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Abstract: We investigate linear combinations of characters for minimal Virasoro mod-
els which are representable as a product of several basic blocks. Our analysis is based
on consideration of asymptotic behaviour of the characters in the quasi-classical limit.
In particular, we introduce a notion of the secondary effective central charge. We find all
possible cases for which factorization occurs on the base of the Gaul3-Jacobi or the Wat-
son identities. Exploiting these results, we establish various types of identities between
different characters. In particular, we present several identities generalizing the Rogers—
Ramanujan identities. Applications to quasi-particle representations, modular invariant
partition functions, super-conformal theories and conformal models with boundaries are
briefly discussed.

Introduction

It is a well known fact that the characters of irreducible representations of the Virasoro
algebrafor theM (3, 4) minimal model possess the peculiar property to be representable
as infinite products

o0

34, . 13 ntly A 1
@@ =a% [[A+q"D =g% [] (=5). 0.1)
n=0 n=0
1 o0
X1(@) + X33(g) = g7 [] (L+g"2), (0.2)

n=0

As was observed in [1], some characters and linear combinations of characters for the
M(4, 5) minimal model admit similar forms.
The question towards a generalization and classification of these identities arises

naturally. Surprisingly, it turned out [2] that the only factorizable single characters for

minimal models are of typg 2" (¢) and x4/ (¢). In [3,2,4-6] it was discussed that
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the factorization of characters in these series is based on the Gauf3-Jacobi and Watson
identities.

On the other hand, a factorization of linear combinations of Virasoro characters has
not been studied so far. In the present paper we show that factorization of combinations
X,‘ijﬁ,,(q) + X;;:;—m (¢) occurring due to the GauR3-Jacobi and Watson identities is possible
(up to the symmetries of the characters) only o= 3n, 4n, 6n. Moreover, we will
prove that there are no other factorizable differences of this type which admit the inverse
product form similar to the r.h.s. of (0.1).

We present a systematic analysis based on considerations of the asymptotic behaviour
of (combinations of) characters in the so-called quasi-classical lmit, 1~. We will
demonstrate that for linear combinations of the above mentioned type we need, besides
the effective central charges, the notion of the “secondary” effective central chafge

The advantage to have the characters (or combinations) in the form of infinite products
rather than infinite sums is many-fold. First of all the problem of finding the dimension of
a particular level in the Verma module of the irreducible representation has been reduced
to a simple problem of partitions. As a consequence one may state the possible mono-
mials of Virasoro generators at a specific level. Also the associated quasi-particle states
may be constructed from this form without any effort, whereas it is virtually impossible
to find them from the infinite sum representation. The quasi-particle form is also related
to a classification of Rogers—Ramanujan type of identities [7]. In the present paper this
subject is discussed rather briefly in 3.4 and Appendix E. However, this point is followed
up furtherin [31], where the obtained factorized forms of characters were exploited in the
derivation of Rogers—Ramanujan type identities. In addition, the factorized characters
(or combinations) allow to derive various new identities between different combinations
of characters far easier than employing the infinite sum representation. Some of these
identities relate different sectors of the same models, whereas others relate different
models altogether. Factorized combinations of characters appear naturally in the con-
text of coset models, super-conformal extensions of the Virasoro algebra and boundary
conformal field theories. They may even shed some light on massive models, since it
was conjectured in [2] that they allow to identify the space of form factors of descendant
operators.

1. Preliminaries

We use the notatiotn, m) = 1 if n andm are co-prime numbers and we employ also
m

the standard abbreviation for Euler’s functian,, = [] (1 — ¢*) with (g)o = 1.
k=1

1.1. Characters of minimal model§he Virasoro algebra is generated by operator val-
ued Fourier coefficients of the energy-momentum terfs@) = >, 2" 2L, and a
central charge. For an irreducible highest weight representation of the Virasoro
algebra with central chargeand weight: one defines the character

o
X(q) =try,, g "8 =g"" Ay ", q", (1.1)
n=0
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with u, being the multiplicity of the levek. The corresponding states at a particular
level k are spanned by the vectors

n
Logy...L g |h), ki<ka<...<kn, k:Zki. (1.2)
Minimal models are the distinguished conformal theories in which the set of highest
weights is finite [8]. These models are labeled by two integer nunstemss such that
s,t>2 and (s,t) =1. (1.3)

The minimal models for whichs — ¢| = 1 are unitary [9,10]. The minimal model
M(s, t) has the central charge

Y
c(s,t)y=1— G(S—t) (1.4)
st

The corresponding irreducible highest weight representations of the Virasoro algebra
are representations with the weights

_ (nt — ms)2 — (s — t)2

!l = , 1.5
m 45t (1.5)
where the labels run through the following set of integers:
l<n<s-1, l1l<m=<tr-—1. (1.6)
The corresponding character is given by [11,1]
h;i e A 2
X (q) vtk ( k(nt—ms) __ qk(nt—Q—ms)—i-nm)
= a.7)
hx.[ _c(st)
B S Xnm (@)
(@)oo m

(the second equality definggg), which we refer to as “incomplete character”). The
characters possess the following symmetries:

X @ = X050 @) = X (@) = X 50 (@) (1.8)

It follows from (1.6) and these symmetries that the minimal motg&ls, r) hasD =
(s — 1)(t — 1)/2 different sectors (inequivalent irreducible representations). In addition,
(1.7) allows to relate some characters of different models

X&) = Xy (@), (1.9)

whereq is a positive number such that, ar) = (¢, as) = 1. For mstance)(2 m(q)

3,10
X1, 2m(61)
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1.2. Quantumdilogarithmln our analysis of factorized characters we will be exploiting
the properties of the quantum dilogarithm, whose defining relations are

eank

Ing©) := [ — 4" = exp) T (1.10)
k=0 k=1 q

Takingg = €27, we assume that Ifr) > 0 and Im@#) > 0 in order to guarantee
the convergence of (1.10). We see from (1.10) thatdinis a pseudo-double-periodic
function
1
Ing(6+1) =Ing(6) and In, (O +71)= 1_ 20 In,(6) . (1.12)

It follows easily from this that

bk 20k

= (=Dfg 7 itk 1 &
In, (6) _k;) D and i @) _ZE‘) o (1.12)

For explicit calculations it will further turn out to be convenient to employ the notations
(in which we will omit the explicity-dependence as long ass not varying)

{x}; :=1Inp(xr) and {x};' =Ingy (xt+1/2), O<x<y. (1.13)

These blocks have the following obvious properties:

n—1
Wy =2, =]+ (1.14)
k=0
In_gy(x7) = (x)5, (x + 313, . IN_gr(xt +1/2) = {x)5 (x + y)5,, (1.15)
-1 +__ 1t
Wz =105 W= aas (110

The last line is Euler’s identity which, in fact, can be derived from (1114).

