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Abstract: Within the framework of the discrete Wess—Zumino—Novikov—Witten theory
we analyze the structure of vertex operators on a lattice. In particular, the lattice analogues
of operator product expansions and braid relations are discussed. As the main physical
application, a rigorous construction for the discrete counterpaof the group valued

field g(z) is provided. We study several automorphisms of the lattice algebras including
discretizations of the evolution in the WZNW model. Our analysis is based on the theory
of modular Hopf algebras and its formulation in terms of universal elements. Algebras
of vertex operators and their structure constants are obtained for the deformed universal
enveloping algebral,(s). Throughout the whole paper, the abelian WZNW model is
used as a simple example to illustrate the steps of our construction.
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1. Introduction

Quantization of the WZNW modelThe Wess—Zumino—Novikov-Witten (WZNW)
model [50, 46, 51, 41] is one of the most famous examples of a rational conformal
field theory (CFT) [14, 42, 44]. On the classical level it describes some time evolution
for a fieldg(x) mapping points: of the circleS! into a compact Lie grou. Among the
dynamical variables of the theory, the currefita) = g~10_g, j' = (0+g)g—* are of par-
ticular interest. In contrast to the fiejglthe currentg” and;! are chiral, so thad, ;" = 0
ando_;' = 0. Moreover, their Poisson structure is well known to give rise to two com-
muting copies of Kac—Moody (KM) algebras. Even though numerous papers have been
devoted to the quantization of the WZNW-model (e.g. [16, 26, 10, 36, 13, 20, 21, 35]),
a rigorous construction of the continuum theory (which requires field strength renor-
malization) is not fully understood. This motivates the search for lattice regularizations
of the theory (i.e., the circl&' is replaced by a periodic lattice with lattice spacing

a) which preserve much of the symmetry structure of the continuum WZNW-model.
One may construct appropriate discretizations of the classical modek(eQ) first

and then quantize the classical lattice theory to obtain a well defined discrete quantum
theory (i.e., 7 0, a # 0). Investigation of the latter is expected to provide insights into
the structure of the continuum model. A final step would involve performing the limit

a — 0 while keeping: # 0.

The realization of this program was started in [4, 5, 27] where a lattice regularization
of the Kac—Moody algebra has been proposed. Classical and quantum lattice current
algebras were further investigated in [33, 6]. Our aim here is to extend the analysis of
[6] by introducingchiral vertex operatorsin comparison with the current algebra, the
algebras of vertex operators contain (a finite number of) additional generators. Within
these larger algebras we will be able to prepare a discrete analogue of the group valued
field g(x) by combining left- and right chiral vertex operators.
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Quantum symmetry structure of the WZNW moldel us recall that solutions of the clas-

sical Yang—Baxter equation appear already in the Poisson structure of the classical lattice
current algebras (see [33] and references therein). After quantization, quantum groups
and quantum universal enveloping algel@dsare expected to emerge. Throughout this
paper we will meet (global and local) objects (the monodromié€sand a discrete field

N, see below) whose nature reflects a quantum algebraic structure as well as an object
(the discrete fieldy,) which displays features of a quantum group. The corresponding
deformation parameter is of the forn= exp{ivh} with v = 7 /(k + v) (wherek is the

level of the KM algebra and is the dual Coxeter number ¢f) and does not depend

on the lattice spacing. Therefore, the quantum group structures of the continuum and
lattice WZNW model coincide. It is also worth mentioning that some aspects of the
guantum symmetry structure survive reductions to other theories so that part of what
we describe below may be compared with studies of the quantum Liouville and Toda
models [37, 29, 11, 23].

Remarks on lattice current algebrafiefore we summarize our results, let us briefly
review the discretization used in [6] for the chiral curreptée), j"(x). Recall that
the latter are Lie-algebra valued fields which depend periodically on the variable
Instead of working with these standard variables, we prefer to pass to thejfiélds
andn(z) = j"(x) — j'(=) and describe their lattice counterparts. Our lattice divides the
circle into NV links of lengtha = 27/N. So there aréV vertices at the points = an
which are numbered by = 0,...,N — 1, N = 0 and then!”" link runs from the

(n — 1)** vertex to thent”. We may discretize the fielg(z) by the simple prescription

= f((” 21;(; n(x)dz = an(na) + O(a?) so that the lattice field,, has values in a tensor
product ofN copies of the Lie algebra which are assigned to Aheertices on the
lattice. For the right chiral current’(x) the discretization scheme is different. In this
case we encode the information about the field in the holonomies along links, i.e., we

define the lattice field; by
Jroi= Pe:rp(/ i"(x)dx) .

Here[ denotes mtegratlon along thé” link. By construction, this classical lattice
field j7 has values in the Lie group. The rather different treatment of the figlels
and;j"(x) may be understood from the Poisson structure of the classical theory, which
is ultralocal forn(x) but contains terms proportional &(x — y) if the field ;" (x) is
involved (see [4, 33, 6]).

When we pass to the quantum theory, the functions on the space of field configu-
rations become operators and generate some non-commutative a{@ehvéore con-
cretely, the algebriy is generated from the quantum lattice fielfjs IV,, which cor-
respond to the classical fields, n,, described above. We review the explicit definition
of lattice current algebrag Sect. 4. Let us only mention here that a very elegant formu-
lation for commutation relations of the quantum operators can be given iR-thatrix
language.

In mathematical terms, one has to regard the quantum figjdand J,, = J;, as
objects in the tensor produgt, ® Ky of the deformed universal enveloping algebra
G. = U,y(s) with the lattice current algebri . We can understand this by looking at

1 For shortness, we will often refer asquantum algebra
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the classical lattice fielg], for instance. It was constructed as the holonomy of the Lie-
algebra valued fielg" (x) and may be evaluated with irreducible representations of the
Lie algebra. Let us denote such representations’tand introduce the symbols’, §;

for their carrier spaces and dimensions, respectively. Then we seg thaf, gives rise

to &7 x §;-matrices;j! of dynamical variables. Accordingly, the corresponding quantum
operators/! are matrices of generators f6ry whichisto say thafl! € End(V)® K.

All these objects/! may be assembled back into amgiversal element,, € G, @ Ky .

More details will be presented later; we anticipated this heuristic discussion of universal
elements only to prepare for some formulae below.

One of the main aims in [6] was to develop a complete representation theory for
lattice current algebr#y. It turned out that’lCx possesses a family of irreducible
x-representations on vector spadéd’ with labelsI,.J running through classes of
finite-dimensional, irreducible representationslgf{s). Two such labels are needed
because of thawo chiralities in the current algebra. Furthermore, the algéhyawas
found to admit two families of local co-actions],, Aln Ky — G, ® Ky of the Hopf
algebrag,. They may be considered as a special case of the more general lattice fusion
products in [6] and give rise to a notion of tensor products for representatiofis of
(see also [45] for related results).

Vertex operators on a latticd?roduct structures in the representation theory are precisely
what is needed to initiate a theory of vertex operators. More technically, we employ the
homomorphisms\”, A!, in extending the lattice current algebiGy by chiral vertex
operatorsd” , d', so that the followingntertwining relationshold for both chiralities
a=rl,

AD =02 A%(A) forall A € Ky . (1.1)

The element®;’ generate an extensioWy of the lattice current algebridy C Wh.
Since A% (A) is an element ofj, ® Ky and hence also of the extensign ® Wy,
the product on the r.h.s. of (1.1) is well defined fbf € G, ® Wy. On the Lh.s.,
A=ze® A € G, ® Ky with e € G, being the unit element.

Our vertex operator®;, on the lattice possess a number of properties which are all
closely related to properties of vertex operators in the continuum theory. Let us highlight
some of them without going into a detailed discussion.

1. Lattice vertex operatord?, at a fixed lattice site obegperator product expansions
of the form

2 1 1 2
O DT =F,. A (P7) and @, @ =F A, (D). (1.2)

1
As usual, the notatio®? means that we regard the vertex operdifjras an element
of G, ® G, ® Wy with trivial entry in the second tensor factor etc. We have also
used the shorthand (@) = (A ® id)(P5) € Go ® G, ® Wy for the action of
the co-product on the first tensor factor®df,. The objectsF, are analogues of the
fusion matrixin the continuum theory. We describe their general properties and, in
particular, their relation with §#symbols in Sect. 2.

2 A construction of (non-chiral) vertex operators for infinite open lattices has been suggested in [45]. Some
properties of these vertex operators are similar to what we shall consider here. However, these are different
structures, in particular, because for afinite lattice the current algeékrhas a non-trivial centét. An action
of our vertex operators on elements fréhwill play a crucial role in the theory.
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2. Lattice vertex operatord;, assigned to different lattice sites oleraid relations

1 2 2 1 2 1 1 2

o Pr =R O d and @ L =R. & P (1.3)
forall0 < n < m < N. Here the object® ;. play the role of théraiding matrix

in the continuum theory. Let us add that lattice vertex operators of different chirality
commute for allz, m. Furthermore®, commute withV,,, for m # n and with.J,,

for m # n,n + 1, that is, the vertex operators have local exchange relations with

elements of the current algebra.
3. Lattice vertex operatomd;,, o = r, [, satisfy the followingdifference equatian

CI)%H = (I)?L J3+1 : (1-4)

In the naive continuum limit, we hav& = e ® e — a.J*(z) + O(a®) with 2 = an and
the difference equation becomes a differential equation which expr@és®&¢x) as

a (normal ordered) product @“(x) andJ“(x). Such an equation is well known for
the quantized continuum theory.

As one may infer from the third property in this short list, lattice vertex operators (much
like their continuum counterparts) cannot be periodic. Indeed, starting fgnan
iterated application of Eq. (1.4) gives

Py = dg M with M* = J& . .J% .

The objectsM <, « = r, [, are calledchiral monodromiesActually, the lattice rotation

n — n+ N gives rise to an inner automorphism of the algebra of vertex operators which
acts trivially on the lattice fieldg$ and.V,,. We show in Sect. 6 that this automorphism
can be generated by conjugation with a unitary elememhe latter is constant on the
irreducible representation spadéd;’ of the lattice current algebrid and its value

yI7 = g2rilhs—hi)

can be expressed in terms of the conformal dimensigns the WZNW model. This
leads us to identify with the operator ex{®ri(Lo — Lo)} which generates rotations
by 27 in the continuum theory. In the lattice theorys obtained from quantum traces
of chiral monodromies$// and is related to the ribbon elementlgf(s).

It will be shown in Sects. 3 and 5 that the fiefd(®',)®” 2 can be restricted to the
diagonal subspacéd,, W Let us denote this restriction lay, which suggests that
it is a quantum lattice analogue of the group valued figld) in the WZNW model. In
fact, our analysis will reveal that, is a local and quantum group valued field, i.e.

1 2 2 1 2 1 1 2
990 Im=9m 9n (mF¥m) and R 9,9,=9,9, R . (1.5)

Moreover,g,, turns out to be periodic. In contrast to the chiral currgiitée), the time
evolution of the group valued fielg{x) is described by a nontrivial second order differ-
ential equation. Its discrete analogue is discussed in Sect. 6.

Before we address the full lattice theory we explain some basic constructions in
a simple toy model (cf. Sect. 3). Here one studies the algebra generated by the mon-
odromiesM ™, M' instead of the whole (lattice) current algebra and universal (deformed)
tensor operators for the quantum algelfras simple examples of vertex operators

3 We use the notatioSa(CDI,'l) =S® id)(CDI,'l) with S being the antipode af.



92 A. G. Bytsko, V. Schomerus

[2, 22, 3, 19]. This finite dimensional toy model may be regarded as a special case of the
discrete WZNW theory wher® = 1 and it describes the non-local degrees of freedom
for an arbitrary numbelV of lattice sites. Objects and relations of the toy model admit
for a nice pictorial presentation which, in particular, brings new light intostedow

world [39].

2. Hopf Algebras and Vertex Operators

2.1. Semi-simple modular Hopf algebraBy definition, a Hopf algebra is a quadruple

(G, e, A, S) of an associative algebéa(the “symmetry algebrg with unit e € G, a one-
dimensional representatien G — C (the “co-unit”), ahomomorphism\ : G — GRG

(the “co-product) and an anti-automorphis§ : G — G (the “antipod€’). These
objects obey a set of basic axioms which can be found, e.g., in[1, 49]. The Hopf algebra
(G, ¢, A,S) is called quasi-triangular if there is an invertible elem&ne G ® G such

that

RAE)=A()R forall ¢eg,
(id ® A)(R) = R13R12, (A ®id)(R) = Ri3R3.

Here A’(€) = PA(£)P, with P being the permutation, i.eB(¢ @ n)P =n ® & for all
&,m € G, and we are using the standard notation for the elem®pts G ® G ® G.

For a ribbon Hopf-algebra one postulates, in addition, the existence of a certain
invertible central element € G (the “ribbon element) which factorizesR’'R € G ® G
(hereR’ = PRP), in the sense that

RR=@wov)A@™Y), Sw=v, ev)=1 (2.1)

(see [48, 40] for details). We want this structure to be consistent witbgeration on
G. To be more precise, we require that

R*=R Y =PRP, A" =A("), v'=v1t. (2.2)

This structure is of particular interest, since it appears in the theory of the quantized
universal enveloping algebrag (s) when the complex parametghas values on the
unit circle [43].

At this point we assume tha is semi-simpleso that every finite dimensional
representation @ can be decomposed into a direct sum of finite dimensional, irreducible
representations. From each equivalence clgssfirreducible representations ¢f we
may pick a representative , i.e., an irreducible representationdbn aj;-dimensional
Hilbert space/’. Thequantum trace tg is a linear functional acting on elementse
End(V') by

tré(X) =tr!(X71I(w)) .

Heretr! denotes the standard trace Bnd(V' ') with tr/(ef) = §; andw € G is a
distinguished group-like element constructed from the ribbon elemamd the element
Rbytheformulav=t = v~ 3" S(r?)rl, where the element$ come from the expansion

R=Yrler

4We fix+*onG ® G by (€ ®@n)* = £* @ n*. Following [43], we could define an alternative involutibon
G ® G which involves a permutation of components, i.6.&(n)t = nt ® ¢ and¢f = ¢* forall ¢, € G.
With respect tof, A becomes an ordinarsy-homomorphism andk is unitary.
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Evaluation of the unit elemeaf € End(V’) with tr! gives theguantum dimensign
dy = tré(ef), of the representation’. Furthermore, we assign a numisgr; to every
pair of representations’, 77:

Sry =9l or YRR with (R'R)" = ('@ m/)(R'R) ,

with a suitable, real normalization factbrThe numberS; ; form the so-called-matrix
S. Modular Hopf algebras are ribbon Hopf algebras with an invertilmatrix >

Let us finally recall that the tensor produetg’, of two representations, 7’ of a
Hopf algebra is defined by

(re7)(€) = (@ T)AE) forall £€G .

In particular, one may construct the tensor prodtiet~ of two irreducible represen-

tations. According to our assumption thatbe semi-simple, such tensor products of

representations can be decomposed into a direct sum of irreducible representations.
Among all our assumptions on the structure of the Hopf-algabra (A, S) (quasi-

triangularity, existence of a ribbon elementsemi-simplicity ofG and invertibility of

S-matrix S), semi-simplicity ofG is the most problematic one. In fact it is violated by

the algebrad/,(s) wheng is a root of unity. It is sketched in [7] how “truncation” can

cure this problem, once the theory has been extended to weak quasi-Hopf algebras [43].

Example (Modular Hopf-algebr&, [6]). We wish to give one fairly trivial example

for the algebraic structure discussed so far which comes from the groU be more
precise, we consider the associative algebyajenerated by one elemefatsubject to

the relationh? = e. Co-product, co-unit and antipode for this algebra can be defined by

AR)=h®h , S(h)=h"t, eh)=1.

