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Abstract: Within the framework of the discrete Wess–Zumino–Novikov–Witten theory
we analyze the structure of vertex operators on a lattice. In particular, the lattice analogues
of operator product expansions and braid relations are discussed. As the main physical
application, a rigorous construction for the discrete counterpartgn of the group valued
field g(x) is provided. We study several automorphisms of the lattice algebras including
discretizations of the evolution in the WZNW model. Our analysis is based on the theory
of modular Hopf algebras and its formulation in terms of universal elements. Algebras
of vertex operators and their structure constants are obtained for the deformed universal
enveloping algebrasUq(G). Throughout the whole paper, the abelian WZNW model is
used as a simple example to illustrate the steps of our construction.
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1. Introduction

Quantization of the WZNW model.The Wess–Zumino–Novikov–Witten (WZNW)
model [50, 46, 51, 41] is one of the most famous examples of a rational conformal
field theory (CFT) [14, 42, 44]. On the classical level it describes some time evolution
for a fieldg(x) mapping pointsx of the circleS1 into a compact Lie groupG. Among the
dynamical variables of the theory, the currentsjr(x) = g−1∂−g, jl = (∂+g)g−1 are of par-
ticular interest. In contrast to the fieldg, the currentsjr andjl are chiral, so that∂+j

r = 0
and∂−jl = 0. Moreover, their Poisson structure is well known to give rise to two com-
muting copies of Kac–Moody (KM) algebras. Even though numerous papers have been
devoted to the quantization of the WZNW-model (e.g. [16, 26, 10, 36, 13, 20, 21, 35]),
a rigorous construction of the continuum theory (which requires field strength renor-
malization) is not fully understood. This motivates the search for lattice regularizations
of the theory (i.e., the circleS1 is replaced by a periodic lattice with lattice spacing
a) which preserve much of the symmetry structure of the continuum WZNW-model.
One may construct appropriate discretizations of the classical model (i.e.,~ = 0) first
and then quantize the classical lattice theory to obtain a well defined discrete quantum
theory (i.e.,~ 6= 0, a 6= 0). Investigation of the latter is expected to provide insights into
the structure of the continuum model. A final step would involve performing the limit
a → 0 while keeping~ 6= 0.

The realization of this program was started in [4, 5, 27] where a lattice regularization
of the Kac–Moody algebra has been proposed. Classical and quantum lattice current
algebras were further investigated in [33, 6]. Our aim here is to extend the analysis of
[6] by introducingchiral vertex operators. In comparison with the current algebra, the
algebras of vertex operators contain (a finite number of) additional generators. Within
these larger algebras we will be able to prepare a discrete analogue of the group valued
field g(x) by combining left- and right chiral vertex operators.
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Quantum symmetry structure of the WZNW model.Let us recall that solutions of the clas-
sical Yang–Baxter equation appear already in the Poisson structure of the classical lattice
current algebras (see [33] and references therein). After quantization, quantum groups
and quantum universal enveloping algebrasG 1 are expected to emerge. Throughout this
paper we will meet (global and local) objects (the monodromiesMα and a discrete field
Nn, see below) whose nature reflects a quantum algebraic structure as well as an object
(the discrete fieldgn) which displays features of a quantum group. The corresponding
deformation parameter is of the formq = exp{iγ~} with γ = π/(k + ν) (wherek is the
level of the KM algebra andν is the dual Coxeter number ofG) and does not depend
on the lattice spacinga. Therefore, the quantum group structures of the continuum and
lattice WZNW model coincide. It is also worth mentioning that some aspects of the
quantum symmetry structure survive reductions to other theories so that part of what
we describe below may be compared with studies of the quantum Liouville and Toda
models [37, 29, 11, 23].

Remarks on lattice current algebras.Before we summarize our results, let us briefly
review the discretization used in [6] for the chiral currentsjl(x), jr(x). Recall that
the latter are Lie-algebra valued fields which depend periodically on the variablex.
Instead of working with these standard variables, we prefer to pass to the fieldsjr(x)
andη(x) = jr(x) − jl(x) and describe their lattice counterparts. Our lattice divides the
circle intoN links of lengtha = 2π/N . So there areN vertices at the pointsx = an
which are numbered byn = 0, . . . , N − 1, N ≡ 0 and thenth link runs from the
(n − 1)st vertex to thenth. We may discretize the fieldη(x) by the simple prescription

ηn :=
∫ (n+ 1

2 )a

(n− 1
2 )a

η(x)dx = aη(na) + O(a2) so that the lattice fieldηn has values in a tensor

product ofN copies of the Lie algebra which are assigned to theN vertices on the
lattice. For the right chiral currentjr(x) the discretization scheme is different. In this
case we encode the information about the field in the holonomies along links, i.e., we
define the lattice fieldjr

n by

jr
n := Pexp(

∫
n

jr(x)dx) .

Here
∫

n
denotes integration along thenth link. By construction, this classical lattice

field jr
n has values in the Lie group. The rather different treatment of the fieldsη(x)

andjr(x) may be understood from the Poisson structure of the classical theory, which
is ultralocal forη(x) but contains terms proportional toδ′(x − y) if the field jr(x) is
involved (see [4, 33, 6]).

When we pass to the quantum theory, the functions on the space of field configu-
rations become operators and generate some non-commutative algebraKN . More con-
cretely, the algebraKN is generated from the quantum lattice fieldsJr

n, Nn which cor-
respond to the classical fieldsjr

n, ηn described above. We review the explicit definition
of lattice current algebrasin Sect. 4. Let us only mention here that a very elegant formu-
lation for commutation relations of the quantum operators can be given in theR-matrix
language.

In mathematical terms, one has to regard the quantum fieldsNn andJn = Jr
n as

objects in the tensor productGa ⊗ KN of the deformed universal enveloping algebra
Ga = Uq(G) with the lattice current algebraKN . We can understand this by looking at

1 For shortness, we will often refer toG asquantum algebra.
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the classical lattice fieldjr
n, for instance. It was constructed as the holonomy of the Lie-

algebra valued fieldjr(x) and may be evaluated with irreducible representations of the
Lie algebra. Let us denote such representations byτ I and introduce the symbolsV I , δI

for their carrier spaces and dimensions, respectively. Then we see thatjn = jr
n gives rise

to δI × δI -matricesjI
n of dynamical variables. Accordingly, the corresponding quantum

operatorsJI
n are matrices of generators forKN which is to say thatJI

n ∈ End(V I )⊗KN .
All these objectsJI

n may be assembled back into oneuniversal elementJn ∈ Ga ⊗KN .
More details will be presented later; we anticipated this heuristic discussion of universal
elements only to prepare for some formulae below.

One of the main aims in [6] was to develop a complete representation theory for
lattice current algebraKN . It turned out thatKN possesses a family of irreducible
∗-representations on vector spacesW IJ

N with labelsI, J running through classes of
finite-dimensional, irreducible representations ofUq(G). Two such labels are needed
because of thetwo chiralities in the current algebra. Furthermore, the algebraKN was
found to admit two families of local co-actions3r

n, 3l
n : KN 7→ Ga ⊗ KN of the Hopf

algebraGa. They may be considered as a special case of the more general lattice fusion
products in [6] and give rise to a notion of tensor products for representations ofKN

(see also [45] for related results).

Vertex operators on a lattice.Product structures in the representation theory are precisely
what is needed to initiate a theory of vertex operators. More technically, we employ the
homomorphisms3r

n, 3l
n in extending the lattice current algebraKN by chiral vertex

operators8r
n, 8l

n so that the followingintertwining relationshold for both chiralities
α = r, l,

A 8α
n = 8α

n 3α
n(A) for all A ∈ KN . (1.1)

The elements8α
n generate an extensionWN of the lattice current algebraKN ⊂ WN .

Since3α
n(A) is an element ofGa ⊗ KN and hence also of the extensionGa ⊗ WN ,

the product on the r.h.s. of (1.1) is well defined for8α
n ∈ Ga ⊗ WN . On the l.h.s.,

A = e ⊗ A ∈ Ga ⊗ KN with e ∈ Ga being the unit element.
Our vertex operators8α

n on the lattice possess a number of properties which are all
closely related to properties of vertex operators in the continuum theory. Let us highlight
some of them without going into a detailed discussion.2

1. Lattice vertex operators8α
n at a fixed lattice site obeyoperator product expansions

of the form

2

8r
n

1

8r
n = Fr 1a(8r

n) and
1

8l
n

2

8l
n = Fl 1a(8l

n) . (1.2)

As usual, the notation
1

8α
n means that we regard the vertex operator8α

n as an element
of Ga ⊗ Ga ⊗ WN with trivial entry in the second tensor factor etc. We have also
used the shorthand1a(8α

n) = (1 ⊗ id)(8α
n) ∈ Ga ⊗ Ga ⊗ WN for the action of

the co-product on the first tensor factor of8α
n. The objectsFα are analogues of the

fusion matrixin the continuum theory. We describe their general properties and, in
particular, their relation with 6j-symbols in Sect. 2.

2 A construction of (non-chiral) vertex operators for infinite open lattices has been suggested in [45]. Some
properties of these vertex operators are similar to what we shall consider here. However, these are different
structures, in particular, because for a finite lattice the current algebraKN has a non-trivial centerC. An action
of our vertex operators on elements fromC will play a crucial role in the theory.
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2. Lattice vertex operators8α
n assigned to different lattice sites obeybraid relations

1

8r
n

2

8r
m = Rr

−
2

8r
m

1

8r
n and

2

8l
n

1

8l
m = Rl

+

1

8l
m

2

8l
n (1.3)

for all 0 ≤ n < m < N . Here the objectsR± play the role of thebraiding matrix
in the continuum theory. Let us add that lattice vertex operators of different chirality
commute for alln, m. Furthermore,8α

n commute withNm for m 6= n and withJm

for m 6= n, n + 1, that is, the vertex operators have local exchange relations with
elements of the current algebra.

3. Lattice vertex operators8α
n, α = r, l, satisfy the followingdifference equation:

8α
n+1 = 8α

n Jα
n+1 . (1.4)

In the naive continuum limit, we haveJα
n = e⊗ e−aJα(x) +O(a2) with x = an and

the difference equation becomes a differential equation which expresses∂x8α(x) as
a (normal ordered) product of8α(x) andJα(x). Such an equation is well known for
the quantized continuum theory.

As one may infer from the third property in this short list, lattice vertex operators (much
like their continuum counterparts) cannot be periodic. Indeed, starting from8α

0 an
iterated application of Eq. (1.4) gives

8α
N ≡ 8α

0 Mα with Mα = Jα
1 . . . Jα

N .

The objectsMα, α = r, l, are calledchiral monodromies. Actually, the lattice rotation
n 7→ n+N gives rise to an inner automorphism of the algebra of vertex operators which
acts trivially on the lattice fieldsJα

n andNn. We show in Sect. 6 that this automorphism
can be generated by conjugation with a unitary elementv. The latter is constant on the
irreducible representation spacesW IJ

N of the lattice current algebraKN and its value

vIJ = e2πi(hJ−hI )

can be expressed in terms of the conformal dimensionshI of the WZNW model. This
leads us to identifyv with the operator exp{2πi(L0 − L̄0)} which generates rotations
by 2π in the continuum theory. In the lattice theoryv is obtained from quantum traces
of chiral monodromiesMα and is related to the ribbon element ofUq(G).

It will be shown in Sects. 3 and 5 that the fieldSa(8l
n)8r

n
3 can be restricted to the

diagonal subspace
⊕

K W K̄K
N . Let us denote this restriction bygn which suggests that

it is a quantum lattice analogue of the group valued fieldg(x) in the WZNW model. In
fact, our analysis will reveal thatgn is a local and quantum group valued field, i.e.

1
gn

2
gm =

2
gm

1
gn (n 6= m) and R

2
gn

1
gn =

1
gn

2
gn R . (1.5)

Moreover,gn turns out to be periodic. In contrast to the chiral currentsjα(x), the time
evolution of the group valued fieldg(x) is described by a nontrivial second order differ-
ential equation. Its discrete analogue is discussed in Sect. 6.

Before we address the full lattice theory we explain some basic constructions in
a simple toy model (cf. Sect. 3). Here one studies the algebra generated by the mon-
odromiesMr, M l instead of the whole (lattice) current algebra and universal (deformed)
tensor operators for the quantum algebraG as simple examples of vertex operators

3 We use the notationSa(8l
n) = (S ⊗ id)(8l

n) with S being the antipode ofG.
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[2, 22, 3, 19]. This finite dimensional toy model may be regarded as a special case of the
discrete WZNW theory whereN = 1 and it describes the non-local degrees of freedom
for an arbitrary numberN of lattice sites. Objects and relations of the toy model admit
for a nice pictorial presentation which, in particular, brings new light into theshadow
world [39].

2. Hopf Algebras and Vertex Operators

2.1. Semi-simple modular Hopf algebras.By definition, a Hopf algebra is a quadruple
(G, ε, 1, S) of an associative algebraG (the “symmetry algebra”) with unit e ∈ G, a one-
dimensional representationε : G 7→ C (the “co-unit”), a homomorphism1 : G 7→ G⊗G
(the “co-product”) and an anti-automorphismS : G 7→ G (the “antipode”). These
objects obey a set of basic axioms which can be found, e.g., in [1, 49]. The Hopf algebra
(G, ε, 1, S) is called quasi-triangular if there is an invertible elementR ∈ G ⊗ G such
that

R 1(ξ) = 1′(ξ) R for all ξ ∈ G,

(id ⊗ 1)(R) = R13R12, (1 ⊗ id)(R) = R13R23.

Here1′(ξ) = P1(ξ)P , with P being the permutation, i.e.,P (ξ ⊗ η)P = η ⊗ ξ for all
ξ, η ∈ G, and we are using the standard notation for the elementsRij ∈ G ⊗ G ⊗ G.

For a ribbon Hopf-algebra one postulates, in addition, the existence of a certain
invertible central elementv ∈ G (the “ribbon element”) which factorizesR′R ∈ G ⊗ G
( hereR′ = PRP ), in the sense that

R′R = (v ⊗ v) 1(v−1) , S(v) = v , ε(v) = 1 (2.1)

(see [48, 40] for details). We want this structure to be consistent with a∗-operation on
G. To be more precise, we require that4

R∗ = (R−1)′ = PR−1P , 1(ξ)∗ = 1′(ξ∗) , v∗ = v−1 . (2.2)

This structure is of particular interest, since it appears in the theory of the quantized
universal enveloping algebrasUq(G) when the complex parameterq has values on the
unit circle [43].

At this point we assume thatG is semi-simple, so that every finite dimensional
representation ofG can be decomposed into a direct sum of finite dimensional, irreducible
representations. From each equivalence class [I] of irreducible representations ofG, we
may pick a representativeτ I , i.e., an irreducible representation ofG on aδI -dimensional
Hilbert spaceV I . Thequantum trace trIq is a linear functional acting on elementsX ∈
End(V I ) by

tr I
q(X) = tr I (Xτ I (w)) .

Here tr I denotes the standard trace onEnd(V I ) with tr I (eI ) = δI andw ∈ G is a
distinguished group-like element constructed from the ribbon elementv and the element
R by the formulaw−1 = v−1 ∑ S(r2

ς )r1
ς , where the elementsri

ς come from the expansion
R =

∑
r1
ς ⊗ r2

ς .

4 We fix ∗ onG ⊗G by (ξ ⊗ η)∗ = ξ∗ ⊗ η∗. Following [43], we could define an alternative involution† on
G ⊗ G which involves a permutation of components, i.e., (ξ ⊗ η)† = η† ⊗ ξ† andξ† = ξ∗ for all ξ, η ∈ G.
With respect to†, 1 becomes an ordinary∗ -homomorphism andR is unitary.
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Evaluation of the unit elementeI ∈ End(V I ) with tr I
q gives thequantum dimension,

dI := tr I
q(eI ), of the representationτ I . Furthermore, we assign a numberSIJ to every

pair of representationsτ I , τJ :

SIJ := ϑ(tr I
q ⊗ trJ

q )(R′R)IJ with (R′R)IJ = (τ I ⊗ τJ )(R′R) ,

with a suitable, real normalization factorϑ. The numbersSIJ form the so-calledS-matrix
S. ModularHopf algebras are ribbon Hopf algebras with an invertibleS-matrix.5

Let us finally recall that the tensor product,τ�×τ ′, of two representationsτ, τ ′ of a
Hopf algebra is defined by

(τ�×τ ′)(ξ) = (τ ⊗ τ ′)1(ξ) for all ξ ∈ G .

In particular, one may construct the tensor productτ I�×τJ of two irreducible represen-
tations. According to our assumption thatG be semi-simple, such tensor products of
representations can be decomposed into a direct sum of irreducible representations.

Among all our assumptions on the structure of the Hopf-algebra (G, ε, 1, S) (quasi-
triangularity, existence of a ribbon elementv, semi-simplicity ofG and invertibility of
S-matrix S), semi-simplicity ofG is the most problematic one. In fact it is violated by
the algebrasUq(G) whenq is a root of unity. It is sketched in [7] how “truncation” can
cure this problem, once the theory has been extended to weak quasi-Hopf algebras [43].

Example (Modular Hopf-algebraZq [6]). We wish to give one fairly trivial example
for the algebraic structure discussed so far which comes from the groupZp. To be more
precise, we consider the associative algebraZq generated by one elementh subject to
the relationhp = e. Co-product, co-unit and antipode for this algebra can be defined by

1(h) = h ⊗ h , S(h) = h−1 , ε(h) = 1 .

We observe thatZq is a commutative semi-simple algebra. It hasp one-dimensional
representationsτ t(h) = qt, t = 0, . . . , p − 1, whereq is a root of unity,q = e2πi/p. We
may construct characteristic projectorsP t ∈ Zq for these representations according to

P t =
1
p

p−1∑
m=0

q−tmhm for t = 0, . . . , p − 1 . (2.3)

One can easily check thatτ t(P s) = δt,s. The elementsP t are employed to obtain a
nontrivialR-matrix:

R =
p−1∑
t,s=0

qtsP t ⊗ P s . (2.4)

It is easy to see that (τ t ⊗ τ s)R = qts. TheR-matrix satisfies all the axioms stated above
and thus turnsZq into a quasi-triangular Hopf algebra. Moreover, a ribbon element is
given byv =

∑
q−t2

P t.
It is natural to introduce a∗-operation onZq such thath∗ = h−1. The relations (2.2)

hold due to the co-commutativity of1, i.e.,1′ = 1, and the propertyR = R′. A direct

5 If a diagonal matrixT is introduced according toTIJ = $δI,Jd2
IτI (v) (with an appropriate complex

factor$), thenS andT furnish a projective representation of the modular groupSL(2, Z).
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computation shows that theS-matrixS is invertible only for odd integerp. Summarizing
all this, the algebraZq, q = exp(2πi/p) is a semi-simple ribbon Hopf-∗-algebra. It is a
modular Hopf algebra for all odd integerp. The reader is invited to check that forZq

the quantum tracetrI
q coincides with the standard one.

2.2. Universal elements andR-matrix formalism.Modular Hopf algebras admit a very
elegantR-matrix description. For its presentation, let us introduce another (auxiliary)
copy,Ga, of G and let us consider theR-matrix as an object inGa ⊗ G. To distinguish
the latter clearly from the usualR, we denote it by

N+ ≡ R ∈ Ga ⊗ G , N− ≡ (R′)−1 ∈ Ga ⊗ G .