1.3. GauR-Jacobi and Watson identitidswill be the principal aim of our manuscript to
seek factorizations of some single characters and some linear combinations of characters

in the following form:

1 N M
qconstm Hi:l {xi}y njzl {)Z]}; ) (1.17)

We will encounter the caséé # 0, M = 0 andN ## 0, M # 0. The explicit formulae
of this type, which we will obtain, are based on the Gaul3-Jacobi identity (see e.g. [12])

o0 o0
Y Db T = [[a-v et ha— v a—viub),  (1.18)
k=—00 k=1

1 Indeed, using consequently the first and second relation in (1.14y for, we obtain{2x}, =
(1 {x)y = (0 {x)5, (2x)5, . thus deriving the identityx} {x}5, = 1.
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and the Watson identity [13]
> 324k 2 ad
Z p 7 3 (=2 Mty 1—[(1 — Ly 2y (g gk 2y
k=—00 k=1

x (1= vk w2y (1= p2ly My (1 — 2Ty, %y
(1.19)

Substitutingy = ¢%, w = ¢”, we can rewrite the identities in terms of the blocks (1.13)

o0

2k _ _ _
Y (DR T < qay T ) e+ b)Y, (1.20)

k=—00

o0
32 _ _ _ _
> gz (q’““/ 272) _ ghtal 2*‘”’)”’) = {0} yopla + b} ppfa + 26}, 5,

k=—00

x{alo, apla +4bY5, 4y (1.21)
Other useful substitutions ate= ¢¢, w = —¢” andv = —¢“, w = ¢” (for (1.18) it
suffices to consider only the first of them, because of the symmetsyw), which yield

ad k(kt) K2k
Z (_1)Tq(a+b)7+§(a—b) (122)

k=—00

= {a}g(a+b){b};(zl+b){a + D)3 pyla + 2b}5 44 py{2a + b};(a+b){za + 2b}5 410y

(o)
2 2 _
Z (—1)3 g% (a+2b)(qk(a/2 2b) +qk(a/2+4b)+b)
k=—00

= (bl pla + by ppla +20) 5 (a5, gpla + 405, 0 (1.23)

o0
k(k=1) 32 -
Z (_1) 2 q 2 (a+2b)(qk(a/2 2b) _qk(a/2+4b)+b)

k=—o00

= {a)zu 1 ap10) a0 apta + 013, 4y (1.24)
x {a +2b)3, , apla + 363, gl + 4b)3,  4(2a + 3Dy, , 4p(2a + 4bYy, 4y

Here we used (1.15) in order to obtain the r.h.s. in the desired form.

Now one can try to find factorizable linear combinations of characters simply by
matching the l.h.s. of (1.20)—(1.24) with appropriate combinations of (1.7). However,
this is a cumbersome task. Below we will develop a more systematic and more elegant
approach exploiting the quasi-classical asymptotics of characters.

1.4. Quasi-classical asymptotics of charactefs can be seen from (1.10), the limit
 — 0o0fIn, (8) (since we require Irfr) > 0O, this is the limity — 17) is singular. The
asymptotics is given by
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; _ 1 . [ 2ni6 1 27if
lim In, (6) = exp{zmr Lis (e )+ 5 IN@— ) + 0 1 (1.25)
whereLia(x) =Y 02 Z—g is the Euler dilogarithn? (see e.g. [15]).

Introducingg = exp{—2xi/z}, we derive from (1.13) and (1.25) the following
asymptotics for the limiyy — 17

Lip(1) 4 N Lip(-1) 1
)y ~ g =47, (x)y ~q " =4 ®. (1.26)

Here we used the fact thati,(1) = —2Li>(—1) = 72/6 holds® Notice thaty — 1~
implies thatg — 07, so that{x};” and{x} tend to zero and infinity, respectively.

From a physical point of view, say if we regajdg) as a partition function, the
limit ¢ — 0 can be interpreted as a high-temperature limit (with temperdturel/z)
which is singular and known to be ruled by the effective central charge only (i.e. it is
sector-independent) [16]. Indeed, in order to carry out this limit, one may exploit the
behaviour of Virasoro characters under the modular transformation. It is well known [17,
3], that the S-modular transformatiogp & ¢) of a character has the following form:

X @ =Y St (@), (1.27)
n',m’

whereS"”™" are explicitly known constants (see (2.17)). Now it is obvious from (1.7)

nm

and (1.27) that

ceff (s,1)

Ko (@) ~ Spg = (g —> 1), (1.28)

Here we have introduced the so-called effective central chasg@, t) = c(s,t) —
24n3'. = 1 — &(air — ms)?, whereh}'. denotes the lowest of all conformal weights

in the model. Let us remark that the conditions (1.3) and (1.6) allow us to invoke the
well-known theorem of the greatest common divisor and showihatms| = 1. Hence

6
ceff(s, 1) =1— — (1.29)
st

holds for any minimal model.
Comparison of (1.28) with (1.26) imposes a constraint on the possible structure of
characters factorized in form (1.17). Namely, each factor of the (ﬁqo}ﬁy‘)il and

({x}j)ﬂtl contributes;% and:l:ziy to the effective central charge, respectively. Notice

that this is are independent property. These contributions must sum up to the value
given by (1.29).

2 This motivated the authors of [14] to coinyl@®) a quantum dilogarithm.
3 Equations (1.26) can also be obtained by a saddle point analysis of the identities (1.1;0 fey ihwe
L1 _Ld/2
puté = xt+1/2 andd = xt, respectively [6]. In this approach one finds}; ~ ¢ 4%, {x}y ~¢ 4y,
ast — 0. HereL(z) = Liz(z) + % InzIn(1 - z) denotes the Rogers dilogarithm [15]. These results coincide

with (1.26) sincel.(1) = 2L(1/2) = 72/6.
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2. Factorization of Characters

Below it will be useful to refer to the following simple statement:
Cnm+§_1st=nt+ms < t=¢{m Or s =¢n. (2.1)

Equations of these form will arise as necessary conditions for factorization of (combina-
tions of) characters. Clearly, far ¢, n, m obeying (1.3) and (1.6) the parametemay
assume only some rational values greater than unity.

2.1. Factorization of single characterd.he factorization of some Virasoro charactersin
the M(3, 4) and M (4, 5) models was already observed in [1], whereas the factorization
of all characters of type(fﬁ;{ (g) and X,ffﬁ;[ (g) was discovered in [2]. It was already
discussed in[3,2,4-6] that the factorization of characters in these series may be obtained
by exploiting the Gaul3-Jacobi and Watson identities. Nevertheless, we wish to present
here a systematic derivation of these results based on alternative arguments which will
also be applicable in a more general situation.

Itis straightforward to see from (1.7) that the first three terms in the expansion of the
incomplete character are

~8,t (q) =1— qnm _ q(s—n)(t—m) +..., (22)

Xn,m

and that further terms are of higher powersginLet us assume that the incomplete
character in question is a particular case of the I.h.s. of the Gauf3-Jacobi identity (1.20)
for somea andb. Noticing that the series on the I.h.s. of (1.20) is 4% — ¢®+ higher

order terms, we conclude that= nm, b = (s — n)(t — m) or vice versa. Furthermore,

the r.h.s. of (1.20) allows to calculate the effective central charge for the character in
question. As was explained in Subsect. 1.4, each of the three blocks contritzliggeiao

ceff. Thereforecer = 1— -2 (the 1 is a contribution ofg)se = In, (r) = {1}7, which
appears in (1.7) and whose limit is also ruled by (1.26)). Comparison of this result with
(1.29) yields the equation

1
2nm + zst = nt + ms, (2.3)

which is a particular case of (2.1) with= 2 and, hence, either= 2n ort = 2m. This
implies thatxfff;,’ (¢) is the only (up to the symmetries (1.8)) possible type of characters
factorizable with the help of the Gaul3-Jacobi identity and that its factorization has to be

of the following form

hﬁn’,nt _c(@np)

(2.4)

12 (g) =2 {nmY, (nt — nm}y {nt}

(@)oo "
wheret is an odd number according to (1.3). One can verify that Eq. (2.4) is indeed valid
by a direct matching of the L.h.s. of (1.20) for the specifiednd with the formula

(1.7) for characters (see e.g. [6]).

The same type of consideration applies if we seek characters which are factorizable
with the help of the Watson identity. Namely, since the seriesonthel.h.s. of (1.21) isagain
1—g° — ¢*+ higher order terms, we conclude that nm, b = (s —n)(t —m) or vice
versa (in contrast to the previous case, these two possibilities lead to different equations).



