In this way,
the results of new type in the homogenization theory were obtained.

2.1. Differential operators in L,(R?; C"). In the papers [145, 151, 1586,
158], the class of matrix periodic differential operators A acting in Lo(R?; C™) and
admitting a factorization of the form A = A*X was introduced and studied in
detail. Here X' is a homogeneous first order DO. Suppose that X' = h(x)b(D)f(x),
where an (n x n)-matrix-valued function f(x) and an (m x m)-matrix-valued func-
tion h(x) are periodic with respect to some lattice T and bounded together with
their inverses. It is assumed that m > n. The operator b(D) is a homogeneous first
order DO; its symbol b(€) is a linear homogeneous (m x n)-matrix-valued function
of £ € R? such that rank b(€) = n for £ # 0. Formally, the operator A is given by
the differential expression

A= Alg, f) = f(x)"b(D)"g(x)b(D) f(x), g(x) = h{x)"h(x). (2.1)

The precise definition of A is given in terms of the corresponding quadratic form.
Below, in the case where f = 1,,, we use the notation

A= Alg) = b(D)"g(x)b(D). (2.2)
Many operators of mathematical physics admit such factorization. The acoustics
operator and the operator of elasticity theory have the form (2.2), while the periodic

Schrédinger operator and the two-dimensional Pauli operator can be written in the
form (2.1) (with non-trivial f).

2.2. Main results on homogenization. We use the notation ¢°(x) =
$(e71x) for any I-periodic function ¢ and put A. = A(g*, f¢), A = _,Zl\(g=) Co-
efficients of these operators are rapidly oscillating as € — 0. The homogenization
problem for the operator A. is to study the behavior of the resolvent (A. + 1)~ as
e —=0.
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We start with the results for the simpler operator _,Zl\, There exists an operator
A = b(D)*g'b(D) with constant coefficients such that

(A + )7 = (A + 1) z,sz, < Ce. (2.3)

The constant positive matrix ¢° is called the effective matriz, and the operator AV is
called the effective operator. The existence of the effective operator and the strong
resolvent convergence in L, have been known in the traditional homogenization
theory. However, the resolvent convergence in the operator norm was not known
before. The estimate (2.3) established for the first time in [145, 151] is order-sharp;
the constant C' is controlled explicitly in terms of the problem data.

The effective matrix g° is defined by the following rule. Let A(x) be the periodic
(n x m)-matrix-valued function satisfying the equation

b(D)*g(x)(b(D)A(x) + 1) =0, /A(x) dx = 0. (2.4)
Q
We put g(x) = g(x)(b(D)A(x) + 1,,). Then ¢° = |Q|7} Jo 9(x) dx
For the operator A, (with f # 1,), it is impossible to find a DO with con-
stant coefficients such that the resolvent (A. + I)~! converges to the resolvent of
this operator. However, it is possible to approximate the resolvent (A. + I)~! by
the generalized resolvent of the effective operator A° sandwiched between rapidly
oscillating factors. The following approximation was found in [151]:

1A+ )7 = () A + Q) ()) M lpamrs < C=. (2-5)
Here Q(x) = (f(x)f(x)*)~" and Q = |Q|~ fQ x)dx. It is important that,

the approximation (2.5), the inverse is taken for the DO with constant coePﬁments,
though this approximation contains rapidly oscillating factors from both sides. One
can get rid of these factors only by passing to the weak operator limit.

In the paper [156], a qualitatively new result in the homogenization theory has
been obtained. Namely, a more precise approximation for the resolvent (A. +I)~
in the operator norm in L, (Rd; C™) with error estimate of order £* was found. Here
we describe this result only for the simpler operator _,Zl\, The term K (g) should
be added to the resolvent of the effective operator, where K(e) is the so called
corrector. The following estimate holds:

(A + 1)~ = (A2 + )™ — eK(e)||p,o1, < C=2. (2.6)