At the same time let us introduce the standard symbolsR+ = R andR− = (R′)−1 ∈
Ga ⊗ Ga. Quasi-triangularity of theR-matrix furnishes the relations

1a(N±) =
1

N±
2

N±; R+
1

N+
2

N−=
2

N−
1

N+ R+, (2.5)

R+
1

N±
2

N± =
2

N±
1

N± R+.

Here we use the same notations as in the introduction, and1a(N±) = (1 ⊗ id)(N±) ∈
Ga ⊗ Ga ⊗ G. The subscript a reminds us that1a acts on the auxiliary (i.e., first)
component ofN±. To be perfectly consistent, the objectsR± in the preceding equations
should all be equipped with a lower indexa to show thatR± ∈ Ga ⊗ Ga, etc. We
hope that no confusion will arise from omitting this subscript onR±. The Eqs. (2.5)
are somewhat redundant: in fact, the exchange relations in the second line follow from
the first equation in the first line. This underlines that the formula for1a(N±) encodes
information about the product inG rather than the co-product.6

Next, we combineN+ andN− into one element

N := N+(N−)−1 ∈ Ga ⊗ G .

From the properties ofN± we obtain an expression for the action of1a onN ,

R+ 1a(N ) = R+
1

N+
2

N+
2

N
−1
−

1

N
−1
− =

2

N+
1

N+ R+
2

N
−1
−

1

N
−1
− =

=
2

N+
2

N
−1
− R+

1

N+
1

N
−1
− =

2

N R+
1

N .

(2.6)

As seen above, the formula for1a(N ) encodes relations in the algebraG and implies,
in particular, the following exchange relations forN :

R−1
−

2

N R+
1

N= R−1
− R+1a(N ) = R−1

− 1′
a(N )R+ =

1

N R−1
−

2

N R+ . (2.7)

This kind of relations appeared first in [47] to describe relations inUq(G). One may in
fact also go in the other direction, which means to reconstruct a modular Hopf algebra
G from an objectN satisfying the above exchange relations. To begin with, one has to
choose linear mapsπ : Ga 7→ C in the dualG′

a of Ga. When such linear formsπ ∈ G′
a

act on the first tensor factor ofN ∈ Ga ⊗ G they produce elements inG:

π(N ) ≡ (π ⊗ id)(N ) ∈ G for all π ∈ G′
a .

6 The co-product1 of G acts onN± according to1(N±) = (id ⊗ 1)(N±) = N ′
±N ′′

± ∈ Ga ⊗ G ⊗ G.

HereN ′
± andN ′′

± have the unit elemente ∈ G in the third and second tensor factor, respectively.



Vertex Operators – From a Toy Model to Lattice Algebras 95

π(N ) ∈ G will be called theπ-component ofN or just component ofN . It has been
shown in [9] that the components ofN generate the algebraG, that is, one can reconstruct
the modular Hopf algebraG from the objectN . A more precise formulation is given by
the following lemma.

Lemma 1 ([9]). LetGa be a finite-dimensional, semi-simple modular Hopf algebra and
N be the algebra generated by components ofN ∈ Ga ⊗ N subject to the relations

1

N R+
2

N= R+1a(N ) , (2.8)

where we use the same notations as above. ThenN can be decomposed into a product
of elementsN± ∈ Ga ⊗ N , N = N+N

−1
− , such that

1(N ) ≡ N ′
+ N ′′ (N ′

−)−1 ∈ Ga ⊗ N ⊗ N ,

ε(N±) ≡ e ∈ Ga, S(N±) ≡ N−1
± ∈ Ga ⊗ N , N∗

± ≡ N∓

define a Hopf-algebra structure onN . Here, the action of1, ε, S on the second tensor
component ofN, N± is understood.N ′

+, N ′
− andN ′′ are regarded as elements ofGa ⊗

G ⊗ G with trivial entry in the third and in the second tensor factors, respectively. As a
Hopf algebra,N is isomorphic toGa.

There is another object, similar toN , that is equally natural to consider and that will
appear later in the text,

Ñ := N−1
+ N− ∈ Ga ⊗ G .

Its properties are derived in complete analogy with our treatment ofN ,

R− 1a(Ñ ) =
1

Ñ R−
2

Ñ , R−1
+

1

Ñ R−
2

Ñ=
2

Ñ R−1
+

1

Ñ R− . (2.9)

An appropriate version of Lemma 1 establishes an isomorphism between the algebraÑ
generated by components of̃N and the algebraGop. The latter stands for the quantum
algebraG with opposite multiplication, i.e., elementsξ, η ∈ Gop are multiplied according
to ξ · η := ηξ.

Observe that property (2.2) implies thatN∗ = Ñ . We wish to rewrite this simple
formula for the action of∗ onN in a more sophisticated way which proves to be useful
in the sequel. For this purpose, let us introduce an elementS ∈ Ga ⊗ G as follows

S := N+ 1(κ) (κ ⊗ κ)−1 = N− 1(κ−1) (κ ⊗ κ) , (2.10)

whereκ is some central square root of the ribbon elementv ∈ G, i.e., κ2 = v andκ
commutes with allξ ∈ G. The two expressions forS given in (2.10) are equivalent due
to (2.1). It is easy to check that

S∗ = S , S′ ≡ PSP = S−1 . (2.11)

Now we are able to rewrite the∗-operation onN andÑ with the help ofS:

N∗ = S−1 N−1 S , Ñ∗ = S Ñ−1 S−1 . (2.12)
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Example (The universal elements forZq). The notion of universal elements can be il-
lustrated with the example ofZq. The elementsN± ∈ Ga ⊗ G are constructed from the
R-matrix (2.4):N± =

∑
t,s q±ts P t⊗P s =

∑
s P s⊗h±s and henceN =

∑
s P s⊗h2s.

The functorial properties (2.5), (2.8) can be verified by using the obvious identity
1(P s) =

∑
k P k ⊗ P s−k. In order to make these properties more transparent, we

introduce an Hermitian operator̂p such thath = qp̂. It follows from the definition ofτs

thatτ s(p̂) = s and that the co-product, antipode and co-unit act onp̂ according to

1(p̂) = p̂ ⊗ e + e ⊗ p̂ , S(p̂) = −p̂ , ε(p̂) = 0 .

In these notations, the characteristic projector (2.3) acquires the form

P s = 1
p

∑
m qm (p̂−s) and the universal elementsN±, N, Ñ are given by

N± = q± p̂ ⊗ p̂ , N = q2 p̂ ⊗ p̂ , Ñ = q−2 p̂ ⊗ p̂ . (2.13)

These expressions simplify the task of checking the functoriality relations in (2.5),

1a(N±) = q±(1⊗id) p̂ ⊗ p̂ = q± (p̂ ⊗ e+e ⊗ p̂) ⊗ p̂ =
1

N±
2

N± .

Observe that the ribbon elementv =
∑

s q−s2
P s can be written asv = q−p̂ 2

and hence

we may chooseκ = q− 1
2 p̂ 2

. A simple calculation givesS = e ⊗ e for the elementS
defined in (2.10). Thus, formulae (2.12) simplify forZq and becomeN∗ = N−1 and
Ñ∗ = Ñ−1.

2.3. Vertex operators and their structure data.Our next aim is to recall the theory of
tensor operators for a semi-simple modular Hopf algebraG. To this end, we combine
the carrier spacesV I of its finite dimensional irreducible∗-representationsτ I into the
model spaceM = ⊕IV

I . Each subspaceV I ⊂ M appears with multiplicity one. The
model spaceM comes equipped with a canonical action of our modular Hopf algebra
so that we can think ofG as being contained in the associative algebraV = End(M) of
endomorphisms onM. Let us also introduceC ⊂ V to denote the center ofG ⊂ V and
e for the unit element ofV.

Definition 1 ((Vertex operator)). An invertible element8 ∈ Ga ⊗ V is called avertex
operatorfor G, if

1. 8 intertwines the action ofG on the model spaceM in the sense that

ξ 8 = 8 1′(ξ) for all ξ ∈ G . (2.14)

Hereξ = e ⊗ ξ on the l.h.s. and1′(ξ) = P1(ξ)P on the r.h.s. are both regarded as
elements inGa ⊗ V.

2. 8 obeys the following generalized unitarity relation

8∗ = S−18−1 = κaκN−1
+ 8−1κ−1 , (2.15)

whereS ∈ Ga ⊗ G was defined in (2.10)–(2.11). On the r.h.s.,κ±1 = (e ⊗ κ±1) and
κa = (κ ⊗ e), so that all these factors are elements ofGa ⊗ V.

Invertibility of 8 means that there exists an element8−1 ∈ Ga ⊗ V such that8 8−1 =
e ⊗ e = 8−18.
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Since Definition 1 is fundamental to what follows below, let us discuss it in more
detail. In Eqs. (2.14)–(2.15) it would be possible to replace1′ by 1 and at the same
timeS byS−1. We shall meet elements8 with such properties later and call them vertex
operators as well.

The relation (2.14) describes thecovariance propertyof 8. It means that8 is
a universal tensor operatorfor G (see, e.g., [43]). More precisely, we may eval-
uate the element8 ∈ Ga ⊗ V with representationsτ I of G to obtain matrices
8I = (τ I ⊗ id)(8) ∈ End(V I ) ⊗ V. The rows of these matrices form tensor ope-
rators which transform covariantly according to the representationτ I of G. The relation
(2.14) may be rewritten in theR-matrix formalism of Subsect. 2.2 (see [6], where a
similar calculation was discussed) as follows:

1

N±
2

8 =
2

8R±
1

N± or
1

N
2

8 R− =
2

8 R+
1

N . (2.16)

These relations are equivalent [17] to the definition of deformed tensor operators in terms
of generalized adjoint actions ofG which is often used in the theory of (q-deformed)
tensor operators (see, e.g., [15]).

Our formula (2.15) for the∗-operation on8 certainly deserves a more detailed
explanation.7 Both expressions we have provided describe8∗ in terms of8−1. Using
the intertwining relation (2.14) one concludes that the conjugated vertex operator obeys
a transformation law which differs from the covariance properties of the inverse8−1:

8−1ξ = 1′(ξ) 8 while 8∗ ξ = 1(ξ) 8∗ .

The second relation follows from our assumption (2.2) on the behaviour of the co-product
under conjugation. Comparison of the two transformation laws motivates to multiply
8−1 with a factorN−1

+ so that we obtain two objects with identical covariance properties,
namely8∗ andN−1

+ 8−1. In addition, the operation∗ is supposed to be an involution,
i.e., (8∗)∗ = 8. This requires to dress the operatorN−1

+ 8−1 with factors ofκ as we did
in the second expression for8∗ in (2.15). All these factors can be moved to the left of
8−1 with the help of Eq. (2.14), so that8∗ = S−18−1. The identity (8∗)∗ = 8 holds
then as a consequence of (2.11).

Suppose for the moment that we are given a vertex operator8 in the sense of our
Definition 1. Then we can use it to construct the followingstructure dataof 8,

F :=
2

8
1

8 1a(8−1) ∈ Ga ⊗ Ga ⊗ V, (2.17)

σ(f) := 8 (e ⊗ f) 8−1 for all f ∈ C ⊂ V , (2.18)

D := 8 N 8−1 ∈ Ga ⊗ V. (2.19)

As they are defined, the last tensor components ofF, D andσ(f) belong to the algebra
V. However, with the help of relation (2.14) and standard axioms of Hopf algebra it is
easy to see thatF, D andσ(f) commute with all elementsξ ∈ G ⊂ V and hence that
F ∈ Ga ⊗ Ga ⊗ C while σ(f), D ∈ Ga ⊗ C. Before we give a comprehensive list of
properties of the structure data, we introduce some more notations,

R± ≡ F ′ R± F−1 ∈ Ga ⊗ Ga ⊗ C and (2.20)

1F (ξ) ≡ F (1(ξ) ⊗ e) F−1 ∈ Ga ⊗ Ga ⊗ C. (2.21)

7 ∗-operations of a similar form have appeared in [43, 3, 7].
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HereF ′ = (P ⊗ e)F (P ⊗ e). As a consequence of Eqs. (2.17)–(2.18) and our definition
(2.20) we obtain the following exchange relations for vertex operators:

R±
2

8
1

8 =
1

8
2

8 R± , R±
2
σ

1
σ (f) =

1
σ

2
σ (f) R± . (2.22)

It is also worth noticing that one may think ofR and1F as being obtained fromR and
1 through a twist withF in the sense of Drinfeld [25].

Proposition 1 (Properties of the structure data). Let the structure data be defined as
in Eqs. (2.17)–(2.19). Then it follows from Definition 1 that

1. the elementD ∈ Ga ⊗ C may be expressed in terms ofσ and the ribbon elementv so
that

D = vav−1σ(v) . (2.23)

Hereva = (v ⊗ e) ∈ Ga ⊗ C andv = (e ⊗ v) ∈ Ga ⊗ C, that is, we denote the ribbon
element byva andv when it is regarded as an element ofGa or C, respectively.

2. The elementsF, R± ∈ Ga⊗Ga⊗C andD ∈ Ga⊗C together with the homomorphism
σ : C → Ga ⊗ C obey the following set of relations:

(e ⊗ F )
(

(id ⊗ 1a)(F )
)

=
3
σ (F )

(
(1a ⊗ id)(F )

)
, (2.24)

1

D R− = R+
2
σ (D), R−

2

D =
1
σ (D) R+ , (2.25)

2
σ

1
σ (f) = 1F (σ(f)) for all f ∈ C, (2.26)

R±,12
2
σ (R±,13) R±,23 =

1
σ (R±,23) R±,13

3
σ (R±,12). (2.27)

The symbol
2
σ (D) denotes(id ⊗ σ)(D) ∈ Ga ⊗ Ga ⊗ C and

1
σ (D) = (P ⊗ e)

2
σ (D)

(P ⊗ e) with P being the permutation. Similar conventions apply to Eqs. (2.24),
(2.27).

3. The behaviour of the structure data with respect to the∗-operation is given by

F ∗ = SaF−1 with Sa = (R+1(κ) (κ ⊗ κ)−1) ⊗ e ∈ Ga ⊗ Ga ⊗ C ,

R∗
± = R−1

± , D∗ = D−1, (2.28)

σ(f)∗ = σ(f∗), (1F (ξ))∗ = 1F (ξ∗),

for all ξ ∈ G andf ∈ C. It means, in particular, thatD, R± are unitary whileσ, 1F

act as∗-homomorphisms.

A proof of the main statements can be found in Appendix A.1. It should be mentioned
that some of the relations given in Proposition 1 have appeared in the literature before.
Equation (2.27) is probably the most characteristic in our list as it generalizes the usual
Yang–Baxter equation. It appeared first in connection with the quantum Liouville model
[37]; later some universal solution for Eq. (2.27) in the case ofG = Uq(sl(2)) has
been found [11]. More recently in [12], the elementsF andR and their relations were
reinterpreted in the language of quasi-Hopf algebras [25]. As we remarked already,F
may be regarded as a twist and it follows from Eq. (2.24) that the twisted co-product

1F is quasi-coassociative with co-associatorφ =
3
σ (F12) F−1

12 . The latter can be used to
rewrite Eq. (2.27) as a quasi Yang–Baxter equation (more details are discussed, e.g., in
[12, 18]).
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Relations (2.19), (2.25) and the first equation in (2.22) have been introduced in [2]
in a description of deformed cotangent bundlesT ∗

q G. There, an objectN was defined
in terms of8 andD through Eq. (2.19). The relation (2.25) allowed to derive exchange
relations forN which guaranteed that coordinate functions for the fibers ofT ∗

q G could
be obtained fromN .

We shall see later that the equations in Proposition 1 have a number of important
implications for the lattice theories. Reversing this logic, many of the relations in Propo-
sition 1 were conjectured as natural properties of a coordinate dependent braiding matrix
in the continuum WZNW-model [26, 20, 21].

2.4. Gauge transformations of vertex operators.There exists a large gauge freedom in
the choice of vertex operators8. In fact, one may replace8 7→ 38 with 3 ∈ Ga ⊗ C
being invertible and unitary. This transformation does not change the general properties
(2.14)–(2.15) of vertex operators but certainly effects their structure data. Namely, after
the action of3 on8 the initial structure data transform into the following ones:

F 7→ 2

3
2
σ (3) F 1a(3−1), D 7→ 3 D 3−1,

σ(f) 7→ 3 σ(f) 3−1 for all f ∈ C,

where
2
σ (3) = (id ⊗ σ)(3) ∈ Ga ⊗ Ga ⊗ C, as before. One may reduce such a gauge

freedom by additional requirements on the structure data or on the vertex operators. For
instance, the gauge freedom allows to normalize the vertex operators in the following
sense. Consider the elementw := εa(8) ≡ (ε ⊗ id)8 ∈ V, whereε : G 7→ C stands for
the co-unit ofG. An application of the Hopf algebra axiom (ε ⊗ id)1 = id to (2.14)
furnishes the identityξw = wξ and hencew ∈ C. From this and Eqs. (2.18)–(2.19) we
conclude that

(ε ⊗ id)D = e , (ε ⊗ id)σ(f) = f for all f ∈ C .

Moreover, (2.15) implies unitarity ofw (observe that (ε ⊗ id)(S) = e). Therefore, we
can perform the gauge transformation8 7→ (e ⊗ w−1)8, which does not changeσ and
D but normalizesF and8 so that, without loss of generality, we may assume

εa(8) = e ∈ C , (id ⊗ ε ⊗ id)F = (ε ⊗ id ⊗ id)F = e ⊗ e ∈ Ga ⊗ C .

The normalization ofF follows from the normalization and operator product expansion
of 8 with the help of (ε ⊗ id)1 = id = (id ⊗ ε)1. It also leads to the identities
(ε ⊗ id)R± = (id ⊗ ε)R± = e ⊗ e.

Finally, let us notice that multiplication of vertex operators8 by elementf ∈ Ga ⊗G
from the right, i.e.,8 7→ 8F, corresponds to twisting the co-product ofG. 8 Trans-
formations of this kind relate vertex operators8q = 81Fq for the deformed universal
enveloping algebrasUq(G) with unitary vertex operators81 of the undeformed algebras
U (G) [25].

2.5. On the construction of vertex operators.So far, we have considered the vertex
operators as given objects. In the spirit of Lemma 1, however, we can reverse our approach
and think of them as being defined through Eqs. (2.17)-(2.19) with an appropriate set of
structure data. This is made more precise in the following proposition.

8 The objectF should not be confused with ourF ∈ Ga ⊗ Ga ⊗ C. We use similar letters mainly for
historical reasons.
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Proposition 2 (Reconstruction of8 from structure data). For a modular Hopf alge-
bra G ∼= Ga with centerC, let F ∈ Ga ⊗ Ga ⊗ C and a homomorphismσ : C → Ga ⊗ C
be given. Define the elementsD ∈ Ga ⊗ C, R± ∈ Ga ⊗ Ga ⊗ C through Eqs. (2.23),
(2.20), respectively, and suppose thatF, σ (together withD, R±) satisfy the relations
(2.24)–(2.28). Then there exists a vertex operator8 ∈ Ga ⊗ V for G such that

2

8
1

8 = F 1a(8) , 8 f = σ(f) 8 . (2.29)

In particular, the invertible element8 ∈ Ga ⊗ V has the properties (2.14)–(2.15) and
the algebraV generated by its components is associative.V may be identified with the
algebra of operators on the model spaceM =

⊕
I V I , as before.