186 A. G. Bytsko, A. Fring

The r.h.s. of (1.21) allows to calculate the effective central chatge= 1 — 2, where

y = a + 2b. Comparison of this value fags for the two choices of andb with (1.29)
yields the following equations:

gnm—i-gst:nt—i—ms and 3nm+%st:nt+ms, (2.5)
respectively. According to (2.1) this implies= 2s/3 orm = 2t /3 in the first case and

n = s/3orm = t/3inthe second. Notice that these cases are related via the symmetries
(1.8). Thus, we conclude that the only possible type of characters factorizable on the
base of the Watson identity 'p@?fﬁ,’,’ (¢) (again up to the symmetries (1.8)) and that its
factorization has to be of the following form:

h3n,t_('(3n,r)
3n,t q " 2 - - —
Xn,m (q) = {nm}Znt{znt - nm}Znt{Znt}an
(@)oo
x{2nt — 2nm},, A2nt + 2nm}y,,,, (2.6)

where(3, t) = 1. Again, one verifies this formula directly matching it with (1.7) (see
[6]).

Thus, we have found all types of characters which are factorizable on the base of the
Gauf3-Jacobi and the Watson identities. In fact, it was shown in [2] that this exhausts the
list of characters of minimal Virasoro models which admit the form (1.17) with M=0
andx; # xx. This implies that for the purpose of factorizing a single character in such a
form one does not have to invoke the higher Macdonald identities [18] (also known as
the Weyl-Macdonald denominator identities).

As a last remark in this subsection, we notice that in the ¢asa) = (3,n) =
(n, m) = 1 the combination of (2.4) and (2.6) yields

nm—1

x5 q) = L)y, @.7)
(Q)oo

The first non-trivial example of this kind bﬁf’g(q) = q2%1/{1}2_ = qz*lzt{l}Ir (the second
equality is due to the Euler identity). Furthermore, noticing the symnuetsy m of the

r.h.s. of Eq. (2.7), we derive an identity relating different models (it can also be obtained
employing (1.9) twice)

X253 (@) = 22 (@), 2.8)
where (6,n) = (6,m) = (n,m) = 1. The first non-trivial example iai’§5(q) =

3,10
X155 (@)-

2.2. Factorization of linear combinations. Preliminary idedd/e commence the in-
vestigation of factorized linear combinations,, (¢) + x.;’ ,(¢), by introducing the
quantity ’

n',m’ e St s,
Ahy ' (s, 1) i= hn,’m, — hn’m

_ ((m+m)s—(n+n);)s(§n—n)t—(m—m)s)7 2.9)
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where we will often omit the labelsandz. Then

.t c(s,t
hfz m_L(2Y4)

X (@) £ Xt (@) = . ()?,fji,,(q) + g A )22?,’,,,&61)) . (210
o0

A S,

The combinationy,’, (¢) £ ¢q Al i Xj;fm/ (g) can be represented as a product of few
blocks{ }* only if Ah” " is an integer or a fraction with sufficiently small denomi-

nator (otherwise the product will generate terms with power;s%ﬁh'f" which are not
presented in the combination). On the other hand, the numerator in (2.9) is, in general,
not divisible bysr because of the conditions (1.3) and (1.6). The only possibility to make
this fraction reducible by: is to putn = n’ andm + m’ = ¢ or, alternativelym = m’

andn + n’ = s. Thus, we are led to consider the combinations

X @) % X't—m (@)- (2.11)

Let us denotei) ;™" (s, t) for such pairs byAn;",; its explicit value is
1
Al = 5t = 2m)(s = 20). (2.12)

If s ort is even (in particular, this includes all unitary minimal models), théa;ig’m
is integer or semi-integer. Let, for definitenesbge even. Then, taking into account the
symmetries (1.8), we see that each character in the minimal riedel ¢) is either of
the formxé/2 (@) (i.e., a“single” character, factorizable per se) or there exists exactly
one more character such that they form a pair of type (2.11). It follows from this and
Eq. (1.6) that the modeW1 (s, t) hasDg = ﬂ “single” characters. Consequently, there

areDy = (D—Dy)/2 = =2 pajrs. |If boths andr are odd, then apparentlyp = O

andDy = D/2 = 8=,
Consider (2.11) fon andm in the range

n<s/2, m<t/2 (2.13)

For this range all involved characters are different (see e.g. [3]), and it is easy to see
that we cover all possibl®; combinations. Moreover, conditions (2.13) ensure that
Ahyh, > 0. This in turn implies that (2.11) contains only non-negative poweig. of
Thus, from now on we will assume thatandm in (2.11) are restricted as in (2.13).

As we have seen in the previous subsection, the knowledge of the asymptotic be-
haviour of the characters in tlie— 1~ limit proves to be very useful in the search of
factorized characters. It turns out that in the case of linear combinations we have to take
into account also the next to leading term in (1.28),

. Ceff) ) _
Xh(q) ~ S GTE T st 4 (g > 1), (2.14)

where we denoted
ceff(s, 1) = c(s, 1) — 28R, &(s, 1) = c(s,1) — 24h3 - . (2.15)

Hereh}'. and h ’~ are the smallest and the second smallest conformal weights in
the model correspondmg to the minimal and the next to minimal valyerof ms|,
respectively. We will refer té@ (s, r) as the secondary effective central charge.
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As we mentioned above, the theorem of the greatest common divisor ensures that
cefi (s, 1) = 1 — 6/st. Furthermore, one can show in the same way fat- ms| = 2,

SO thath;”r;l = 41{;;’)2 holds? Thus, employing (1.4) and (2.15), we obtain

24
s, =1—=—". (2.16)
st

The only case where this argument failsu§(2, ¢). Here|nt —ms| = 3 (unless = 3, in
which casehs~ ’~ does not exist). But, as we demonstrated, in this case all the characters
are factorlzable per se.

Now, using the explicit form of the matrig [17, 3] involved in the S-modular trans-

formation (1.27)
=/ 8 (— 1y Hmn'+1 sin(n nn/t) sin(n mmls) (2.17)
Vst N t ’ '

we observe thaf;:/}m;n — syt . Taking into account thaiir — ms| = 1
and|at — ms| = 2, we conclude thas,” L= s andSZ,’"m = —S™ Therefore,

for the combinationy; s, (q) — an w(q) the Ieadmg terms in (2.14) corresponding

to ceff (s, 1) cancel but those correspondingd@, r) survive’ and for the combination
x,ijfn(q) + x,ﬁ;ﬁ,m(q) the leading terms correspondingdgs (s, 1) do not cancel. Thus,
we obtain the following asymptotics of the combinations in question:

¢ ff (5,1) _

Xn m(q) + Xn t m(CI) ~ 61 o (g— 1), (218)
A Cls) _

X @ = Xt-m(@) ~ 4~ (g —17). (2.19)

2.3. Factorization of linear combinations. Exact formuldé¢ow we are in the position
to find all combinations of type (2.11) which are factorizable on the base of the Gaul3-
Jacobi and Watson identities. First, it follows from (1.7) that

Al 4. (2.20)

Ruh (@) £ g2 gt (g)=1-¢"" £q
and the further terms are of higher powerserereAh is given by (2.12) and we
assumer < s/2,m < t/2, notice that thenm # Ahi,fm

We will consider the sum of characters first. Let us assume that it is factorizable on the
base of the GauR-Jacobi identity (1.22), whose expansion on the l.h:s.4é & ¢’+
higher order terms. Then we infer from (2.20) that= nm andb = Ahy t. The
r.h.s.of (1. 22) gives the following effective central charge of the combination in question:
ceff = 1— 4(a+b) Comparing it with (1.29), we obtain the equatiofa 8 ») = st, or
more explicitly

1
Adnm + Zst = nt + ms. (2.21)

4 In fact, a more general statement is valid: foand s obeying (1.3) and positive integérsuch that
k < min(s, t) there exists always a solution of the equatjen— ms| = k obeying (1.6). It is given by
n = kn — ps andm = km — pt, wherep is some integer depending én

5 ForM(2, t) these terms cancel singe —rizs| = 3. This is not surprising because in this ca%én (9)—

xZ!_ (g) vanishes due to (1.8).
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According to (2.1), this impliesi= s or 4m = t.