The operator K (g) is the sum of three terms: K(z) = Kq(g)+ K1(e)*+ K3. The first
two terms of the corrector are mutually adjoint and contain a rapidly oscillating
factor A®, where A is the periodic solution of the equation (2.4). The operator
K1(e) is given by K1(e) = AEHEb(D)(./Zl\O +1)~1. Here II. is an auxiliary smoothing
operator. (In some cases it is possible to get rid of the smoothing operator and
to put Ky(e) = AEb(D)(./zl\O + I)71.) The third term of the corrector does not
depend on £ and is given by K3 = _(_,21\0 +1I)~1(D ) L(D)b ( )(_,21\0 —|— I)_ , where
L(D) is the first order DO with the symbol L(¢) = |Q|7 [(A &) g(x) +
T BEVA X)) dix.

The estimate (2.6) is order-sharp. As e — 0, the weak limit of the corrector
K(z) is equal to K3. In this respect, the third term of the corrector is the most
important. In some cases, it may happen that K3 = 0. In particular, this is
the case for the scalar operator A = —div g(x)V, where the matrix g has real
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entries. However, in the general case the third term of the corrector is non-trivial.
This is typical for matrix operators, and also for scalar operators with complex-
valued coefficients. Note that the traditional corrector used in the homogenization
theory corresponds to the term K7(g). The estimate (2.6) shows that, in order to
approximate the resolvent in the Ly-operator norm with error term of order O(z?),
it is not sufficient to take into account only the traditional corrector K;(e), but it
is necessary to include all the three terms in the corrector. This result was quite
unexpected.

In [156], an analogue of estimate (2.6) for more general operator A. was also
obtained. In this case, approximation contains rapidly oscillating factors from both
sides. R

In [158], the resolvent (A. 4+ I)~! was approximated in the norm of operators
acting from L, to the Sobolev space H', with the error term of order . It turned
out that, to this end, it suffices to take into account only the first term of the
corrector. The following estimate is true:

(A + 1) = (A° + 1)~ — e Ky (&) || pamsinn < Ce. (2.7)

Comparing estimates (2.6) and (2.7), we see that the form of the corrector
depends on the question considered. All the estimates under consideration are
order-sharp, and constants in estimates are controlled explicitly in terms of L..-
norms of the coefficients g, ¢~ ', f, f~', the lower and upper bounds for the symbol
b(€)*b(€) on the sphere |€] = 1, and parameters of the lattice T'.

2.3. Method of investigation. Let 7. be the unitary scaling transformation
in Ly(R%; C") given by (T.u)(x) = e¥?u(ex). The identity

(A + )7t = T2 (A4 21) 7M.

shows that, in order to approximate the resolvent (A. + I)~! in the Ly-operator
norm with error of order O(z), it suffices to approximate the operator (A +¢271)~1
with error term of order O(¢71). The presence of the unitary factors 7% is not
an obstacle for proving estimates in the operator norm. At the same time, in the
study of weak or strong convergence, the influence of these operators can not be
controlled.

The bottom of the spectrum of the operator A is the point A = 0. It is natural
that the behavior of the resolvent of A in the point A = —z2 (close to the bottom of
the spectrum) can be described in terms of the threshold characteristics of A. Thus,
the homogenization procedure can be studied as a threshold effect at the bottom of
the spectrum.

The operator A expands in the direct integral of operators A(k) acting in
Ly(2;C™) (cf. Subsection 1.1). Let F;(k), 7 € N, be the consecutive eigenvalues
of the operator A(k) (band functions). It turns out that for the operator (2.1)
the first n spectral bands overlap and have the common bottom A = 0. Herewith,
minimum of band functions F;(k) is reached only at the point k = 0:

min F;(k) = E;(0) =0, j=1,...,n.
keQ
The edge of the (n + 1)-th band is separated from zero: min F,,11(k) > 0. The

minimum point k = 0 for each function F; is non-degenerate: E;(k) > c,|k|?,
ji=1,...,n, ¢, > 0. By the threshold characteristics of the operator A we mean the
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asymptotic behavior of the eigenvalues E;(k), j = 1,...,n, and the corresponding
eigenfunctions of the operator A(k) near k = 0.