Proof. Let us only sketch the proof since it is based on the same computations that are
involved in the proof of Proposition 1. The construction of8 starts from Eqs. (2.29). In
fact, one can use them to build an abstract algebraṼ which is generated by components
of an object8 ∈ Ga ⊗ Ṽ and elements inC such that the two relations (2.29) hold.
The properties (2.24), (2.26) ensure this algebra to be well defined and associative. Due
to Eqs. (2.28),̃V admits a consistent∗-operation which makes8 unitary in the sense
of Eq. (2.15). In the next step, an elementN ∈ Ga ⊗ Ṽ is defined by Eq. (2.19). With
the help of Eqs. (2.25) one proves thatN obeys the relations (2.8), (2.16) and hence
thatṼ containsG as a subalgebra. This subalgebra is finally used to analyze a concrete
representation of̃V and to show that̃V ∼= V = End(M); hence, components of8
become operators on the model spaceM.

Let us apply Proposition 2 to the example ofG ∼= Uq(G). To this end we need
to define appropriate candidates forF andσ which is achieved with the help of the
Clebsch–Gordan mapsC[TL|S] : V T ⊗ V L → V S and the 6j-symbols{ . . .

. . .
} of

Uq(G). Within the spaceV L of highest weightL, we fix a basis of eigenvectorseL
λ for

the Cartan subalgebra with eigenvaluesλ and denote the associated Clebsch–Gordan
coefficients by[ T L S

ϑ λ ς
]. Now defineF, σ such that

FTL = (τT ⊗ τL)(F ) and σL(p̂) = (τL ⊗ id)(σ(p̂)) have matrix elements

FTL
ϑλ,ϑ′λ′ =

∑
S,ς

{ T L Sp̂ p̂+ϑ+λ p̂+λ
}∗ [ T L S

ϑ′ λ′ ς
], (2.30)

σL(p̂)λ,λ′ = (p̂ + λ) δλ,λ′ . (2.31)

Herêp is arank(G)-dimensional vector of elements inC with τK(p̂) = K. Other notations
and conventions are explained in Appendix A.2.

Proposition 3. (Vertex operators forUq(G)) There exist vertex operators8q for the
deformed universal enveloping algebrasUq(G) such that

2

8q

1

8q = F 1a(8q) , 8q f = σ(f) 8q .

HereF is built up from the6j-symbols and the Clebsch–Gordan maps ofUq(G) as in
Eq. (2.30) andσ is given by (2.31).
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The statement follows directly from Proposition 2 once the relations (2.24)–(2.28)
have been checked to hold forF, σ. The latter is done in Appendix A.2. Let us mention
that formulae similar to (2.30) were considered in [12, 18].

2.6. Vertex operators forZq. To conclude our discussion of vertex operators, let us
provide an explicit formula for8 in our standard exampleG = Zq. Let us fix a set of
normalized basis vectors|s〉, s = 0, . . . , p − 1, for the one-dimensional carrier spaces
V s of the representationsτs. They span thep-dimensional model spaceM =

⊕
s V s.

On this space one can introduce a unitary operatorQ̂ ∈ End(M) by

Q̂ |p − 1〉 = |0〉 and Q̂ |s〉 = |s + 1〉
for all s = 0, . . . , p − 2. This operator obeys Weyl commutation relations with the
generatorh ∈ Zq, i.e.,q Q̂ h = h Q̂. With the help ofQ̂ and the characteristic projectors
P s introduced in Subsect. 2.1 we are able to define8:

8 :=
∑

s

P s ⊗ Q̂s =
1
p

∑
s,t

q−stht ⊗ Q̂s ∈ Ga ⊗ End(M) .

It follows from the unitarity ofQ̂ and the Weyl relations of̂Q andh that8 obeys all the
defining properties of a vertex operator (as we explained in Subsect. 2.2, the elementS
in Eq. (2.15) becomes trivial forG = Zq). One may then compute the structure data. To
this end it is convenient to employ the operatorp̂ introduced in Subsect. 2.2 such that

h = qp̂. Since the commutative algebraZq is isomorphic to its centerC, all elements in
Zq can be regarded as elements ofC and we use our standard notational conventions

whenever we do so, in particular we shall useh = qp̂ for h, p̂ ∈ C. We also introduce

an anti-Hermitian operator̂ς by Q̂ = eς̂ , so that the Weyl relations for̂Q andh imply
[ p̂ , ς̂ ] = e. Within these notations our basic objects look as follows:

h = qp̂ ∈ G , v = q−p̂ 2 ∈ C , 8 = ep̂ ⊗ ς̂ ∈ Ga ⊗ End(M) .

Now expressions for the structure data may be obtained by short computations,

F = e ⊗ e ⊗ e , σ(qp̂) = h−1 ⊗ qp̂ = q−p̂ ⊗ e+e ⊗ p̂ , D = q−2 (̂p2 ⊗ e−p̂ ⊗ p̂)

andR± = qp̂ ⊗ p̂ ⊗ e.
Let us remark that, although the example of vertex operators forZq is fairly trivial, it

nevertheless shares some features with the case ofG = Uq(G). Indeed, the ribbon element

of Uq(G) is given byv = q−p̂ (p̂+ρ) [25], wherep̂ ∈ C⊗r is ar = rank(G)-dimensional
vector such thatτK(p̂) = K andρ is the sum of the positive roots. Our above formula
(2.31) means that

σ(p̂) = Ĥ ⊗ e + e ⊗ p̂ , D = (χ ⊗ e) · q−2Ĥ⊗p̂ ,

whereĤ is a vector of elements in the Cartan subalgebra such thatĤeL
λ = λeL

λ and
the elementχ ∈ G = Uq(G) can be worked out easily with the help of Eq. (2.23). Such
expressions, or special cases thereof, may be found in [23, 20, 2, 21, 18]). The element
F and the vertex operators8 are certainly quite non-trivial forUq(G) (for some explicit
examples see [33, 22, 19, 18]).
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3. A Toy Model for the Discrete WZNW Theory

In the rest of this paper we shall apply the theory of modular Hopf algebras and their
vertex operators to construct and investigate the lattice WZNW-model. We start with
a simpletoy modelfor which the lattice consists of only one site and one edge (see
Fig. 1). When we discuss the general notion of lattice current algebras in Sect. 4, we
shall understand that they contain chiral observablesM (thechiral monodromies) being
assigned to the edge.

��
��rM 8

Fig. 1. Single-vertex lattice. Chiral observablesM are assigned to the edge while chiral
vertex operators8 sit on the vertex

3.1. Properties of chiral vertex operators.Later in the text we shall find that the global
chiral observableM in the lattice current algebra obeys the following relation

2

M R+
1

M = R−1a(M ) , (3.1)

whereR±, 1a are attributes of the modular Hopf algebraG as before. Components of
M generate an algebraJ with center denoted byC.

Equation (3.1) reminds us of the defining relation (2.6) for the universal elementN ,
which contains all the information about the structure ofG. Indeed, the only difference
is that theR+ on the l.h.s. of Eq. (2.6) has been replaced byR−. A short computation
reveals that we can pass from Eq. (3.1) to (2.6) by rescalingM with the ribbon element
va = (v ⊗ e) ∈ Ga ⊗ G. This implies thatN 7→ vaM provides an isomorphism of the
algebrasG andJ . In particular, the commutation relations forM ,

R−1
±

2

M R+
1

M =
1

M R−1
−

2

M R∓ (3.2)

coincide with Eqs. (2.7) for the elementN . The isomorphism ofJ andG certainly
implies that there is a∗-operation onJ given by the formula (2.12) withN replaced by
M (notice that the factorva is unitary). The lattice theories, however, choose a different
conjugation which we discuss in Subsect. 3.3 below.

Now let us introduce a vertex operator8 for J ∼= G. It will be calledchiral vertex
operatorof the toy model and its properties can be copied from the relations (2.14)
-(2.19) when we keep in mind to replaceN by vaM ,

η 8 = 8 1′(η),
1

M
2

8 R− =
2

8 R+
1

M, (3.3)
2

8
1

8 = F 1a(8), R±
2

8
1

8 =
1

8
2

8 R±, (3.4)

D 8 = va8 M, 8 f = σ(f) 8 for all f ∈ C. (3.5)

Here η ∈ J , C stands for the center ofJ , and we used the same notations as in
the previous section. The components of8 ∈ Ga ⊗ V give rise to thealgebraV of
chiral vertex operators. Together with components ofM , they act on the model space
M =

⊕
I V I .
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We refer to the first equation in (3.4) asoperator product expansions(OPE) for8
and callF the universal fusion matrix. The second formula in (3.4) follows from the
operator product expansions; it describesbraid relationsfor the chiral vertex operators
and hence leads to interpretR± as thebraiding matrixof our model.9

There exists a nice pictorial presentation for the described algebraic structure. Def-
initions for the basic objects – except fromD, M – are given in Fig 2. Pictures forM
andD may, in principle, be constructed with the help of Eq. (2.23), Eqs. (3.5) and an
appropriate presentation of the ribbon element. From the basic blocks we can built up
the equations (3.3)–(3.5) as in Fig 3. All these pictures are separated by a thick solid
line into left and right halves with dotted lines appearing on the left side while thin solid
lines exist only on the right side. Our graphical rules are the same as in [39], and, in
their terminology, the dotted lines may be said to live in theshadow world.
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Fig. 2. Graphical presentation of our basic objects. Pictures forD andM exist as well, but they are more
complicated (cf. remarks in the text)

3.2. Second chirality.What we have discussed so far will be relevant for right chi-
ral objects in the discrete WZNW model. Now we have to describe an analogous
construction for the left chiral sector of the theory. To distinguish the two chiral-
ities, we mark the objects of the previous subsection by an extra indexr so that
Mr = M, 8r = 8, Fr = F, σr = σ . . . etc. Their left chiral counterparts will have
an indexl.

To introduce left chiral vertex operators8l we follow the same strategy as in the
previous subsection. Namely, we postulate algebraic relations for an objectM l (which
will be justified in Sect. 4) and use them as the basic input for our left chiral theory. So
let us assume that we are given some objectM l such that

1

M
l R−

2

M
l = R+ 1a(M l) . (3.6)

The algebra generated by components ofM l will be denoted byJ l and we use the
symbolCl for its center.

It is easy to see that the properties ofv−1
a M l coincide with those of the element

Ñ introduced in Subsect. 2.2, Eq. (2.9). This holds, in particular, for the commutation
relations,

R−1
±

1

M
l R−

2

M
l =

2

M
l R−1

+

1

M
l R∓ . (3.7)

9 This will become clearer in the full lattice theory where braid relations of vertex operators assigned to
different sites contain onlyR± and the factorR± is absent. Observe also that in the quantum non-deformed
limit, i.e., γ → 0, ~ 6= 0, q = ei~γ → 1, theR-matrix R± approachese ⊗ e whereas the limit ofR± is
non-trivial (cf. also [2, 19]).
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Fig. 3.Pictorial presentation of some basic relations. Only the left equations in (33), (34) and the right equation
in (35) are depicted. The figure in the lower right corner means thatf ∈ C is central inG. More rules are
explained in the text.

Thus, the algebraJ l is isomorphic to the algebra generated by components ofÑ , i.e.,
to Gop ( op means the opposite multiplication, cf. Subsect. 2.2).

Since Eqs. (3.6)–(3.7) differ from the properties ofMr, the relations for the left chiral
vertex operators will differ from those we had in the right chiral sector. The consistent
definition of the left vertex operators is provided by the following list of fundamental
relations:

η 8l = 8l 1(η),
1

8l R−
2

M
l =

2

M
l

1

8l R+, (3.8)
1

8l
2

8l = Fl 1a(8l), Rl
±

1

8l
2

8l =
2

8l
1

8l R±, (3.9)

Dl 8l = v−1
a 8l M l, 8l f = σl(f) 8l for all f ∈ Cl. (3.10)

Components of8l ∈ Ga ⊗V l generate the algebraV l of left chiral vertex operators and
act on the left model spaceMl ∼= ⊕

I V I . Starting from the defining equation (3.6) for
M l one may check that the exchange relations (3.8) describe a consistent transforma-
tion law of the vertex operators8l. It is then clear that the left vertex operators obey
Eqs. (3.9)–(3.10) with some appropriate structure dataFl, σl, Dl, Rl

±. The consistency
relations for the left structure data can be worked out in analogy to our discussion of
Proposition 1. For more detailed explanations see Appendix A.3.

Let us now combine the two chiral theories by constructing their tensor product so
that all operators act on the spaceMl ⊗Mr with trivial action of the right chiral objects
on the first tensor factor and vice versa. In terms of exchange relation this corresponds
to

1

8r
2

8l =
2

8l
1

8r,
1

M
r

2

M
l =

2

M
l

1

M
r, (3.11)

1

8r
2

M
l =

2

M
l

1

8r,
1

8l
2

M
r =

2

M
r

1

8l. (3.12)



Vertex Operators – From a Toy Model to Lattice Algebras 105

Components of the chiral vertex operators8l, 8r generate an algebraW = V l ⊗ Vr.
Although this combination of chiral theories appears to be quite trivial, it sets the stage
for the construction of the quantum group valued fieldg that we are about to discuss in
Subsect. 3.4.

Before we get there, let us explain how to incorporate our new left chiral objects into
the graphical presentation discussed at the end of the previous subsection. The pictures
for the left chiral theory are simply mirror images of those in Figs 2, 3, that is, left chiral
objects have their dotted lines on the right side and thin solid lines on the left side of the
thick solid line. To present the tensor product of the left- and right theory, we draw all
objects into the same pictures. Now there are dotted and solid lines on both sides. If we
add the rule that these lines of different style do not interfere, we obtain commutativity
of the two chiralities as expressed in Eqs. (3.11)–(3.12).

3.3.∗-operation for chiral vertex operators.In principle, a∗-operation forM l, Mr and
the associated vertex operators could be introduced along the lines of Sect. 2. But as
we indicated the lattice models choose a slightly different conjugation. Its description
requires to introduce a new object.

By definition, the models spacesMl, Mr carry an action of the modular Hopf-
algebraG. With the help of the co-product1 this gives rise to a canonical action ofG
on the tensor productMl ⊗ Mr and hence to an embeddingι of the quantum algebra
G into the algebraW = V l ⊗ Vr of chiral vertex operators. For the exchange relations
of ι(ξ) and chiral vertex operators, our construction implies:

ι(ξ) 8r = 8r 1′
ι(ξ), ι(ξ) 8l = 8l 1ι(ξ)

for all ξ ∈ G; we used1ι(ξ) = (id ⊗ ι)1(ξ) and similarly for1′
ι. These relations imply

that8l, 8r transform covariantly with respect to our new actionι of G onW. They can
be rewritten in theR-matrix formulation,

1

N±
2

8r =
2

8r R±
1

N±,
1

N±
2

8l =
2

8l
1

N± R± ,

whereN± = (id⊗ι)(R±) ∈ Ga ⊗W. In our pictorial presentation the objectsN± would
appear as over-/under- crossings of thin and thick solid lines. Hence, they have thin solid
lines on both sides of the boundary between the left and the right world. This corresponds
to the fact that components ofN± act nontrivially on both factors inMl ⊗ Mr, that is,
they arenot chiral. The same holds true for the productN = N+(N−)−1.

Now we are prepared to describe the∗-operation which is relevant for the toy model.
To this end, we build an objectSι with the help ofι by Sι = (id ⊗ ι)(S) ∈ Ga ⊗ W
andS ∈ Ga ⊗ G is defined as in Subsect. 2.2. It is used to extend the∗-operation on
G ∼= ι(G) ⊂ W to the algebra of chiral vertex operators:

(8r)∗ = S−1
ι (8r)−1 , (8l)∗ = Sι (8l)−1 .

The first formula looks familiar already and since the exchange relations ofι(ξ) with 8r

coincide with Eq. (2.14), consistency need not to be checked again. The second formula
is a variant of Eq. (2.15) which is adapted to the algebraic properties of the left chiral
theory. To prove that it is consistent one has to modify our discussion in Subsect. 2.3
slightly. We leave this to the reader. It remains to show that the adjoints of8l and8r

commute; this is not obvious at all, sinceSι is not a chiral object. Commutativity of
the adjoints may be seen most easily if we rewrite the adjoints in the form (2.15) which
involves conjugation withκ (which is ι(κ) in our case). Then the desired consistency
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follows from the transformation law of vertex operators under the action ofι(ξ) and the
Yang–Baxter equation (see also [6]).

It follows from Eqs. (3.5), (3.10) that the conjugation acts on the chiral monodromies
Mr, M l according to

(Mr)∗ = S−1
ι (Mr)−1Sι, (M l)∗ = Sι(M

l)−1S−1
ι .

We shall rediscover such a behaviour for the chiral monodromies of the lattice theory in
Subsect. 4.3.

3.4. Quantum group valued fieldg. So far we have reached a good level of understanding
for our right- and left chiral theories which act naturally on the tensor productMl ⊗Mr

of chiral model spaces. In this subsection we would like to have a closer look at the
diagonal subspace

H =
⊕
K

V K̄ ⊗ V K ⊂ Ml ⊗ Mr .

While components ofM l, Mr leaveH invariant, this is certainly not the case for the
vertex operators8l, 8r. Nevertheless, the vertex operators can be combined into a new
objectg which admits restriction to the diagonal subspaceH.

The construction ofg requires careful preparation. Let us begin this with some
remarks on the centerC of G (recall thatCr ∼= Cl ∼= C). First, observe thatC is spanned by
the characteristic projectorsP J of irreducible representationsτJ of G, i.e., by projectors
P J ∈ C which obeyτK(P J ) = δK,J . Notice also that the antipodeS maps the element
PK ∈ C to the characteristic projectorP K̄ ∈ C of the conjugate representationτ K̄ , i.e.,
S(PK) = P K̄ .10

Returning to our toy model, we combine the canonical isomorphismν : Cr → Cl

and action of the antipodeS into a mapSlr : Cr → Cl, Slr(f) = S(ν(f)). With the help
of this map we can characterize the diagonal subspaceH as a subspace generated by all
vectorsφ ∈ Ml ⊗ Mr such thatfφ = Slr(f)φ holds for allf ∈ Cr. In this language, the
restriction toH means to impose the constraintf = Slr(f) for all f ∈ Cr. This constraint
couples the two chiralities and it seems natural to restrict the choice of the left- and
right structure dataFα, σα, Dα, Rα

± at the same time. Notice that they were completely
independent until now, as long as they solved the appropriate consistency relations. So
let us agree to adjust the choice of the structure data for the left chirality to whatever we
use in the right chiral part such that

Fl = S (2)
lr (F ′

r
−1), Dl = S (1)

lr (D−1
r ) , (3.13)

Rl
± = S (2)

lr (Rr
±

′), σl(f) = S (1)
lr (σr ◦ S−1

lr (f)) , (3.14)

with S (n)
lr := (S−1 ⊗ S (n−1)

lr ) and S (0)
lr := Slr, (3.15)

and the prime onFr and Rr
± denotes permutation of the first two tensor factors in

Ga ⊗Ga ⊗C. It is not difficult to show that these formulae give consistent structure data
for the left chiral theory (cf. also Appendix A.3). The motivation for Eqs. (3.13), (3.14)
comes from the construction of the quantum group valued fieldg. So let us define

g := Sa(8l) 8r ∈ Ga ⊗ W , (3.16)

10 Strictly speaking, the conjugate ofτK is obtained with the help of a transposet as tτK ◦ S. The latter
is isomorphic toτ K̄ (this property defines the label̄K).
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whereSa(8l) ≡ (S ⊗ id)(8l). The elementg indeed preserves the constraint which we
discussed above, that is

if f g = Slr(f) g, then g f = g Slr(f) for all f ∈ Cr . (3.17)

Therefore, components ofg map the diagonal spaceH into itself. This remarkable
property is established by a straightforward computation (see Appendix A.4).