If we assume that the difference of characters in (2.20) is factorizable on the base
of the GauR-Jacobi identity (1.20), we have to put nm, b = Ah},", or vice versa.
According to (2.19), the asymptotigs — 1~ defines the secondary effective central
charge, and comparison with the r.h.s. of (1.20) yi€lds 1 — % Together with
(2.16), we obtain the equatiori8+ b) = st which leads to the same condition (2.21)
found for the sum of characters.

Thus, we have shown that the only possible (up to the symmetries (1.8)) combination
of characters factorizable on the base of the GauRR-Jacobi ider)gﬁ’yﬁ@) + x,i”,’ﬁm (@)
and that its factorization has to be of the following form:

h4n,r_ “i’i{”
q n,m _ _ _
K@) + Ko (@) = F————{nm}y int — nm} nt},
(@)oo
x{nt/2 —nm}t {nt/2} ] {nt/2 + nm}}, (2.22)
dn,t _ c(4n.1)
qhn,m

24
X @) — xu! (@) = Ty /2 — Yyt /2, (2.23)

(@)oo

Here (t,2) = (t,n) = 1. The direct proof of these relations is performed again by
matching them with (1.7) (see Appendix B). Notice that in the case ofidgtiduffices

to prove only one of the relations, say (2.23). Indeed, in this Adéé,;f =n(t—2m)/2

is semi-integer, so that changing the signs of all semi-integer powers in the series on the
I.h.s. of (2.22), we obtain the series on the l.h.s. of (2.23). Therefore, the r.h.s. of (2.22)
is derived from the r.h.s. of (2.23) with the help of (1.15).

Now we apply the same technique as above in order to find the differences of type
(2.11) which are factorizable on the base of the Watson identity. We assume they have
the form of Eq. (1.21), whose expansion on the L.h.s. is 3* — ¢”+ higher order
terms. Then we infer from (2.20) that = nm andb = Ak, ora = Ak, and
b = nm. The r.h.s. of (1.21) gives the following secondary effective central charge of
the combination in questio: = 1 — {H%. Comparing it with (2.16), we obtain the
equation 6a + 2b) = st, which gives for the two possible choiceswéndb,

1 1
3nm + 3 st =nt +ms, and 6am + 5 st = nt + ms, (2.24)

respectively. According to (2.1), this impliea 3= s or 3m = ¢ in the first case and
6n = s or 6m = ¢ in the second.

Assuming that the sum of characters in (2.20) is factorized on the base of the Watson
identity (1.23), we have to put = nm, b = Ah)",. Then the r.h.s. of (1.23) gives
ceft = 1— ;. Comparing it with (1.29), we obtain the equatiota & 2b) = st and,
thus, we recover the first equation in (2.24). So, this is once more the:case/3 or
m=t/3.

It turns out that the sum of characters in (2.20) cannot be factorized on the base of the
Watson identity (1.24). Indeed, its |.h.s. is the following series@* — ¢” + g%+ —
g%+ higher order terms. On the other hand, fiox s/2,m < t/2 we have

st N s,r
Aot (q) £ g gt (q) = 1— g™ £ gAlm g~k
F th',Yl’,’m+m(s7n) +...,

5.t
;z,m +n(t—m)

(2.25)
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where further terms are of higher powerg;irEvidently, these two series cannot match
because of the wrong sign of thé**? term.

Thus, the only possible (up to the symmetries (1.8)) combinations of characters
3n,t 6n,t

factorizable on the base of the Watson identity)a?fé,’ (@) £ Xp.1—m(q) @Ndxn.m (q) —
B2 (¢) and their factorizations have to be of the following form

Xn,t—m
h3n,17r(eén4t)
q n,m _ _
X g) £ 2y (@) = ——————(nm),, {nt — nm}y,
(@)oo
y nt ~ (nt —2nm\F (nt +2nm ) * . (2.26)
2 | w 4 nt 4 nt
2 2
Rl — £ (6n,1)
X8 @) — x4 q) =2 () (nt — nm), (i),
(@)oo
x{nt = 2nm},, {nt + 2nm},, .. (2.27)

Here(t,3) = (r,n) = 1in (2.26) andz, 6) = (t,n) = 1in (2.27). The direct proof of
these relations is performed again by matching them with (1.7) (see Appendix B).
Combining (2.22)—(2.23) and (2.26), we also obtain

nm—2
48
x3n gy 4 x 3oy = L= tum) tnmy2),,, (2.28)
’ (@)oo
nrzg2
123 (q) — 353 () = L tnm 2}y, (2.29)
! (Q)oo 2

where(n, 3) = (m, 2) = (n,m) = 1.
To conclude this subsection we mention an interesting byproduct, which follows from
(2.6) and (2.26),

(nm)= {nt |- nt” (nt —2nm )T (nt +2nm)*
nm},, {nt —nm},, > y 7 y 7 y

= {2nt},,  {nm};, {2nt — nm},  {2nt — 2nm},,  (2nt + 2nm},,,
nt—2nm

+q 4 {2unt);,, {nt —nm};,, (nt +nm}, {2nm},, A{4nt —2nm}, , (2.30)

which may also be rewritten as

{nt} {nt—an}i {nt—l—an}ﬂE
2.1 4 Jul 4 Ju (2.31)

2 2
nt—2nm
= {nt}f{,{m — nm};m{nt + nm}%‘m +q 4 {nt}j’t{nm};m{Znt — nm};m.

This identity resembles particular formulae in [19] ((A5) and (A6) therein), which
were useful to derive a different type of identities between characters.
Analogous identities following from (2.28)—(2.29) and (2.26) are

{8nm}g,, {5nm}g,,, £ q°2 (nmlg,, (Tnm}g,,, (2.32)

= {nm/2},:1tm {2nm}an {4nm}§nm :
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2.4. Remarks on the factorized combinatioii$ie factorized characters given by (2.4)
and (2.6) can be rewritten in the “inverse product” form (examples of such representation
are given in Appendix 4

_ 1
[Tatxily,

In order to achieve this, one rewritég), = {1}; with the help of (1.14) as a product

of some number of blocks and then cancels all blocks in the numerator with some of
those in the denominator. The only problem here is to verify that all blocks in (2.4)
and (2.6) are different. Equation (2.4) could have coinciding blocks ony=if 2m.

This is however excluded by the conditign 2) = 1 which must hold because of (1.3).
Equation (2.6) could have coinciding blocks i&= 3m, t = 3m/2 ort = 2m. The first

two possibilities are excluded by the conditiGn3) = 1. The last one is allowed, but

this case is described by the reduced formula (2.7), which is obviously representable in
the form (2.33).

The inverse product form (2.33) (it is rather common for characters of Kac-Moody
algebras[12]) can be interpreted as a character of a module with states created by bosonic
type operators. Having the characters in the form (2.33) implies that the dimension of
the levelk in the Verma module of the irreducible representation is simply the number of
partitionsk = x1+...4+xy +Zf\’:1 n;y; with n; being an arbitrary non-negative integer.
This suggests that the states at this level are simply monomials of the form (1.2). If any
power of a generator having a given grading allowed, the character acquires a factor
(1 — ¢%) in the denominator. It is guaranteed that any monomial by itself (apart from
L_1]h = 0)) can never constitute a null-vector, as follows from the following simple
argument. A null-vector has by definition zero norm or equivalently it is annihilated by
L, for all n > 0. Hence to prove our statement it is sufficient to show formotieat L,
acting on (1.2) is non-vanishing. It is easy to verify far# k that L, acting on (1.2)
vanishes only foh = 0. In case&; = k # 1, the action of.;_1 is always non-vanishing.
However, one may not guarantee that all these monomials are linearly independent.