The study of the resolvent (A +221)~1 is reduced to the study of the resolvent
(A(k) + £2I)~1 of the operator family A(k). This family depends on the parameter
k € R? analytically. For k = 0, the kernel 0N of the operator .A(0) is n-dimensional.
The natural desire is to use methods of the analytic perturbation theory. However,
for d > 1 and n > 1 (multidimensional parameter and multiple eigenvalue) the
analytic perturbation theory is not applicable. The solution suggested in [145, 151]
is to introduce the one-dimensional parameter ¢ = |k|, putting k = t8, 8 € S?~1.
The operator family A(k) = A(t0) = A(¢, ) is studied by methods of the analytic
perturbation theory with respect to the one-dimensional parameter .

Herewith, a great deal of constructions can be carried over in abstract operator-
theoretic terms. A crucial notion of the abstract scheme is the notion of the spectral
germ S(8) of the operator family A(¢, ). The germ is a self-adjoint operator acting
in the n-dimensional space 9 = Ker A(0). Let us give the spectral definition of
the germ. By the analytic perturbation theory, for ¢ < ¢y there exist real-analytic
branches of eigenvalues (¢, @) and real-analytic branches of eigenvectors ¢;(¢,8)
(orthonormal in Ly(Q;C™)), I = 1,...,n, of the operator A(¢,8). For sufficiently
small ¢, the following convergent power series expansions hold:

Al(t, 0) = 71(0)t2 + m(@)t?’ +.. -y

) (2.8)
©i(t,8) =wi(@)+ ¢, (O)t+ ..., I=1,...,n, t<t,.

The coefficients (@) are positive: v;(8) > ¢. > 0. The vectors {w1(8),...,w,(0)}

form an orthonormal basis in M. The coefficients (@) and the vectors w;(8) are

threshold characteristics of the operator A near the bottom of the spectrum.
According to [145, 151], the self-adjoint operator S(8) : 91 — 91 such that

S(@)w(0) =v(B)wn(8), 1=1,...,n,

is called the spectral germ of the operator family A(¢, 8). Thus, the spectral germ
contains information about threshold characteristics of the operator A. Therefore,
the germ is responsible for threshold effects.

The key result from [145, 151] is the following approximation for the resolvent
of the operator A(¢,8) by finite rank operators given in terms of the spectral germ

I(A(t,8) + 221)™" = (£25(8) + e Int) " Pl paiymrarey < Ce™', £ <to.  (2.9)

Here P is the orthogonal projection of the space Ly(Q;C™) onto M. Constants C
and tg are controlled explicitly.

It is possible to calculate the spectral germ. Here we formulate the result for
the simpler operator A. In this case, the germ is represented as S(8) = b(6)*g°b(8),
0 € S 1, where ¢° is the effective matrix. It turns out that the effective operator
A° has the samie spectral germ as A. Then, using estimate (2.9), it is possible to
approximate the resolvent of the operator A by the resolvent of AP

A+ = (A + 1) Y| o peysLamey < O™

This implies estimate (2.3) by the simple scale transformation.

In order to obtain more precise approximation (2.6), one has to refine (2.9)
and to find approximation of the resolvent (A(t,8) + 21)~! by some finite rank
operators with an error term of order O(1). In abstract terms, such result was
obtained in [155]. For this, it is necessary to take into account terms up to order
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t3 in the expansions for eigenvalues and terms up to order ¢ in the expansions for
eigenvectors in (2.8). In [156], these abstract results were applied for the proof of
estimate (2.6).

In order to approximate the resolvent in the norm of operators acting from L,
to H', it is necessary to approximate the operator A(t,8)"2(A(t,0) + 2I)~" in
the operator norm in Ly(£2; C™). In this way, estimate (2.7) was obtained in [158] .

Finally, in order to study the operator A. (with f # 1), the identity

(A + )71 = (f5) A + Q%) H(F5)") 7!

was used, and the generalized resolvent (_,ZL + Q)1 of ./zl\s was studied. For the
generalized resolvent the analogues of estimates (2.3), (2.6), (2.7) were obtained.