To study properties ofg it is helpful to have some knowledge about the objectSa(8l).
Simple applications of the standard Hopf algebra axioms allow to deduce

Sa(8l) ξ = 1ι(ξ) Sa(8l), R+ Sa(
2

8l)
1

M
l =

1

M
l R− Sa(

2

8l), (3.18)

Sa(8l) = (8l)−1θl with θl ∈ Ga ⊗ Cl. (3.19)

Hereξ ∈ J l ∼= G in the first equation,Sa(
2

8l) is a shorthand for (id ⊗ Sa)(
2

8l), and the
relation (3.19) may be regarded as a definition ofθl. The transformation laws of vertex
operators show thatθl commutes withe ⊗ ξ ∈ Ga ⊗ J l, and henceθl ∈ Ga ⊗ Cl. We
can actually give an explicit formula forθl in terms ofFl. If we assume for simplicity
thatεa(8l) = e (cf. Subsect. 2.4), thenθl =

∑
ς f1

ς S(f2
ς ) ⊗ f3

ς , wheref i
ς come from the

expansionFl =
∑

ς f1
ς ⊗ f2

ς ⊗ f3
ς .

Proposition 4 (Properties ofg). Let g denote the object defined in Eq. (3.16) and re-
stricted to the subspaceH. This elementg ∈ Ga⊗End(H) obeys the following relations:

2
g

1
g= 1a(g) , R±

2
g

1
g =

1
g

2
g R±, (3.20)

1

M
r 2

g R− =
2
g R+

1

M
r ,

1

M
l R−

2
g= R+

2
g

1

M
l, (3.21)

M l g = g Mr , v g v−1 = g, (3.22)

where in the last linev = vrv−1
l is a combination of the ribbon elementsvr ∈ Cr and

vl ∈ Cl. Moreover,g is normalized,εa(g) = e, and invertible with inverseg−1 = Sa(g).

Proofs of all these relations are given in Appendix A.4.
Equations (3.20) mean thatg obeys the defining relation of a quantum groupF =

Funq(G). More precisely, components ofg generate the dual of the quantum algebra
G. The elementsMr, M l furnish algebras of left- and right-invariant vector fields for
F and they are related to each other by means of Eq. (3.22). All these equations are
well known in the theory of quantum groups. In more geometric terms, they describe
the deformed co-tangent bundleT ∗

q G [2]. 11

Let us now explain the pictorial presentation of the objectg (see Fig 4). First, recall
that so far left and right chiral objects lived on the same plane but on different sides
of the thick solid line and there was no interaction between them. But if we want to
consider the restriction fromMl ⊗ Mr to the diagonal subspaceH, we have to modify
the rules. Namely, the restrictionf = Slr(f) enforces us to change the topology by gluing
the plane into a cylinder. Then we can join ends of dotted lines from both sides of the
thick solid line and thus combine objects of different chirality. This is demonstrated by
the graphical presentation ofg in Fig. 4 (the dashed line continues the dotted line around

11 Similarly, the algebra generated by components of8r , Mr only, is a deformation of the co-tangent
bundleT ∗B of the Borel subgroup ofG [19].
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the back side of the cylinder and, hence, cannot interfere with any line on the front side).
Fig. 4 also sketches the proof of the operator product expansions ofg in Eq. (3.20).

Before concluding this subsection we would like to compare our construction ofg
with the one discussed in [2]. There, two decompositions ofg into triple products of
elements,g = u Q−1v = u0 Qv0, have been provided. All operators which appear in these
relations act on the diagonal subspaceH. The variablesv0, u0 are chiral observables, i.e.,

u0 ∈ Ga ⊗ J l, v0 ∈ Ga ⊗ J r, and hence they commute with each other:
1
u0

2
v0 =

2
v0

1
u0.

Notice that components ofu0, v0 leave the subspacesV Ī ⊗V I ⊂ H invariant and hence
their actions are, in principle, expressible through the chiral objectsMα (in particular,
u0, v0 are not to be confused with our vertex operators). The exchange relations ofu0
(respectivelyv0) can be controlled only after multiplication withQ ∈ Ga ⊗ End(H).
In fact, the elementsu = u0 Q andv = Q v0 possess the same exchange relations as
our chiral vertex operators. On the other hand, they are certainly not chiral any more
(because chiral vertex operators cannot act onH). In particular,u does not commute
with v. One may think ofu (and similarly ofv) as a left chiral vertex operator dressed
with a right chiral factor which leaves the quadratic relations unchanged and, at the
same time, produces an operator acting onH. Our construction in terms of chiral vertex
operators and the restriction fromM to the diagonal subspaceH is similar to [26, 35].
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Fig. 4. The definition ofg in terms of8r andSa(8l) is shown on the left side. The right side of the figure
is a pictorial proof of the operator product expansion forg (first equation in (3.20))

3.5. Toy model forZq. It is instructive to realize the constructions of the toy model in
the case ofG = Zq. Now we have two commuting copies,hα, α = r, l, of the elementh
(see Subsect. 2.1) generating the chiral algebrasJ α. We can also introduce Hermitian

operatorŝpα such thathα = qp̂α . To introduce the chiral monodromiesMr andM l we
use the expressions (2.13) for the elementsN andÑ . SinceMr andM l differ from
them only by factorsv−1

a andva, we get

Mr = qp̂ 2 ⊗ e+2 p̂ ⊗ p̂r , M l = q−p̂ 2 ⊗ e−2 p̂ ⊗ p̂l . (3.23)
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The reader is invited to verify the functorial properties (3.1), (3.6) for these objects (in
fact, the check repeats the computations performed in Subsect. 2.2). As was explained in
Subsect. 2.2, the elementSι is trivial in the case ofZq, therefore the chiral monodromies
are unitary. The components ofMα act on the model spacesMα.

Next we need to construct the diagonal subspaceH = ⊕V K̄⊗V K . It can be seen from
the explicit formula for the characteristic projectors (2.3) thatSa(P s) = P−s, i.e., the
representation conjugate toτ s is τ−s (wheres is taken modulop, qp = 1). Therefore,
H = ⊕|− s〉 ⊗ |s〉 is a p-dimensional subspace inp2-dimensional spaceMl ⊗ Mr.
Using the operatorŝpα, we can characterize the subspaceH as follows:p̂rφ = −p̂lφ for
all φ ∈ H.

Now we employ the construction for vertex operators which we provided in Sub-
sect. 2.5. LetQ̂α, α = r, l be unitary operators acting onMl ⊗ Mr such that
Q̂r|s′〉 ⊗ |s′′〉 = |s′〉 ⊗ |s′′ + 1〉 andQ̂l|s′〉 ⊗ |s′′〉 = |s′ + 1〉 ⊗ |s′′〉. It is convenient to

introduce also two operatorŝςα by Q̂α = eς̂α . With these notations it is easy to verify
that

8α =
p−1∑
s=0

P s ⊗ Q̂α
s = ep̂ ⊗ ς̂α ∈ Ga ⊗ End(Mα) , α = r, l

are right- and left chiral operators obeying all the properties spelled out in Subsects 3.1
and 3.2, respectively. In particular, theR-matrix commutation relations in (3.3), (3.8) boil

down to Weyl relations:ee ⊗ p̂ ⊗ ς̂α q±2 p̂ ⊗ e ⊗ p̂r = q±2p̂ ⊗ p̂ ⊗ e q±2 p̂ ⊗ e ⊗ p̂r ee ⊗ p̂ ⊗ ς̂α .
Recall that the universalR-matrices in (3.3), (3.8) are regarded as elements inGa ⊗
Ga ⊗ End(H) with trivial entry in the third tensor factor; hence, the factorq±2p̂ ⊗ p̂ ⊗ e

convertsR∓ into R± (cf. Subsect. 2.2).
Now, applying (3.16), we get an explicit expression forg:

g =
p−1∑
s=0

P s ⊗ Q̂r
s Q̂l

−s = ep̂ ⊗ (ς̂r−ς̂l) . (3.24)

This object manifestly maps the diagonal subspace into itself and hence we may regard
g as an element inGa ⊗ End(H). The operator product expansion (3.20) is obvious
(see the analogous computation forN± in Subsect. 2.2). Moreover, the first equation in
(3.22) is again of Weyl-type (notice that here the factorsv∓1

a of Mα are essential):

M l g = q−p̂ 2⊗ e q−2 p̂ ⊗ p̂l ep̂ ⊗ (ς̂r−ς̂l) = q−p̂ 2⊗ e ep̂ ⊗ (ς̂r−ς̂l) q−2 p̂ ⊗ p̂l q2 p̂ 2⊗ e =

= ep̂ ⊗ (ς̂r−ς̂l) qp̂ 2⊗ e q−2 p̂ ⊗ p̂l = ep̂ ⊗ (ς̂r−ς̂l) qp̂ 2⊗ e q2 p̂ ⊗ p̂r = g Mr .

In the last line we used the constraintp̂r = −p̂l valid on the diagonal subspace. To
conclude, we notice that in theZq case the vertex operators and the fieldg are unitary.

4. Review on Lattice Current Algebras

In the previous section we have considered the toy model for the WZNW theory which
certainly did not go much beyond the theory of vertex operators for quasi-triangular
modular Hopf algebras (except that we had two commuting copies of this theory). Vertex
operators for the infinite dimensional current algebras of the WZNW-model depend in
addition on a spatial coordinatex. This brings new locality features into the theory. Our
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aim is to describe them for a lattice regularization of the WZNW-model developed in
[4, 5, 26, 33, 6], where the spatial coordinate assumes the discrete values,x = 2πn/N ,
n = 0, .., N − 1. We begin this discussion with a brief review on lattice current algebras
KN . Our notations are close to those adopted in [6].

4.1. Definition of lattice current algebras.Let us consider a one-dimensional periodic
lattice which consists ofN vertices. It is convenient to enumerate the vertices from 0 to
N − 1 and the corresponding edges from 1 to N as shown below.r r r r rG0 G1 G2 GN−1 GN ≡ G0

J1 J2 JN

Fig. 5. N -vertex periodic lattice. Each site is equipped with a copy of the symmetry algebraG. The discrete
currentsJn are assigned to edges

According to the ideology of [6], the definition of the algebraKN involves two kinds
of objects – those associated with the sites and those associated with the edges. Thenth

site of the lattice is equipped with a copyGn of the algebraG and copies for different
sites commute. In other words,KN containsGn and the whole tensor productG⊗N as
subalgebras. The canonical isomorphism ofG andGn ⊂ G⊗N furnishes the embeddings
ιn : G 7→ G⊗N for n = 0, .., N − 1:

ιn(ξ) = e ⊗ . . . ⊗ ξ ⊗ . . . ⊗ e ∈ G⊗N for all ξ ∈ G ,

where the only nontrivial entry of the tensor product on r.h.s. appears in thenth position.
The definition ofKN also involves generatorsJr

n, n=1, .., N, (the right currents) which
are discrete analogues of the continuum holonomies along the edges (cf. Introduction).

Definition 2 ([6]). The lattice current algebraKN is generated by components of in-
vertible elementsJr

n ∈ Ga ⊗ KN , n = 1, .., N along with elements inG⊗N . These
generators are subject to the following relations :

2

J
r
n

1

J
r
n = R− 1a(Jr) , (Jr

n)∗ = S−1
n (Jr

n)−1Sn−1, (4.1)
1

J
r
n+1

2

J
r
n =

2

J
r
n R+

1

J
r
n+1,

1

J
r
n

2

J
r
m =

2

J
r
m

1

J
r
n for n 6= m, m ± 1 (modN ), (4.2)

ιn(ξ) Jr
n = Jr

n 1′
n(ξ) , 1′

n−1 (ξ) Jr
n = Jr

n ιn−1(ξ) for all ξ ∈ G, (4.3)

ιm(ξ) Jr
n = Jr

n ιm(ξ) for all ξ ∈ G, m 6= n, n − 1 (modN ).

HereR± denote the elementsR± ⊗e ∈ Ga ⊗Ga ⊗KN , Sn = (id⊗ ιn)(S) ∈ Ga ⊗Gn ⊂
Ga ⊗ KN with S defined as in (2.10), and1′

n(ξ) = (id ⊗ ιn)(1′(ξ)), where1′(ξ) =
P1(ξ)P as usual. Invertibility ofJr

n means that there exists an element(Jr
n)−1 ∈

Ga ⊗ KN such thatJr
n(Jr

n)−1 = e ⊗ e = (Jr
n)−1Jr

n.

The lattice current algebraKN contains a subalgebraJ r
N generated by components

of the currentsJr
n only. They are subject to relations (4.1)–(4.2). The full lattice current

algebraKN can be regarded as a semi-direct productG⊗N n J r
N , where the action of

G⊗N onJ r
N is given by the covariance relations (4.3).

Taking into account the quasi-triangularity ofR±, we obtain the following conse-
quence of (4.1)

R±
1

J
r
n

2

J
r
n R∓ =

2

J
r
n

1

J
r
n . (4.4)
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TheseR-matrix relations for the description of the lattice Kac–Moody algebras have
been introduced first in [4]. Following our discussion in Subsect. 2.2, one can introduce
the objectsNn,± = (id ⊗ ιn)(R±) ∈ Ga ⊗ Gn ⊂ Ga ⊗ KN , which obey the standard
relations (2.5). They are used to rewrite the relations (4.3) in the followingR-matrix
form:

1

Nn,±
2

J
r
n =

2

J
r
n R±

1

Nn,± ,
2

J
r
n

1

Nn−1,±= R±
1

Nn−1,±
2

J
r
n . (4.5)

4.2. Left currents.The continuum WZNW model possesses two chiral subalgebras, that
is, along with the (right) currentjr(x) it involves the left currentjl(x) such that left
and right currents commute. A nice feature of the lattice current algebraKN is that it
already contains the second chirality in an encoded form. Indeed, one may introduce the
following new variablesJ l

n ∈ Ga ⊗ KN :

J l
n := v2

a N−1
n−1,+ Jr

n Nn,− . (4.6)

In the notations of Definition 2 they obey (see [6] for details)

1

J
l
n

2

J
l
n = R+ 1a(J l

n), (J l
n)∗ = Sn (J l

n)−1S−1
n−1 , (4.7)

1

J
l
n R−

2

J
l
n+1 =

2

J
l
n+1

1

J
l
n,

1

J
l
n

2

J
l
m =

2

J
l
m

1

J
l
n for n 6= m, m ± 1 (modN ) , (4.8)

1

J
l
n

2

J
r
m =

2

J
r
m

1

J
l
n for all m, n, (4.9)

ιn(ξ) J l
n = J l

n 1n(ξ), 1n−1 (ξ) J l
n = J l

n ιn−1(ξ) for all ξ ∈ G, (4.10)

ιm(ξ) J l
n = J l

n ιm(ξ) for all ξ ∈ G, m 6= n, n − 1 (modN ).

Due to these properties, the objectsJ l
n may be interpreted as left counterparts of the right

currentsJr
n. Notice that there is a manifest symmetry between the defining relations for

the right currents and the properties of left currents. It underlines the fact that left and
right chiralities in the WZNW model appear on an equal footing. In fact, (4.7)–(4.10)
could be regarded as an alternative definition of the lattice current algebraKN .

It also follows thatJ l
N andJ r

N , i.e., the algebras generated by components ofJ l
n and

Jr
n, respectively, are commuting subalgebras inKN andJ r

N is isomorphic to (J l
N )op.

Here the subscriptop means opposite multiplication as before.

4.3. Holonomies and monodromies.The currentsJα
n , α = r, l were defined as dis-

crete analogues of holonomies along thenth edge. Similarly, one may introduce the
holonomies along the link connecting the 0th and thenth sites :

Uα
n := Jα

1 . . . Jα
n , n = 1, . . . , N − 1 . (4.11)

As one might expect, the properties of such holonomies are similar to those of chiral
currents.12 Namely, it is easy to verify that

12 Let us mention here some subtle point in the definition of the lattice current algebra. Notice that relations
(4.4) would not change if we replacedR− by R+ in the definition (4.1). However, this ambiguity disappears
if we demand thatUr

n andJr
n have the same functoriality relation (compare (4.1) and the first equation in

(4.12)). A similar subtlety appears once more in the construction of the left currents. Indeed, we could replace
factorv2

a by va in the definition (4.6); then we would obtain the relation (4.7) withR− instead ofR+. But in
this case functorial properties ofJ l

n andU l
n would be different.
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2

U
r
n

1

U
r
n = R− 1a(Ur

n),
1

U
l
n

2

U
l
n = R+ 1a(U l

n), (4.12)

(Ur
n)∗ = S−1

n (Ur
n)−1S0, (U l

n)∗ = Sn (U l
n)−1S−1

0 , (4.13)

R±
1

U
r
n

2

U
r
n R∓ =

2

U
r
n

1

U
r
n, R±

2

U
l
n

1

U
l
n R∓ =

1

U
l
n

2

U
l
n, (4.14)

1′
0(ξ) Ur

n = Ur
n ι0(ξ), ιn(ξ) Ur

n = Ur
n 1′

n(ξ) for all ξ ∈ G, (4.15)

10(ξ) U l
n = U l

n ι0(ξ), ιn(ξ) U l
n = U l

n 1n(ξ) for all ξ ∈ G, (4.16)

andUα
n commute withιm(ξ) for all m 6= 0, n. However, there is an important difference

between currents and holonomies: since the latter are localized on the chain of edges that
runs from the 0th vertex to thenth, the localization domains of all holonomies overlap.
This is reflected in their mutual exchange relations for 1≤ n < m ≤ N−1:

2

U
r
n

1

U
r
m = R−

1

U
r
m

2

U
r
n,

1

U
l
n

2

U
l
m = R+

2

U
l
m

1

U
l
n . (4.17)

As we have argued in the introduction, holonomies of chiral fields along the whole
circle (i.e., the chiral monodromies) are of particular interest. In the continuum case they
are given bymα = P exp{∮

jα(x)dx}. Monodromies for the quantum lattice theory are
defined by a natural discrete analogue of this formula,

Mα = Jα
1 Jα

2 . . . Jα
N . (4.18)

Simple calculations allow to derive the following properties of the monodromiesMα:

2

M
rR+

1

M
r = R−1a(Mr),

1

M
lR−

2

M
l = R+1a(M l) , (4.19)

(Mr)∗ = S−1
0 (Mr)−1S0, (M l)∗ = S0 (M l)−1S−1

0 , (4.20)

R+
1

U
r
n

2

M
r =

2

M
r R+

1

U
r
n, R−

2

U
l
n

1

M
l =

1

M
l R−

2

U
l
n , (4.21)

1′
0(ξ) Mr = Mr 1′

0(ξ), R±
1

N0,±
2

M
r =

2

M
r R±

1

N0,± , (4.22)

10(ξ) M l = M l 10(ξ),
1

N0,± R±
2

M
l =

2

M
l

1

N0,± R± (4.23)

for all ξ ∈ G andMα commute withιm(ξ) for all m 6= 0.
Now we see that the relations (3.1) and (3.6) which we postulated in the toy model

construction indeed describe properties of the chiral monodromies. Our next aim is
to extend the toy model to the full lattice theory. Recall that the structure data of the
toy model were built from elements in the centerCα of the algebraJ α spanned by
components ofMα. Elements in these algebrasCα are still central in the full lattice
theory. In fact, it follows from (3.2), (3.7) that the algebrasCα are spanned by the
elementscI

α = tr I
qτ

I (Mα), whereτ I runs through irreducible representations ofG,
andτ I (Mα) = (τ I ⊗ id)(Mα) [7]. Equipped with this explicit description ofCα one
concludes from Eqs. (4.21)–(4.23) that the elementscI

α commute withUα
n , Nn,± for all

n and hence they are central elements inKN . Actually, the following stronger statement
holds [6]: the elementscI

α ∈ KN with I running through the classes of irreducible
representations ofG generate the full center of the lattice current algebraKN . This
explains why the structure data for vertex operators on the lattice will be built from the
commuting subalgebrasCα exactly as in the toy model.
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4.4. Current algebra forZq. Let us consider the current algebra in the case ofZq.
The algebrasGn assigned to the sites are generated by the elementshn = ιn(h). As

usual, we can introducêpn such thathn = qp̂n . ForNn,± ∈ Ga ⊗ Gn we haveNn,± =∑
s P s ⊗ h±s

n = q±p̂ ⊗ p̂n (cf. Subsect. 2.2). Next we build the chiral currents

Jr
n =

p−1∑
s=0

q
1
2 s2

P s ⊗ (Ŵ r
n)s, J l

n =
p−1∑
s=0

q− 1
2 s2

P s ⊗ (Ŵ l
n)s (4.24)

from a family of unitary elementŝW r
n andŴ l

n := h−1
n−1Ŵ

r
nh−1

n which obey the following
Weyl-type relations

hn Ŵα
n = q Ŵα

n hn, hn−1 Ŵα
n = q−1 Ŵα

n hn−1 , (4.25)

hm Ŵα
n = Ŵα

n hm for m 6= n, n − 1 ,

Ŵ r
n+1 Ŵ r

n = q Ŵ r
n Ŵ r

n+1, Ŵ l
n+1 Ŵ l

n = q−1 Ŵ l
n Ŵ l

n+1,

Ŵα
n Ŵα

m = Ŵα
m Ŵα

n for m 6= n ± 1 . (4.26)

Since the element (̂Wα
n )p is obviously central for this algebra, we additionally impose

the condition: (̂Wα
n )p = e for all n (which is, in fact, a choice of a normalization).