It turns out that all of the factorized combinations of characters (2.22)—(2.27) and
(2.28)—(2.29) can be rewritten in the inverse product form generalizing (2.33), namely
as

const

q (2.33)

1
a0y, T

In particular, (2.23) for even, the lower sign in (2.26) for integer /4 andnm /2, and

(2.27) can be analyzed easily in the way we presented above and correspond to (2.34)
with M = 0. The analysis of other cases is slightly more involved (since we encounter

{ }T blocks and blocks with non-integer arguments) but goes essentially along the same
lines. Consider, for instance, (2.22). Using (1.14) and (1.16), we can rewrite its r.h.s. as

follows (we use here the notatidma; ... ; x,}3 := {x1}F ... {x,}7)

const

q (2.34)

Anm; n(t — 2m); n(t —m); nt; n(t +m); n(2t —m); n(t + 2m); 2nt},,,
{1)] {nt/2 — nm; nt/2; nt /2 4 nm)},, (nt} ’

cons
q

For n andm in the range (2.13) the numerator could have coinciding blocks only if
t = 3m. However, in this case we have the reduced formula (2.28) which is readily seen

6 Exactly this form was an aim in [2].
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to be representable in form (2.34) if we take (1.16) into account. Analysis of (2.23), (2.26)
and (2.29) is performed analogously (notice only that for (2.26) one has to distinguish
the casear/2 = 0,1 mod 2).

Thus, all the factorizable combinations of characters of type (2.11) admit the form
(2.34). Examples of such representation are given in Appendix A. Moreover, we prove
(see Appendix C) that there are no other factorizable differences of this type which admit
the inverse product form (2.33). This is a rather surprising fact because the Gaul3-Jacobi

and Watson identities are the specific Macdonald identities [18] fomﬁﬁ)eand A(ZZ)
algebras and one could expect that the higher Macdonald identities also lead to similar
factorizations.

Itis worth to notice that some of the factorizable combinations discussed above admit
the following form

M e+
N = .
Hi:l{xj})'_/

This is the most natural form if we consider such an expression as a character (e.g. in the
context of the super-conformal models, see Subsect. 3.4) of a module with states created
not only by bosonic type operators but also by fermionic type operators, which produce
the blocks in the numerator. Also, the form (2.35) gives particularly simple formulae for
quasi-particle momenta (see Subsect. 3.3).

(2.35)

3. Applications

In the rest of the paper we will present some corollaries and applications of the obtained
results both in a mathematical and physical context.

3.1. Identities between characterge commence by matching the product sides of the
formulae for the factorized linear combinations of characters with those for the factorized
single characters. For (2.23) this yields
8n, 8n, 2n,
Xonm @ = Xan't-m (@ = X' 50 (@) 3.1
where(t, 2) = (t,n) = 1. Notice that this identity is exact in the sense that is it does
not need an extra factor of typg°"st on the r.h.s. becausleif'é; —c(2n,1)/24 =

h%ﬁ:fn —c(8n,1)/247 Sincexf’f(q) = 1, we obtain, as a particular case, the identity
(which was also presented in [3] in a different context)

3,8 3,8
Xl,z(Q) - Xlﬁe(Q) =1

This is the only possible identity of the typg'1, (¢) — x.'/_,.(q¢) = ¢*°"S'because it
requiresc(s, t) = 0. According to (2.16), this impliest = 24. The latter equation is
solved uniquely (up to a permutation oandr) due to (1.3).

For (2.27) and (2.26) we obtain analogously

12n, 12n, 3n, 12n, 12n, 3n,
Xaom @ = Xgmm @ = Xonom @ X @ = Xagem @ = Xy 5m(@). (3.2)

7 This property, which actually holds for all identities in this subsection, hints on specific modular properties
of the combinations of type (2.11).
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where(z, 6) = (n, 1) = 1. These identities are also exact. The first nontrivial examples

. . 125 12,5 3,5 125 125 3,5
of this kind arex; (@) — xa2(@) = X5 (@) @NAX322(0) — X1o0 (@) = X3 om (@),

m = 1, 2. Furthermore, the characters on the r.h.s. of (3.2) form a pair of the type (2.11),
and applying (2.26), we obtain (assuming< ¢ /4 for definiteness)

Xarw (@) = Xiorm @) £ Xarnl @) F xgew! @) (3.3)
h3n,t _ c@n,t)
q n,2m 24 _ _ _ + +
= {2nm}, {nt — 2nm}, {nt/2},, {nt/4 — nm};, {nt/4 4+ nm}5, .
(@)oo 2 2 2
Finally, matching the r.h.s. of (3.3) for the lower sign with (2.6), we obtain
Xaew! (@) = Ao (@) + Xam (@) = Xagen (@) = Yo (@)- (3.4)

' . 485 485 485 485 35
The first nontrivial example igg717(q) — X161 (@) + X321 @) — X401(@) = X11(q)-

Another way to derive some new identities is to match the product sides of different
factorized linear combinations. In particular, one easily recovers the property (1.9) for
combinations

s,ot

Xt (@) & Xt (@) = Xt (@) % Xt (@) (3.5)

if « is a positive integer such that,«) = (s,a) = 1. For instancexf’zl,g(q) +
Koo (@) = X0 5(@) £ X S(@),m =1,2.

Less obvious identities between characters of different models having theesame
follow if we compare the r.h.s. of (2.26) and (2.27):

3n,2i 3n,2 R 6n,
Xt Zom (@) = X eom (@) = X2l (@) = Xe (@) (3.6)

where(t,6) = (n,2) = (t,n) = 1,m < t/2. For instancexf’%o(q) — X23”110(q) =
5,6 5,6
X21(@) = x25(q)-
Employing the factorized form of (combinations of) characters, we can derive iden-
tities involving their bilinear combinations. For instance, it is straightforward to verify
the following relations (see Appendix D for a sample proof)

3n,2m _4n,5m _ _ 3n,4m 6n,5m 6n,5m

Xnom Xonm = Xn,2m ( n2m ~ An.3m )’ (37)
3n,2m ,4n,5m __ _ 3n,4m 6n,5m 6n,5m

Xnon Xon2m = Xn,2m ( nm ~ Andm )’ (38)

3,2 40,5 4n.5m\ _ (.6n,5 6n,5 3n,4m 3n,4
X (Xn,lm "+ Xn,n4mm) = (errzl,znl:l T Xz;?,aﬁ) (Xnﬁn + Xn,namm> . (3.9)
3,2 4n,5 4n.5 6n,5 61,5 3n,4m 3n,4
Xn,nr;l " (Xn,anm + Xn,n3mm) = <X2:11,mm + X21111,4nn11> (Xn,’;n + Xn,n3mm> ’ (310)
which in turn lead to the identities

4n,5m 6n,5m 6n,5m\ __ _ 4n.5m 6n,5m 6n,5m
Xon,m (Xn,m — Xn,4m ) = Xon,2m (Xn,Zm — Xn,3m )’ (3'11)

4n,5m + 4n,5m 6n,5m 6n,5m
Xn,Zm Xn,3m X2n,2m + XZn,Zm

4n,5i 6n,5i 6n,5
= (Xf?rhs”’ + Xn,"4m’") (XZ,’f,mm F Xonam ) : (3.12)
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We have omitted the-dependence for compactness of the formulae. Once more we like
to point out these relations are exact (see (D.1)). A particular case of (3.11) and (3.12)
forn = m = 1 was found in [19]. Further interesting identities are for instance

3n,4 3n,4
(xf,”ﬁ'" @)+ X 3 (61)) (xf,’i;f’” @) = X 3m (q))

o 2 (3.13)
=75 (02" @) (i,
2
BE@IE5@ ~ 128 @154 @ = (155@) (3.14)
(5@ £ 15@) (B5@ F 155@) = %@ £ x58%@.  (315)

Equation (3.13) fon = m = 1 yields the well-known relation
(@t@? - 655@)?) B5@ =1

It is of a certain interest to search for relations between (combinations of) characters
with rescaled;. The rescalingg — ¢" or, equivalentlyt — rt can be regarded as a
transformation relating theories on two different tori. In statistical mechanics, where

is considered as a physical parameter (e.g. inverse temperature or width of a strip), this
transformation relates two models at different values of this parameter.