We observe thag, is a commutative semi-simple algebra. It hasne-dimensional
representationst(h) = ¢*,t = 0,...,p — 1, whereq is a root of unity,g = ¢2™/?. We
may construct characteristic projectd?s € Z, for these representations according to

122
P18 e o 20y 23
m=0

One can easily check that(P*) = 4, ;. The elements”* are employed to obtain a

nontrivial R-matrix:
p—1

R=) ¢“P'opr. (2.4)
t,s=0
Itis easy to see that{ ® 7°) R = ¢'*. The R-matrix satisfies all the axioms stated above
and thus turnsZ,, into a quasi-triangular Hopf algebra. Moreover, a ribbon element is
given byv =>" Pt
Itis natural to introduce a-operation onZ, such that* = h=1. The relations (2.2)
hold due to the co-commutativity of, i.e., A’ = A, and the property? = R’. A direct

5 If a diagonal matrixT is introduced according té 77 = w4y, yd2 7! (v) (with an appropriate complex
factorzo), thenS and T furnish a projective representation of the modular gréug2, z).
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computation shows that tit#ematrixS is invertible only for odd integes. Summarizing
all this, the algebreg,, ¢ = exp(2ri/p) is a semi-simple ribbon Hop#-algebra. Itis a
modular Hopf algebra for all odd integer The reader is invited to check that f&f,
the quantum traceﬂg coincides with the standard one.

2.2. Universal elements an@-matrix formalism.Modular Hopf algebras admit a very
elegantR-matrix description. For its presentation, let us introduce another (auxiliary)
copy,G., of G and let us consider thB-matrix as an object iy, ® G. To distinguish

the latter clearly from the usué@, we denote it by

N.=ReG,®G, N_={R)'eG, 2.

At the same time let us introduce the standard symBalss R andR_ = (R))~! ¢
G, ® G,. Quasi-triangularity of thé2-matrix furnishes the relations

1 2 1 2 2 1
Ag(N+) =N+ N+; R+ N+ N_=N_ N+ Rs, (2.5)
1 2 2 1
Ry Nt N+ = N4 N+ R

Here we use the same notations as in the introductionpafid/L) = (A ® id)(Ny) €
G, ® G, ® G. The subscript,, reminds us that\, acts on the auxiliary (i.e., first)
component ofV_.. To be perfectly consistent, the objeéts in the preceding equations
should all be equipped with a lower indexto show thatR, € G, ® G,, etc. We
hope that no confusion will arise from omitting this subscriptn. The Egs. (2.5)
are somewhat redundant: in fact, the exchange relations in the second line follow from
the first equation in the first line. This underlines that the formulaXp{/V.) encodes
information about the product i@ rather than the co-produgt.

Next, we combingV, andN_ into one element

N := Ng(N_)?t € G.®G .
From the properties aV,. we obtain an expression for the action/f on N,
_ 1 2 271 171_2 1 271 171_
Ry Aq(N)=R+ N+N+N_" N_"=N+N+ Rt N_" N_" =
2 2 4 11 4 2 1 (2.6)
=N+N_"Ry N+x\N_"=N R+ N .
As seen above, the formula far, (V) encodes relations in the algelffaand implies,
in particular, the following exchange relations fr
-1 3 ! -1 ~1as 1o g 2
R™* N Rt N=R_"R+Au(N)=R_"A/(N)R+ =N R_" N R.:. (2.7)

This kind of relations appeared first in [47] to describe relations (). One may in

fact also go in the other direction, which means to reconstruct a modular Hopf algebra
G from an objectV satisfying the above exchange relations. To begin with, one has to
choose linear maps : G, — C in the dualg’ of G,. When such linear forms € G/,

act on the first tensor factor éf € G, ® G they produce elements @t

7(N)=(r®id)(N) € G forall Te€g, .

€ The co-productA of G acts onV+ according toA(N1) = (id ® A)(N+) = N .NY € G. ® G ®G.
HereN’_ and N/ have the unit elemert € G in the third and second tensor factor, respectively.
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m(N) € G will be called ther-component ofV or justcomponent ofV. It has been
shownin [9] that the components &fgenerate the algebéa that is, one can reconstruct
the modular Hopf algebré from the objectV. A more precise formulation is given by
the following lemma.

Lemma 1 (9]). Letg, be afinite-dimensional, semi-simple modular Hopf algebra and
N be the algebra generated by componentd/of G, ® N subject to the relations

N Ri N= ReAL(N) | (2.8)

where we use the same notations as above. Thean be decomposed into a product
of elementsVy € G, ® N, N = N,N~1, such that

A(N) = NIN"(N')™t € G.aN®N,
e(Ni) =e € Go, S(Ny)=Ni' € G, ON, Ni = N:

define a Hopf-algebra structure ox. Here, the action of\, ¢, S on the second tensor
component ofV, N is understoodN;, N’ and N" are regarded as elements @f ®

G ® G with trivial entry in the third and in the second tensor factors, respectively. As a
Hopf algebra,\ is isomorphic tag,.

There is another object, similar 19, that is equally natural to consider and that will
appear later in the text,

N :=NN_ € G, ®G.

Its properties are derived in complete analogy with our treatment, of

1 2 1 2 2 1
R_AN)=NR_N, R;'NR_N=NR;'NR_. (2.9)

An appropriate version of Lemma 1 establishes an isomorphism between the aT@ebra

generated by components &f and the algebrg,,. The latter stands for the quantum
algebraj with opposite multiplication, i.e., elemergtsy € G,, are multiplied according
tog - n=ns. N

Observe that property (2.2) implies th&t* = N. We wish to rewrite this simple
formula for the action of on IV in a more sophisticated way which proves to be useful
in the sequel. For this purpose, let us introduce an elesient;, @ G as follows

S = NeA(R) (k@ k) 1= N_AGEY(kkK), (2.10)
wherex is some central square root of the ribbon element G, i.e.,x? = v andx
commutes with alf € G. The two expressions f&# given in (2.10) are equivalent due
to (2.1). Itis easy to check that

S =8, S =PSp =51, (2.11)

Now we are able to rewrite theoperation onV and N with the help ofS:

N*=§IN15, N=§Ntst (2.12)
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Example (The universal elements f6y). The notion of universal elements can be il-
lustrated with the example &,. The element#V,y. € G, ® G are constructed from the
R-matrix (2.4):Ny =, ;¢ P'@P* =3 P*®@h**andhenceV = > P*®@h?.

The functorial properties (2.5), (2.8) can be verified by using the obvious identity
A(P®) = 3, P* ® P*~*. In order to make these properties more transparent, we

introduce an Hermitian operatprsuch that, = q;’\. It follows from the definition ofr®
that7#(p) = s and that the co-product, antipode and co-unit agi ascording to

Alp) = pRe+e®Dp , So) = —p , €p) =0.

In these notations, the characteristic projector (2.3) acquires the form
-1 p— . ~ .
Pe=23,d" (=5) and the universal elemend., N, N are given by
Ny :qi’?@;, N:qZE)\@; ﬁ:q—2?®3_ (2.13)

)

These expressions simplify the task of checking the functoriality relations in (2.5),

Ao ~ NS 1 2
Aa(Ni):qi(A®zd)p®p:qi(p®e+e®p)®p =N Ny .

Observe that the ribbon element >, q*szPs can be written as = q*l’ﬁ and hence
172 . . .

we may choose& = ¢~ 2P . A simple calculation give$ = e ® e for the elementS

defined in (2.10). Thus, formulae (2.12) simplify f8f, and becomeV* = N~! and

N =Nt

2.3. Vertex operators and their structure dat®ur next aim is to recall the theory of
tensor operators for a semi-simple modular Hopf algghr&o this end, we combine
the carrier spaceg’ of its finite dimensional irreducible-representations’ into the
model spaceM = @;V!. Each subspacg! c M appears with multiplicity one. The
model spaceM comes equipped with a canonical action of our modular Hopf algebra
so that we can think of as being contained in the associative algabraEnd(M) of
endomorphisms oM. Let us also introducé C V to denote the center ¢f C V and

e for the unit element o?’.

Definition 1 ((Vertex operator)). An invertible elemenb € G, ® V is called avertex
operatoffor G, if

1. @ intertwines the action of on the model spac#1 in the sense that
ED=D A(€) forall £ G . (2.14)

Here¢ = e ® € on the L.h.s. and\’(€) = PA(£) P on the r.h.s. are both regarded as
elements ing, ® V.

2. @ obeys the following generalized unitarity relation
o =St =k kNt kT (2.15)

whereS € G, ® G was defined in (2.10)—(2.11). On the r.hest! = (e ® x*1) and
ke = (k ® €), so that all these factors are elementggfe V.

Invertibility of & means that there exists an elemént! € G, ® V such thatd 1 =
e®e=d 1o,



Vertex Operators — From a Toy Model to Lattice Algebras 97

Since Definition 1 is fundamental to what follows below, let us discuss it in more
detail. In Eqgs. (2.14)—(2.15) it would be possible to repla¢eoy A and at the same
time S by S—1. We shall meet elemend@swith such properties later and call them vertex
operators as well.

The relation (2.14) describes tlwvariance propertyof ®. It means thatd is
a universal tensor operatofor G (see, e.g., [43]). More precisely, we may eval-
uate the elementb € G, ® V with representations’ of G to obtain matrices
ol = (! @ id)(®) € End(V!) ® V. The rows of these matrices form tensor ope-
rators which transform covariantly according to the representafiaf G. The relation
(2.14) may be rewritten in th&-matrix formalism of Subsect. 2.2 (see [6], where a
similar calculation was discussed) as follows:

1 2 2 1 1 2 2 1
Nit®=bRy N+ or NOR_=bR,N . (216)

These relations are equivalent [17] to the definition of deformed tensor operators in terms
of generalized adjoint actions ¢f which is often used in the theory of-leformed)
tensor operators (see, e.g., [15]).

Our formula (2.15) for thex-operation on® certainly deserves a more detailed
explanatior’. Both expressions we have provided desckdbein terms of® 1. Using
the intertwining relation (2.14) one concludes that the conjugated vertex operator obeys
a transformation law which differs from the covariance properties of the indetde

ol =A(€)D while ®*E&=AE) D" .

The second relation follows from our assumption (2.2) on the behaviour of the co-product
under conjugation. Comparison of the two transformation laws motivates to multiply
&~ with afactorN; ! so that we obtain two objects with identical covariance properties,
namely®* and N, 1®~1. In addition, the operatior is supposed to be an involution,
i.e., (@*)* = . This requires to dress the operadér &~ with factors ofx as we did
in the second expression far* in (2.15). All these factors can be moved to the left of
&~ with the help of Eq. (2.14), so th&t* = S~1® 1. The identity @*)* = ® holds
then as a consequence of (2.11).

Suppose for the moment that we are given a vertex opedafarthe sense of our
Definition 1. Then we can use it to construct the followstgucture dataof @,

Fi=d 0 A0 Y € G.®G, 0V, 2.17)
of) = (exf)d ! foral feCccV, (2.18)
D=dNoleg,oV. (2.19)

As they are defined, the last tensor components,d ando (f) belong to the algebra

V. However, with the help of relation (2.14) and standard axioms of Hopf algebra it is
easy to see that, D ando(f) commute with all element§ € G C V and hence that

F e G, ® G, ®Cwhile o(f), D € G, ® C. Before we give a comprehensive list of
properties of the structure data, we introduce some more notations,

Ri=FR.F'eG,®G®C and (2.20)
Ap) =F (A ®e) F™' € G, ®G, ®C. (2.21)

7 «-operations of a similar form have appeared in [43, 3, 7].
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HereF’ = (P ® e) F(P ® e). As a consequence of Egs. (2.17)—(2.18) and our definition
(2.20) we obtain the following exchange relations for vertex operators:

2 1 1 2 2 1 1 2
R, dd=dd Ry, Ry 0o (f=05 )Ry . (2.22)

Itis also worth noticing that one may think & and A r as being obtained frorR and
A through a twist withF' in the sense of Drinfeld [25].

Proposition 1 (Properties of the structure data). Let the structure data be defined as
in Egs. (2.17)—(2.19). Then it follows from Definition 1 that

1. the elemenb € G, ® C may be expressed in termscoénd the ribbon elementso
that
D =v,vlo(v). (2.23)
Herev, = (v®e) € G, ®@Candv = (e®v) € G, ®C, that is, we denote the ribbon
element by, andv when it is regarded as an element®f or C, respectively.

2. Theelement8, R. € G, ®G,®CandD € G,®C together with the homomorphism
o :C — G, ® C obey the following set of relations:

(@ F) (4o A)F)) =6 () ((aa @id(F)) (2.24)
DR_=R.&(D), R_D=6D)R:, (2.25)
o (f)=Ap(o(f) foral fec, (2.26)
Riz 0 (Ri1s) Ra23=0 (Ri28) Rits 0 (Re12). (2.27)

The symb05 (D) denoteqid ® o)(D) € G, ® G, RC andé(D) =(P®e) (zf(D)
(P ® e) with P being the permutation. Similar conventions apply to Egs. (2.24),
(2.27).

3. The behaviour of the structure data with respect tosfoperation is given by
F*=8,F7t with S,=(RAK)(k@rK) HDe €G,2G,®C,
RL =Ri% D*=D1 (2.28)
o()” = o(f), (ArE)" = Ar(E),

forall ¢ € G andf € C. It means, in particular, thaD, R .. are unitary whiles, Ap
act asx-homomorphisms.

A proof of the main statements can be found in Appendix A.1. It should be mentioned
that some of the relations given in Proposition 1 have appeared in the literature before.
Equation (2.27) is probably the most characteristic in our list as it generalizes the usual
Yang—Baxter equation. It appeared first in connection with the quantum Liouville model
[37]; later some universal solution for Eq. (2.27) in the cas& of U,(sl(2)) has
been found [11]. More recently in [12], the elemehAtandR and their relations were
reinterpreted in the language of quasi-Hopf algebras [25]. As we remarked alféady,
may be regarded as a twist and it follows from Eq. (2.24) that the twisted co-product

A is quasi-coassociative with co-associazﬁoré (F12) Fl‘zl. The latter can be used to
rewrite Eq. (2.27) as a quasi Yang—Baxter equation (more details are discussed, e.g., in
[12, 18]).
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Relations (2.19), (2.25) and the first equation in (2.22) have been introduced in [2]
in a description of deformed cotangent bun . There, an objeclV was defined
in terms of® and D through Eq. (2.19). The relation (2.25) allowed to derive exchange
relations for/V which guaranteed that coordinate functions for the fibef5@¥ could
be obtained fromV.

We shall see later that the equations in Proposition 1 have a number of important
implications for the lattice theories. Reversing this logic, many of the relations in Propo-
sition 1 were conjectured as natural properties of a coordinate dependent braiding matrix
in the continuum WZNW-model [26, 20, 21].

2.4. Gauge transformations of vertex operatof$iere exists a large gauge freedom in

the choice of vertex operatoss. In fact, one may replacé — A® with A € G, ® C

being invertible and unitary. This transformation does not change the general properties
(2.14)—(2.15) of vertex operators but certainly effects their structure data. Namely, after
the action ofA on @ the initial structure data transform into the following ones:

F —AG(A)FA(A™Y, D w— ADA™L
o(f) — Ao(HA~L forallfec,

whereo (A) = (id®o)(A) € G, ® G, ®C, as before. One may reduce such a gauge
freedom by additional requirements on the structure data or on the vertex operators. For
instance, the gauge freedom allows to normalize the vertex operators in the following
sense. Consider the element= ¢,(®) = (¢ ® id)® € V, wheree : G — C stands for
the co-unit ofG. An application of the Hopf algebra axiora ©® id)A = id to (2.14)
furnishes the identit§w = w¢ and hencev € C. From this and Egs. (2.18)—(2.19) we
conclude that

(e®id)D=e , (e®id)o(f)=f forallfeC.

Moreover, (2.15) implies unitarity of (observe thatd ® id)(S) = e). Therefore, we
can perform the gauge transformatidn— (e ® w—1)®, which does not changeand
D but normalizes” and® so that, without loss of generality, we may assume

€(@)=eeclC, ([dReRId)F=(cRidQid)F=e®ec G, QC.

The normalization of” follows from the normalization and operator product expansion
of @ with the help of € @ id)A = id = (id ® €)A. It also leads to the identities
(e®RidRL =(dReRL =eQe.

Finally, let us notice that multiplication of vertex operatdrby element € G, ® G
from the right, i.e..® — ®F, corresponds to twisting the co-product®f® Trans-
formations of this kind relate vertex operatabg = ®,F, for the deformed universal
enveloping algebrals, (s) with unitary vertex operator®, of the undeformed algebras
U(s) [25].