The algebra generated bŷWα
n is known as a latticeU (1)-current algebra [31, 28].

The relation we have used to obtain the elementsŴ l
n from thehm andŴ r

n is a special
case of formula (4.6) and it implies that̂W l

nŴ r
m = Ŵ r

mŴ l
n for all pairsn, m.

The functorial properties (4.1) and (4.7) of currents (4.24) can be checked in the
same way as we did this for the elementsN± in Subsect. 2.2. The exchange relations
(4.2), (4.5) and (4.8) are again reduced to Weyl relations. SinceSn = e ⊗ e, the chiral
currents are unitary, (Jα

n )∗ = (Jα
n )−1, which is in agreement with the unitarity of̂Wα

n .

To proceed, we introduce anti-Hermitian operators$̂α
n such that̂Wα

n = e$̂α
n .13 In

these notations the commutation relations given above acquire the form:

[ $̂r
m , $̂r

n ] = ln q (δm,n+1 − δm,n−1), [ $̂l
m , $̂l

n ] = ln q (δm,n−1 − δm,n+1) ,

[ p̂m , $̂α
n ] = δm,n − δm,n−1, [ $̂l

m , $̂r
n ] = 0 .

(4.27)
The chiral currents now can be rewritten in the following form:

Jr
n = κ−1

a ep̂ ⊗ $̂r
n = e( 1

2 ln q) p̂ 2⊗ e+p̂ ⊗ $̂r
n , J l

n = κa ep̂ ⊗ $̂l
n = e−( 1

2 ln q) p̂ 2⊗ e+p̂ ⊗ $̂l
n .

(4.28)
Next we can construct the chiral holonomies. For this purpose the variables$̂α

n are
more convenient. Indeed, applying the special case of the Campbell-Hausdorff formula,
eaeb = ea+be

1
2 [a,b] valid if [a, [a, b]] = [ b, [a, b]] = 0, we easily obtain:

Ur
n = q

1
2 p̂ 2 ⊗ e ep̂ ⊗

∑n

k=1
$̂r

k , U l
n = q− 1

2 p̂ 2 ⊗ e ep̂ ⊗
∑n

k=1
$̂l

k .

It is obvious now why relations (4.12)–(4.16) for the holonomies copy those for the
currents. The exchange relations (4.17) are again reduced to Weyl-type relations.

13 Strictly speaking, the algebra generated by$̂α
n andp̂n is larger than one generated bŷW α

n andhn (see,
e.g., [28]). The latter is called the compactified form of the former.
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Proceeding in the same way, we can construct the chiral monodromies asMα =
Uα

N−1J
α
N , which needs again an application of the Campbell-Hausdorff formula. The

result reads

Mr = qp̂ 2 ⊗ e ep̂ ⊗
∑N

k=1
$̂r

k , M l = q−p̂ 2 ⊗ e ep̂ ⊗
∑N

k=1
$̂l

k . (4.29)

Bearing in mind that forZq the quantum trace coincides with the standard one (see
Subsect. 2.1), we conclude from (4.29) that the algebrasCα are generated by exponentials
of the elementŝpα =

∑N
k=1 $̂α

k . Indeed, using the commutation relations given above, it
is easy to verify that these operators commute with all elements of the currents algebra.
Performing a formal replacement

∑N
k=1 $̂α

k → ±(2 lnq) p̂α in(4.29) (the sign depends
on the chirality), we recover the formulae (3.23) of the toy model.

5. Vertex Operators on a Lattice

5.1. Definition ofWN . In Sect. 3 we have considered algebrasJ α andVα, α = r, l
generated by components of the chiral monodromiesMα and the chiral vertex operators
8α, respectively. Both chiralities together were used to generate the algebraW = V l⊗Vr

of our toy model. Below we shall define an algebraWN of vertex operators on a lattice.
For this purpose, we shall replace the algebrasJ α in the definition ofW by their
lattice counterpartsJ α

N . So we assume that we are given the lattice current algebraKN

with centerCl ⊗ Cr (recall thatCα ∼= C ∼= center ofG) and two sets of structure data
Fα, σα, Rα

±, Dα,α = l, r, which obey the standard relations. The last tensor components
of the structure data are regarded as elements in the center of the lattice current algebra
KN , i.e., we haveFα ∈ Ga ⊗ Ga ⊗ Cα ⊂ Ga ⊗ Ga ⊗ KN , etc.

Definition 3. [Algebra of vertex operators on a lattice] The algebraWN is generated
by elements inKN and components of the vertex operators8α

0 ∈ Ga ⊗WN . Generators
Nn, Jα

n ∈ Ga ⊗ KN obey the defining relations (4.1), (4.2) and (4.5) for lattice current
algebras. The elements8α

0 ∈ Ga ⊗Vα ⊂ Ga ⊗WN , α = r, l are subject to the following
conditions:

1. They satisfy operator product expansions and exchange relations with elements in
the centerCl ⊗ Cr ⊂ KN given by

2

8r
0

1

8r
0 = Fr1a(8r

0), 8r
0 fr = σr(fr) 8r

0 , (5.1)
1

8l
0

2

8l
0 = Fl1a(8l

0), 8l
0 fl = σl(fl) 8l

0 . (5.2)

HereFα ∈ Ga ⊗Ga ⊗Cα; σα are homomorphisms fromCα to Ga ⊗Cα andfα ∈ Cα.
Moreover,8α

0 are invertible and vertex operators of different chirality commute:

(8α
0 )−18α

0 = e ⊗ e = 8α
0 (8α

0 )−1, α = l, r,
1

8r
0

2

8l
0 =

2

8l
0

1

8r
0 . (5.3)

2. 8r
0 and 8l

0 are chiral vertex operators for the algebraKN in the sense that the
following exchange relations withJr

n, Nn,± ∈ Ga ⊗ KN hold:



Vertex Operators – From a Toy Model to Lattice Algebras 115

1

J
r
1

2

8r
0 =

2

8r
0 R+

1

J
r
1,

2

8r
0

1

J
r
N =

1

J
r
N

2

8r
0 R− , (5.4)

1

8r
0

2

J
r
n =

2

J
r
n

1

8r
0 for n 6= 1, N,

2

J
r
n

1

8l
0 =

1

8l
0

2

J
r
n for all n , (5.5)

1

N0,±
2

8r
0 =

2

8r
0 R±

1

N0,±,
1

N0,±
2

8l
0 =

2

8l
0

1

N0,± R± , (5.6)

and components ofNm,± commute with components of the vertex operators for
m 6= 0.

3. The∗-operation onKN can be extended toWN by the following prescription

(8r
0)∗ = (S0)−1 (8r

0)−1, (8l
0)∗ = S0 (8l

0)−1 , (5.7)

whereS0 = (id ⊗ ι0)(S) ∈ Ga ⊗ G0 ⊂ Ga ⊗ KN with S ∈ Ga ⊗ G being constructed
by formula (2.10).

Further relations involving left currentsJ l
n and the monodromiesMα follow and will

be spelled out below.

Let us underline once more that the structure data for8α
0 are constructed from

elements in the centerCl ⊗ Cr of KN . This is possible because both algebrasCα are
isomorphic to the center ofG [6] (see our short discussion at the end of Subsect. 4.3).

Next we would like to supplement our definition ofWN by a list of consequences
which follow from the stated relations. They concern exchange relations of chiral vertex
operators with left currentsJ l

n and elementsξ ∈ Gn ⊂ KN ,

2

J
l
1

1

8l
0 =

1

8l
0 R−

2

J
l
1,

1

8l
0

2

J
l
N =

2

J
l
N

1

8l
0 R+ , (5.8)

1

8l
0

2

J
l
n =

2

J
l
n

1

8l
0 for n 6= 1, N,

2

J
l
n

1

8r
0 =

1

8r
0

2

J
l
n for all n, (5.9)

ι0(ξ) 8r
0 = 8r

0 1′
0(ξ), ι0(ξ) 8l

0 = 8l
0 10(ξ) , (5.10)

ιm(ξ) 8r
0 = 8r

0 ιm(ξ), ιm(ξ) 8l
0 = 8l

0 ιm(ξ) for m 6= 0 , (5.11)

for all ξ ∈ G and we used the same notations as in Subsect. 4.1. The first set of relations,
i.e. Eqs. (5.8), (5.9), are obtained with the help of Eq. (4.6). From our earlier discussion
it is clear that the relations (5.10) are equivalent to Eqs. (5.6). All exchange relations
of the chiral vertex operators with elements inKN are local in the sense that objects
assigned to sitesn 6= 0 or linksm 6= 1, N commute with8α

0 . This means that we can
think of 8α

0 as being assigned to the vertexn = 0 and hence explains the subscripts0.
The precise form of the nontrivial exchange relations involving8α

0 may be understood
in terms of co-actions ofG onKN (see remarks in the introduction and [4, 6]).

Now let us compare the definition of algebrasWN of vertex operators on the lattice
with our toy model. To this end we derive exchange relations between the chiral vertex
operators8α

0 and the chiral monodromiesMα (see Eqs. (4.18)),

1

M
r

2

8r
0 R− =

2

8r
0 R+

1

M
r,

2

M
l

1

8l
0 R+ =

1

8l
0 R−

2

M
l . (5.12)

The answer is to be compared with the relations (3.3), (3.8) in the toy model and shows
that the objects (8α

0 , Mα, N0) of the algebraWN obey the same exchange algebra as
(8α, Mα, N ) in the toy model. Thus, the toy model may not only be considered as a
special case of a lattice theory withN = 1 but also it is embedded as a subalgebra in
all lattice algebrasWN for arbitraryN . We can use this insight to rewrite some of the
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relations we discussed for the toy model in terms of the corresponding lattice objects.
In particular, one has

Rr
±

2

8r
0

1

8r
0 =

1

8r
0

2

8r
0 R±, Rl

±
1

8l
0

2

8l
0 =

2

8l
0

1

8l
0 R± , (5.13)

v−1
a (8r

0)−1 Dr 8r
0 = Mr, va (8l

0)−1 Dl 8
l
0 = M l with (5.14)

Dr = (vav−1
r ) σr(vr), Dl = (v−1

a vl) σl(v−1
l ) . (5.15)

Here,vα ∈ Cα are images of the ribbon elementv ∈ G under the canonical isomorphisms
from the center ofG into the subalgebrasCα ⊂ KN (cf. Eq. (2.23)). The latter are
generated by quantum traces of monodromies, i.e., by elements of the formtr I

qτ
I (Mα)

(for notations see Subsect. 4.3). The elementsRα
± in Eqs. (5.13) are given through the

standard formulaRα
± = F ′

αR±(Fα)−1 ∈ Ga ⊗ Ga ⊗ Cα.

5.2. Vertex operators at different sites.Definition 3 involves only vertex operators
assigned to the 0th site of the lattice. We may now try to construct vertex operators
8α

n ∈ Ga ⊗ WN from elements in the algebraWN which are assigned to other sites
n 6= 0. In particular, they are required to satisfy the characteristic fusion and braid
relations of vertex operators and, moreover, we want them to commute with all elements
in KN which are assigned to sitesm 6= n or edgesm 6= n, n + 1. The solution to this
problem is certainly not unique. In the following, we shall describe just one possible
construction. The idea is to introduce the vertex operators8α

n with the help of the
holonomiesUα

n ∈ J α
N by the simple formulae:

8r
n := 8r

0 Ur
n, 8l

n := 8l
0 U l

n for n = 1, . . . , N − 1 . (5.16)

Using the relations (4.12)–(4.16) for chiral holonomies, it is easy to verify the following
properties of8α

n:

1

Nn,±
2

8r
n =

2

8r
n R±

1

Nn,±,
1

Nn,±
2

8l
n =

2

8l
n

1

Nn,± R± , (5.17)

(8r
n)∗ = (Sn)−1(8r

n)−1, (8l
n)∗ = Sn (8l

n)−1 , (5.18)

ιn(ξ) 8r
n = 8r

n 1′
n(ξ), ιn(ξ) 8l

n = 8l
n 1n(ξ) for all ξ ∈ G , (5.19)

and ιm(ξ) commute with8α
n for any m 6= n. Here Sn = (id ⊗ ιn)(S) with S ∈

Ga ⊗G as before. Next, one has to investigate fusion and braiding properties of8α
n. The

computation (see Appendix A.5) reveals that the elements8α
n obey the same relations

as our vertex operators8α
0 at the 0th site, i.e.

2

8r
n

1

8r
n = Fr 1a(8r

n),
1

8l
n

2

8l
n = Fl 1a(8l

n) , (5.20)

Rr
±

2

8r
n

1

8r
n =

1

8r
n

2

8r
n R±, Rl

±
1

8l
n

2

8l
n =

2

8l
n

1

8l
n R± (5.21)

8α
n fα = σα(fα) 8α

n for all fα ∈ Cα , α = l, r (5.22)

hold with structure dataFα, Rα
±, σα being identical to the structure data of8α

0 in
Eqs. (5.1), (5.2) and (5.13). In order to get an analogue of Eqs. (5.14), we introduce
the monodromies

Mα
n := Jα

n+1 . . . Jα
N Jα

1 . . . Jα
n = (Uα

n )−1MαUα
n for α = r, l . (5.23)
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They are holonomies along the whole circle which begin and end at thenth site. It is
now obvious that

v−1
a (8r

n)−1 Dr 8r
n = Mr

n, va (8l
n)−1 Dl 8

l
n = M l

n (5.24)

hold for all 0≤ n < N and the elementsDα ∈ Ga ⊗ Cα are the same as in Eqs. (5.14),
(5.15). Let us remark that the quantum tracestr I

qτ
I (Mα

n ) are elements of the algebras
Cα ⊂ KN from which we constructed our structure data. Moreover, they do not depend
on the indexn, i.e., one can prove thattr I

qτ
I (Mα

n ) = tr I
qτ

I (Mα
m) for all pairsn, m [7].

It still remains to investigate the exchange relations of the vertex operators8α
n with

currentsJα
n ∈ Ga ⊗ KN . Details are explained in Appendix A.5; here we only state the

results:
1

J
r
n+1

2

8r
n =

2

8r
n R+

1

J
r
n+1,

2

8r
n

1

J
r
n =

1

J
r
n

2

8r
n R− , (5.25)

2

J
l
n+1

1

8l
n =

1

8l
n R−

2

J
l
n+1,

1

8l
n

2

J
l
n =

2

J
l
n

1

8l
n R+ , (5.26)

1

8r
n

2

J
r
m =

2

J
r
m

1

8r
n,

1

8l
n

2

J
l
m =

2

J
l
m

1

8l
n for m 6= n , n + 1 , (5.27)

1

8r
n

2

J
l
m =

2

J
l
m

1

8r
n,

1

8l
n

2

J
r
m =

2

J
r
m

1

8l
n for all n, m . (5.28)

Finally, as a consequence of these relations and (5.3) we derive that

1

8r
n

2

8l
m =

2

8l
m

1

8r
n for all n, m . (5.29)

To summarize, we established that the construction (5.16) provides us with chiral vertex
operators8r

n and8l
n which are naturally assigned to thenth site of the lattice. These

vertex operators share the same structure dataFr, Rr
±, . . . andFl, Rl

±, . . .. Their ex-
change relations with elements of the current algebraKN are local in the sense discussed
above.

Although the vertex operators have local relations with the observables, one should
expect that they themselves are non-local. Indeed, it is easy to derive the following
exchange relations (see Appendix A.5):

1

8r
n

2

8r
m = Rr

−
2

8r
m

1

8r
n,

2

8l
n

1

8l
m = Rl

+

1

8l
m

2

8l
n for 0 ≤ n < m < N ,(5.30)

1

8r
n

2

8r
m = Rr

+

2

8r
m

1

8r
n,

2

8l
n

1

8l
m = Rl

−
1

8l
m

2

8l
n for 0 ≤ m < n < N .(5.31)

So, elements8α
n and8α

m do not commute even if thenth andmth site at which they
are localized are far apart. The relations (5.30), (5.31) demonstrate clearly thatRα

± play
the role of braiding matrices in local quantum field theory.