In order to match the factorized (combinations of) characters involving those with
rescaled; it is useful to take into account that such rescalipng, ¢", also leads to the
rescalingotesf — ceff/r (andc — ¢/r). We present here only several examples relating
characzters of some models with interesting physical content under the transformation
q—q°.

-1
X1@d — x33@®) = (Xf’jg(q)) , (3.16)
X05@D) + 105G = X7 @, x55@D) + 15567 = x75@), (3.17)
X22@) = X08@) = x13@. X1 @ — Xae@) = x71(q), (3.18)
X310 + x5e(@® = x73(@) — X94(@), (3.19a)
X53@) + 152@® = x31 @) — A1 e (@) (3.19b)
X33@) + 154G = x23@) — xre (@) (3.20)

Finally, it may be of some interest to consider relations between (combinations of)
incomplete characters with rescalgdror instance, we have

. ~dn, A 2n, . ~6n, 3n,
Al @®) = R @) = s @y Rw @) = Ronm (@) = 2750 (@).  (3.21)

Identities between the corresponding full characters are then obtained by multiplication
of the r.h.s. with(qz%t{l}f)‘l.
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3.2. Rogers-Ramanujan type identitié@nce we have achieved factorization of (com-
binations of) characters in the form (2.35), we can employ (1.12) in order to re-express
the product as a sum of type distinct from (1.7). More precisely, combining (1.12) with
(1.13) and substituting into (2.35), we obtain

M a4+ 2 2 5 .
COnSt]_[jzl{xi}y _ gt thy—h——lm)y/2+B1

[JAET S a 7 @1y - @) 1yn

: (3.22)

whereB = {X1,...Xpy, x1, ... xy}andl has(M + N) components running through non-
negative integers. The structure of this identity resembles the famous Rogers—Ramanujan

identities (which are in fact just two ways of writing down the characjér% and ng
—see Appendix A)

oo 24
g+

(@1

o) 12

1 -y i ! _ (3.23)
{Ldls =5 (@ 235 =

However, whereas Eq. (3.22) may be decomposed into a product of identities (1.12),
such simplifications are not possible in the proof of the Rogers—Ramanujan identities
(see e.g. [23]). Thus, in order to obtain more interesting generalizations of the Rogers-
Ramanujan identities involving our factorized form of (combinations of) characters as
a product side, we need another expression for the sum on the r.h.s. of (3.22). For this
purpose we make use of the results of [21] where it was observed that some Virasoro
characters admit the following form:

qllAH-B»l
qconst , (324)
— @1 @),

whereA is areah x n symmetric matrix (sometimes coinciding with the inverse Cartan
matrix of a simply-laced Lie algebraR is anrn-component vector, and the summation
may be restricted by a condition of the typel = O (moda) with some integer valued

y and positiveQ ande. It turns out that some of the characters of minimal models
admitting the form (3.24) are either factorizable per se or can be combined into the
factorizable combinations considered above. This circumstance allows us to apply the
results of Sect. 2 and derive a set of Rogers—Ramanujan type identities. For instance

o0 (2+2)/4 + gt

I S {0 T S A . R C P
= (@ {2}10{3}10{5}10{ 7} 10{8} 10
o (12+21)/4 + g1+

g0 =y S S )
= (@ {2}10{3}10{5}10{ 711018} 10

odd

Furthermore, we can apply (2.26) to combinations of the I.h.s. which yields

2 X\ (@) A (3/A5,(7/45,
470 (x31@) £ X3 @)= Y = o /2 2+/ :
S (o (25 315 15/2)
We present a set of further Rogers—Ramanujan type identities derived in a similar way
in Appendix E. The product sides of these identities are not unique in the sense that one

(3.27)
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may use the techniques discussed in Subsect. 2.4 and bring them, if possible, to the form
(2.33),(2.34) or (2.35) (compare (3.27) and the corresponding formulain Appendix A). It

is also worth noticing that, combining these identities further, we again obtain identities
of the Rogers—Ramanujan type. For instance, multiplying (3.25) and (3.26), we find

q
o (@)2,(q) 21541 <{2}§{3}§>2

It should be mentioned that there exists a more general type of formulae than (3.24)
(involving ag-deformed binomial factor) [20] which covers the whole range of characters
in all minimal models. Therefore when our factorization technique applies we also have
Rogers—Ramanujan identities for these more general types.

00 I24I3+1+207 {1 (4 ({5}§> 2 (3.28)

3.3. Quasi-particle representatiorOnce a character admits a factorizable form, it is
easy to obtain a quasi-particle spectrum following the prescription of [21,22,6]. Let
P(n, m) be the number of partitions of a positive integento m distinct non-negative
integers and2(n, m) be the number of partitions of a positive integeinto positive
integers smaller or equal ta. In the theory of numbers the following formulae are
well-known (e.g. [23]):

© qm(m—l)/Z o 1
Y Pm)g" = F——, Y onmq"=——.  (3.29)
b (@m = (@)m
Combining them with (1.12) and (1.13), we obtain
o oo
{x};- — Z P(I’l, m) qn)7+mx — Z Q(l’l, m)q(n—',-m(m—l)/Z)y—i-mx, (330)
n,m=0 n,m=0

1 > , > 7
W — Z Q(I’l, m) qn)+mx — Z P(n, m) q(n—m(m—l)/Z))+mx. (331)
¥

We assume now the character to be of the form (3.22), and proceed in the usual way
in order to derive the quasi-particle states. For this one interprets the characters as a
partition function withy (¢ = e=27V/LTy = 3°° P (E;)e~E1/*T | k being Boltzmann's
constantT the temperaturd, the size of the quantizing systemthe speed of sound,

E; the energy of a particular level aid E;) its degeneracy. The contribution of a single

particle of typen and momentunp;* (i, being an additional internal quantum number)
to the energy is assumed to be of the fabin= v """ >, | pi¢|. One has now
the option to construct either a purely fermionic (in units of/2)

n,m=0 n,m=0

) y N+M )
p;(l)=Ba+§<1— Z lk>+yN; (3.32)
k=M+1

or purely bosonic spectrum (in units of 2L)

M
sz(l)=Ba+%<l—Zlk>+yMé. (3.33)
k=1
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1/24
Table 1.Bosonic and fermionic spectrum fqtf"g(q) = # k denotes the level and its degeneracy
? 2

k we  pl=1+2M; Pl =@2—1)+2N;

1 1 | 11)

2 1 11, 1) 10, 2)

3 2 |L1L,]3 -1,1,3),3)

4 2 |1,1,1,1),[13 |—2,0,2,4),10,4)

5 3  1,1,1,1,1),]1,1,3),]5 |-3,-1,1,3,5),|-1,1,5), |5)

6 4 11,1,1,1,1),13.3), |-2,0,2,6),0,6),
11,5),11,1,1,3) |—4,-2,0,2,4,6), 2,4

;s 11,1,1,1,1,1),]1,3,3), |-5,-3,-1,1,3,5,7),|-1,1,7),
11,1,5),]1,1,1,1,3),|7) |-1,3,5),1-3,-1,1,3,7),|7)

HereN! are distinct positive integers and, are some arbitrary integers. The fermionic
nature of this spectrum is here expressed through the fact that the infégare all
distinct, such that we have a Pauli principle. An example for such spectra is presented
in Table 1. A particular interesting spectrum arises when we allow bosons and fermions

Py =Ba+ YN,  ph=By+yM, (3.34)

witha € {1, M}andb € {M +1, N+ M}. Notice now the dependence binas vanished.
WhenN = M this may be interpreted in a supersymmetric way.