2.4. In [145, 151, 156, 158, general results were applied to specific periodic
operators of mathematical physics: to the acoustics operator, the operator of elas-
ticity theory, the Schrédinger operator, the two-dimensional Pauli operator, and
also to the stationary Maxwell system.

Homogenization for the stationary periodic Maxwell system is the most diffi-
cult problem. In the case where one of the coefficients (dielectric permittivity or
magnetic permeability) is constant, the problem is (partially) reduced to the study
of the second order operator A = rot n(x)~1rot — Vdiv, which admits factorization
of the form (2.2). Then general results for this class of operators are applicable.
Such case was studied in [151, Chapter 7], but only in [159] approximations in the
Ly(R3)-norm for all physical fields were obtained.

The problem is even more difficult, if both coefficients are not constant. The
corresponding "model” second order operator does not belong to the class of opera-
tors of the form (2.2) or (2.1). Nevertheless, it is possible to apply the results of the
abstract scheme from [151, 158]. The homogenization problem for the Maxwell
system in the case where both coefficients are variable periodic matrix-valued func-
tions was studied in the papers by T. Suslina (2004, 2007), where approximations
in the Ly(R3)-norm for all fields were obtained.

We also mention the papers [150, 153], where an analogue of homogenization
procedure for the scalar elliptic operator A = —div g(x)V + p(x) (with real-valued
periodic coefficients) near the edge of an internal gap was considered. Let A, =
—div g°V + e 2p°. Let ) be the right edge of a gap in the spectrum of the operator
A. For the operator A., the edge of the corresponding gap turns into the point
£72) (lying in the high-energy area). The problem is to approximate the operator
(A: —(72X—32)I)~! for small £ in the operator norm in Lo (R?). (Here the number
» is such that the point A — »? lies in the initial gap in the spectrum of .A.) Such
approximation with sharp-order error estimate was obtained in [153] under some
assumptions about the spectral characteristics of A near the edge of the gap. (The
one-dimensional case was studied before in [150].) In the problems of this type
interaction between the threshold effects and the high-energetic effects is observed.

2.5. The papers [145, 151] stimulated interest in the homogenization the-
ory to approximations of the resolvent with error estimates in the operator norm.
V. Zhikov suggested a different method of obtaining operator estimates in the ho-
mogenization theory. By this method estimates of the form (2.3) and (2.7) were
obtained for the scalar operator A = —div g(x)V (V. Zhikov, 2005) and for the
operator of elasticity theory (V. Zhikov and S. Pastukhova, 2005). In the recent
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paper by D. Borisov (2008), estimates of the form (2.3) and (2.7) were obtained for
an operator with coefficients depending both on rapid and slow variables.

§3. Discrete spectrum of a perturbed periodic elliptic operator

After 1998, M. Birman continued to study the discrete spectrum in the gaps
of a periodic elliptic operator perturbed by a potential decaying at infinity. Two
papers by M. Birman were devoted to this subject. One of them is the paper [144)]
joint with A. Laptev and T. Suslina and the second one is the paper [146] joint
with M. Solomyak.

3.1. Setting of the problem. Consider the operator A(a) = A — oV acting
in Ly(RY), where A is an "unperturbed” operator, V is a " perturbation”, and a > 0
is a coupling constant.

The unperturbed operator A is an elliptic second order operator of the form
A = —divg(x)V + p(x) with real-valued coefficients that are periodic with respect
to some lattice I' C R?. The matrix-valued function g(x) is bounded and uniformly
positive definite, and the potential p(x) is bounded. The precise definition of the
operator is given in terms of the quadratic form. One may assume that the bottom
of the spectrum of A is the point A = 0. The spectrum of the operator A has
a band structure (see Subsection 1.1). There exists a semi-bounded gap (—oc, 0);
there may be also internal gaps in the spectrum of A.