5.3. Extension on a covering of the circle.In Subsect. 5.2 we have listed properties
of the vertex operators8α

n which are valid for 0≤ n, m < N . However, unlike the
generators ofKN , the vertex operators live on a covering of the circle, i.e., if we want
to make sense of objects8α

n with n ∈ Z, the operator8α
n+N necessarily differs from

8α
n. Indeed,8α

n may be defined forn ∈ Z by the following difference equation which
is encoded in Eqs. (5.16):

8α
n+1 = 8α

n Jα
n+1 . (5.32)

Here we assume thatJα
n has been extended periodically ton ∈ Z. Periodicity properties

of the objects8α
n can be expressed through the monodromiesMα

n introduced in (5.23),
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8α
n+kN = 8α

n(Mα
n )k, 0 ≤ n < N , k ∈ Z . (5.33)

To proceed, we observe that properties ofMα
n are similar to those ofMα ≡ Mα

0 . Using
relations spelled out in Sect. 4, we easily find thatMα

n obey the functorial relations

2

M
r
nR+

1

M
r
n = R−1a(Mr

n),
1

M
l
nR−

2

M
l
n = R+1a(M l

n) (5.34)

which coincide with (4.19). Therefore,Mr
n andM l

n obey the exchange relations (3.2)
and (3.7). Bearing this in mind, we employ (4.21) to derive

2

8r
m R+

1

M
r
n =

1

M
r
n

2

8r
m R−,

1

8l
m R−

2

M
l
n =

2

M
l
n

1

8l
m R+ (5.35)

for 0 ≤ n < N andm = n (mod N ), i.e.,m = n + kN , k ∈ Z.
Using the properties of the monodromiesMα

n , we can establish (see Appendix A.5)
that relations (5.18)–(5.22), (5.24)–(5.28) are valid for8α

n with the coordinaten being
replaced byn′ = n + kN . Thus, thelocal properties of vertex operators8α

n+kN living
outside of the interval 0≤ n < N coincide with those of8α

n living inside this interval.
The extension of the exchange relations between vertex operators to the covering of

our discrete circle is slightly more subtle. For instance, the braid relation of the vertex
operator8α

n and its counterpart8α
n+N does not coincide with (5.21). Instead, we find

(see Appendix A.5):

Rr
+

2

8r
n

1

8r
n+N =

1

8r
n+N

2

8r
n R−, Rl

−
1

8l
n

2

8l
n+N =

2

8l
n+N

1

8l
n R+ . (5.36)

A similar situation is found for the braid relations (5.30)-(5.31). It turns out that here we
need to apply Eqs. (2.25) for the structure data of the vertex operators. Let us demonstrate
their role by investigating the first equation in (5.30) (i.e., the casen < m) with n
replaced byn + N ,

1

8r
n+N

2

8r
m =

1

8r
n

1

Mr
n

2

8r
m =

1
v−1

a

1

Dr

1

8r
n

2

8r
m =

1
v−1

a

1

Dr Rr
−

2

8r
m

1

8r
n =

=
1
v−1

a Rr
+

2
σ (Dr)

2

8r
m

1

8r
n = Rr

+

2

8r
m

1
v−1

a

1

Dr

1

8r
n = Rr

+

2

8r
m

1

8r
n+N .

We see that the result coincides with the first equation in (5.31), which is natural since
n+N > m. Proceeding in the same way, one can show that the braid relations (5.30) and
(5.31) hold, for alln, m ∈ Z such that|n−m| < N ,n 6= m. Thus, the Eqs. (2.25) became
an important ingredient for a self-consistent extension of the lattice theory beyond the
interval 0≤ n < N .

5.4. Construction of the local fieldgn. As we have shown above, the local properties of
lattice vertex operators are the same as those we studied in the toy model case. Therefore,
we can repeat the construction of Subsect. 3.4 and introduce the objects

gn := Sa(8l
n) 8r

n ∈ Ga ⊗ WN . (5.37)

To proceed, we need some more information about the representation theory of lattice
current algebras. As we mentioned before, the algebrasKN admit a series of irreducible
representations on spacesW IJ

N , whereI, J run through classes of irreducible represen-
tations of the quantum algebraG. These spacesW IJ

N are of the form

W IJ
N = V I ⊗ V J ⊗ <⊗N−1 where < =

⊕
K

V K̄ ⊗ V K .
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Suppose that we describeKN in terms of the holonomiesUα
n , n = 1, . . . , N − 1, the

monodromiesMα
0 and the local elementsNn, n = 0, . . . , N −1 (notice that the currents

can be reconstructed from holonomies and monodromies). We divide these generators
into two sets, the first containing allUα

n andNm for m 6= 0 while we putMα
0 andN0

into the second set. This choice is made so that objects which were not part of the toy
model are separated from objects we met in Sect. 3 already. In [6], an action ofKN on
W IJ

N was constructed for which objects in the first set, i.e., holonomiesUα
n and elements

Nm, m 6= 0, act trivially on the factorV I ⊗ V J in W IJ
N and irreducibly on<⊗N−1.

It is then straightforward to see that our algebraWN of vertex operators on the lattice
possesses only one irreducible representation on the total space

MN =
⊕
I,J

W IJ
N

∼= M ⊗ <⊗N−1 ,

where each summandW IJ
N appears with multiplicity one. By now, the picture resembles

very much the situation in the toy model: we have the model spaceMN on whichWN

acts irreducibly. Therefore, we may look for operators that can be restricted to the
diagonal subspace

HN =
⊕

J

W J̄J
N

∼= H ⊗ <⊗N−1 ⊂ MN .

This is certainly possible for all elements inKN . But in addition, we may restrict the field
gn to HN . As in Subsect. 3.4, the diagonal subspace is characterized by the constraint
f = Slr(f) for all f ∈ Cr ⊂ KN . If we adjust left and right structure data according to
Eqs. (3.14)14, the constraint toHN is compatible with the construction ofgn, i.e., (3.17)
holds withg replaced bygn, n = 0, . . . , N − 1. The properties of the restricted field are
spelled out in the following proposition.

Proposition 5 (Properties ofgn). When restricted to the diagonal subspaceHN , the
elementgn ∈ Gn ⊗ End(HN ) obeys the following relations:

2
gn

1
gn= 1a(gn), R±

2
gn

1
gn=

1
gn

2
gn R± , (5.38)

M l
n gn = gn Mr

n, Sa(gn) = g−1
n , (5.39)

gn+N = gn,
1
gn

2
gm=

2
gm

1
gn for n 6= m , (5.40)

1

M
r
n

2
gn R− =

2
gn R+

1

M
r
n,

1

M
l
n R−

2
gn= R+

2
gn

1

M
l
n , (5.41)

1n(ξ) gn = gn 1′
n(ξ),

1

Nn,± R±
2
gn=

2
gn R±

1

Nn,± (5.42)

for all ξ ∈ G andgn commutes with allιm(ξ) ∈ Gn ⊂ KN for m 6= n.

The properties listed above, and in particular the locality and periodicity relations
(5.40), allow to regardgn as an observable in the lattice WZNW-model. It is a discrete
analogue of the group valued fieldg(x). Some remarks on the proof of Proposition 5 can
be found in Appendix A.6. To complete the description ofgn, let us give its exchange
relations with the chiral currents. Using (5.25), we obtain

14 This can be done simultaneously for all sites, since the structure data do not depend on the lattice siten
(see Subsect. 5.2).
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2
gn

1

J
r
n =

1

J
r
n

2
gn R−,

2
gn

1

J
l
n =

1

J
l
n R−

2
gn ,

1

J
r
n+1

2
gn=

2
gn R+

1

J
r
n+1,

1

J
l
n+1

2
gn= R+

2
gn

1

J
l
n+1 , (5.43)

1

J
α
m

2
gn=

2
gn

1

J
α
m , α = l, r for m 6= n, n + 1 (mod N ).

5.5. Lattice vertex operators forZq. Let us construct the algebraWN in the case of
G = Zq. To this end we have to add the chiral vertex operators introduced in Subsect. 3.5
to the latticeU (1)-current algebra discussed in Subsect. 4.4. As a result we get the
algebra generated by components of the following elements belonging toGa ⊗ WN :

8α
n =

p−1∑
s=0

P s ⊗ (Q̂α
n)s = ep̂ ⊗ ς̂ α

n , Nn,± =
p−1∑
s=0

P s ⊗ h±s
n = q±p̂ ⊗ p̂n ,

Jr
n =

p−1∑
s=0

q
1
2 s2

P s ⊗ (Ŵ r
n)s = κ− 1

2 ep̂ ⊗ $̂r
n , J l

n =
p−1∑
s=0

q− 1
2 s2

P s ⊗ (Ŵ l
n)s = κ

1
2 ep̂⊗ $̂l

n

whereα = r, l andn = 0, .., N − 1. According to Eqs. (4.6) and (5.16), not all the
generators are independent. Namely, the following relations are to be fulfilled:

Ŵ l
n = h−1

n−1 Ŵ r
n h−1

n , Q̂α
n = Q̂α

0 Ŵα
1 . . . Ŵα

n .

Due to the Campbell-Hausdorff formula these equalities may be re-expressed in terms
of the generatorŝ$α

n , ς̂α
n as follows:

$̂l
n = $̂r

n − ln q (p̂n + p̂n−1), ς̂ α
n = ς̂ α

0 +
n∑

k=1

$̂α
k . (5.44)

It is easy to see that all the formulae between8α
n, Jα

n andNn,± spelled out in Sub-
sects. 5.1–5.3 are satisfied if we add to Eqs. (4.25)–(4.26) or, alternatively, to Eqs. (4.27)
the following relations:

hn Q̂α
n = q Q̂α

n hn , hm Q̂α
n = Q̂α

n hm for m 6= n ,

Ŵ r
n+1 Q̂r

n = q Q̂r
n Ŵ r

n+1 , Ŵ r
n Q̂r

n = q Q̂r
n Ŵ r

n ,

Ŵ l
n+1 Q̂l

n = q−1 Q̂l
n Ŵ l

n+1 , Ŵ l
n Q̂l

n = q−1 Q̂l
n Ŵ l

n ,

Ŵα
m Q̂α

n = Q̂α
n Ŵα

m for m 6= n, n + 1 ,

which can be rewritten as follows:

[p̂m , ς̂ α
n ] = δm,n , [$̂r

m , ς̂ r
n ] = −[$̂l

m , ς̂ l
n] = ln q (δm,n+1 + δm,n) . (5.45)

Since we already discussed properties of the vertex operators at a fixed site for theZq-
theory in Subsections 2.6 and 3.5, we shall concentrate on the aspects of locality and
periodicity here. Actually, the latter simplify in the case ofZq due to the circumstance
that all our monodromiesMα

n of the same chirality coincide (since all they are given by
(4.29)). This allows to rewrite Eqs. (5.30)–(5.31) and (5.36) in the form (recall that in
the case ofZq we haveR± = R± = R±1 with R given in Subsects. 2.1 and 2.2):
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1

8r
n

2

8r
m = Rβ(n−m)

2

8r
m

1

8r
n ,

2

8l
n

1

8l
m = R−β(n−m)

1

8l
m

2

8l
n (5.46)

for all n, m ∈ Z. Hereβ(n−m) = 1+2[n−m
N ] ([x] stands for the entire part ofx) for n 6=

m (mod N ) andβ(n−m) = 1+[n−m
N ] for n = m (mod N ). In the derivation we have also

used the following consequence of Eqs. (5.45): [
∑N

k=1 $̂r
k , ς̂ r

n ] = −[
∑N

k=1 $̂l
k , ς̂ l

n] =
2 lnq. Notice that, sinceRp = e ⊗ e, the above relations are actually periodic with a
periodN ′ = pN for oddp. That is, the theory lives on ap-fold covering of the circle so
that vertex operators forZq are periodic on a lattice of sizeN ′ = pN .

Now let us introduce the fieldgn. We repeat the construction of Subsect. 3.5 and
definegn as follows:

gn =
p−1∑
s=0

P s ⊗ (Q̂ r
n)s (Q̂ l

n)−s = ep̂ ⊗ (ς̂ r
n−ς̂ l

n) .

It obviously admits restriction to the diagonal subspaceHN of the model spaceMN

(cf. Subsections 3.5 and 5.4). The locality ofgn is evident from Eqs. (5.46) and its
periodicity gn+N = (M l)−1gnMr = gn is, in fact, reduced to the Weyl-type relation
which we explained in detail at the end of Subsect. 3.5.

6. Automorphisms and Discrete Dynamics

In this section we shall demonstrate that the lattice theory which we constructed above
indeed may be regarded as a discretization of the WZNW model. For this purpose we
investigate the exchange relations of currents and some automorphisms of our lattice al-
gebra in the classical continuum limit and recover the Poisson structure and the dynamics
of the classical WZNW model, respectively.

6.1. Remarks on the classical continuum limit.Let us briefly discuss the classical
continuum limit of the algebra of vertex operators. Following ideology of [4], we rewrite
the exchange relations (4.2), (4.4) and (4.7), (4.8) for the chiral currents in a more
compact form:

R−1
n−m,+

2

J
r
n Rn−m+1,+

1

J
r
m =

1

J
r
m R−1

n−m−1,−
2

J
r
n Rn−m,− , (6.1)

R−1
n−m,+

1

J
l
n Rn−m+1,−

2

J
l
m =

2

J
l
m R−1

n−m−1,+

1

J
l
n Rn−m,− , (6.2)

whereRn,± := δn,0R± + (1 − δn,0)e ⊗ e is, as usual, an element ofGa ⊗ Ga. Now we
consider these relations in the limit wherea = 2π/N → 0 and~ → 0.

Since for our theoryq = exp{iγ~} (cf. Introduction), we can expand the universal
R-matrix according toR± = e ⊗ e + iγ~ r± + O(~2) . On the other hand, the lattice
fields approach their continuum counterparts asa becomes small:

Jα
n → e ⊗ e − a jα(x), 8α

n → 8α(x) , gn → g(x) , (6.3)

wherex = an. Bearing in mind that1aδn,0 → δ(x) whena → 0, we obtain the following
Poisson brackets from (6.1)–(6.2):

{
1

jr(x),
2

jr(y)} =
γ

2
[C,

1

jr(x)−
2

jr(y)] δ(x − y) + γ Cδ′(x − y) ,

{
1

jl(x),
2

jl(y)} = −γ

2
[C,

1

jl(x)−
2

jl(y)] δ(x − y) − γ Cδ′(x − y) ,
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whereC = (r+ − r−) ⊗ e. These are the standard brackets for the chiral WZNW currents
[41, 51], and the deformation parameterγ is identified with the coupling constant.15

The exchange relations (5.25)–(5.26) can be treated similarly. Namely, we rewrite
them as follows:

1

J
r
n

2

8r
m Rn−m,− =

2

8r
m Rn−m−1,+

1

J
r
n,

2

J
l
n

1

8l
m Rn−m,+ =

1

8l
m Rn−m−1,−

2

J
l
n ,

and get the following Poisson brackets for vertex operators in the classical continuum
limit:

{
1

jr(x),
2

8r(y)} = γ
2

8r(x) C δ(x − y), {
1

jl(x),
2

8l(y)} = −γ
2

8l(x) C δ(x − y) .

These relations are classical counterparts of the commutation relations known for the
chiral primary fields in the continuum WZNW model [41].

Substitution of the expansionsRα
± = e ⊗ e ⊗ e + iγ~ r α

± + O(~2) into Eqs. (5.21)
and passing to the classical continuum limit gives16

{ 1

8r(x),
2

8r(y)} = −χr(x−y)
1

8r(x)
2

8r(y), { 1

8l(x)
2

8l(y)} = χl(x−y)
1

8l(x)
2

8l(y) ,

whereχα(x − y) = ε(x − y) γ r α
+ + ε(y − x) γ r α

−, andε(x) = 1 if x > 0 andε(x) = 0 if
x < 0. Such brackets were obtained for the classical WZNW model in [26, 13, 20, 27].

The same technique may finally be applied to the relations (5.43) involving the lattice
field g and the resulting formulae for the classical counterpart of Eqs. (5.43) coincide
with formulae in [41], namely,

{
1

jr(x),
2
g (y)} = γ

2
g (x) C δ(x − y) , {

1

jl(x),
2
g (y)} = γ C

2
g (x) δ(x − y) .

Thus, in the limit~ → 0, a → 0, our main exchange relations for the chiral currents and
chiral vertex operators reproduce the Poisson structure known for the classical WZNW
model.

6.2. Automorphisms induced by the ribbon element.The ribbon element, due to its
specific properties, allows to obtain certain inner automorphisms of the algebraWN .
These are the subject of the present subsection.

Non-local automorphism induced by global ribbon elements.Consider an automorphism
of the form:

A 7→ v−1
r vl A vrv−1

l , for all A ∈ WN . (6.4)

Herevr ∈ Cr andvl ∈ Cl. We call the ribbon elementsvα global because they are
constructed from the monodromiesMα, which are non-local.

Since the subalgebrasCα constitute the center ofKN , all the elements of the current
algebraKN ⊂ WN are invariant under the transformation (6.4). For the vertex operators
this transformation is nontrivial and may be rewritten with the help of (5.15), (5.22) and
(5.24) so that it becomes

15 One may prefer to renormalize the currents by 1/γ so that theδ′-term acquires a coefficient 1/γ which,
in the classical theory, coincides with the levelk of the KM algebra. The quantum correction 1/γ → k + ν
is explained, e.g., in [4].

16 In general, the classicalr-matricesrα
± keep a non-trivial dependence on variables belonging toCα.
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8α
n+kN 7→ 8α

n+kN Mα
n = 8α

n+(k+1)N , 0 ≤ n < N, k ∈ Z .

Thus, the automorphism (6.4) is non-local, i.e., it corresponds to a shiftn 7→ n + N
or, in other words, it rotates the lattice by angle 2π. Being restricted on the diagonal
subspace, the fieldgn is periodic (see Proposition 5), and hence it is invariant under
the transformation (6.4). In this sense, the automorphism (6.4) separates “physical”
variables living on the circle from “non-physical” ones (like the vertex operators) living
on a covering of the circle.

Local automorphism induced by local ribbon elements.Recall that thenth site of the
lattice is supplied with a copyGn of the symmetry algebraG. Therefore we can use the
local ribbon elementsvn ∈ Cn ⊂ Gn to construct the following transformation:

A 7→ v0v1 . . . vN−1 A (v0v1 . . . vN−1)−1, for any A ∈ WN . (6.5)

Here the product is taken over all sites of the lattice.
To obtain more explicit formulae for the automorphism (6.5), we have to use relations

(4.3), (4.10), (5.19), employ Eq. (2.1) and remember thatvn belongs to the center ofGn.
As a result we get

Jr
n 7→ Nn−1 Jr

n N−1
n , J l

n 7→ Ñ−1
n−1 J l

n Ñn ,

8r
n 7→ va 8r

n N−1
n , 8l

n 7→ va 8l
n Ñn ,

(6.6)

where we used notations of Subsect. 2.2, i.e.,N = N+N
−1
− , Ñ = N−1

+ N−. The elements
of Gn andCα remain invariant under (6.5), in particular,Nn,± 7→ Nn,±. With the help
of these explicit expressions we also obtain

Mr
n 7→ Nn Mr

n N−1
n , M l

n 7→ Ñ−1
n M l

n Ñn, gn 7→ Ñn gn N−1
n . (6.7)

We know already that these formulae describe an automorphism of the algebraWN

because they were obtained by conjugation with a unitary element, namely the product
of local ribbon elements, in formula (6.5). Without this knowledge, it would be a quite
non-trivial task to check the automorphism property directly for the expressions in (6.6)–
(6.7). To do this, one would need to apply the relations (4.5) and (5.17) many times.