Following the procedure of this subsection, the answer to the question [24]: “How
many fermionic representations are there for the characters of each rhtdel)?”
would beinfinite for factorizable characters due to the second relation in (1.14). One
could also change the approach and start with a given spectrum and search for the related
character [25] which shifts the problem to finding all possible integrable lattice models.
A possible selection mechanism is given by using information from the massive models
which in the conformal limit lead to certain modeld (s, 7). In this spirit for instance
the choiceA; and Eg for the algebras of the related Cartan matrices in (3.24) appears
quite natural.

3.4. Super-conformal characterdinear combinations of characters may be found in
various contexts as for instance when considering superconformal theories. The two N=1
unitary minimal superconformal extension of the Virasoro algebra are characterized by
an integerl and a labelk = R, NS, which refers to the Ramond or Neveu-Schwarz
sector. The Virasoro central charge was found [26] to be

3 8

The corresponding irreducible representations are highest weight representations
with weights

((+2n—mh?—4 1
gl — =5, 3.36
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where the labels are restricted ask <1 —1,1<m <+ 1 together withh —m =

even, odd when = NS, s = R, respectively. Realizing these models$d$(2),_» ®
SU(Z)Z/Sb(2)1+2—cosets the corresponding charactEéSm (g) were constructed in
[10]. One notices from (1.4) and (3.35) tleéB) = c(4, 5) and indeed, applying twice the
GKO-sumrules one may identify supersymmetric characters with linear combinations
of some non-supersymmetric Virasoro characters

V5@ = 4@ + 12, E ff @ =132 - 3@, (337
235%@) = 3@ + 3@, 835 @), = x12<q) P, (3.38)
51 (@), = x31(@), ES5(@). = x55(). (3.39)

Notice that all these characters factorize (see Appendix A for the explicit formulae).
Moreover, they admit the form (2.35) (which is due to Rocha-Caridi [1]) as well as
the form (2.33) (see Appendix A). It is interesting that the latter does not appear to
be manifestly supersymmetric. We observe easily the property for these expressions
under the T-modular transformation (assumingo be an integer, the effect of this
transformation is tha{x}f? — {x}i whenx is an integer andx}f — {x}F whenx

is a semi-integer) which relatesl,, (g) and :fl I,Yls(q) and Ieaveﬁf;’ﬁl (¢) invariant.

Fermionic representations for all charactefgm (g) were found in [27] and we leave it

for future investigations to settle the question whether they also factorize or not. As in the
non-supersymmetric case the modular properties of these characters [28] will certainly
turn out to be useful.

3.5. Modular invariant partition functionsModular invariant partition functions for
minimal models are given by (up to an overall coefficient)

2= Y. 2" @ xy @ (3.40)

nn mm

For the so- caIIed main sequence (in the terminology of [17]xAr 1, A;—1) type,

we haveZ’” o = 8,.28m.n. Bearing in mind factorizability of all characters in the

M2, 1) andM(S t) models, one can rewrite the corresponding partition functions as

a sum of products of the type (2.33). This allows, in particular, to apply the technique

of Subsect. 3.3 and obtain quasi-particle representations for these partition functions.
Besides the main sequence some minimal models possess other modular invariants

(complementary sequences) [3,17,29] of the type (3.40) with more geﬁ,’lé,ljﬁll. In
particular, forM (4k, t) and M (4k + 2, t) ((D2g41, Ar—1) and(Dyxy2, A;—1) type, re-

spectively) the non-diagonal partiijf ) 1S ZumSn.p 8m.r—ny - INthis case (3.40) involves

not only squares of modules of smgle characters but also those of sums of characters of
the type (2.11). For = 3 all of these sums are factorizable and we can represent the
corresponding partition functions as a sum of products (of the type (2.35) in general).
Thus, for such partition functions we also can obtain quasi-particle representations.
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3.6. Partition functions in boundary CFTA partition function of a conformal theory
on a manifold with boundaries, say on a cylinder, is expressed as a sum of characters of
a single copy of the Virasoro algebra [30]

Zap(@) =Y _ Nigxn(@), (3.41)
h

where(a, B) is a pair of boundary conditiong;, (¢) denotes a character of given weight
h, andN;’ﬁ are multiplicities (expressible in terms of (2.17) and also related to the fusion
rules).

Itis interesting that in some casgs g(g) is just a factorizable sum (or several such
sums) of type (2.11), so we can rewrite it in the product form. For instance, for the critical
3-state Potts model (correspondinghd(5, 6)) there are three microscopic states A, B
and C, and for some of possible partition functions we find

11
ZaFr(g) = Xs’e(fZ) + X5’6(f]) =q20 ——F———, (3.42)
12 42 (1}5,,(3/2)5),
1 1
Zpc,r(q) = X5’6(f]) + X5’6(4) =q 20 —-v—— (3.43)
2.2 32 11/2}5,5(2)5),

where F stands for the free boundary condition. As we mentioned in Subsect. 2.3, such an
expression may be interpreted as a character of a module generated by bosonic operators
(in fact, (3.17) shows that (3.42) and (3.43) coincide with the charactekd @ 5) of

an argumeng/2). Also, this form of a partition function allows for a direct extraction

of a quasi-particle spectrum which, (in the spirit of Subsect. 3.3) in particular, can be
used to study connections between theories with distinct boundary conditions.

Conclusion

We have shown how to obtain the factorized form of a single Virasoro character on
the base of the Gaul3-Jacobi and Watson identities by exploiting the quasi-classical
asymptotics of the usual sum representation. We have applied this method also to the
factorization of a linear combination of two Virasoro characters and found the explicit
formulae (2.23), (2.26) and (2.27). We presented a rigorous proof that besides the ob-
tained expressions no other differences of two Virasoro characters of the type (2.11)
are factorizable in the form (2.33). It is a remarkable fact, which certainly needs some
deeper understanding, that just like for the single characters none of the Macdonald

identities, other than the ones corresponding toAfﬂ]é andAéz) algebras need to be
invoked. We employed the obtained factorized versions of the characters in order to de-
rive a set of new identities, e.g. (3.7)—(3.10), in a very economical way. Some particular
cases of these identities coincide with formulae derived originally in [19], however now
the proof has simplified considerably. As was already pointed out in [19], these iden-
tities belong to a class which is closely related, but not derivable, from a repeated use
of the GKO-sumrules [10]. It is therefore suggestive to assume that the new identities
are related to some higher sumrules. A systematic classification of identities obtainable
from factorised combinations of Virasoro characters will be presented elsewhere. It is
also conceivable, that the presented method will be applicable to non-minimal models
like parafermionic models, i.6U (2) /U (1);-coset, or general N=1,2,4 supersymmet-

ric models. Concerning the quasi-particle representation of the Virasoro characters with



200 A. G. Bytsko, A. Fring

their relation to lattice models, the factorized versions constitute a suitable starting point
for a more detailed analysis, as for instance in [22].
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Appendix A

Here we will present some examples of the inverse product representation for characters
and linear combinations of characters in some unitary and non-unitary models. For
shortness we omit the argumegpton |.h.s. and use the notatidny; ... ;xn}§ =

(el -

34 34 1 1 3,4 i1
Tt =g B— | Xi2 =92 =
11 1,3 {1/2}31F{1}'1" 12 {1}5
s 49 1 45 = 1
Xo1 =90 ——————, Xy, =g - .
T LAgEE, PP (23559
45_ 45 _ T =
P2 =g -
11~ X14 {3/2:5/2,7/2}¢ {5}¢ {2: 81,
45, 45 _ 1 L
X 2 4 X Y — q240 -7
1,2 = X13 {1/2:5/2; 9/2}Z {5}% {4; 6}
x5’6—x5'6=q*%; x5’6—X5’6=‘1% -
11~ X15 (28, 2t 7S 14: 6139
11 3

q 1
{2:3)5{1/2:9/2}¢°

ol

X5’6ix5’6 _ q 120
L2 A T a0 (3/2, 7721

5,6 56
X22 £ X204 =

s

_4i @
W8Ty 4% .67 67 4%
1 A8 T3 (2,12, T L 40y,
19
X6’7 X6,7 — L
13 147 2. 5)716: 81,
19
X6,7:tx6’7= q56
2.1 2,6 (1; 3; 4; 6}7_{5/2; 9/2};: ’
i
XS+ xod = e
2277247 (1. 2,5, 6)7(3/2, 11/2)F
6.7 6,7 - 1
+ 57 _ 456 ’
X23 =+ X24 =4 {2:3;4;5}7{1/2:13/2)
25 1 1 2,5 -& 1
X171 =9% X2=9 %