2.5. On the construction of vertex operatorSo far, we have considered the vertex
operators as given objects. Inthe spiritof Lemma 1, however, we can reverse our approach
and think of them as being defined through Egs. (2.17)-(2.19) with an appropriate set of
structure data. This is made more precise in the following proposition.

8 The objectF should not be confused with ol € G, ® G, ® C. We use similar letters mainly for
historical reasons.
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Proposition 2 (Reconstruction of® from structure data). For a modular Hopf alge-
brag = G, with centerC, let F € G, ® G, ® C and a homomorphism : C — G, ® C
be given. Define the elemenisc G, ® C, R+ € G, ® G, ® C through Egs. (2.23),
(2.20), respectively, and suppose tliat (together withD, R ) satisfy the relations
(2.24)—(2.28). Then there exists a vertex operator G, ® V for G such that

®D=FAD) , BF=o(Nd . (2.29)

In particular, the invertible elemend € G, ® V has the properties (2.14)—(2.15) and
the algebra) generated by its components is associativenay be identified with the
algebra of operators on the model spaté = @, V!, as before.

Proof. Let us only sketch the proof since it is based on the same computations that are
involved in the proof of Proposition 1. The constructiondogtarts from Egs. (2.29). In
fact, one can use them to build an abstract alggbnmmh is generated by components
of an objectd® € G, ® V and elements i€ such that the two relations (2.29) hold.
The properties (2.24), (2.26) ensure this algebra to be well defined and associative. Due
to Eqs. (2.28),]7 admits a consistent-operation which make$ unitary in the sense
of Eq. (2.15). In the next step, an elemé¥ite G, ® V is defined by Eq. (2.19). With
the help of Egs. (2.25) one proves tifdtobeys the relations (2.8), (2.16) and hence
that) containsg as a subalgebra. This subalgebra is finally used to analyze a concrete
representation ob and to show that = V = End(M); hence, components @b
become operators on the model spAde

Let us apply Proposition 2 to the example ®f~ U,(s). To this end we need
to define appropriate candidates fBrand o which is achieved with the help of the
Clebsch-Gordan mapS[T'L|S] : VT @ VI — V¥ and the §-symbolsy- - -} of
U,(s). Within the spacé/~ of highest weightZ, we fix a basis of eigenvectoeg for
the Cartan subalgebra with eigenvalueand denote the associated Clebsch—Gordan
coefficients b){ T LS]. Now defineF, o such that

FTL =T @ rL)yF) and o) = (' @ id)(c(p)) have matrix elements

Fg/\%ﬂ/)\/ = Z{E 6+19+A Sw\ }* g’ f’ :s*], (2-30)
S5
" @)axn = (P +X) (2.31)

Herep is arank(s)-dimensional vector of elements@iwith 7% (p) = K. Other notations
and conventions are explained in Appendix A.2.

Proposition 3. (Vertex operators fot/,(s)) There exist vertex operatod, for the
deformed universal enveloping algebidg(s) such that

2 1
D, O, =FA(P) . Of=0f)D, .

Here F' is built up from theg;-symbols and the Clebsch—Gordan map#/gfe) as in
Eq. (2.30) andv is given by (2.31).
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The statement follows directly from Proposition 2 once the relations (2.24)—(2.28)
have been checked to hold f6Y 0. The latter is done in Appendix A.2. Let us mention
that formulae similar to (2.30) were considered in [12, 18].

2.6. Vertex operators fog,. To conclude our discussion of vertex operators, let us
provide an explicit formula fo in our standard examplg = Z,. Let us fix a set of
normalized basis vectois), s = 0,...,p — 1, for the one-dimensional carrier spaces
V'* of the representations’. They span the-dimensional model spackt = @, V=.

On this space one can introduce a unitary oper@t@r End(M) by
Qlp—1=10) and Q[s)=|s+1)

forall s = 0,...,p — 2. This operator obeys Weyl commutation relations with the

generatoh € Z,,1.e.,q @ h=h @ With the help of@ and the characteristic projectors
P7 introduced in Subsect. 2.1 we are able to define

-1 .
® = Z P*®Q° :Ezq*“ht@gcf € G, ® End(M) .
s s,t

It follows from the unitarity of@ and the Weyl relations c@ andh that® obeys all the
defining properties of a vertex operator (as we explained in Subsect. 2.2, the element
in Eq. (2.15) becomes trivial f@ = Z,). One may then compute the structure data. To
this end it is convenient to employ the operafdntroduced in Subsect. 2.2 such that

h = ¢P. Since the commutative algeh# is isomorphic to its cente?, all elements in

Z, can be regarded as elementsCohnd we use our standard notational conventions

whenever we do so, in particular we shall tise ¢P for h,p € C. We also introduce

an anti-Hermitian operatar by @ = e, so that the Weyl relations f(@ andh imply
[p,<] = e. Within these notations our basic objects look as follows:

~

h=q” €G, v=q P eC, ®=e"® G, ® EndM).
Now expressions for the structure data may be obtained by short computations,
F:e@e@e, U(qﬁ):h_1®q§:q—;®6+e®§, D:q—Z(?@e—;@ﬁ)

andR = gP®P e,
Let us remark that, although the example of vertex operatois fis fairly trivial, it
nevertheless shares some features with the case df,(s). Indeed, the ribbon element

of U,(e) is given byv = ¢~ P®+) [25], wherep € C®" is ar = rank(e)-dimensional
vector such that(p) = K andp is the sum of the positive roots. Our above formula
(2.31) means that

op)=Hoe+e®@p, D=(x ®e)- ¢ 2HP

where H is a vector of elements in the Cartan subalgebra suchfﬂaét = \ef and

the elemeni € G = U,(s) can be worked out easily with the help of Eq. (2.23). Such
expressions, or special cases thereof, may be found in [23, 20, 2, 21, 18]). The element
F and the vertex operatogs are certainly quite non-trivial fat/, (¢) (for some explicit
examples see [33, 22, 19, 18]).
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3. A Toy Model for the Discrete WZNW Theory

In the rest of this paper we shall apply the theory of modular Hopf algebras and their
vertex operators to construct and investigate the lattice WZNW-model. We start with
a simpletoy modelfor which the lattice consists of only one site and one edge (see
Fig. 1). When we discuss the general notion of lattice current algebras in Sect. 4, we
shall understand that they contain chiral observableghechiral monodromiesbeing

assigned to the edge.
i o

Fig. 1. Single-vertex lattice. Chiral observablég are assigned to the edge while chiral
vertex operator€D sit on the vertex

3.1. Properties of chiral vertex operatortater in the text we shall find that the global
chiral observablé/ in the lattice current algebra obeys the following relation

M Re M= R_Agl(M), 3.1)

whereR4, A, are attributes of the modular Hopf algelsfas before. Components of
M generate an algebra with center denoted bg.

Equation (3.1) reminds us of the defining relation (2.6) for the universal eleWent
which contains all the information about the structur&ofndeed, the only difference
is that theR., on the I.h.s. of Eq. (2.6) has been replacedrhy. A short computation
reveals that we can pass from Eq. (3.1) to (2.6) by rescalingith the ribbon element
v, = (V®e) € G, ®G. This implies thatV — v, M provides an isomorphism of the
algebragi and7. In particular, the commutation relations fof,

1 2 1 14 2
Ri* M R« M=M R=* M R+ (3.2)

coincide with Eqgs. (2.7) for the elemeni. The isomorphism off andgG certainly
implies that there is a-operation on7 given by the formula (2.12) wittV replaced by
M (notice that the factaw,, is unitary). The lattice theories, however, choose a different
conjugation which we discuss in Subsect. 3.3 below.

Now let us introduce a vertex operatbrfor 7 = G. It will be calledchiral vertex
operator of the toy model and its properties can be copied from the relations (2.14)
-(2.19) when we keep in mind to replagéby v, M,

n®=dA®), MR =d Ry M, (3.3)
® d=FA(D), Rid d=d &R, (3.4)
D®d=v,®M, &f=co(f)® forallfelC. (3.5)

Heren € J, C stands for the center qf, and we used the same notations as in
the previous section. The componentsdfe G, ® V give rise to thealgebraV of
chiral vertex operatorsTogether with components aff, they act on the model space
M=, V.
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We refer to the first equation in (3.4) aperator product expansion(®PE) for ®
and call F' the universal fusion matrixThe second formula in (3.4) follows from the
operator product expansions; it describesid relationsfor the chiral vertex operators
and hence leads to interprRt. as thebraiding matrixof our model?

There exists a nice pictorial presentation for the described algebraic structure. Def-
initions for the basic objects — except frabh M — are given in Fig 2. Pictures fav/
and D may, in principle, be constructed with the help of Eq. (2.23), Egs. (3.5) and an
appropriate presentation of the ribbon element. From the basic blocks we can built up
the equations (3.3)—(3.5) as in Fig 3. All these pictures are separated by a thick solid
line into left and right halves with dotted lines appearing on the left side while thin solid
lines exist only on the right side. Our graphical rules are the same as in [39], and, in
their terminology, the dotted lines may be said to live inshadow world

S /A = /@ = A

Fig. 2. Graphical presentation of our basic objects. Pictured¥and M exist as well, but they are more
complicated (cf. remarks in the text)

3.2. Second chirality.What we have discussed so far will be relevant for right chi-
ral objects in the discrete WZNW model. Now we have to describe an analogous
construction for the left chiral sector of the theory. To distinguish the two chiral-
ities, we mark the objects of the previous subsection by an extra indsx that
M™ = M, ®" = &, F,. = F,0, = o... etc. Their left chiral counterparts will have
an index.

To introduce left chiral vertex operatogs’ we follow the same strategy as in the
previous subsection. Namely, we postulate algebraic relations for an dije@thich
will be justified in Sect. 4) and use them as the basic input for our left chiral theory. So
let us assume that we are given some ohjéétsuch that

MR- M = Re Ag(MY) . (3.6)

The algebra generated by components\ff will be denoted by7' and we use the
symbolC' for its center.
It is easy to see that the propertiesigf* M coincide with those of the element

N introduced in Subsect. 2.2, Eq. (2.9). This holds, in particular, for the commutation
relations,

—1 ' 21 _ 25l p—1 a4l
RI"M' R_M =M R;"M R+ . 3.7)

9 This will become clearer in the full lattice theory where braid relations of vertex operators assigned to
different sites contain onlR + and the facto?+ is absent. Observe also that in the quantum non-deformed
limit, i.e., vy — 0, 7 0, ¢ = et" — 1, the R-matrix R+ approaches ® e whereas the limit ofR. is
non-trivial (cf. also [2, 19]).
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(3.4)

Fig. 3.Pictorial presentation of some basic relations. Only the left equations in (33), (34) and the right equation
in (35) are depicted. The figure in the lower right corner meansftr@tC is central inG. More rules are
explained in the text.

Thus, the algebrg is isomorphic to the algebra generated by componenis$,dfe.,
to G,p ( op Means the opposite multiplication, cf. Subsect. 2.2).

Since Egs. (3.6)—(3.7) differ from the propertied\éf, the relations for the left chiral
vertex operators will differ from those we had in the right chiral sector. The consistent
definition of the left vertex operators is provided by the following list of fundamental
relations:

I = ! 1 VS Y Y
n® = A(m), @ R_ M =M' &' R, (3-8)
VY 1 o ol =pl B!
O o' = FAL (@), Ry o o =d! &Ry, (39)
Dl = vt M, olf=oy ()@l forall fecl. (3.10)

Components o’ € G, ® V' generate the algebi# of left chiral vertex operators and
act on the left model spacet’ = @, V/. Starting from the defining equation (3.6) for
M' one may check that the exchange relations (3.8) describe a consistent transforma-
tion law of the vertex operator®’. It is then clear that the left vertex operators obey
Egs. (3.9)—(3.10) with some appropriate structure data;, D;, R'.. The consistency
relations for the left structure data can be worked out in analogy to our discussion of
Proposition 1. For more detailed explanations see Appendix A.3.

Let us now combine the two chiral theories by constructing their tensor product so
that all operators act on the spak¢ @ M" with trivial action of the right chiral objects
on the first tensor factor and vice versa. In terms of exchange relation this corresponds
to

1 2 2 1

1 2 2 1
o CI)l :(I)l CI)T7 Mr ]\/[l :Ml MT, (311)

1 2 2 1 1 2 2 1l
o M =M T, o M =M" L (3.12)
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Components of the chiral vertex operatdrs ®” generate an algebid = V' @ V.
Although this combination of chiral theories appears to be quite trivial, it sets the stage
for the construction of the quantum group valued figltthat we are about to discuss in
Subsect. 3.4.

Before we get there, let us explain how to incorporate our new left chiral objects into
the graphical presentation discussed at the end of the previous subsection. The pictures
for the left chiral theory are simply mirror images of those in Figs 2, 3, that is, left chiral
objects have their dotted lines on the right side and thin solid lines on the left side of the
thick solid line. To present the tensor product of the left- and right theory, we draw all
objects into the same pictures. Now there are dotted and solid lines on both sides. If we
add the rule that these lines of different style do not interfere, we obtain commutativity
of the two chiralities as expressed in Egs. (3.11)—(3.12).

3.3.x-operation for chiral vertex operatordn principle, ax-operation ford/!, M and
the associated vertex operators could be introduced along the lines of Sect. 2. But as
we indicated the lattice models choose a slightly different conjugation. Its description
requires to introduce a new object.

By definition, the models spacest’, M" carry an action of the modular Hopf-
algebrag. With the help of the co-produck this gives rise to a canonical action @f
on the tensor productt! ® M” and hence to an embeddingf the quantum algebra
G into the algebraV = V! ® V" of chiral vertex operators. For the exchange relations
of +(¢) and chiral vertex operators, our construction implies:

(E) D" = DT A, O D' = DA

forall ¢ € G; we usedA, (€) = (id @ t)A(£) and similarly forA!. These relations imply
that®!, ®" transform covariantly with respect to our new actiaf G onW. They can
be rewritten in theR-matrix formulation,

1 27_ 27. 1 1 2[ Zl 1
N+®" =0"Ry N4, Ni® =0 Ni Ry,

whereN. = (id®)(R+) € G, @W. In our pictorial presentation the objecéts. would
appear as over-/under- crossings of thin and thick solid lines. Hence, they have thin solid
lines on both sides of the boundary between the left and the right world. This corresponds
to the fact that components 8f;. act nontrivially on both factors im! @ M, that is,
they arenot chiral. The same holds true for the produét= N,(N_)~1.
Now we are prepared to describe theperation which is relevant for the toy model.

To this end, we build an obje, with the help of. by S, = (id ® 1)(S) € G, @ W
andS € G, ® G is defined as in Subsect. 2.2. It is used to extend«thperation on

>~ 1(G) C W to the algebra of chiral vertex operators:

(@) = S, Y@, (@) =S (@)t

The first formula looks familiar already and since the exchange relatiaf§)afith ®"
coincide with Eq. (2.14), consistency need not to be checked again. The second formula
is a variant of Eq. (2.15) which is adapted to the algebraic properties of the left chiral
theory. To prove that it is consistent one has to modify our discussion in Subsect. 2.3
slightly. We leave this to the reader. It remains to show that the adjoints ahd ®"
commute; this is not obvious at all, sinég is not a chiral object. Commutativity of

the adjoints may be seen most easily if we rewrite the adjoints in the form (2.15) which
involves conjugation withs (which is¢(x) in our case). Then the desired consistency
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follows from the transformation law of vertex operators under the actio(¢paind the
Yang—Baxter equation (see also [6]).

Itfollows from Egs. (3.5), (3.10) that the conjugation acts on the chiral monodromies
M", M" according to

(Mr)* - S;l(Mr)flS“ (Ml)* - SL(Ml)flS:l .

We shall rediscover such a behaviour for the chiral monodromies of the lattice theory in
Subsect. 4.3.