Local automorphism induced byκn. To construct one more inner automorphism ofWN

we employ the square roots of the local ribbon elements,

A 7→ κ0κ1 . . . κN−1 A (κ0κ1 . . . κN−1)−1 , for all A ∈ WN . (6.8)

Hereκn ∈ Cn ⊂ Gn, κ2
n = vn and the product is taken over all sites.

Computations similar to those performed above (and making use of (2.10)) allow to
rewrite the transformation (6.8) in the following explicit form:

Jr
n 7→ Nn−1,+(Sn−1)−1 Jr

n SnN−1
n,+ = Nn−1,+ ((Jr

n)∗)−1 N−1
n,+ ,

J l
n 7→ N−1

n−1,−Sn−1 J l
n (Sn)−1Nn,− = N−1

n−1,− ((J l
n)∗)−1 Nn,− ,

8r
n 7→ κa 8r

n SnN−1
n,+ = κa((8r

n)∗)−1 N−1
n,+ ,

8l
n 7→ κa 8l

n (Sn)−1Nn,− = κa((8l
n)∗)−1 Nn,− ,
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Mr
n 7→ Nn,+ ((Mr

n)∗)−1 N−1
n,+ , M l

n 7→ N−1
n,− ((M l

n)∗)−1 Nn,−,

andNn,± 7→ Nn,±, as before. Here the r.h.s. of all formulae have been rewritten with the
help of the∗-operation introduced for elements ofWN in Sects. 4 and 5. Having done
so, we see that the image of all basic objectsX ∈ Ga ⊗ WN under the automorphism
(6.8) coincides with (X∗)−1 up to a multiplication with factorsNn,±. We can now
accept an inverse logic – we may say that the automorphism (6.8) together with the rules
(N±)∗ = N∓ defines the∗-operation onWN . This picture reveals the naturalness of our
∗-operation, which might have appeared somewhat artificial in the previous sections. It
also makes the role of the ribbon element in our theory even more remarkable.

To conclude this discussion, we would like to mention that for a lattice of even length,
i.e., forN = 0 (mod 2), one may also consider automorphisms ofWN generated by the
alternating products ofv±1

n or κ±1
n .

6.3. Discrete dynamics.As we saw above, the exchange relations of the algebraWN

allowed to recover the Poisson structure of the classical WZNW-model in the classical
continuum limit. However, this is certainly not sufficient for a construction of the lattice
WZNW model. Indeed, the complete description of a classical theory involves an evolu-
tion equation for the dynamical variables in addition to the specification of the Poisson
structure. Similarly, the formulation of a discrete quantum model requires not only a set
of exchange relations between quantum operators but also some one parameter family
of automorphisms of the algebra generated by operators in the quantum theory. The
parameter is interpreted as time variable. For a theory on a discrete space it is natural
to discretize the time as well so that the parameter essentially runs through the set of
integers only. In this case the whole family of automorphisms can be reconstructed from
the automorphism which provides the evolution for an elementary step in time. Such an
automorphism of a lattice model must be local, i.e., the result of its action on the variables
assigned to a given site (or link) can only involve variables assigned to some neighbor-
ing sites (or links). In the previous subsection we considered three automorphisms of
the algebraWN . The first of them was non-local and hence did not correspond to any
dynamics.17 The second and the third automorphism were local and, in principle, one
may use them in constructing the corresponding classical continuum models. However,
the dynamics of such models do not reproduce the dynamics of the WZNW theory.

In this subsection we are going to consider local automorphisms which can be in-
terpreted as dynamics of the discrete WZNW model. Let us recall that in the continuum
WZNW model the equation of motion for theG-valued fieldg(x) takes the form:

∂+∂− g = (∂+g) g−1 (∂−g) , (6.9)

where∂± = 1
2(∂0±∂x). From the fieldg(x) one may construct the following Lie algebra

valued currents
jr = g−1∂−g, jl = (∂+g)g−1 . (6.10)

They turn out to be chiral objects in the sense that their equations of motion are trivialized:

∂+ jr = ∂− jl = 0 . (6.11)

In the Hamiltonian approach, the initial data are provided by the values ofg(0), jr(x)
andjl(x) at timet = 0. To recover the dynamics ofg(x) one solves the equations

∂0 g = jl g + g jr , ∂x g = jl g − g jr . (6.12)

17 However, one can use it to describe dynamics of the toy model (see [3]).
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Equations (6.11) and (6.12) can be derived with the help of the Poisson brackets given
in Subsect. 6.1 if the Hamiltonian and the total momentum are chosen as follows:

H =
1

2γ

∫
tr

[
(jr(x))2 + (jl(x))2

]
dx , P =

1
2γ

∫
tr

[
(jr(x))2 − (jl(x))2

]
dx ,

(6.13)
where the integration is taken over the whole circle andtr is the usual trace in the
corresponding Lie algebra.

Let us develop an analogue of the given picture in the quantum lattice theory. More
precisely, we shall consider the “physical” subalgebraPN of WN generated by com-
ponents of the chiral currentsJα

n and the fieldgn, n = 1, .., N which are subject to the
relations spelled out in Sects. 4 and 5. As we have indicated in our general discussion
above, it is natural to work with a discrete time with a minimal time intervalτ (see also
[28, 31]), so that the evolution of the quantum theory is described by a single automor-
phism ofPN . In addition to this, we shall also introduce an automorphism which is
responsible for the shifts by one lattice unita = 2π/N in space.

Lemma 2 (Shift and evolution automorphisms).Let PN denote the algebra gener-
ated by components ofJα

n andgn (restriction to the diagonal subspaceHN is under-
stood). Then the following two transformationsTV , TU ,

TV (Jα
n ) = Jα

n+1 , α = l, r , (6.14)

TV (gn) = (J l
n+1)

−1 gn Jr
n+1 , (6.15)

and

TU (Jr
n) = Jr

n−1 , TU (J l
n) = J l

n+1 , (6.16)

TU (gn) = (J l
n+1)

−1 gn (Jr
n)−1 (6.17)

extend to automorphisms of the algebraPN . We callTV theshift automorphismandTU

theevolution automorphismof the lattice WZNW-model.

It is straightforward to verify that the transformationsTV andTU preserve all the
relations forJα

n andgn given above. Notice also that one may extendTU , TV to the
whole algebraWN by Eqs. (6.14), (6.16) and, in addition, the formulae

TV (8α
n) = 8α

nJα
n+1 ,

TU (8r
n) = 8r

n (Jr
n)−1, TU (8l

n) = 8l
n J l

n+1 .

These automorphisms are actually combined of two chiral automorphisms (cf. Sub-
sect. 6.4). After restriction to the diagonal subspace and, hence, to the algebraPN , we
recover Eqs. (6.15) and (6.17).18

Assume now that Lemma 2 describes inner automorphisms ofPN . That is, suppose
that there exist operators V, U ∈ PN such that

TV (A) = V A V−1 and TU (A) = U A U−1 for any A ∈ PN .

V and U are usually calledshift andevolutionoperators, respectively. In the classical
continuum limita → 0, τ → 0 they reproduce the momentum and the Hamiltonian
(6.13): V→ e + i

~a P , U → e + i
~τ H.

18 This needs the following variant of Eq. (5.32):Sa(8l
n+1) = (J l

n+1)−1Sa(8l
n); it is evident if we take

relation (3.19) into account.
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Our interpretation of the transformations in Lemma 2 as discrete shifts in space and
time, motivate to introduce the the objectsJα

n (t), gn(t) ∈ Ga ⊗ PN such that

Jr
n(t + τ ) = Jr

n−1(t), J l
n(t + τ ) = J l

n+1(t) , (6.18)

gn(t + τ ) = (J l
n+1(t))

−1 gn(t) (Jr
n(t))−1, gn+1(t) = (J l

n+1(t))
−1 gn(t) Jr

n+1(t) (6.19)

andJα
n (0), gn(0) coincide with our usual generatorsJα

n , gn, respectively. These expres-
sions defineJα

n (t) andgn(t) for t = kτ with k being integer. Below we shall also need
the equations inverse to (6.18)–(6.19):

Jr
n(t − τ ) = Jr

n+1(t), J l
n(t − τ ) = J l

n−1(t) , (6.20)

gn(t − τ ) = J l
n(t) gn(t) Jr

n+1(t), gn−1(t) = J l
n(t) gn(t) (Jr

n(t))−1 . (6.21)

We can now use the rulesJα
n (t) → e⊗e−ajα(x, t) andgn(t) → g(x, t) from Subsect. 6.1

(herex = na = 2πn/N as before) to establish that in the classical continuum limit
Eqs. (6.18)-(6.19) become precisely the Eqs. (6.11)–(6.12)19. Further, combining (6.19)
and (6.21), we obtain the following relations:

(gn−1(t))−1 gn(t − τ ) = Jr
n Jr

n+1, gn−1(t) (gn(t + τ ))−1 = J l
n+1 J l

n . (6.22)

These are lattice analogues of the definitions (6.10) of the chiral currents. Notice that
we can express only products of currents on neighboring links through the fieldgn(t)
(nevertheless, in the classical continuum limit, Eq. (6.10) is certainly recovered).20

Equation (6.22) allow to obtain the dynamics of the lattice model in terms of the
field gn only. Indeed, since their r.h.s. are manifestly chiral objects, the combinations of
gn-variables on the l.h.s. are to be invariant under the substitutionst → t+τ , n → n+ 1
andt → t+τ ,n → n−1, respectively. Thus, we derive a lattice analogue of the equation
of motion (6.9):

gn+1(t) (gn(t − τ ))−1 = gn(t + τ ) (gn−1(t))−1 . (6.23)

Being a discrete analogue of an equation of second order in both variables, this relation
involves four different points on the space-time lattice (see Fig. 6). A natural choice of the
initial data for Eq. (6.23) is provided by the setgn(t−τ ) andgn(t),n = 0, .., N − 1 (heret
is fixed). It is interesting to notice that this set is divided into two subsets (black and white
circles on Fig. 6) which have an independent evolution;21 that is, the solution constructed
according to Eq. (6.23) from one of the sets never interacts with that constructed from
the other set. According to Eqs. (6.22), the initial datagn(t − τ ), gn(t) (at fixed timet)
can be restored if we are given the set of currentsJα

n , n = 1, .., N and two values of the
g-field taken at two arbitrary points of the independent subsets, e.g.g0(0) andg0(−τ ).
This is a lattice analogue of the initial data usually used in the continuum Hamiltonian
approach (see above).

19 In the continuum limit the quotientc := a/τ (speed of light) is supposed to be fixed. In fact, Eq. (6.9)
implies that we putc = 1.

20 Formally, we can split Eqs. (6.22) into the following relations:Jr
n = (gn−1(t))−1gn− 1

2
(t − 1

2τ ) and

Jr
n+1 = (gn− 1

2
(t − 1

2τ ))−1 gn(t − τ ). However, the variables assigned to half integer sites or times are

not defined in the lattice formalism. To avoid this we could consider these relations as relations inWN and
re-express the involvedg-fields through vertex operators, while using that vertex operators are chiral to replace
formal variables on half integer space-time points by true objects of the lattice theory. As a result we would
get the obvious relationsJα

n (t) = (8α
n−1(t))−18α

n(t).
21 Let us stress that it is not necessary to impose a continuity condition on the initial data, i.e., to demand

that they possess smooth continuum limit. Moreover, it seems interesting to study the case when the two
independent subsets of initial data have different continuum limits (cf. also [28]).
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qx−a qx+aqt−τ

qt+τ qx−a qx+a qx+2aqt−τq q` ` ` ` ` `
Fig. 6.Graphical presentation of the discrete equation (6.23) and a possible choice of the initial data. The two
subsets of the initial data have independent evolutions

To summarize, in this section we have demonstrated that the elementsJα
n andgn

which constitute the “physical” variables in the algebraWN are indeed quantum lattice
analogues of the chiral currents and the group valued field in the WZNW model.

6.4.U (1)-WZNW model.We conclude this section with some comments on theZq-case.
Recall that theg-field constructed from lattice vertex operators in the case ofG = Zq is

given by (cf. Subsect. 5.5)gn = ep̂ ⊗ φn , whereφn = ς̂ r
n − ς̂ l

n is an operator acting on
the physical spaceHN (see Subsects. 3.5 and 5.5). In the classical limitφn(t) becomes
a lattice variable which, according to (6.23), obeys to the following equation of motion:

φn(t + τ ) + φn(t − τ ) = φn+1(t) + φn−1(t) . (6.24)

This relation discretizes the equation of motion∂+∂−φ(x, t) = 0 of a free field. The
latter is known to arise, in particular, for the continuumU (1)-WZNW model. Moreover,
in the classical continuum limit the standard Poisson structure of the abelian WZNW
theory is easily recovered from the exchange relations of ourZq lattice model. These two
observations allow to identify theZq lattice theory as a quantized latticeU (1)-WZNW
model. In spite of its simplicity, theU (1)-theory has a lot of structure in common with
the more complicated nonabelian models. In fact, the abelian model was used here to
illustrate many elements of our general theory.

It is also worth mentioning that the abelian lattice theory itself has non-trivial mathe-
matical aspects. In particular, explicit formulae for shift operators in chiral theories have
been worked out in [31, 28, 8]. We may use these results to present expressions for the
the shift and evolution operatorsV andU . The latter can be decomposed into the chiral
components:V = VlVr andU = VlV

−1
r . When acting on elements of the algebraWN ,

the operatorsVα ∈ Wα
N generate shifts for the chiral sectors, i.e.,

(e ⊗ Vα) Jα
n (e ⊗ Vα)−1 = Jα

n+1, (e ⊗ Vα) 8α
n (e ⊗ Vα)−1 = 8α

n+1 , (6.25)

whereα = r, l, n ∈ Z, ande ⊗ Vl, e ⊗ Vr commute with any element fromGa ⊗ Wr
N

andGa ⊗ W l
N , respectively.

Proposition 6 (Shifts operators forZq). LetWN be the algebra of lattice vertex ope-

rators as defined in Subsect. 5.5, i.e., it is generated by the elementsŴα
n = e$̂α

n (chiral

currents) andQ̂α
n = eς̂ α

n (vertex operators) obeying the relations spelled out in Sub-
sects. 4.4 and 5.5. Let the lattice lengthN be odd. Then the chiral shift operators
obeying (6.25) are given by

Vα = Zα

N−1∏
k=1

ρα(N−k), (6.26)

whereρr(k) = exp{− 1
2 ln q ($̂r

k)2} and ρl(k) = exp{ 1
2 ln q ($̂l

k)2}. The functionZα

depends only on the elementCα = (
∏N+1

2
k=1 Ŵα

2k−1) (
∏N−1

2
k=1 Ŵα

2k)−1 ∈ Kα
N .
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To verify thatVr andVl obey Eqs. (6.25) one proceeds in two steps. The first of them
concerns the relations betweenVα and the chiral currents and it has been performed in
[8]. The computation is based on the following relations:22

e$̂α
n ρα(n + 1)ρα(n) = ρα(n + 1)ρα(n) e$̂α

n+1, n = 1, .., N − 2 ,

which hold due to Eqs. (4.27). The remaining relations forn = N − 1, N are conse-
quences of the others if the functionZα is chosen in a specific way (see [8] for details).

In the second step, one checks the desired properties ofVα with respect to chiral
vertex operators. To this end we derive the following relation:

eς̂ α
n ρα(n + 1) = ρα(n + 1)e− 1

2 ln q e$̂α
n+1 eς̂ α

n = ρα(n + 1)eς̂ α
n +$̂α

n+1 = ρα(n + 1)eς̂ α
n+1.

(6.27)
For the first equality we used the commutation relations (5.45). After this, the Campbell-
Hausdorff formula was employed before we could insert Eqs. (5.44). Notice that it
suffices to prove Eq. (6.27) forn = 1. Due to (5.44), the relations betweenVα and the
vertex operators assigned to other sites are consequences of this case (as soon as the
relations forVα with chiral currents are established). This completes the proof.

Let us comment on the construction of the chiral shift operators for a lattice of even
lengthN suggested in [31, 28]. In this case the shift operators are also given by (6.26)
but without the factorZα. When checking the relations between these operatorsVα and
chiral currents, Faddeev and Volkov had to assume that

∏N/2
k=1 Ŵα

2k−1 =
∏N/2

k=1 Ŵα
2k.

Unfortunately, such a constraint is incompatible with the exchange relations in the full
theory which includes the objectsNn in addition to chiral currents. One way to bypass
this problem would involve shifts by two lattice units.

Let us finally mention that the functionρ (which can be identified as aθ-function, if
written in terms of̂Wα

n ) appearing in (6.26) admits factorization into a product of two
functions of a q-dilogarithm type (see [28]). Actually, these objects (theθ-function and
the q-dilogarithm) turn out to be quite universal building blocks for shift operators. They
were employed in the recent work [32] to construct shift operators for theSU (2)-lattice
KM algebra. Since the expressions involvingθ-functions and q-dilogarithms resemble
those used in the abelian theory, one expects that the new operators of [32] serve as shifts
not only for the current algebras but for the whole algebras of vertex operators as well.

Conclusion

In the present paper we have described the construction of lattice vertex operators for a
given modular Hopf algebra. The investigation of the classical continuum limit reveals
a clear relation between the lattice algebras and the WZNW-model. Since the latter can
be reduced to the affine Toda model, our technique may be applied to this theory as well
(with certain modifications). Furthermore, there exist many connections with Chern–
Simons theory in 2 + 1 dimensions (see [7] for lattice constructions of Chern-Simons
observables) which motivate to extend our framework to two spatial dimensions.

Let us briefly list some aspects of the presented theory which have not been devel-
oped. As we mentioned before, formulae for vertex operators are known only for some
particular cases. It would be interesting to work out explicit presentations for universal

22 Such relations were used first in [31, 28] in the construction of shift operators forU (1)-current algebra
for evenN (cf. remarks in the text).
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vertex operators8 of the deformed universal enveloping algebrasUq(G). Alternatively,
one may try to find universal structure dataF , σ which solve the discussed set of equa-
tions. A further natural extension is to incorporate infinite dimensional structures such
as the deformed affine algebras. This might allow for a comparison with the approaches
in [34, 38] (see also references therein).

Another problem which is to be solved to complete the description of the quantum
lattice WZNW model is an explicit construction of the shift and evolution operators. By
now, exact formulae have been found for the cases ofU (1) andSU (2) [31, 28, 8, 32].
These examples, however, hint at some uniform structures (such as the appearance of
q-dilogarithms) that might lead to new formulae for shift operators in more general
theories.

Appendix: Some Proofs and Further Relations

A.1. Proof of Proposition 1.It is not difficult to obtain the relations stated in Proposition 1
from the defining properties of8. For instance, the formula (2.23) forD follows from
the definition (2.19) whenN = RR′ is re-expressed in terms of the ribbon element
according to Eq. (2.1). To derive Eq. (2.24) one needs no more than associativity of the
multiplication inV along with co-associativity of the co-product1a onGa,

3
σ (F12) (1a ⊗ id)(F ) (1a ⊗ id)1a(8) =

3
σ (F12)

3

8 1a(8)12 =
3

8 (
2

8
1

8) =

= (
3

8
2

8)
1

8= F23 1a(8)23

1

8= F23 (id ⊗ 1a)(F ) (id ⊗ 1a)1a(8) .

The first relation of Eqs. (2.25) is a consequence of the covariance property (2.16) of8,

1

D R−
2

8
1

8 =
1

8
1

N
1

8−1R−
2

8
1

8 =
1

8
1

N
2

8 R− =
1

8
2

8 R+
1

N=

= R+

2

8
1

8
1

N= R+

2

8
1

D
1

8 = R+
2
σ (D)

2

8
1

8 .