The perturbation V' is the operator of multiplication by a real-valued function
V(x). It is assumed that V(x) — 0 as [x| — oo, in an appropriate sense. In
general, for the perturbed operator A(a) eigenvalues appear in the semi-bounded
gap (—o0,0) and also in the internal gaps. Let us discuss the negative discrete
spectrum. If the potential V. decays sufficiently fast, then the number of negative
eigenvalues is finite. Here 2V, (x) = |[V(x)| + V(x). Let N{a, A) be the number
of eigenvalues (counting multiplicities) of the operator A(a) lying below a point
A <0 called the observation point. The full number of negative eigenvalues N(«a) =
N(a,0) is of a special interest. Asymptotics of N(a, A) as o = +oo is studied.

The corresponding asymptotic formulas are rather diverse, depending on di-
mension d, on the rate of decay of V and on the nature of operator A. They were
studied in a series of papers of M. Birman in 1991 1997. See, e. g., [110, 127, 130,
134] and, especially, the survey [128] and references therein. (Here and in what
follows, references correspond to the list [2*]). The cases d > 3 and d = 2 turn out
to be essentially different.

3.2. The case d > 3. For d > 3, a "regular” case is distinguished by the
condition V € L, /Q(Rd). If this condition is satisfied, then the following Rozenblum-
Lieb-Cwikel estimate is true:

N(a,)\) < c(d)c«d/2/V+(x)d/2 dx, <0, (3.1)
R4
and the Weyl asymptotics holds:

N(a,)\)wc«d/2.]d(V,g), o — +o0o, A0,

TalV.g) = o [ Vil det g0) 2 ax (3.2)

Here wy is the volume of the unit ball in R?.

R4
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If V(x) > 0, then the following properties are true: 1) the finiteness of the
Weyl coefficient J; (which is equivalent to the condition V' € Lg;5) implies the
Weyl asymptotics; 2) the asymptotics (3.2) is uniform in A up to the edge A = 0;
3) if N(a, A) < Ca?/? for some A, then V € Lqgj2, and hence, the asymptotics (3.2)
holds (i. e., the Weyl order a®/? ensures the Weyl asymptotics).

In the "non-regular” case V ¢ Ld/2(Rd), the Weyl asymptotics is violated.
Moreover, the Weyl asymptotic order a?/? is impossible. However, for any ¢ > dj2
there are examples of potentials V' such that N(a) ~ Cat.

In the regular case asymptotics has a ”high-energetic” origin, and in the non-
regular case it has a "threshold” origin. The regular asymptotics was studied in
[127], and the non-regular asymptotics was studied in [134].

3.3. Two-dimensional case. First, let V(x) > 0. If d = 2, the three proper-
ties mentioned above are violated: 1) the condition V' € L;(R?) (which is equivalent
to the finiteness of the Weyl coefficient J3) is not sufficient for the validity of the
Weyl asymptotics; 2) asymptotics is not uniform in A < 0 (for any ¢ > 1 there
are examples of potentials such that N(a, A) has the Weyl asymptotics for A < 0,
but N(o, A) is of order a? for A = 0); 3) the estimate N(a) < Co does not ensure
the Weyl asymptotics (there are examples of potentials such that N(a) ~ ca, but
C 75 Jg)

All these effects were discovered in the paper [130] by M. Birman and A. Laptev
in the case where A = —A. Tt is assumed that the potential V(x) satisfies the
condition

([ wrag e X0 [ WP <o o1 (33

x| <1 F=1 k1 Ly <et

with some o > 1. Relation (3.3) implies that V € L;(R?). Condition (3.3) ensures
the Weyl asymptotics for the function N (o, A) if A < 0, but not for N(a). In [130],
for each g > 1, the class of potentials V such that asymptotics of the function
N(a) is of order a? was distinguished. Then asymptotics has a threshold origin,
and the answer is formulated in terms of an auxiliary problem on the semi-axis,
which is obtained by restricting the operator —A —aV' on the subspace of functions
depending only on r = |x|. Simultaneously, the potential V is averaged over the
polar angle. In [130], the class of potentials such that the asymptotics of N(«)
is of order «, and the asymptotic coefficient is the sum of the Weyl term and the
threshold term, was also distinguished.