3.4. Quantum group valued fiedd So far we have reached a good level of understanding
for our right- and left chiral theories which act naturally on the tensor pragitict M”
of chiral model spaces. In this subsection we would like to have a closer look at the
diagonal subspace B
H=PV eVvE cMaM" .
K

While components of\/!, M™ leave™ invariant, this is certainly not the case for the
vertex operator®!, ®”. Nevertheless, the vertex operators can be combined into a new
objectg which admits restriction to the diagonal subspate

The construction ofy requires careful preparation. Let us begin this with some
remarks on the cent€rof G (recallthaC” = C! ¥ C). First, observe that is spanned by
the characteristic projectofd’ of irreducible representations of G, i.e., by projectors
P7 € C which obeyr X (P”) = §x ;. Notice also that the antipod&@maps the element
PX ¢ Cto the characteristic projectét” € C of the conjugate representatioft , i.e.,
S(PK) - PK_lO

Returning to our toy model, we combine the canonical isomorphisn@” — C'
and action of the antipod8 into a mapS;, : C" — C!, S;,-(f) = S(v(f)). With the help
of this map we can characterize the diagonal subspéas a subspace generated by all
vectorsgp € M! ® M" such thafg = S;,.(f)¢ holds for allf € C". In this language, the
restriction to{ means to impose the constrafnt S;..(f) for all f € C". This constraint
couples the two chiralities and it seems natural to restrict the choice of the left- and
right structure datd,, 0., D,, RS at the same time. Notice that they were completely
independent until now, as long as they solved the appropriate consistency relations. So
let us agree to adjust the choice of the structure data for the left chirality to whatever we
use in the right chiral part such that

F=8A(F T, D =8M(DY, (3.13)
R = SPRL), a(f) = SP(o, 0 S 1), (3.14)
with S = (S tos" ) and SO =3, (3.15)

and the prime or¥,. and R, denotes permutation of the first two tensor factors in
G, ® G, ®C. ltis not difficult to show that these formulae give consistent structure data
for the left chiral theory (cf. also Appendix A.3). The motivation for Egs. (3.13), (3.14)
comes from the construction of the quantum group valued fiefb let us define

g =S (@YD" €G, W, (3.16)

10 strictly speaking, the conjugate of¢ is obtained with the help of a transpoéas 75 o S. The latter
is isomorphic tor ¥ (this property defines the lab#f).
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whereS, (') = (S ® id)(®'). The elemeny indeed preserves the constraint which we
discussed above, that is

if fg=&8,(f)g, thengf=gS8,(f) forall feC". (3.17)

Therefore, components @f map the diagonal spack into itself. This remarkable
property is established by a straightforward computation (see Appendix A.4).

To study properties of it is helpful to have some knowledge about the obj&gtp’).
Simple applications of the standard Hopf algebra axioms allow to deduce

Su(®) € = A0 Su(®@), Ry Su(@) M' =M R_S,(@)), (3.18)
So(@) = (@Y%, with 6, €6, xc. (3.19)

Here¢ € J' = G in the first equationS,(®') is a shorthand forifl ® S,)(®'), and the
relation (3.19) may be regarded as a definitioff;,0fThe transformation laws of vertex
operators show tha; commutes withe ® ¢ € G, ® J!, and hencd, € G, ® C'. We
can actually give an explicit formula f@ in terms of F;. If we assume for simplicity
thate,(®') = e (cf. Subsect. 2.4), thefy = >°_ f1S(f2) ® f2, wheref! come from the

expansionf; = > fl® f2 o f2.

Proposition 4 (Properties ofg). Let g denote the object defined in Eq. (3.16) and re-
stricted to the subspadé. This elemeny € G, ® End(H) obeys the following relations:

21 21 12
99=Aulg), R+ 99=99 Ry, (3.20)
17_ 2 2 17_ 1l 2 2 1]
M9 R_=9 Re M", M R_9=R.9 M, (3.22)
Mlg:gMT, vgvl=yg, (3.22)

where in the last liner = vTVl_l is a combination of the ribbon elemenis € C" and
v; € C'. Moreover,g is normalizedg,(g) = e, and invertible with inversg—* = S,(g).

Proofs of all these relations are given in Appendix A.4.

Equations (3.20) mean thatobeys the defining relation of a quantum graip=
Fun,(G). More precisely, components gfgenerate the dual of the quantum algebra
G. The elementd/”, M! furnish algebras of left- and right-invariant vector fields for
F and they are related to each other by means of Eq. (3.22). All these equations are
well known in the theory of quantum groups. In more geometric terms, they describe
the deformed co-tangent bundlg G [2]. 1

Let us now explain the pictorial presentation of the obje(see Fig 4). First, recall
that so far left and right chiral objects lived on the same plane but on different sides
of the thick solid line and there was no interaction between them. But if we want to
consider the restriction froom! ® M to the diagonal subspag¢, we have to modify
the rules. Namely, the restrictidr= S;..(f) enforces us to change the topology by gluing
the plane into a cylinder. Then we can join ends of dotted lines from both sides of the
thick solid line and thus combine objects of different chirality. This is demonstrated by
the graphical presentation g@fn Fig. 4 (the dashed line continues the dotted line around

11 Similarly, the algebra generated by componentsbdf, A" only, is a deformation of the co-tangent
bundleT™* B of the Borel subgroup of7 [19].
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the back side of the cylinder and, hence, cannot interfere with any line on the front side).
Fig. 4 also sketches the proof of the operator product expansiagnmdiqg. (3.20).

Before concluding this subsection we would like to compare our constructign of
with the one discussed in [2]. There, two decompositiong oifto triple products of
elementsy = u Qv = ug Quo, have been provided. All operators which appear inthese
relations act on the diagonal subspa£€el he variablesy, ug are chiral observables, i.e.,
up € Go ® I w0 € G, ® J7, and hence they commute with each othl@rzzzozéoﬁo.
Notice that components af, v leave the subspacéd ® V! ¢ H invariant and hence
their actions are, in principle, expressible through the chiral objettqin particular,
ug, vo are not to be confused with our vertex operators). The exchange relatiags of
(respectivelyug) can be controlled only after multiplication wit) € G, ® End(H).

In fact, the elements = upo@Q andv = Q vy possess the same exchange relations as
our chiral vertex operators. On the other hand, they are certainly not chiral any more
(because chiral vertex operators cannot actHf)nin particular,. does not commute

with v. One may think ofu (and similarly ofv) as a left chiral vertex operator dressed
with a right chiral factor which leaves the quadratic relations unchanged and, at the
same time, produces an operator acting©rmur construction in terms of chiral vertex
operators and the restriction fraM to the diagonal subspaé¢is similar to [26, 35].

Fig. 4. The definition ofg in terms of ®" andSa(q)l) is shown on the left side. The right side of the figure
is a pictorial proof of the operator product expansionddfirst equation in (3.20))

3.5. Toy model foiZ,. Itis instructive to realize the constructions of the toy model in
the case off = Z,. Now we have two commuting copiés,, « = r, [, of the elemenk
(see Subsect. 2.1) generating the chiral algebrasWe can also introduce Hermitian
operatorg,, such thati,, = ¢P~. To introduce the chiral monodromid¢” and M’ we

use the expressions (2.13) for the eleme¥itand N. SinceM™ and M! differ from
them only by factors;* andv,, we get

M = q;)\Z®e+2;)\®;7\T7 M= q_;z®€_2;;®;l . (323)
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The reader is invited to verify the functorial properties (3.1), (3.6) for these objects (in
fact, the check repeats the computations performed in Subsect. 2.2). As was explained in
Subsect. 2.2, the eleme$itis trivial in the case of,, therefore the chiral monodromies
are unitary. The components df* act on the model spacesl“.

Nextwe need to construct the diagonal subsfiacedV X @V X | It can be seen from
the explicit formula for the characteristic projectors (2.3) iBg¢P*®) = P~%, i.e., the
representation conjugate 16 is 7—*° (wheres is taken modulg, ¢ = 1). Therefore,
H =|-s)®|s) is ap-dimensional subspace jf-dimensional spacét! @ M.
Using the operatorg,,, we can characterize the subspatas follows:p,.¢ = —p;¢ for
allp € H.

Now we employ the construction for vertex operators which we provided in Sub-
sect. 2.5. LetQ,, a = r,l be unitary operators acting am! ® M" such that
Q,ls) ®|s") = |s") @ |s” +1) andQl|s ) ® [s") = |s' +1) ® |s”). Itis convenient to

introduce also two operatotg by Qa e% With these notations it is easy to verify
that

p—1 PN
"= P ®Qi=e"®* € G, @ENdM®), a=r,l
5=0

are right- and left chiral operators obeying all the properties spelled out in Subsects 3.1
and 3.2, respectively. In part|cular tRematrix commutation relationsin (3 3), (3 8) boil
down to Weyl relationsec ®P @ q=2r@ @b = (=2 @p e (42pDeBpr (@ @ta,
Recall that the universak-matrices in (3.3), (3.8) are regarded as eIemeAnGgl@
G. ® End(H) with trivial entry in the third tensor factor; hence, the fagrr ©»® ¢
convertsR— into R4 (cf. Subsect. 2.2).

Now, applying (3.16), we get an explicit expression §or

9=y P eQiQir = E, (3.24)

s=0

This object manifestly maps the diagonal subspace into itself and hence we may regard
g as an element iy, ® End(H). The operator product expansion (3.20) is obvious
(see the analogous computation fér in Subsect. 2.2). Moreover, the first equation in
(3.22) is again of Weyl-type (notice that here the factgr$ of M« are essential):

~ NN N~ ~ ~ o~ o~ ~ o~
Mlg=q P ®cqg2POn eP@(sr—a) = =P @€ oP@(r—a) (=2P@p1 2P°® € =
~ N A~y ~ o~ N~~~y ~ o~
- ep®(§7‘7§1,) qp ®eq72p®m - 6p®(§r7§l)qp ®eq2p®pr =ng .

In the last line we used the constrapt = —p; valid on the diagonal subspace. To
conclude, we notice that in th&, case the vertex operators and the figlare unitary.

4. Review on Lattice Current Algebras

In the previous section we have considered the toy model for the WZNW theory which
certainly did not go much beyond the theory of vertex operators for quasi-triangular
modular Hopf algebras (except that we had two commuting copies of this theory). Vertex
operators for the infinite dimensional current algebras of the WZNW-model depend in
addition on a spatial coordinate This brings new locality features into the theory. Our
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aim is to describe them for a lattice regularization of the WZNW-model developed in
[4, 5, 26, 33, 6], where the spatial coordinate assumes the discrete vaki@an /N,

n =0,.., N — 1. We begin this discussion with a brief review on lattice current algebras
K. Our notations are close to those adopted in [6].

4.1. Definition of lattice current algebrad.et us consider a one-dimensional periodic
lattice which consists aV vertices. It is convenient to enumerate the vertices from 0 to
N — 1 and the corresponding edges from 1 to N as shown below.

o o g oy1 oy=5
Jv Jo JIN

Fig. 5. N-vertex periodic lattice. Each site is equipped with a copy of the symmetry algelifae discrete
currentsJ,, are assigned to edges

According to the ideology of [6], the definition of the algelif& involves two kinds
of objects — those associated with the sites and those associated with the edgé%. The
site of the lattice is equipped with a cogy, of the algebraj and copies for different
sites commute. In other wordk,y containsg,, and the whole tensor produgt®” as
subalgebras. The canonical isomorphisrg ahdg,, ¢ G® furnishes the embeddings
tn:G—G®forn=0,..,.N —1:

WmE)=e®..0®...0ecG® foralléeg ,

where the only nontrivial entry of the tensor product on r.h.s. appearsid/tipsition.
The definition ofC y also involves generatorg,, n=1, .., N, (the right currents) which
are discrete analogues of the continuum holonomies along the edges (cf. Introduction).

Definition 2 ([6]). The lattice current algebrdCy is generated by components of in-
vertible elements/” € G, ® Ky, n = 1,.., N along with elements iG®~. These
generators are subject to the following relations :

2

T T = RoAGJT), (JD) = STNID) S 0, (4.1)

1

Tret T =0 R s, J5 T =05 forn#m,m+ 1 (modv), (4.2)
€ TL = TLALE) , ALy (€)= TL () forall E€G,  (4.3)
tm (&) J) = J un(€) forall € € G, m Zn,n—1(modN).

Here R denote the elemenis. ®e € G, G, RN, Sp = (1d® 1,)(S) € Go ®G,, C
G, ® Kn with S defined as in (2.10), and’,(€) = (id ® 1,)(A'(€)), where A'(€) =
PA(&)P as usual. Invertibility ofJ” means that there exists an eleméuif) ! <

n

G, ® Ky suchthat/"(J!) t=e®e=(JI)"1J".

The lattice current algebid  contains a subalgeb@y, generated by components
of the currents/], only. They are subject to relations (4.1)—(4.2). The full lattice current
algebraky can be regarded as a semi-direct prodifet’ x 7%, where the action of
G®N on J% is given by the covariance relations (4.3).

Taking into account the quasi-triangularity Bf., we obtain the following conse-
guence of (4.1)

Re Jy Jo R =T, T, (4.4)



Vertex Operators — From a Toy Model to Lattice Algebras 111

TheseR-matrix relations for the description of the lattice Kac—Moody algebras have
been introduced first in [4]. Following our discussion in Subsect. 2.2, one can introduce
the objectsV,, 1+ = (id ® t,)(R+) € Go ® G, C G, ® K, which obey the standard
relations (2.5). They are used to rewrite the relations (4.3) in the followingatrix

form:

1 2, 2 1 21 1 2
Nn+Jp=Jn Rt N+, Jp Nn-14+=Rs Np_1+J), . (4.5)

4.2. Left currentsThe continuum WZNW model possesses two chiral subalgebras, that
is, along with the (right) current”(z) it involves the left currenij!(z) such that left
and right currents commute. A nice feature of the lattice current algélrés that it
already contains the second chirality in an encoded form. Indeed, one may introduce the
following new variables/! € G, ® Ky:

J= 2N LN, (4.6)

n—1+Yn*'n,

In the notations of Definition 2 they obey (see [6] for details)

Jh Jh = Re AL(TL), (JL)* = S, (JL) LSt (4.7)

n—1"
] 2 7 ET R T T T T
Jn B Ty =dnat Jns Jo Jon =Jmm Jn, fOr nZm;m+1(modN), (4.8)
1 2 2 1
Jh T =5, Jh forall m, n, (4.9)
(@ T =T AL, An—1 ()T =T e—a(€) forall €, (4.10)
(@ T =Tl (€)  forall € € G, m #n,n— 1 (modN).

Due to these properties, the objedfsmay be interpreted as left counterparts of the right
currents/;. Notice that there is a manifest symmetry between the defining relations for
the right currents and the properties of left currents. It underlines the fact that left and
right chiralities in the WZNW model appear on an equal footing. In fact, (4.7)—(4.10)
could be regarded as an alternative definition of the lattice current alfjgbra

It also follows that7}; and 7%, i.e., the algebras generated by componentd @nd
Jr, respectively, are commuting subalgebra&in and 7% is isomorphic to %),
Here the subscript, means opposite multiplication as before.

4.3. Holonomies and monodromied.he currents/,a = r,l were defined as dis-
crete analogues of holonomies along #é edge. Similarly, one may introduce the
holonomies along the link connecting th& @nd then!” sites :

Ue=Jg...J% n=1...,N-1. (4.11)

As one might expect, the properties of such holonomies are similar to those of chiral
currentst? Namely, it is easy to verify that

12 | et us mention here some subtle point in the definition of the lattice current algebra. Notice that relations
(4.4) would not change if we replacdetl_ by R+ in the definition (4.1). However, this ambiguity disappears
if we demand that/], andJ, have the same functoriality relation (compare (4.1) and the first equation in
(4.12)). A similar subtlety appears once more in the construction of the left currents. Indeed, we could replace
factorv2 by v, in the definition (4.6); then we would obtain the relation (4.7) with instead ofR+. But in
this case functorial properties df, andU’, would be different.