We have inserted the definition (2.19) twice and used commutation relations (2.22).
Next, using definitions (2.17)–(2.18) of the structure data, we easily check (2.26):

2
σ

1
σ (f) =

2

8
1

8 (e ⊗ f)
1

8−1
2

8−1 =

= F 1a(8) (e ⊗ f) 1a(8−1) F−1 = F 1a(8 (e ⊗ f) 8−1) F−1 = 1F (σ(f)) .

Let us finally discuss the computation ofF ∗. It is based on the second identity in
(2.11) and on the relation (e⊗S)(id⊗1)(S) = (S⊗e)(1⊗id)(S) which can be checked
in a straightforward way. Applying them and the property (2.14) to the definition (2.17),
we derive

F ∗ = (
2

8
1

8 1a(8−1))∗ = 1′
a(8 S) (S−1)13

1

8−1(S−1)23

2

8−1

= 1′
a(8) (1′ ⊗ id)(S)

[
(e ⊗ S−1) (id ⊗ 1′)(S−1)

]
213

1

8−1
2

8−1

= 1′
a(8) (1′ ⊗ id)(S)

[
(id ⊗ 1)(S−1) (e ⊗ S−1)

]
213

1

8−1
2

8−1

= 1′
a(8) (S ⊗ e)

1

8−1
2

8−1 = Sa 1a(8)
1

8−1
2

8−1 = Sa F−1 .
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The index on [.]213 refers to a permutation of tensor factors in the expression enclosed
by the brackets.

All other relations in Proposition 1 are either obvious or they follow directly from
the derived equations. This applies in particular to Eq. (2.27).

A.2. Proof of Proposition 3.In this subsection we want to construct consistent structure
data for vertex operators of the deformed universal enveloping algebrasG = Uq(G) from
their Clebsch–Gordan maps and 6j-symbols. To fix our notations, let us recall that the
Clebsch-Gordan mapsC[TL|S] : V T ⊗ V L 7→ V S have the following properties:

C[TL|S] (τT ⊗ τL)(1(ξ)) = τS(ξ) C[TL|S] for all ξ ∈ G ,

(
κS

κT κL
)±1 C[TL|S] RTL

± C[TL|R]∗ = δR,S with κL = τL(κ) ,∑
Q

B±
QS [ L T

R J ] C[JQ|R] C23[TL|Q] = C[JS|R] C23[TL|S] (RJT
± ⊗ eL) ,

∑
Q

FQS [ L T
R J ] C[QL|R] C12[JT |Q] = C[JS|R] C23[TL|S] . (A.1)

In the order of appearance here these equations describe the intertwining properties of
the Clebsch–Gordan maps, their normalization and the definition of the braiding and
fusion matrices (or 6j-symbols). It is well known that certain (polynomial) relations for

the numbersB±
. .[ . .

. . ] and F . .[ . .
. . ] follow from their definitions and properties of the

quasi-triangular Hopf algebraG (see, e.g., [39]). In particular, one has∑
Q

FQS [ L T
R J ] FNR[ L Q

P I ] FMQ[ T J
N I ] = FMR[ S J

P I ] FNS [ L T
P M ] ,

∑
N

FNS [ L T
P M ] FNR[ L T

P M ]∗ = δS,R , (A.2)

�+�
−1
− ( NT

P ) B−
NN ′ [ L T

P M ] = B+
NN ′ [ L T

P M ] �+�
−1
− ( MT

N ).

Here we used the notation

�±( LT
P ) = B±

TL[ L T
P 0 ] and �+�

−1
− ( LT

P ) = �+( LT
P ) �−1

− ( LT
P ) =

vLvT

vP
. (A.3)

To proceed, we parameterize the labelsN, M, I andN ′ in terms of new variablesλ, ϑ, ι
andϑ′ so that

N = P + λ , M = P + λ + ϑ , I = P + λ + ϑ + ι , N ′ = P + ϑ′ .

Let us introduce the following matricesC{TL|S}(P ), RTL
± (P ) andDT (P ) ,

C{TL|S}(P )ς,ϑλ = FP +λS [ L T
P P +ϑ+λ ] δς,ϑ+λ ,

RTL
± (P )ϑ′λ′,ϑλ = B±

P +λP +ϑ′ [ L T
P P +ϑ+λ ] δϑ+λ,ϑ′+λ′ ,

DT (P )ϑ′,ϑ = �+�
−1
− ( P +ϑT

P ) δϑ′,ϑ . (A.4)
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We may think of theP -dependent matricesC{TL|S}(P ), RTL
± (P ) andDT (P ) as ma-

trices with entries in the algebraC. Whenever we do so, we will neglect to write the
P -dependence explicitly and use the symbolsC{TL|S}, RTL

± andDT . If we introduce
in addition the matrix valued mapσL onC by

σL(P )λ′,λ = (P + λ) δλ′,λ ,

then Eqs. (A.2) for the fusion and braiding matrices become∑
Q

FQS [ L T
R J ] C{QL|R} σL(C12{JT |Q}) = C{JS|R} C23{TL|S} ,

C{TL|S} C{TL|R}∗ = δR,S ,

(DT ⊗ eL) RTL
− = RTL

+ σL(DT ) . (A.5)

The last of these equations appears already as a close relative of Eq. (2.25). In fact, for
semi-simpleG one can construct universal objectsR± ∈ G ⊗ G ⊗ C andD ∈ G ⊗ C so
thatRTL

± = (τT ⊗ τL)(R±) andDT = τT (D). Then Eq. (A.5) turns into

1

D R− = R+
2
σ (D) ,

whereσ : C 7→ G ⊗ C is defined so thatσL = (τL ⊗ id) ◦ σ. When�+�
−1
− is expressed

in terms of the ribbon elementv as in Eq. (A.3), the definition (A.4) ofD becomes

D = σ(v)v−1va .

To build the universal elementF ∈ G ⊗ G ⊗ C, we combine the matricesC{..|.} with
the Clebsch-Gordan maps so thatFTL = (τT ⊗ τL)(F ) is given by

FTL ≡
∑
S

C{TL|S}∗ C[TL|S] .

Multiplying the adjoint of the first equation in (A.2) with Eq. (A.1), taking the sum
overR, S and using the intertwining properties of the Clebsch–Gordan maps, we obtain
Eq. (2.24) forF . In the same way, one may combine the normalizations for the Clebsch–
Gordan mapsC[TL|S] and the matricesC{TL|S} to derive that

F
(
(1(κ−1)(κ ⊗ κ) R−1

+ ) ⊗ e
)

F ∗ = e ⊗ e ⊗ e ,

and henceF has the required property under the∗-operation. Finally, we use that the
matrixC{TL|S}(P ) is proportional toδς,ϑ+λ so that

(f(P + ς)) C{TL|S}(P )ς,ϑλ = C{TL|S}(P )ς,ϑλ (f(P + ϑ + λ)) .

Heref(P ) is an arbitrary function ofP , i.e.,f may be regarded as an element inC. With
our standard conventions, this can be stated as a matrix equation

σS(f) C{TL|S} = C{TL|S} σLσT (f) .

Keeping in mind that1F (ξ) = F (1(ξ) ⊗ e)F−1, we discover Eq. (2.26). All other
properties of the structure data follow easily from the relations we have discussed here.



132 A. G. Bytsko, V. Schomerus

A.3. Structure data for left chiral vertex operators.We can obtain the relations for the
left structure dataFl, σl, Dl, Rl

± from Eqs. (2.23)–(2.28) if we substitute

1a → 1′
a F → F ′

l M → (M l)−1

R± → R′
± σ → σl R± → (Rl

±)′

va → va D → D−1
l 8 → 8l .

The prime onFl, Rl
± ∈ Ga ⊗Ga ⊗Cl denotes permutation of the first two tensor factors.

Once the validity of these rules has been checked for the defining relations (2.17)–(2.19)
of structure data, we can apply them to Eqs. (2.23)–(2.28). Within the notations of
Proposition 1, the result looks as follows:

Dl = (v−1
a v) σl(v−1),

1
σl

2
σl (fl) = 1Fl

(σl(fl)) , (A.6)

[Fl ⊗ e]1243

(
(1a ⊗ id)(Fl)

)
=

1
σ (Fl)

(
(id ⊗ 1a)(Fl)

)
, (A.7)

2

Dl Rl
+ = Rl

−
1
σl(Dl), Rl

+

1

Dl =
2
σl(Dl) Rl

−, (A.8)

Rl
±,23

2
σl(Rl

±,13) Rl
±,12 =

3
σl(Rl

±,12) Rl
±,13

1
σl(Rl

±,23), (A.9)

F ∗
l = S−1

a F−1
l , (Rl

±)∗ = (Rl
±)−1, D∗

l = D−1
l , (A.10)

σl(fl)∗ = σl(f
∗
l ), 1Fl

(ξ)∗ = 1Fl
(ξ∗). (A.11)

Here1Fl
(ξ) ≡ Fl(1(ξ) ⊗ e)F−1

l ∈ Ga ⊗ Ga ⊗ Vl analogously to definition (2.21).
Using the fact that (Sa ⊗ Sa)(1a(ξ)) = 1′

a(Sa(ξ)), it is simple to see that the objects
(3.13), (3.14) satisfy the relations (A.6)–(A.11) ifF, σ, 1, R solve Eqs. (2.23)–(2.28).
The former equations are actually obtained from the latter by acting with the mapsS (n)

lr
defined in Eq. (3.15).

A.4. Properties of the fieldg. The consistency of the objectg with the constraint to the
diagonal subspaceH is certainly its most important property. It was formulated more
precisely in (3.17) using notations from Subsect. 3.4. A formal proof may be given as
follows. Suppose thatfg = Slr(f)g holds for all f ∈ Cr. Then one finds for arbitrary
f ∈ Cr,

g f = Sa(8l)8r f = Sa(8l) σr(f) 8r = Sa

(
(S−1 ⊗ id)(σr(f))8l

)
8r

= Sa

(
(S−1 ⊗ Slr)(σr(f))8l

)
8r = Sa

(
σl(Slr(f)) 8l

)
8r

= Sa(8l) Slr(f) 8r = Sa(8l) 8r Slr(f) = g Slr(f) .

The computation makes use of the choice (3.14) to replaceσr by σl. From now on, we
think ofg as being restricted toH. We begin our proof of Proposition 4 with the operator
product expansion (3.20) ofg ∈ Ga ⊗ End(H),

2
g

1
g = Sa(

2

8l) Sa(
1

8l)
2

8r
1

8r = (S ⊗ S ⊗ id)(F ′
l 1

′
a(8l)) Fr 1a(8r)

= (S ⊗ S ⊗ id)
(
(S−1 ⊗ S−1 ⊗ id)(F−1

r )1′
a(8l)

)
Fr 1a(8r)

= 1a(Sa(8l)) F−1
r Fr 1a(8r) = 1a(g) .
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HereSa(
1

8) andSa(
2

8) are shorthands for (Sa ⊗ id)(
1

8) and (id ⊗ Sa)(
2

8), respectively.
The exchange relations forg, the formulag−1 = Sa(g) and the normalizationεa(g) = e
follow immediately from the functoriality relation in (3.20).

The exchange relations (3.21) are derived from (3.3), (3.8) and the explicit construc-
tion of g as a product ofSa(8l) and8r. Let us check the first of them:

1

M
r 2

g R− =
1

M
rSa(

2

8l)
2

8rR− = Sa(
2

8l)
1

M
r

2

8rR− = Sa(
2

8l)
2

8rR+
1

M
r =

2
g R+

1

M
r.

The second relation in (3.21) can be obtained similarly if we take the covariance prop-
erties (3.18) ofSa(8l) into account.

Verification of the relations (3.22) makes use of the equalityvl = vr which is valid
on H and follows with the help ofS(v) = v, if the constraintSlr(fr) = fl is evaluated
on the ribbon element. The second relation in (3.22) then is obvious, and for the first we
check explicitly:

gn Mr
n = gn (8r

n)−1 v−1
a Dr 8r

n = Sa(8l
n) v−1

a Dr 8r
n

= (8l
n)−1 θl v−1

r σr(vr) 8r
n = v−1

l (8l
n)−1 θl 8

r
n vl (A.12)

= (8l
n)−1 σl(v−1

l ) vl θl 8
r
n

= (8l
n)−1 va Dl 8

l
n (8l

n)−1 θl 8
r
n = M l

n Sa(8l
n) 8r

n = M l
n gn .

In this computation it was convenient to insert the formula (3.19) which expressesSa(8l)
in terms of (8l)−1.

A.5. Properties of lattice vertex operators.Let us prove that the structure constantsFα,
Rα

± andσα appearing in Eqs. (5.20)–(5.22) coincide with those of the vertex operators
8α

0 . To this end, we exploit the construction of8α
n as a product of8α

0 and the holonomies
Uα

n (see eq. (5.16)). Equation (5.22) is actually obvious, sincefα commute with all the
elementsUα

n . Furthermore, Eq. (5.21) is a simple consequence of (5.20). Hence, we
need to prove only Eq. (5.20) which we do for the right chirality ( the left one works
analogously),

1a(8r
n) = 1a(8r

0) 1a(Ur
n) = F−1

r

2

8r
0

1

8r
0 R−1

−
2

Ur
n

1

Ur
n =

= F−1
r

2

8r
0

2

Ur
n

1

8r
0

1

Ur
n = F−1

r

2

8r
n

1

8r
n .

The exchange relations (5.25)–(5.28) are established by induction. Indeed, forn = 0
they are part of Definition 3. Assume now that Eqs. (5.25)–(5.28) hold for a certain
n < N so that, in particular,8α

n has non-trivial exchange relations withJα
n andJα

n+1
only. Then8α

n+1 = 8α
nJα

n+1 necessarily commutes with all currentsJα
m except fromJα

n ,
Jα

n+1 andJα
n+2. It is easy to verify that the exchange relations withJα

n become trivial as
well. We demonstrate this forα = r:

1

8r
n+1

2

J
r
n =

1

8r
n

1

J
r
n+1

2

J
r
n =

1

8r
n

2

J
r
n R+

1

J
r
n+1 =

2

J
r
n

1

8r
n

1

J
r
n+1 =

2

J
r
n

1

8r
n+1 .

It can be checked similarly that the relations between8α
n+1 andJα

n+1, J
α
n+2 coincide with

those between8α
n andJα

n , Jα
n+1. This completes the induction.

Now we have to prove Eqs. (5.30)–(5.31). For instance, using (4.17) and (5.25), we
derive the first relation in (5.30) for 0≤ n < m < N :
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1

8r
n

2

8r
m =

1

8r
0

1

Ur
n

2

8r
0

2

Ur
m =

1

8r
0

2

8r
0 R+

1

Ur
n

2

Ur
m =

= Rr
−

2

8r
0

1

8r
0 R−1

−
2

Ur
m

1

Ur
n = Rr

−
2

8r
0

2

Ur
m

1

8r
0

1

Ur
n = Rr

−
2

8r
m

1

8r
n .

The relations (5.18)–(5.22), (5.24)–(5.28) which involve vertex operators8α
n outside of

the initial intervaln = 0, .., N − 1, are derived with the help of Eqs. (5.34)–(5.35) for
the monodromiesMα

n . Since the derivation uses the same technique as above, we prove
only the functoriality relation for8r

n. As a first step, we check the following:

1a(8r
n+N ) = 1a(8r

n) 1a(Mr
n) = F−1

r

2

8r
n

1

8r
n R−1

−
2

Mr
n R+

1

Mr
n =

= F−1
r

2

8r
n

2

Mr
n

1

8r
n

1

Mr
n = F−1

r

2

8r
n+N

1

8r
n+N .

Then we use an induction and Eq. (5.35) to get the same property for8r
n+kN .

Finally, we establish relations (5.36) directly with the help of Eq. (5.35):

Rr
+

2

8r
n

1

8r
n+N = R+

2

8r
n

1

8r
n

1

M
r
n

=
1

8r
n

2

8r
n R+

1

M
r
n =

1

8r
n

1

M
r
n

2

8r
n R− =

1

8r
n+N

2

8r
n R−.

Detailed computations for the other relations in (5.18)–(5.22), (5.24)–(5.28) can be
worked out easily.

A.6. Properties of lattice fieldgn. Let us notice that the equality (3.19) holds in the lattice
case for all8l

n with the sameθl ∈ Ga ⊗ Cl (as we explained in Subsect. 5.2, vertex
operators of the same chirality assigned to different sites possess the same structure
data). Therefore, we can proceed as in the toy model case and rewrite the expression for
gn as follows:

gn = (8l
n)−1 θl 8

r
n .

This relation allows to expressgn in terms ofg0 and the holonomiesUα
n ∈ Ga ⊗ KN :

gn = (U l
n)−1 g0 Ur

n . (A.13)

Bearing in mind that elements fromKN , and hence, in particular, components of the
holonomiesUα

n , leave the subspacesW K̄K
N of the full representation spaceMN =⊕

IJ W IJ
N invariant (see Subsect. 5.4), the equality (A.13) explains why allgn can be

restricted on the diagonal subspaceHN =
⊕

K W K̄K
N simultaneously.

Among the properties of the lattice fieldgn in Proposition 5, only the relations
(5.42) and (5.40) have not been considered in the toy model case. Equations (5.42)
follow immediately from the covariance properties (5.19) of the vertex operators and
the remark that, due to Eq. (3.19), the second relation in (5.19) can be rewritten as
follows:

Sa(8l
n) ιn(ξ) = 1n(ξ) Sa(8l

n) , Sa(8l
n) ιm(ξ) = ιm(ξ) Sa(8l

n) for m 6= n (modN )

for all ξ ∈ G.
The periodicity ofgn is derived with the help of relations (5.15), (5.24) and the

second equation in (3.22):
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gn+N = Sa(8l
n+N ) 8r

n+N = (8l
n+N )−1 θl 8

r
n+N = (8l

n M l
n)−1 θl 8

r
n Mr

n

= (8l
n)−1 (va Dl)

−1 θl v
−1
a Dr 8r

n

= (8l
n)−1 σl(vl) v−1

l θl σr(vr) v−1
r 8r

n

= vl (8l
n)−1 v−1

l θl v−1
r 8r

n vr

= vr (8l
n)−1 v−1

r θl v−1
l 8r

n vl = Sa(8l
n) 8r

n = gn .

Due to periodicity, it is sufficient to check the locality ofgn only for 0 ≤ n, m < N .
Taking, for definiteness,n < m, we derive:

1
gn

2
gm = (

1

U
l
n)−1 1

g0
1

U
r
n (

2

U
l
m)−1 2

g0
2

U
r
m = (

1

U
l
n)−1 (

2

U
l
m)−1 R−1

−
1
g0

2
g0 R+

1

U
r
n

2

U
r
m

= (
2

U
l
m)−1 (

1

U
l
n)−1 R+

2
g0

1
g0 R−1

−
2

U
r
m

1

U
r
n

= (
2

U
l
m)−1 2

g0 (
1

U
l
n)−1 2

U
r
m

1
g0

1

U
r
n =

2
gm

1
gn .

Here we used Eq. (A.13) and the commutation relations betweeng0 and the holonomies
Uα

n which are obvious consequences of Eqs. (5.43).
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