For the case where d = 2 and A is a periodic elliptic operator, the non-regular
asymptotics was studied in [144]. Here two different cases are observed: the case
of the purely threshold asymptotics of order ¢ > 1, and the case of a competi-
tion between the Weyl asymptotics and the threshold asymptotics. The threshold
term is described in terms of the auxiliary problem on the semi-axis which is now
determined not only by potential V', but also by the threshold characteristics of
the operator A at the bottom of the spectrum. By the threshold characteristics,
we mean the positive matrix g and the periodic function ¢(x) defined as follows.
The matrix ¢g° determines asymptotics of the first band function Fy(k) as |k| — 0
(asymptotics has the form E;(k) ~ (gk,k)), and ¢(x) is a positive periodic solu-
tion of the equation Ay = 0.
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For d = 2, the non-regular asymptotics for the spectrum in internal gaps was
studied by T. Suslina (2003).

3.4. Periodic waveguide. The paper [146] is close to [144] both by the
nature of the problem considered and by the character of results. The main dif-
ference is in geometry: in [146] the operators act in the space Ly(X), where the
domain X C R? is periodic in only one direction. The unperturbed operator is
again A = —div ¢(x)V + p(x), with the Dirichlet or the Neumann boundary con-
dition on 8X. The functions g(x) and p(x) are also assumed to be periodic, which
gives one the possibility to apply the Floquet-Bloch theory. By adding a constant
to p(x), one can always assume that A = 0 is the lower point of spectrum of A.

The perturbation is introduced by the potential V(x) decaying, in appropriate
sense, along the same direction. The assumptions about V(x) guarantee that for
the operator A — oV the function N(a, A) (see its definition in Subsection 3.1) has
the Weyl-type asymptotic behavior (as o — +00) for any A < 0. The main problem
consists in studying N(a,0).

Unlike the case X = R?, here the threshold effect arises in any dimension
d > 1. To describe its influence on the spectrum, one introduces an auxiliary
Schrédinger operator Af, o = —9? — aQ acting in Ly(R). The "effective potential”
Q(t) is expressed in terms of the original potential V(x) and the Floquet data for
the unperturbed operator A.

The main result can be written in the form

N(a,0) ~ [Weyl’s term] + N'(a, 0), o — 400,

where the second term corresponds to the operator A;Q. All the effects mentioned
in Subsection 3.3 exhibit here. So, as in [144] (and earlier, in [130]), one encounters
a sort of competition between the Weyl term in asymptotics and another term, of
the threshold origin.

§4. Asymptotic behavior of the spectrum of the non-smooth Maxwell
operator

For the empty electro-magnetic resonator in a bounded domain Q with smooth,
ideally conducting boundary, the behavior of the eigenfrequencies was found by
H. Weyl as far ago as in 1912. Results for the non-smooth situation (filled resonator
with non-smooth dielectric permittivity £(x) and magnetic permeability p(x), in
the case of non-smooth boundary) were obtained only recently by M. Birman and
his colleagues and students. The reason of such a long delay is not purely technical,
its roots are of a rather fundamental nature.

Formally, the stationary Maxwell operator M. , acts as

M. {u, v} = {ie™ rot v, —ip " 'rot u},
under the divergence free conditions
div (gu) = 0, div (uv) =0,

and the boundary conditions

u,|gn =0, (1) loq = 0.
Here u and v stand for the electric and the magnetic component of an electro-
magnetic field, and 7 and v indicate the tangent and the normal component of a

vector field on 0Q2. However, all the operations involved have to be defined in an
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appropriate way, and this turns out to be non-trivial if the boundary 99Q or the
positive definite matrix-valued functions e(x), p(x) are non-smooth. Such non-
smooth situations are important for many applications (stratified media, domains
with edges, conical points, or screens, etc.)