112 A. G. Bytsko, V. Schomerus

2 1 ) 1, 2, .
U, U, =R_AJU), U, U,=R:A0U,), (4.12)
U = S, MU S, (U = Su(U)HS (4.13)
Lr A _ 2 2 M A
Ri Un Un R:F - Un Un7 Ri Un Un R:F - Un Un7 (414)

A UL = Ul w(€),  w(@ Uy =Uy AL forall € € G, (4.15)
Ao(©) UL =UL 16(€), (&) UL = UL A,(€) forall ¢ € G, (4.16)

andUS commute with,,, (€) for all m # 0, n. However, there is an important difference
between currents and holonomies: since the latter are localized on the chain of edges that
runs from the " vertex to then?”, the localization domains of all holonomies overlap.

This is reflected in their mutual exchange relations fet & < m < N—1:

Zr e _ e P 1A 21 L1
U, U,=R_ U, Uy, v, U,=R+U,, U,. (4.17)

As we have argued in the introduction, holonomies of chiral fields along the whole
circle (i.e., the chiral monodromies) are of particular interest. In the continuum case they
are given byn® = P exp{$ j*(z)dz}. Monodromies for the quantum lattice theory are
defined by a natural discrete analogue of this formula,

M= Jegs .. J . (4.18)

Simple calculations allow to derive the following properties of the monodroiiés

MRy M™=R_AJM7), MR M= RoAL(MY, (4.19)

(M) = Sg M) S, (MY =So(MN) St (4.20)
1r 27’_27’ lr 2l 1l_ll 2l

R, U’ M"=M"R. U, R_U. M=MR_U, (4.21)
1 2 2 1

AGE)M™ = M" Ay(E), Ri No+r M =M"Ry Noax, (4.22)

Ao€©) M' = M' Ag(€), Nos Re M'=M' Noo Rr  (4.23)

for all ¢ € G and M commute with,,, (£) for all m Z 0.

Now we see that the relations (3.1) and (3.6) which we postulated in the toy model
construction indeed describe properties of the chiral monodromies. Our next aim is
to extend the toy model to the full lattice theory. Recall that the structure data of the
toy model were built from elements in the cent&Y of the algebra7* spanned by
components of\/*. Elements in these algebré§ are still central in the full lattice
theory. In fact, it follows from (3.2), (3.7) that the algebr&® are spanned by the
elementsc, = tr/7/(M*), wherer’ runs through irreducible representationsdof
andr! (M) = (! ® id)(M*) [7]. Equipped with this explicit description @ one
concludes from Egs. (4.21)—(4.23) that the elemefhtsommute withU %, N,, .. for all
n and hence they are central element&in. Actually, the following stronger statement
holds [6]: the elements!, € K with I running through the classes of irreducible
representations of generate the full center of the lattice current algekira. This
explains why the structure data for vertex operators on the lattice will be built from the
commuting subalgebra¥* exactly as in the toy model.
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4.4. Current algebra forZ,. Let us consider the current algebra in the casegf
The algebragj,, assigned to the sites are generated by the elentgnts ¢,,(h). As

usual, we can introdugg, such that:,, = ¢*. ForN,, + € G, ® G,, we haveN,, ; =
> P @ hifs = ¢*P®Pn (cf. Subsect. 2.2). Next we build the chiral currents

p—1 p—1
=M@t Pre W, JL=Y ¢ Pre Wl (4.24)
s=0 s=0

from afamily of unitary elemen@g and/V[ZlL = h;flﬁ/\,’;h,jl which obey the following
Weyl-type relations

I W = qW hyy by AW = q Wiy, (4.25)
hm/V[?,? =/W7,?hm form#Zn,n—1,
Wi Wy = qWi Wiy, WhaWh = q " WEWhy,
WoWe = WaWg form#n+1 . (4.26)

Since the eIemenW;ﬁ)P is obviously central for this algebra, we additionally impose
the condition: /(/17;;‘)17 = e for all n (which is, in fact, a choice of a normalization).

The algebra generated Wg is known as a latticé/(1)-current algebra [31, 28].
The relation we have used to obtain the elem@,ﬁsfrom theh,, ande is a special
case of formula (4.6) and it implies thBt. W7, = W7 W' for all pairsn, m.

The functorial properties (4.1) and (4.7) of currents (4.24) can be checked in the
same way as we did this for the elemenis in Subsect. 2.2. The exchange relations
(4.2), (4.5) and (4.8) are again reduced to Wey!l relations. Sthice e ® ¢, the chiral

currents are unitaryJ©)* = (J)~1, which is in agreement with the unitarity W;‘.

To proceed, we introduce anti-Hermitian operat®® such thaﬂ//[/\g‘ = @ B n
these notations the commutation relations given above acquire the form:

[?%,:n ) 7%;;] =In q ((Sm,n+l - 5m,nfl)a [afn ) 7%51] =In q ((Sm,nfl - 6m,n+1) ’
[ﬁmvz%%]:(sm,n_(sm,nfb [z%fn,z%;]=0
(4.27)
The chiral currents now can be rewritten in the following form:

JT = koLeP O = G0t e gl 2 pe®, 2 ()Pt e e,
(4.28)
Next we can construct the chiral holonomies. For this purpose the variajlese
more convenient. Indeed, applying the special case of the Campbell-Hausdorff formula,

eeb = ea*ezlet valid if [a, [a, b]] = [b, [a, b]] = O, we easily obtain:

)

172 ~ no S, 172 ~ no o~
Up =g’ @O Lin™h | Ul =g i 00 POL T

)

It is obvious now why relations (4.12)—(4.16) for the holonomies copy those for the
currents. The exchange relations (4.17) are again reduced to Weyl-type relations.

13 Strictly speaking, the algebra generatecﬂ\ny andp,, is larger than one generated ﬁyg andh,, (see,
e.g., [28]). The latter is called the compactified form of the former.
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Proceeding in the same way, we can construct the chiral monodromies*as
US_1J%, which needs again an application of the Campbell-Hausdorff formula. The
result reads

T

M =g 8e POLTE | = e PO T (4.29)

Bearing in mind that forZ, the quantum trace coincides with the standard one (see
Subsect. 2.1), we conclude from (4.29) that the algefftase generated by exponentials

of the element§,, = 3_1, &¢. Indeed, using the commutation relations given above, it

is easy to verify that these operators commute with all elements of the currents algebra.
Performing a formal replacemeEszl wy — £(2Ing) p, in(4.29) (the sign depends

on the chirality), we recover the formulae (3.23) of the toy model.

5. Vertex Operators on a Lattice

5.1. Definition ofWy. In Sect. 3 we have considered algebrgs and V<, o = r,1
generated by components of the chiral monodromi€sand the chiral vertex operators

o, respectively. Both chiralities together were used to generate the algebra! @ V"

of our toy model. Below we shall define an algebva; of vertex operators on a lattice.

For this purpose, we shall replace the algehfasin the definition of)V by their

lattice counterparts/y. So we assume that we are given the lattice current algékra

with centerC! ® C™ (recall thatC® = C ¥ center ofG) and two sets of structure data
Fo,04, RS, Dy, a =1, r,which obey the standard relations. The last tensor components

of the structure data are regarded as elements in the center of the lattice current algebra
Ky, ie.,wehavedi, € G, ® G, ®C* C G, ®G, ® Ky, etc.

Definition 3. [Algebra of vertex operators on a lattice] The algebrey is generated

by elements i’ ;y and components of the vertex operat®$ € G, ® Wy . Generators
Ny, J5 € G, ® Kn obey the defining relations (4.1), (4.2) and (4.5) for lattice current
algebras. The elementsy € G, ®V* C G, ®Wh, a =, [ are subject to the following
conditions:

1. They satisfy operator product expansions and exchange relations with elements in
the centeC! ® C" C Ky given by

2 1
Dy Do = FrAa(Pp), @p f, = o.(f,) @p, (5.1)
1 2
Dy Dy = FA.(Pp), Y f = oy(fy) D . (5.2)

HereF, € G, ® G, ®C%; o, are homomorphisms fro@f* to G, ® C* andf, € C%.
Moreover,®g are invertible and vertex operators of different chirality commute:

1 2 2 1
(@) 05 =cwe= a5 (@)Y, a=lr B Dh=h By, (53)

2. @} and @} are chiral vertex operators for the algebidy in the sense that the
following exchange relations withi,, N,, + € G, ® Ky hold:
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1"' 27" —_ 27‘ 1"' 2’)" 1 —_ 17' 2"'
J1 o =Py R+ J1, Pg Sy =Jy PR, (5.4)

17' 27‘_27" 1"' 27" 1[_1l 27/-
o Jrn =Jn @ for nZ1L N, J. dy=dy Jr. forall n, (5.5)

1 2 2 1 1 2 2, 1
No+ ®5 =P Re Nox, Nos ®h=Pp Nos Ry, (5.6)

and components oWV, + commute with components of the vertex operators for
m Z 0.
3. Thex-operation onfC,y can be extended 10/ by the following prescription

(®5)" = (So)™H (@) ! (@) = So (@), (5.7)

whereSy = (id ® 10)(S) € G, ® Go C G, ® Kn With S € G, ® G being constructed
by formula (2.10).

Further relations involving left currentd! and the monodromies/ follow and will
be spelled out below.

Let us underline once more that the structure datadfgrare constructed from
elements in the cent&l @ C” of . This is possible because both algebfésare
isomorphic to the center @f [6] (see our short discussion at the end of Subsect. 4.3).

Next we would like to supplement our definition W by a list of consequences
which follow from the stated relations. They concern exchange relations of chiral vertex
operators with left current{z’,ﬂ and elements € G,, C Ky,

2 17 _ 1] 2 1702 21
J1 @0 =@y R_ J1, Py Jy =JNn Po R+, (5.8)

4 A A 21 2 _ i 2
b J,, =J, Oy for nZL N, J, &f =& J, forall n, (5.9)
() Pp = DG AY(E),  to(€) Ph = P Ao(¢) , (5.10)

tm (&) Dg = g tm(§), tm(§) (1)6 = Cl)f) tm(§) for m#0, (5.11)

forall ¢ € G and we used the same notations as in Subsect. 4.1. The first set of relations,
i.e. Egs. (5.8), (5.9), are obtained with the help of Eq. (4.6). From our earlier discussion
it is clear that the relations (5.10) are equivalent to Egs. (5.6). All exchange relations
of the chiral vertex operators with elementski; are local in the sense that objects
assigned to sites 7 0 or linksm # 1, N commute with®g. This means that we can
think of ®g as being assigned to the vertex- 0 and hence explains the subscrigts
The precise form of the nontrivial exchange relations involdrfgmay be understood
in terms of co-actions af on IC (see remarks in the introduction and [4, 6]).

Now let us compare the definition of algebias, of vertex operators on the lattice
with our toy model. To this end we derive exchange relations between the chiral vertex
operatorsbg and the chiral monodromie® * (see Egs. (4.18)),

L & : ! 21 &l 1l 2
M" dg R_ =d5 Ry M', M 3R, =Py R_ M . (5.12)

The answer is to be compared with the relations (3.3), (3.8) in the toy model and shows
that the objects®g, M <, No) of the algebra/Vy obey the same exchange algebra as
(®*, M*, N) in the toy model. Thus, the toy model may not only be considered as a
special case of a lattice theory wifti = 1 but also it is embedded as a subalgebra in
all lattice algebra3V, for arbitrary N. We can use this insight to rewrite some of the
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relations we discussed for the toy model in terms of the corresponding lattice objects.
In particular, one has

2 1 1 2 1 1 I 2 I 2 l 1 I
vy (@5)ID, Y= M", v, (Ph) Dy dh = M! with (5.14)
D, = (o, Nor(ve),  Di= (v, i) (v ) (5.15)

Herey, € C*areimages of the ribbon element G under the canonicalisomorphisms
from the center ol into the subalgebra8* C Ky (cf. Eq. (2.23)). The latter are
generated by quantum traces of monodromies, i.e., by elements of thegoﬁﬁl\/[a)
(for notations see Subsect. 4.3). The elem&fsin Eqgs. (5.13) are given through the
standard formulRg = F, R+ (F,) ' € G, ® G, ® C“.

5.2. Vertex operators at different sitedefinition 3 involves only vertex operators
assigned to the'd site of the lattice. We may now try to construct vertex operators
P € G, ® Wy from elements in the algebid/y which are assigned to other sites

n # 0. In particular, they are required to satisfy the characteristic fusion and braid
relations of vertex operators and, moreover, we want them to commute with all elements
in Ix which are assigned to sites # n or edgesn # n,n + 1. The solution to this
problem is certainly not unique. In the following, we shall describe just one possible
construction. The idea is to introduce the vertex operadgiswith the help of the
holonomiedJ € Jx by the simple formulae:

or = dHUN, ol = o U for n=1,...,N—1. (5.16)

Using the relations (4.12)—(4.16) for chiral holonomies, it is easy to verify the following
properties ofb;):

1 2 2

1 2 2 1 1
Np+® =®" Ry Np+, Np+® =0, N,i Ry, (5.17)
(@n) = (S,) " H@n)Y, (@Y =8, (@)t (5.18)
w(€) ), = @) ALE), (&) D), =D, AL foralléeg, (5.19)

and ¢,,(§) commute with®;’ for any m # n. Here S,, = (id ® ,,)(S) with S €
G. ® G as before. Next, one has to investigate fusion and braiding properdgs. dihe
computation (see Appendix A.5) reveals that the elemé@iit®bey the same relations
as our vertex operatorBg at the 0" site, i.e.

2 - 1 - X 1l 2l 1
O DI = F. A (D)), D), D, = FAL(D)), (5.20)

2 1 1 2 1 2 2 1
Ry @), ), =0, & Ry, Ry @, ), =0, ®, Ry (5.21)
P2 f, = 04(fy) @2 forall f, eCY,a=1Ir (5.22)

hold with structure datd’,, RS, o, being identical to the structure data @&y in
Egs. (5.1), (5.2) and (5.13). In order to get an analogue of Egs. (5.14), we introduce
the monodromies

M = J% . ST T = (U IMeUS for a=r,l . (5.23)



Vertex Operators — From a Toy Model to Lattice Algebras 117

They are holonomies along the whole circle which begin and end at'thsite. It is
now obvious that

vy Y (@)D, ®T = M”, v, (@L) D dl = M (5.24)

hold for all 0< n < N and the element®,, € G, ® C* are the same as in Egs. (5.14),
(5.15). Let us remark that the quantum tram%sI(M;f) are elements of the algebras
C* C Ky from which we constructed our structure data. Moreover, they do not depend
on the indexu, i.e., one can prove that] /(M) = tr /77 (M) for all pairsn, m [7].

It still remains to investigate the exchange relations of the vertex opexafovégth
currentsJ € G, ® Ky. Details are explained in Appendix A.5; here we only state the
results:

1

2 2 1 1 1 2
Jnw1 @ = Ry T, O T =T, O R (5.25)

2

213l gl 2 /S T Ry
Jn+l (Dn :q)n R_ Jn+l7 ch Jn :Jn cbn R+7 (526)

17‘ 2 2. 1r ! l 4] 1l
CI)n Jm :Jm q)'rw q)n Jm :Jm ch form 7 n,n+ 1 ) (527)
2

: RS B ] 2. 3
o o=yl or, oL g o=y ol forall n,m. (5.28)

Finally, as a consequence of these relations and (5.3) we derive that

1 Zl 2l 1
o @, =@, o foral n,m . (5.29)

To summarize, we established that the construction (5.16) provides us with chiral vertex
operatorsb” and®!, which are naturally assigned to thé" site of the lattice. These
vertex operators share the same structure @at®’, , ... and F;, R, . ... Their ex-
change relations with elements of the current alg&hyaare local in the sense discussed
above.

Although the vertex operators have local relations with the observables, one should
expect that they themselves are non-local. Indeed, it is easy to derive the following
exchange relations (see Appendix A.5):

ci)’“ b =R & &)T é’ Ci>l =Rl &)l é)l for0<n<m< N ,(5.30)
n m — m n? n m + m n —_ ) .
q1>r & =R, 5)’" &)’" o o =R ci>l d2>l for0<m < n< N (5.31)
n m + m n?’ n m — m n — "

So, element®? and ®%, do not commute even if the!” andm?!" site at which they
are localized are far apart. The relations (5.30), (5.31) demonstrate clearR/thalty
the role of braiding matrices in local quantum field theory.

5.3. Extension on a covering of the circlén Subsect. 5.2 we have listed properties
of the vertex operator®;, which are valid for 0< n,m < N. However, unlike the
generators ok, the vertex operators live on a covering of the circle, i.e., if we want
to make sense of objecs. with n € Z, the operatod;,, », necessarily differs from
d7. Indeed,®;: may be defined fon € Z by the following difference equation which
is encoded in Egs. (5.16):

®5+1 = q%(f J’r?+1 : (5-32)

Here we assume thdf' has been extended periodicallyrtee Z. Periodicity properties
of the objectsb; can be expressed through the monodromigsintroduced in (5.23),
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O, N =PMNF, 0<n< N, kcZ. (5.33)

To proceed, we observe that propertiedfjf are similar to those af/* = Mg'. Using
relations spelled out in Sect. 4, we easily find thif obey the functorial relations

MLRe ML= R_ALME), MYR- MY = ReAg (M) (5.34)

which coincide with (4.19). Thereforé/” and M/, obey the exchange relations (3.2)
and (3.7). Bearing this in mind, we employ (4.21) to derive

2 1 1 2 1l 2l Zl 1l
q)Tm R+ M:L :M:L q):n R—? CI)m R_ Mn :Mn CI)m R+ (535)

forO0<n < Nandm =n(mod N),i.e.,m=n+kN, k € Z.

Using the properties of the monodromik’, we can establish (see Appendix A.5)
that relations (5.18)—(5.22), (5.24)—(5.28) are validdgy with the coordinate: being
replaced by’ = n + kN. Thus, thelocal properties of vertex operatofs,,,  living
outside of the interval & n < N coincide with those o, living inside this interval.

The extension of the exchange relations between vertex operators to the covering of
our discrete circle is slightly more subtle. For instance, the braid relation of the vertex
operator®;’ and its counterparb?,, ,, does not coincide with (5.21). Instead, we find
(see Appendix A.5):

21 1 2 L2y 2, 1,
RL & &, =0,y LR, RL & &, =dl, LR, . (5.36)

A similar situation is found for the braid relations (5.30)-(5.31). It turns out that here we
needto apply Egs. (2.25) for the structure data of the vertex operators. Let us demonstrate
their role by investigating the first equation in (5.30) (i.e., the case m) with n
replaced byn + N,

2 1

17" r T lr 27’ 1711 17’ zr 1711 T 27‘ 17‘
q>n+N N _q)n Mn m —Vq Dy q)n m —Vq DTR— D, CIDH—

m m
1l _1pr 2 zr 17“ r 2T 11 L 17‘ r 2r 1r
=07 1RE 6 (D,) @7, @ =RL T, v;lD, T =RL IL, DT, .

We see that the result coincides with the first equation in (5.31), which is natural since
n+N > m. Proceeding in the same way, one can show that the braid relations (5.30) and
(5.31) hold, foralh, m € Zsuchthatn—m| < N,n # m. Thus, the Egs. (2.25) became

an important ingredient for a self-consistent extension of the lattice theory beyond the
interval 0< n < N.

5.4. Construction of the local fielg,. As we have shown above, the local properties of
lattice vertex operators are the same as those we studied in the toy model case. Therefore,
we can repeat the construction of Subsect. 3.4 and introduce the objects

Gn = Sa(®) D" € G, @ Wy . (5.37)

To proceed, we need some more information about the representation theory of lattice
current algebras. As we mentioned before, the algegbraadmit a series of irreducible
representations on spadéd,’, wherel, J run through classes of irreducible represen-
tations of the quantum algebga These spaced’’/ are of the form

Wi = viev’ @Ry where R=PVEaVF
K
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Suppose that we descrili&y in terms of the holonomie&,n = 1,..., N — 1, the
monodromies\/§ and the local elements,,,n = 0,..., N — 1 (notice that the currents
can be reconstructed from holonomies and monodromies). We divide these generators
into two sets, the first containing dll;’ and Ny, for m # 0 while we putMg and Ng
into the second set. This choice is made so that objects which were not part of the toy
model are separated from objects we met in Sect. 3 already. In [6], an action oh
Wi was constructed for which objects in the first set, i.e., holonofijeand elements
Ny, m # 0, act trivially on the factob’! ® V7 in W1/ and irreducibly oriR®~-1,

Itis then straightforward to see that our algela of vertex operators on the lattice
possesses only one irreducible representation on the total space

My = P Wi ¥ MeRE—
1,J

where each summanti}’ appears with multiplicity one. By now, the picture resembles
very much the situation in the toy model: we have the model spdgeon whichWy

acts irreducibly. Therefore, we may look for operators that can be restricted to the
diagonal subspace

Hy = @@ W = Ho RV c My
J

This is certainly possible for all elementsfiiy . But in addition, we may restrict the field

gn t0 H . As in Subsect. 3.4, the diagonal subspace is characterized by the constraint
f=8,-(f) forall f € C" C Ky. If we adjust left and right structure data according to
Egs. (3.14}4, the constraint t@{ is compatible with the construction gf, i.e., (3.17)

holds withg replaced byy,,,n = 0,..., N — 1. The properties of the restricted field are
spelled out in the following proposition.

Proposition 5 (Properties ofg,,). When restricted to the diagonal subspdde;, the
elemeny,, € G,, ® End(H ) obeys the following relations:

2 1 2 1 12
In In= Aa(gn)a Ri 9n 9n=9n In Ri 3 (538)
My gn =ga My, Salgn) = 9,7 (5.39)
GueN = Gns I Om=0m 9n  for nFm, (5.40)
1.2 2 . 1, 2 2 1
Mn !]n Rf —gn R+ M'rﬂ Mn R* gn_R+gn Mn> (541)

1 2 2 1
An(f) n = Gdn A{n(g)v Nn,i Ri In=9n Rj: Nn,i (542)
for all ¢ € G andg,, commutes with all,,,(§) € G, C Ky form #n.

The properties listed above, and in particular the locality and periodicity relations
(5.40), allow to regard,, as an observable in the lattice WZNW-model. It is a discrete
analogue of the group valued figj¢lr). Some remarks on the proof of Proposition 5 can
be found in Appendix A.6. To complete the descriptioryQf let us give its exchange
relations with the chiral currents. Using (5.25), we obtain

14 This can be done simultaneously for all sites, since the structure data do not depend on the lattice site
(see Subsect. 5.2).
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2 1. 1.2 2 1 1 2
1 1 1

r 2 _2 r 1 2 _ 2 1l
Jhet 9n=0n Re Jout,  Jhis 9n=Re 90 Jhn (5.43)

1

jf; é,ﬁf]n Jo s a=1lr form Zn,n+1 (mod N).

5.5. Lattice vertex operators faE,. Let us construct the algebid/y in the case of

G = Z,. Tothis end we have to add the chiral vertex operators introduced in Subsect. 3.5
to the latticeU (1)-current algebra discussed in Subsect. 4.4. As a result we get the
algebra generated by components of the following elements belongihgstoV

p—1 p—1
Oy =Y PPe@) =P, Nyp =) P @hy =7,
s=0 s=0
p—1 p—1
r — 12 s TS —  —1% ;@;T 1 — —1s2 s T7lys — .3 ;@‘l;l
Tn=Y @ PP (W) =k 2ePOFn JL =" g7 PP @ (W) = k2eP®n
s=0 s=0

wherea = r,l andn = 0,.., N — 1. According to Egs. (4.6) and (5.16), not all the
generators are independent. Namely, the following relations are to be fulfilled:

e
Wl=ht Wrnt, Qu=QsWe.. . We.

Due to the Campbell-Hausdorff formula these equalities may be re-expressed in terms
of the generator& ¢, < as follows:

n
%'ln = %:L —In q (ﬁn +]3\n—1)7 a,? = a)a + Z ﬁ? . (544)
k=1

It is easy to see that all the formulae betweg}), J° and N,, + spelled out in Sub-
sects. 5.1-5.3 are satisfied if we add to Egs. (4.25)—(4.26) or, alternatively, to Egs. (4.27)
the following relations:

hn Q% = qQ% by hin Q= Q5 b fOrm 7,
Wi Q= qQy Wiy, WiQh=qQ) Wy,
WeaQL=qQ Wy, WLQL=¢1Q W,
WeQe=Q2We form#n,n+1,
which can be rewritten as follows:

D s S01= O s (@0, G111 = =80, 1= NG @t + 6mn) . (5.45)
Since we already discussed properties of the vertex operators at a fixed siteZQr the
theory in Subsections 2.6 and 3.5, we shall concentrate on the aspects of locality and
periodicity here. Actually, the latter simplify in the case&f due to the circumstance
that all our monodromies/ of the same chirality coincide (since all they are given by
(4.29)). This allows to rewrite Egs. (5.30)—(5.31) and (5.36) in the form (recall that in
the case ofZ, we haveR, = Ry = R*! with R given in Subsects. 2.1 and 2.2):
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1 2 _ — 2 1 Zl ll _ _ — 1l Zl
o7 o7 =R @r o @r . @l @l = R @l @l (5.46)

foralln,m € Z. HereB(n—m) = 1+2[*5™] ([«] stands for the entire part af) for n 7

m (mod N)andB(n—m) = 1+[*5"]for n = m (mod N). Inthe derivation we have also

used the following consequence of Egs. (5.45%1, &%, /1= —[Yn, @k, <1 =
2Ing. Notice that, since?? = e ® e, the above relations are actually periodic with a
period N’ = pN for oddp. That is, the theory lives onjafold covering of the circle so
that vertex operators fo£, are periodic on a lattice of sizZ€’ = pN.

Now let us introduce the fielgd,,. We repeat the construction of Subsect. 3.5 and
defineg,, as follows:

p—1 PN
g =Y PPo@) @) =er®Cim,
s=0
It obviously admits restriction to the diagonal subspate of the model spacé
(cf. Subsections 3.5 and 5.4). The locality @f is evident from Eqgs. (5.46) and its
periodicity g,+n = (M) ~1g,M" = g, is, in fact, reduced to the Weyl-type relation
which we explained in detail at the end of Subsect. 3.5.

6. Automorphisms and Discrete Dynamics

In this section we shall demonstrate that the lattice theory which we constructed above
indeed may be regarded as a discretization of the WZNW model. For this purpose we
investigate the exchange relations of currents and some automorphisms of our lattice al-
gebrain the classical continuum limit and recover the Poisson structure and the dynamics
of the classical WZNW model, respectively.

6.1. Remarks on the classical continuum limitet us briefly discuss the classical
continuum limit of the algebra of vertex operators. Following ideology of [4], we rewrite
the exchange relations (4.2), (4.4) and (4.7), (4.8) for the chiral currents in a more
compact form:

-1 2. o _ i -1 2
Rn,m’+ Jn Rn7m+l,+ Jm - Jm Rn,mfl’, Jn Rnfm,f B (61)

1 2 2 1
Rginzﬁ Ji,, Ry, Jlm = Jlm R;im,kr Jln Ry_m, -, (6.2)

whereR,, + = 0,,0R+ + (1 — d,,0)e ® eis, as usual, an element Gf ® G,. Now we
consider these relations in the limit where 27/~ — 0 andh — 0.

Since for our theory; = exp{iyh} (cf. Introduction), we can expand the universal
R-matrix according taR4 = e ® e + iyhry + O(/?) . On the other hand, the lattice
fields approach their continuum counterparts #ecomes small:

Jp —e®e—ajx), @5 — %), gn —glx), (6.3)

wherezx = an. Bearing in mind tha%én,o — d(x) whena — 0, we obtain the following
Poisson brackets from (6.1)—(6.2):

7@, 7" W)} = 2105 @~ J @) 6w — )+ Co'w — ),

@7} = =210 @- @8 — 1)~ 1 C'@ — 1),
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whereC' = (r+ — r_) ® e. These are the standard brackets for the chiral WZNW currents
[41, 51], and the deformation parameteis identified with the coupling constari®.

The exchange relations (5.25)—(5.26) can be treated similarly. Namely, we rewrite
them as follows:

2 2

1 2 2 1 1 1
TP =" T l Q)l — @l l
Jn m Rn—m,— - m Rn—?n—17+ Jn’ Jn m Rn—m,+ - m Rn—TrL—l,— Jn 1)

and get the following Poisson brackets for vertex operators in the classical continuum
limit:

(@), & @)} =7 (@) Com—y), (), D)} = —y @) C o — ).

These relations are classical counterparts of the commutation relations known for the
chiral primary fields in the continuum WZNW model [41].

Substitution of the expansiom®} = e ® e ® e +iyhr + O(h?) into Egs. (5.21)
and passing to the classical continuum limit gives

(@7 (2), 8" (1)} = —x"(@—y) () D" (), {®'(x) D)} = X' (z—y) '(z) D),

wherex®(x —y) =e(x —y)yr¥+e(y —x)yr*, ande(z) = 1if x > 0 ande(z) = O if

x < 0. Such brackets were obtained for the classical WZNW model in [26, 13, 20, 27].
The same technique may finally be applied to the relations (5.43) involving the lattice

field g and the resulting formulae for the classical counterpart of Egs. (5.43) coincide

with formulae in [41], namely,

(7@).0 @)} =7 § @ Coa—y), {550} =7C § @) —1y).

Thus, in the limith — 0,a — 0, our main exchange relations for the chiral currents and
chiral vertex operators reproduce the Poisson structure known for the classical WZNW
model.

6.2. Automorphisms induced by the ribbon elemefte ribbon element, due to its
specific properties, allows to obtain certain inner automorphisms of the alyghra
These are the subject of the present subsection.

Non-local automorphisminduced by global ribbon eleme@tmsider an automorphism
of the form:
A vl Avyt, forall Ae Wy . (6.4)

Herev, € C" andv, € C'. We call the ribbon elements, global because they are
constructed from the monodromid$®, which are non-local.

Since the subalgebrg$ constitute the center & y, all the elements of the current
algebraCy C Wy are invariant under the transformation (6.4). For the vertex operators
this transformation is nontrivial and may be rewritten with the help of (5.15), (5.22) and
(5.24) so that it becomes

15 One may prefer to renormalize the currents iy %o that thes’-term acquires a coefficieny4 which,
in the classical theory, coincides with the lekedf the KM algebra. The quantum correctiopl — k + v
is explained, e.g., in [4].

16 |n general, the classicatmatricesr ¢ keep a non-trivial dependence on variables belongir@fto
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oy — Phan My =Py, 0Sn <N, keZ.

Thus, the automorphism (6.4) is non-local, i.e., it corresponds to asshift n + N

or, in other words, it rotates the lattice by angle. Being restricted on the diagonal
subspace, the field,, is periodic (see Proposition 5), and hence it is invariant under
the transformation (6.4). In this sense, the automorphism (6.4) separates “physical”
variables living on the circle from “non-physical” ones (like the vertex operators) living
on a covering of the circle.

Local automorphism induced by local ribbon elemerfecall that the:™ site of the
lattice is supplied with a copy,, of the symmetry algebr@. Therefore we can use the
local ribbon elements,, € C,, C G, to construct the following transformation:

A~ wvguy...on_1 A (Uovl - UN,]_)_]', for any AeWy. (65)

Here the product is taken over all sites of the lattice.

To obtain more explicit formulae for the automorphism (6.5), we have to use relations
(4.3), (4.10), (5.19), employ Eq. (2.1) and rememberthdielongs to the center ¢f,.
As a result we get

Jh e Naoa JpNGL JL e N JUN,
o7 +—>va<I>2N71 CDL »—»vacbﬁlﬁn,

n

(6.6)

where we used notations of Subsect. 2.2, Nes N,N_1, N = N7IN_.Theelements
of G,, andC* remain invariant under (6.5), in particuldy,, + — N, 1. With the help
of these explicit expressions we also obtain

M’ — N,M'N; M.~ N;*M.N,, g, +— NugaN;t. (6.7)

We know already that these formulae describe an automorphism of the algébra
because they were obtained by conjugation with a unitary element, namely the product
of local ribbon elements, in formula (6.5). Without this knowledge, it would be a quite
non-trivial task to check the automorphism property directly for the expressionsin (6.6)—
(6.7). To do this, one would need to apply the relations (4.5) and (5.17) many times.