Prior to calculating the spectrum, one has to define M., as a self-adjoint
operator acting in an appropriate Hilbert space. In the case of filled resonator, the
latter is an Ls-space of vector-valued functions, with the matrix weight generated
by e(x), p(x). The difficulties arise when one attempts to describe the operator
domain of M. ,. The standard approaches, which include using the Sobolev spaces
and quadratic forms, do not work here, since the operator is neither elliptic, nor
semi-bounded. The choice of the ”correct” self-adjoint realization is determined by
the condition of finiteness of the electromagnetic energy. In the non-smooth cases
it cannot be described in terms of Sobolev spaces. Ignoring these important facts
led to errors in several papers, whose authors claimed that they found the spectral
asymptotics of the Maxwell operator in the non-smooth domains.

Due to the block structure of the Maxwell operator, its spectrum is symmetric
with respect to zero. For its calculation it is sufficient to work with the electric com-
ponent of the electro-magnetic field. The above mentioned condition of finiteness
of the energy dictates that this component must belong to the space

O(1,2) = {u € Ly(Q;C?) : rotu € Ly(Q;C?), div(eu) =0, u,|gq = 0}.

Here the operators rot and div are defined in the sense of distributions, and the
equality u,|sn = 0 is understood in an appropriate generalized sense.

If the boundary 92 and the matrix-valued function £(x) are smooth, the space
®(7,¢) can be easily described in classical terms. Then the asymptotic behavior
of the eigenfrequencies can be studied by various standard tools. The resulting
asymptotic formula looks as follows. Let (€) be the symbol of rot , i.e.

0 & -6
r)=¢|-& 0 &
& =& 0

Denote by A1(x, &), Az(x, &) the positive eigenvalues of the algebraic problem
r(€)pu(x)"tr(€)h = As(x)h, heC? xecQ, £ R,

the third eigenvalue is equal to zero. We put

1
Do) = gz [ [ (M7 + halx )2) ds(e)i.
247° Jo Jjg)=1
where dS denotes the area element on the unit sphere. Then the eigenfrequencies
my, satisfy the asymptotic formula
lim &~'m} = T'(e, p, Q). (4.1)

k—o0

Under some, rather general assumptions this formula remains valid also in the
non-smooth case. Its justification needs a careful study of the structure of the
space ®(r,e). First of all, A. Alekseev and M. Birman [65, 66] established a
general geometric scheme (in the sense of geometry of Hilbert spaces), showing
that the problem in a filled resonator can be always reduced to the case of the
empty one. For resonators with smooth boundary this led to the formula (4.1)
for any measurable and bounded matrices £(x), u(x), having the bounded inverse.
The case of non-smooth boundary turned out to be more difficult. The further
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progress was achieved on the basis of the results on the analytic structure of vector
fields belonging to the space ®(r,2). This analysis was developed by M. Birman
and M. Solomyak in the papers [90, 93, 97, 117]. Namely, it was shown that
in domains with Lipschitz boundary, and also in domains with screens, any vector
field u € ®(7, 1) can be decomposed into the sum of a term from the Sobolev space
H}(Q; C3) and another term which is the gradient of a weak solution of the Poisson
equation —Aw = f, w|sn = 0, with some f € Ly(Q). This fact allowed these
authors to justify (in [91]) the formula (4.1) for an empty resonator with Lipschitz
boundary.

Recently it was shown by M. Birman and N. Filonov [160] that the existence
of the above decomposition alone, without any explicit requirements about 0%,
already implies the formula (4.1). This is a crucial result, since it reduces the
problem of the calculation of spectral asymptotics for Maxwell operator to the
problem (of Real Analysis) of describing singularities of vector fields of a certain
class. In particular, this led to the proof of (4.1) for a filled resonator with Lipschitz
boundary, under the same assumptions about £(x), u(x) as in [65, 66], that is
measurability and boundedness of the matrices and their inverses. Some technical
tools, which are necessary for the proof of this result, were developed by M. Birman,
A. Alekseev, and N. Filonov in [157].

A programme of studying spectral properties of the "non-smooth” Maxwell
operator was initiated by M. Birman in early 70-tees, though his first papers on
the subject are [65] and [66], joint with his student A. Alekseev. The papers [157]
and [160] can be considered as concluding the long series of results devoted to
realization of this programme.
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