Local automorphism induced y,. To construct one more inner automorphismvg
we employ the square roots of the local ribbon elements,

A — Koﬁl...liN_lA(Holil...KN_l)_l s forall A e Wh . (68)

Herex, € C, C G,, k% = v, and the product is taken over all sites.

n

Computations similar to those performed above (and making use of (2.10)) allow to
rewrite the transformation (6.8) in the following explicit form:

J;; = Nn—1,+(Sn—l)_lJ:~; SnNyzi = Nn—l,+ ((J:;)*)_l Nn_,-:il— )
Jh= N S 1 JL (Sn) N o = NYy _((JD)) P Na—
@), 1 kg P, Sanf,Jlr Ha((®:z)*)71 N, %

n,+
CDi)/ = Ka CI)iL (Sn)ian.,— ’{a((qDZn)*)71 Ny,
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Mp = Nas(M5)INTY, ML~ N ((MLY))EN, -,

n,+

andN,, + — N, 1, as before. Here ther.h.s. of all formulae have been rewritten with the
help of thex-operation introduced for elements¥fy in Sects. 4 and 5. Having done
so, we see that the image of all basic obje¥ts G, ® Wy under the automorphism
(6.8) coincides with X*)~! up to a multiplication with factorsV,, ... We can now
accept an inverse logic —we may say that the automorphism (6.8) together with the rules
(N+)* = Ny defines the-operation onVy. This picture reveals the naturalness of our
x-operation, which might have appeared somewhat artificial in the previous sections. It
also makes the role of the ribbon element in our theory even more remarkable.

To conclude this discussion, we would like to mention that for a lattice of even length,
i.e., for N = 0 (mod 2), one may also consider automorphism$w{ generated by the
alternating products af** or st

6.3. Discrete dynamicsAs we saw above, the exchange relations of the algi¥ga
allowed to recover the Poisson structure of the classical WZNW-model in the classical
continuum limit. However, this is certainly not sufficient for a construction of the lattice
WZNW model. Indeed, the complete description of a classical theory involves an evolu-
tion equation for the dynamical variables in addition to the specification of the Poisson
structure. Similarly, the formulation of a discrete quantum model requires not only a set
of exchange relations between quantum operators but also some one parameter family
of automorphisms of the algebra generated by operators in the quantum theory. The
parameter is interpreted as time variable. For a theory on a discrete space it is natural
to discretize the time as well so that the parameter essentially runs through the set of
integers only. In this case the whole family of automorphisms can be reconstructed from
the automorphism which provides the evolution for an elementary step in time. Such an
automorphism of a lattice model must be local, i.e., the result of its action on the variables
assigned to a given site (or link) can only involve variables assigned to some neighbor-
ing sites (or links). In the previous subsection we considered three automorphisms of
the algebra/Vy. The first of them was non-local and hence did not correspond to any
dynamicst’ The second and the third automorphism were local and, in principle, one
may use them in constructing the corresponding classical continuum models. However,
the dynamics of such models do not reproduce the dynamics of the WZNW theory.

In this subsection we are going to consider local automorphisms which can be in-
terpreted as dynamics of the discrete WZNW model. Let us recall that in the continuum
WZNW model the equation of motion for thi&-valued fieldg(x) takes the form:

0+0_ g = (0+9) g (0-9) (6.9)
whered. = %(801 0.). From the fieldy(x) one may construct the following Lie algebra
valued currents

=970 g, §'=(0kg)g7t (6.10)
They turn outto be chiral objects inthe sense that their equations of motion are trivialized:
9, j"=0_j5'=0. (6.11)

In the Hamiltonian approach, the initial data are provided by the valugfdf ;" ()
and;j!(z) at timet = 0. To recover the dynamics gfx) one solves the equations

dog=jg+gji", 0.9=5'9—9gj" . (6.12)

17 However, one can use it to describe dynamics of the toy model (see [3]).
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Equations (6.11) and (6.12) can be derived with the help of the Poisson brackets given
in Subsect. 6.1 if the Hamiltonian and the total momentum are chosen as follows:

H= o [C[G@P (@) o, P= o [w[G7@)R - G da.

! ! (6.13)
where the integration is taken over the whole circle &mis the usual trace in the
corresponding Lie algebra.

Let us develop an analogue of the given picture in the quantum lattice theory. More
precisely, we shall consider the “physical” subalgeBra of Wy generated by com-
ponents of the chiral currents and the fieldy,, n = 1, .., N which are subject to the
relations spelled out in Sects. 4 and 5. As we have indicated in our general discussion
above, it is natural to work with a discrete time with a minimal time intervédee also
[28, 31]), so that the evolution of the quantum theory is described by a single automor-
phism of Py. In addition to this, we shall also introduce an automorphism which is
responsible for the shifts by one lattice uait 27 /N in space.

Lemma 2 (Shift and evolution automorphisms). Let P denote the algebra gener-
ated by components dfF and g, (restriction to the diagonal subspaééy is under-
stood). Then the following two transformatidfig, 7y,

Tv(Jy) = Jp, a=1r, (6.14)
Ty (gn) = (Jh1) " gn Jhar (6.15)
and
To(p) = Jpa, Tu(ly) = Jpa, (6.16)
Ty (gn) = (e " g0 (J7) 7 (6.17)

extend to automorphisms of the algelftg. We callTy, theshift automorphisnand Ty,
the evolution automorphisrof the lattice WZNW-model.

It is straightforward to verify that the transformatioiis and1y preserve all the
relations forJg and g, given above. Notice also that one may extédnd 7, to the
whole algebraVy by Egs. (6.14), (6.16) and, in addition, the formulae

Ty (97) = ©5J7

nYn+l >
Ty(®;) = @5, (J;) Ty(®y) = @), S -

These automorphisms are actually combined of two chiral automorphisms (cf. Sub-
sect. 6.4). After restriction to the diagonal subspace and, hence, to the aiggebnse
recover Egs. (6.15) and (6.17.

Assume now that Lemma 2 describes inner automorphisri@s,0fThat is, suppose
that there exist operators U € Py such that

Ty(A)=VAV~! and Ty(4)=UAU! forany A e Py.

V and U are usually calledhift andevolutionoperators, respectively. In the classical
continuum limita — 0, 7 — 0 they reproduce the momentum and the Hamiltonian
(6.13):V—e+taP,U—e+ ;7 H.

18 This needs the following variant of Eq. (5.38: (P',41) = (JL+1)*1SE(<I>I7’1); it is evident if we take
relation (3.19) into account.
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Our interpretation of the transformations in Lemma 2 as discrete shifts in space and
time, motivate to introduce the the objedt¥(t), g, (t) € G, ® Px such that

JrE+T7)= J_a(t), JL(t+T) = Jha(), (6.18)

Gn(t+7) = (Loa®) L gu@® L)Y gora(®) = (Jhaa() 1 ga() () (6.19)
andJg(0), g.(0) coincide with our usual generator§, g,,, respectively. These expres-
sions define/(¢) andg, (t) for t = k7 with k& being integer. Below we shall also need
the equations inverse to (6.18)—(6.19):

Tt =7) = Jpa), T —1) =T, 1), (6.20)

gn(t =) = Tp () () Tra(®)s  gn-1(t) = Jn@) gu () (Jr (@) . (6.21)

We cannow usetherulds (t) — e®e—aj“(z,t)andg,(t) — g(z,t)from Subsect. 6.1
(herez = na = 27n/N as before) to establish that in the classical continuum limit
Egs. (6.18)-(6.19) become precisely the Egs. (6.11)—(E1R)rther, combining (6.19)
and (6.21), we obtain the following relations:

Gn-a) gt =) =T} Trigs gna®) (Galt+ )= Th Ty (6.22)

These are lattice analogues of the definitions (6.10) of the chiral currents. Notice that
we can express only products of currents on neighboring links through theyfigid
(nevertheless, in the classical continuum limit, Eq. (6.10) is certainly recové?ed).
Equation (6.22) allow to obtain the dynamics of the lattice model in terms of the
field g,, only. Indeed, since their r.h.s. are manifestly chiral objects, the combinations of
gn-variables on the l.h.s. are to be invariant under the substitutieng +7,n — n+1
andt — t+71,n — n—1, respectively. Thus, we derive a lattice analogue of the equation
of motion (6.9):

1) (gn(t = 7)1 = gt +7) (gn-a(t)) - (6.23)

Being a discrete analogue of an equation of second order in both variables, this relation
involves four different points on the space-time lattice (see Fig. 6). A natural choice of the
initial data for Eq. (6.23) is provided by the gge{(t—7) andg,,(¢),n = 0, .., N — 1 (heret

is fixed). Itis interesting to notice that this set is divided into two subsets (black and white
circles on Fig. 6) which have an independent evolufibiiat is, the solution constructed
according to Eqg. (6.23) from one of the sets never interacts with that constructed from
the other set. According to Eqgs. (6.22), the initial dat& — 7), g, (¢) (at fixed timet)

can be restored if we are given the set of currefijtsn = 1, .., N and two values of the
g-field taken at two arbitrary points of the independent subsetsgg&@). andgo(—7).

This is a lattice analogue of the initial data usually used in the continuum Hamiltonian
approach (see above).

191n the continuum limit the quotient := a/7 (speed of light) is supposed to be fixed. In fact, Eq. (6.9)
implies that we put = 1.

20 Formally, we can split Egs. (6.22) into the following relatiods; = (gn,l(t))—lgni%(t — 1r)and
Iy = (9,1 — %T))_lgn(t — 7). However, the variables assigned to half integer sites or times are
not defined in the lattice formalism. To avoid this we could consider these relations as relafiéhs and
re-express the involvegtields through vertex operators, while using that vertex operators are chiral to replace
formal variables on half integer space-time points by true objects of the lattice theory. As a result we would
get the obvious relationg2 (t) = (P& _, (1)) 1D (¢).

21| et us stress that it is not necessary to impose a continuity condition on the initial data, i.e., to demand
that they possess smooth continuum limit. Moreover, it seems interesting to study the case when the two
independent subsets of initial data have different continuum limits (cf. also [28]).
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t+T
z—al| xta r—a| xta x+2a

t—1 o - t—7

Fig. 6. Graphical presentation of the discrete equation (6.23) and a possible choice of the initial data. The two
subsets of the initial data have independent evolutions

To summarize, in this section we have demonstrated that the eledfrtsd g,,
which constitute the “physical” variables in the algebva, are indeed quantum lattice
analogues of the chiral currents and the group valued field in the WZNW model.

6.4.U(1)-WZNW modelWe conclude this section with some comments ordhease.
Recall that they-field constructed from lattice vertex operators in the cage sfZ, is

given by (cf. Subsect. 5.5), = P ® ¢n, whereg,, =< — < is an operator acting on
the physical spack y (see Subsects. 3.5 and 5.5). In the classical lim{t) becomes
a lattice variable which, according to (6.23), obeys to the following equation of motion:

¢n(t + T) + ¢n(t - T) = ¢n+l(t) + ¢n71(t) . (624)

This relation discretizes the equation of moti@rd_¢(x,t) = 0 of a free field. The

latter is known to arise, in particular, for the continutifi)-WZNW model. Moreover,

in the classical continuum limit the standard Poisson structure of the abelian WZNW
theory is easily recovered from the exchange relations ofguattice model. These two
observations allow to identify th&, lattice theory as a quantized lattic&1)-WZNW

model. In spite of its simplicity, th&/(1)-theory has a lot of structure in common with

the more complicated nonabelian models. In fact, the abelian model was used here to
illustrate many elements of our general theory.

Itis also worth mentioning that the abelian lattice theory itself has non-trivial mathe-
matical aspects. In particular, explicit formulae for shift operators in chiral theories have
been worked out in [31, 28, 8]. We may use these results to present expressions for the
the shift and evolution operatotsandU. The latter can be decomposed into the chiral
componentsV = V;V,. andU = V;V,~1. When acting on elements of the algebia;,
the operatory, € WY, generate shifts for the chiral sectors, i.e.,

@ Vo) Ji(e@Va) t=diy, (e@Va)dh(e® Vo)t =dp., (6.25)

wherea =1, n € Z, ande ® V, e ® V, commute with any element frogi, ® Wy,
andG, ® WY, respectively.

Proposition 6 (Shifts operators for Z,). LetWy be the algebra of lattice vertex ope-
rators as defined in Subsect. 5.5, i.e., it is generated by the eleﬁélhlzsewff (chiral

currents) and@g = eon (vertex operators) obeying the relations spelled out in Sub-
sects. 4.4 and 5.5. Let the lattice length be odd. Then the chiral shift operators
obeying (6.25) are given by

N-1
Vo =Zo [] palv-»), (6.26)
k=1
wherep, (k) = exp{—ﬁ @7)?} and pi(k) = exp{ﬁ(@k)z}. The functionZ,,

depends only on the elemeftit = (Hﬁ /Wz‘ff_l) (H,j /Wz‘ff)‘l € K%
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To verify thatV,. andV; obey Egs. (6.25) one proceeds in two steps. The first of them
concerns the relations betwe®n and the chiral currents and it has been performed in
[8]. The computation is based on the following relatioffs:

e pa(n+1)pa(n) = pa(n+1)pa(n) ew;’fﬂ’ n=1.,N-2,

which hold due to Egs. (4.27). The remaining relationsrfor N — 1, N are conse-
guences of the others if the functidf, is chosen in a specific way (see [8] for details).

In the second step, one checks the desired properti&s @fith respect to chiral
vertex operators. To this end we derive the following relation:

~

e paln+1) = pan+ 1) 3N P ¢ = po(n+ 1) Fin = py (0 + 1)t

(6.27)

For the first equality we used the commutation relations (5.45). After this, the Campbell-
Hausdorff formula was employed before we could insert Eqgs. (5.44). Notice that it
suffices to prove Eq. (6.27) faor = 1. Due to (5.44), the relations betweEp and the
vertex operators assigned to other sites are consequences of this case (as soon as the
relations forl/, with chiral currents are established). This completes the proof.

Let us comment on the construction of the chiral shift operators for a lattice of even
length N suggested in [31, 28]. In this case the shift operators are also given by (6.26)
but without the facto?Z,,. When checking the relations between these operatpesd

chiral currents, Faddeev and Volkov had to assumelf[lg_fl2 /Wz‘}‘cfl = sz/lz /V[72";€.
Unfortunately, such a constraint is incompatible with the exchange relations in the full
theory which includes the object§, in addition to chiral currents. One way to bypass
this problem would involve shifts by two lattice units.

Let us finally mention that the functign(which can be identified astafunction, if

written in terms Oﬂ//V\,,‘f‘) appearing in (6.26) admits factorization into a product of two
functions of a g-dilogarithm type (see [28]). Actually, these objectsfthenction and

the g-dilogarithm) turn out to be quite universal building blocks for shift operators. They
were employed in the recent work [32] to construct shift operators fof thg2)-lattice

KM algebra. Since the expressions involviftgunctions and g-dilogarithms resemble
those used in the abelian theory, one expects that the new operators of [32] serve as shifts
not only for the current algebras but for the whole algebras of vertex operators as well.

Conclusion

In the present paper we have described the construction of lattice vertex operators for a
given modular Hopf algebra. The investigation of the classical continuum limit reveals
a clear relation between the lattice algebras and the WZNW-model. Since the latter can
be reduced to the affine Toda model, our technique may be applied to this theory as well
(with certain modifications). Furthermore, there exist many connections with Chern—
Simons theory in 2 + 1 dimensions (see [7] for lattice constructions of Chern-Simons
observables) which motivate to extend our framework to two spatial dimensions.

Let us briefly list some aspects of the presented theory which have not been devel-
oped. As we mentioned before, formulae for vertex operators are known only for some
particular cases. It would be interesting to work out explicit presentations for universal

22 such relations were used first in [31, 28] in the construction of shift operatofs(frcurrent algebra
for evenN (cf. remarks in the text).
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vertex operator® of the deformed universal enveloping algebtgés). Alternatively,

one may try to find universal structure ddac which solve the discussed set of equa-
tions. A further natural extension is to incorporate infinite dimensional structures such
as the deformed affine algebras. This might allow for a comparison with the approaches
in [34, 38] (see also references therein).

Another problem which is to be solved to complete the description of the quantum
lattice WZNW model is an explicit construction of the shift and evolution operators. By
now, exact formulae have been found for the casd$(d) andSU(2) [31, 28, 8, 32].
These examples, however, hint at some uniform structures (such as the appearance of
g-dilogarithms) that might lead to new formulae for shift operators in more general
theories.

Appendix: Some Proofs and Further Relations

A.1. Proof of Proposition 1ltis not difficult to obtain the relations stated in Proposition 1
from the defining properties @b. For instance, the formula (2.23) fér follows from

the definition (2.19) wherdV = RR’ is re-expressed in terms of the ribbon element
according to Eq. (2.1). To derive Eq. (2.24) one needs no more than associativity of the
multiplication in) along with co-associativity of the co-produst, ongG,,

& (F12) (A ® id)(F) (Ag ® id) Ag(®) =6 (F12) ® Ag(@)12= (P ) =

= (@ D) b= Foz Ag(®)as B= Foa (id @ A)(F) (id © Ag)Au(®) .

The first relation of Egs. (2.25) is a consequence of the covariance property (24i6) of

1 1 1 1 2

1 2 1 2 1 1 1 2 1
DR_OPP=ONIPR_DOPP=ONDPR_ =®D R, N=
2 1 1 2 1 1 > 2 1
SR PON=R+: PDP=R+0(D) D .

We have inserted the definition (2.19) twice and used commutation relations (2.22).
Next, using definitions (2.17)—(2.18) of the structure data, we easily check (2.26):

6o ()=0d (cxf) b o L=
= FA(®)(c®N AP F 1 =FA(@(c@f)O HF = Ap(a().

Let us finally discuss the computation Bf. It is based on the second identity in
(2.11) and on the relatior & S)(:d® A)(S) = (S ®e)(A ®id)(S) which can be checked
in a straightforward way. Applying them and the property (2.14) to the definition (2.17),
we derive

F* = (& & Ag(0 )" = AL(® S) (S 13 & 1S s &

= AL(®) (A @id)(S) [(e® S (id® A)S™Y)],,, &L

213
= AL(®) (A @ id)(S) [(id® AS ™) (e ® 5],y @t &7

A (@) (Swe) DL dT=S, AL(D) T b L= 5, FL.
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The index on ]],13 refers to a permutation of tensor factors in the expression enclosed
by the brackets.

All other relations in Proposition 1 are either obvious or they follow directly from
the derived equations. This applies in particular to Eq. (2.27).

A.2. Proof of Proposition 3In this subsection we want to construct consistent structure
data for vertex operators of the deformed universal enveloping algélxds, () from

their Clebsch—Gordan maps angt€/mbols. To fix our notations, let us recall that the
Clebsch-Gordan mags[7T'L|S]: VT @ VL — V5 have the following properties:

CITLIS| (7T @ TE)(A@©) = r9(€) C[TL|S] forall ¢eg,

(-5 ) O[TL|S] RTE C[TLIR) = 6ps with sy =75(k),
RTRK],

S BELE T1C1JQIR] ColTLIQ] = CLJS|R] Coa TLIS) (R ® €T,

Q

> Faoslk T1CIQLIR] Cial JT|Q] = CLJS|R] Col TL|S] - (A1)
Q

In the order of appearance here these equations describe the intertwining properties of
the Clebsch—Gordan maps, their normalization and the definition of the braiding and
fusion matrices (or §-symbols). It is well known that certain (polynomial) relations for

the numbersB*[- -] and F_ [ - -] follow from their definitions and properties of the

quasi-triangular Hopf algebi@ (see, e.g., [39]). In particular, one has

> Foslh T 1FnrlE @ 1 Fuolk 1 1= Furl$ { 1FnslB 51

Q
> FnslB T Fnrlb 1" =6sr (A.2)
N

QTN NE) By Lk i1 = By [ B Tl Q21 ().
Here we used the notation
VU
()= B, 58] and 2.a(H) = au( ) () =L (A

To proceed, we parameterize the lab®ls\/, I and N’ in terms of new variables, ¥, ¢
andy’ so that

N=P+X, M=P+X+9 , I=P+X+9+,, N =P+¥ .
Let us introduce the following matric&y 7 L|S}(P), RLL(P) and DT (P),
C{TL‘S}(P)CAD\ = FP+/\S[ IP £+19+)\] 5@,19+)\ ;
REF(P)ornox = By oL B Brger] Soermenr

DT(P)yr g = QNP+ ) 699 (A.4)
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We may think of theP-dependent matrice{ T L|S}(P), R1L(P) and DT (P) as ma-
trices with entries in the algeba Whenever we do so, we will neglect to write the
P-dependence explicitly and use the symat]d'L|S}, RLL and DT If we introduce

in addition the matrix valued map” onC by

o (P)yr =P +X) 0y a s

then Egs. (A.2) for the fusion and braiding matrices become
Y Fosl & T1C{QLIR} o (Cio{ JTIQ}) = C{JS|R} Cos{ T LIS} ,
Q
C{TL|S}C{TLIR}" =dgrs,

(DT @ &) RTE = RIL o1(DT) . (A.5)
The last of these equations appears already as a close relative of Eq. (2.25). In fact, for
semi-simplgj one can construct universal obje®s. € G ® G® CandD € G ®C so
thatR1E = (7 @ ) (R4) and DT = 77(D). Then Eq. (A.5) turns into
1 2
D R_=Rso(D),

whereo : C — G ® C is defined so that” = (% ® id) o 0. WhenQ, Q! is expressed
in terms of the ribbon elementas in Eq. (A.3), the definition (A.4) ab becomes

D =o(w)v o, .

To build the universal elemerit € § ® G ® C, we combine the matrice3{..|.} with
the Clebsch-Gordan maps so tiat” = (r7 ® 7)(F) is given by

FTE =3 "c{TL|S} CITL|S] .
S

Multiplying the adjoint of the first equation in (A.2) with Eqg. (A.1), taking the sum
over R, S and using the intertwining properties of the Clebsch—Gordan maps, we obtain
Eq. (2.24) forF'. In the same way, one may combine the normalizations for the Clebsch—
Gordan map&’[T'L|S] and the matrice§{TL|S} to derive that

F ((A(/@fl)(/{@/{)R:l)@e) F*ze®e®e,

and hencer has the required property under th@peration. Finally, we use that the
matrix C{T'L|S}(P) is proportional taj, 4+, SO that

(f(P +)) C{TL[S}(P)s.oxn = C{TL|S}(P)c.ox (F(P + 0 + X))

Heref(P) is an arbitrary function oP, i.e.,f may be regarded as an elemen€ifwith
our standard conventions, this can be stated as a matrix equation

o®(f) C{TL|S} =C{TL|S} cLcT(f).

Keeping in mind thatA z(€) = F(A(€) ® e)F~1, we discover Eq. (2.26). All other
properties of the structure data follow easily from the relations we have discussed here.
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A.3. Structure data for left chiral vertex operatorg/e can obtain the relations for the
left structure datd, o7, Dy, Rl from Egs. (2.23)—(2.28) if we substitute

Ay — A, F —F M — (MH?

Ri - R, o —o R+ — (RLY

Vg — Vg DHDI_l ® — .
The prime onF}, R}, € G, ®G, ®C' denotes permutation of the first two tensor factors.
Once the validity of these rules has been checked for the defining relations (2.17)—(2.19)

of structure data, we can apply them to Egs. (2.23)—(2.28). Within the notations of
Proposition 1, the result looks as follows:

Dy = yW)ouvY, o1 0i(f) = Ar(ouf)) (A.6)
[ @ elizas ((Aa @ id)(FD) = () ((d© ANED)), (A7)
2 51— ol L 1A _2 !
Dy Ry = R_ oi(Dy), Ry Di=oi(D) R, (A.8)
l 2 ! l _ 3 l l 1 l
Ry 23 01(Ry 13) Ry 12 = 01(Ri 12) Ry 13 01(RY 23), (A.9)
Fy =S, (RL)* = (RL)™, D;=D;*,  (A10)
ol(fl)* = ou(f}), AR ()" = AR(£). (A.11)

Here A, (€) = F(AE) ® )F ! € G, ® G, ® V), analogously to definition (2.21).
Using the fact that§, ® S.)(A.(£)) = AL(S.(€)), it is simple to see that the objects
(3.13), (3.14) satisfy the relations (A.6)—(A.11)Af o, A, R solve Egs. (2.23)—(2.28).

The former equations are actually obtained from the latter by acting with the&ﬁ:éfps
defined in Eqg. (3.15).

A.4. Properties of the field. The consistency of the objegtwith the constraint to the
diagonal subspacH is certainly its most important property. It was formulated more
precisely in (3.17) using notations from Subsect. 3.4. A formal proof may be given as
follows. Suppose thaly = S;..(f)g holds for allf € C". Then one finds for arbitrary
fecCr,

gf =S, (PNP" f = S, () 0,() @ = S, (ST @id)(o,(F)D!) @"
= Sa ((S_l ®Slr)(0r(f))q>l) "= Sa (Ul(Slr(f)) q)l) "
= 8u(®') Sip() @7 = (@) " S (f) = g Sin(f)

The computation makes use of the choice (3.14) to reptad®/ o;. From now on, we
think of g as being restricted t&. We begin our proof of Proposition 4 with the operator
product expansion (3.20) gf€ G, ® End(H),

79 = 5,0 S.(01) & " =(S® S @ id)(F{AL(P) Fy Ag(P)
= (®S®id) (S'® St @id)(F, HAL®)) F, Al(d")
= Aa(Sa(®N) F1E, Aa(®7) = Adlg) -
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1 2 1 2
HereS,(®) andS, () are shorthands fors, ® id)(®) and ¢d ® S,)(®), respectively.
The exchange relations fgr the formulag—! = S, (g) and the normalization, (g) = e
follow immediately from the functoriality relation in (3.20).
The exchange relations 53.21) are derived from (3.3), (3.8) and the explicit construc-
tion of g as a product of,(®") andd”. Let us check the first of them:

1 2 1 2l 2 2l 1 2 Zl 2 1 2 1
M" 9 R_ =M"S,(d) " R_ = S,(d) M” ®"R_ = S,(d') "Ry M" =9 Ry M.

The second relation in (3.21) can be obtained similarly if we take the covariance prop-
erties (3.18) ofS, (4') into account.

Verification of the relations (3.22) makes use of the equality v, which is valid
on H and follows with the help o&(v) = v, if the constraintS;,.(f,) = f; is evaluated
on the ribbon element. The second relation in (3.22) then is obvious, and for the first we
check explicitly:

gn M}, = g (®}) ot D, @), = So(@)) v, ! D, @,
= (<I>ln)_l 0; v;l or(vp) @) = vfl (CI>£L)_1 0, d; v, (A.12)
= (@) tou(v, i 0 @),
= (@) v Dy @, (@) 10, B, = My, So(@7,) @, = My gy, -

In this computation it was convenient to insert the formula (3.19) which expr&s6&$)
in terms of @')~1.

A.5. Properties of lattice vertex operatorkset us prove that the structure constahts

¢ ando, appearing in Egs. (5.20)—(5.22) coincide with those of the vertex operators
®g. Tothis end, we exploit the construction®f, as a product obg and the holonomies
US (see eq. (5.16)). Equation (5.22) is actually obvious, sfpa@mmute with all the
elementsJ¢. Furthermore, Eq. (5.21) is a simple consequence of (5.20). Hence, we
need to prove only Eq. (5.20) which we do for the right chirality ( the left one works
analogously),

2 1 2
Aa(®T) = Ag(®) Ag(UT) = F1 @ @5 R- 7 U7, =
2 1 2 1
= L@ U @ U = Ft 9T

The exchange relations (5.25)—(5.28) are established by induction. Indeed; for
they are part of Definition 3. Assume now that Egs. (5.25)—(5.28) hold for a certain
n < N so that, in particular;, has non-trivial exchange relations wity andJ¢,,
only. Then®;,, = @, J%,, necessarily commutes with all curremty except from/<,

J2, andJS,,. Itis easy to verify that the exchange relations wifhbecome trivial as
well. We demonstrate this fer = r:

1 2 1 2 1

1 1 2 1 2 1 2 1
T Ay s T —FT r o —9r r ro—9r T
CI)n+l Jn _cbn Jn+l Jn _ch Jn R+ Jn+l _Jn q)n Jn+1 _Jn q)n+l .

It can be checked similarly that the relations betwéén, andJ?, ,, J5,, coincide with
those betweedy andJg, J2,,. This completes the induction.

Now we have to prove Egs. (5.30)—(5.31). For instance, using (4.17) and (5.25), we
derive the first relation in (5.30) for@ n < m < N :
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2

1 1 1 2 2 1 2 1 2
r r =" T r T =hr T T T =
q>n m _(DO Un CI)O m _q)O CDO R Un Um -

2 1 2 1 2 2 1 1 2 1
=R &y &R Uy, U, =RL & Uy, ¥ U, =RL @), 9],
The relations (5.18)—(5.22), (5.24)—(5.28) which involve vertex operdifjrsutside of

the initial intervaln = 0,.., N — 1, are derived with the help of Egs. (5.34)—(5.35) for
the monodromied/. Since the derivation uses the same technique as above, we prove
only the functoriality relation forb], . As a first step, we check the following:

2 1
Aa(®ln) = Aa(®1) Au(M) = F1 &7 7 RZY MY, Ry M, =
2 1

2 2 1 1
- F_l T T T r — p—1 r r
—4r q)n Mn q)n Mn - FT ch+N cI)n+N .

Then we use an induction and Eq. (5.35) to get the same proper®/ fqor .
Finally, we establish relations (5.36) directly with the help of Eq. (5.35):

1

2 1 2 1
T T T —_— T T T
RT @7 @7, =R, @ & M
! T 2 T 1 T : T b T 2 T : T 2 T
:q)n ch R Mn :q)n M'n CDn R_= n+N CI)n R_.

Detailed computations for the other relations in (5.18)—(5.22), (5.24)—(5.28) can be
worked out easily.

A.6. Properties of lattice fielgl,. Let us notice that the equality (3.19) holds in the lattice
case for alld!, with the same); € G, ® C' (as we explained in Subsect. 5.2, vertex
operators of the same chirality assigned to different sites possess the same structure
data). Therefore, we can proceed as in the toy model case and rewrite the expression for
gn, as follows:

gn = (q>ln)719l CD; :

This relation allows to express, in terms ofgg and the holonomie& ¢ € G, ® Kn:
gn = U)o Uy, - (A.13)

Bearing in mind that elements froiiy, and hence, in particular, components of the
holonomiesU2, leave the subspacé& X of the full representation spackly =
@, Wi/ invariant (see Subsect. 5.4), the equality (A.13) explains why,atian be
restricted on the diagonal subspdtg = @, WEX simultaneously.

Among the properties of the lattice fielg, in Proposition 5, only the relations
(5.42) and (5.40) have not been considered in the toy model case. Equations (5.42)
follow immediately from the covariance properties (5.19) of the vertex operators and
the remark that, due to Eq. (3.19), the second relation in (5.19) can be rewritten as
follows:

Sa(®7,) tn(€) = An(©) Sa( @), Sal®1) tm(€) = tm(€) Sa(@7,) for m 7 n (modN)

forall¢ € G.
The periodicity ofg, is derived with the help of relations (5.15), (5.24) and the
second equation in (3.22):
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GnenN = Sa(@hun) Phany = (Phn) 100 Dy = (05, M) 710, @7, M,
= (@) (wa D) 00, D, @,
= (@) o) vy 0 o (v, vt T
=v (@) vt vt ar v,
= v, (@) v, g vt on v = S, (L) @n = g,

Due to periodicity, it is sufficient to check the locality @f only for 0 < n,m < N.
Taking, for definitenessy < m, we derive:

2 1 1 2 2 2 1 2 2 1 2
In 0 = (UL 90 UL (W) 90 UL, = (UL) (L) R 90 9o Re UL, U,
2 1 2 1 2 1
= (UL N U Ry 90 o RZT UL, U,
R -t R (T

Here we used Eq. (A.13) and the commutation relations betwseand the holonomies
U which are obvious consequences of Egs. (5.43).
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