{2:3)5° (L4’
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1 1

3,5 3,5 =
XL =g ,
ML e = o ) (3/4: 7/4)E(3/2: 5/2: 7/2);
2
N 1
7

0 .
{4: 6}15{1/4; 9/4}35{1/ 2:5/2,9/2)

q

35 3,5
X12 £ X113

Appendix B

In this appendix we present a sample proof for the identities of the type (2.22)—(2.23)
and (2.26)—(2.27), that is for the factorization of the sum or difference of two Virasoro
characters related to minimal models. The proof is based on a systematic exploitation of
the GauRR-Jacobi and Watson identities (1.20)—(1.23). We have to compare the l.h.s. of
these expressions with the sum or difference of characters given by (1.7),

nt, - oo
Xs,t (q) + Xs,t (C]) o q” 2 Z qstk2 <qk(nt—ms) _ qk(nt+ms)+nm
n,m n,t—m -
(@)oo ke oo
iqk(nt—&-ms—st)-i-Ah;’vtm :Fqk(nt—ms+st)+n(t—m)+Ahf,’_tm) ) (Bl)

Here the quantity\s;, is defined by (2.12) and we assumes s/2,m < t/2, so that

ARy, > 0. We outline the proof for the identity (2.27). All other proofs work along the
same lines.

Recall that (2.27) has been conjectured to be a particular case of (1.2 B:-favh;),",
andb = nm provided that the condition = 6n holds. Notice that substitution of the
latter relation into (2.12) yields8 = nr — 2nm. In order to produce the right number
of terms for a possible comparison with (B.1), we have to split the sum in the I.h.s. of
(1.21) into two new sums — over even and add hen the I.h.s. of (1.21) acquires the
form

k(a+8b)+b _

q

o0
2 _
Z ¢ (Ba+12b) <qk(a 4p) +qk(7u+8b)+2a+b _ q

k(7a+20b)+2a+8b)

k=—o00

which, upon substitution of the explicit values ferandb and the relatiors = 6n,
becomes

[’}

2 e _ . ont—
Z qstk (qk(nt ms) +qk(nt ms—+st)+2nt—3nm
k=—o00

_qk(nt+ms)+nm —q

k(nt+ms+st)+2nt+4nm) )

We see that the first, second and third terms here exactly match the first, fourth and
second terms on the r.h.s. in (B.1), respectively. Making the shift k — 1 in the last

term, we achieve that it coincides with the third term in (B.1). This completes the proof.
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Appendix C

Here we will prove the following statement: the factorization of the difference of two
minimal Virasoro characters in the form

qhiz’m—M qhi"m—M
Xot (@) = Xy (@) = (;z,i:fn(q) T i m<q>) =
(@)oo H,’ {xi}b
(C.1)
where 0 < x1 < ... < xy < b, is up to the symmetries (1.8) only possible for

s = 3n, 4n, 6n. Here Ah stands forAhi;’fm defined in (2.12), and we assume< s/2,
m<t/2,S0 thatAhn m > 0.

Our argumentation goes along the lines of the proof for the factorization of single
characters given in [2]. Surprisingly it is enough to investigate the first five terms in the
sum, which for the incomplete character may be identified uniquely

Xr::;z(q) =1— qnm _ q(s—n)(t—m) _i_qts+sm—tn _i_qts—Hn—sm o (CZ)

For the difference of the two characters they read

At @) — g™ Rt (@) = 1— g — g g A G g AR
(C.3)

For definiteness we choose: < nt (so thatAh + m(s —n) < Ah + n(t —m)), since
the other case may be obtained from the symmetry properties. The negative terms in
(C.3) allow us to write down the first two factors in the product

Xt (@) — g™ xS @) = (L= gL —q%) ..., (C.4)

which means that after expanding we will generate a @ttht 2. Sincenm + Ah <
Ah+m(s —n), we have to include a factot — g™ +2") on ther. h. s. of (C.4) in order
to cancel this term. Expanding once more we will generate new terms, which in turn
have to be cancelled by additional factors on the right hand side of (C.4) until we obtain
the matching conditiownm + BAh = Ah + m(s — n) with positive integersx and
B. At first sight it seems a formidable task to bring some systematics into this analysis.
However, it was observed in [2] that this procedure will terminate when g = 5.
Actually also one case from level 6 might be possible.
Performing this analysis up to that level one obtains

1— C] Ah + qomm-i-ﬂAh +.
(1 qnm)(l th)(l qnm+A/’l)(1 2nm+Ah)
X(l . ql‘Lm+2Ah)(1 o q3nm+A/’l)(1 _ ql‘Lm+3Ah)(1 o q2nm+2A/’l)

X(l _ q4nm+Ah)(1 _ qnm+4Ah)(1 _ anm-‘rZAh)Z(l _ q2nm+3Ah)2 e,

where in this expressiom + g > 5. It is the occurrence of the quadratic teriiis—
g3m+28m2 gand (1 — g2m+3Ah2 \which allows us to stop at this point, since they
may never be cancelled against factors withji,, and we can therefore restrict the
investigation to the cases « + 8 < 5. Commencing with the cage+ 8 = 5 we
obtain two matching conditions, that is for the two smallest powers of the positive terms

S+ -5= 3nm—|—2Ah}

N
SL_ms L Jnm 4 3Ah §=0n—ame
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Sincen is positivem is strictly smaller tham, (s, ) = 1 andr = 2m produces zero
on the left hand side of (C.1), the cage+ 8 = 5 will never produce any solution. We
may also encounter the situation

%+%—"—2t=4nm+Ah

%—%+%=an+2Ah} = s =b5n and t = 6m.

In the remaining possibilities we only obtain one matching condition, that ig.féhe
casax = B = 2 leads to the conditionvizn + 2Ah = sm — nm + Ah which amounts to

_, =2
~(6s—16n)°
However, substitution of this relation into the condition < nr leads tos(s — 2n) <

n(6s — 16n), or equivalently(s — 4n)2 < 0, which is impossible.
The other cases yield

nm+Ah=sm—nm+Ah = s=2n,
nm—+2Ah=sm—nm—+Ah = s=2n Or t=06m,
2nm+ Ah=sm—nm+ Ah = s=23n,
nm-+3Ah=sm—nm-+Ah = s=2n ort=4m,
3im+Ah=sm—nm+Ah = s=4n |,

S5nm+ Ah=sm—nm+Ah = s=06n

We observe that we recover the cases we claimed to factorize in the form (C.4), which
concludes the proof.

Appendix D

We will now provide a sample proof for the identities (3.7)—(3.10). kFoe m = 1

some very involved proof which employs identities of theta functions may be found in

[19]. With the help of the product representations (2.22)—(2.27) such identities may be
derived without any effort. We demonstrate this just for Egs. (3.9) with the upper sign,

the remaining equations may be derived in a similar way. First of all we notice that

ponom _ ¢(3n, 2m) L plnSm c(4n, 5m) _ pon5m c(6n, 5m)
n,m 24 n,m 24 — "2n,2m 24
(D.1)
L 3 _ c(3n, 4m)
o 24

After cancelling(q)go on both sides of (3.9) for the upper sign we obtain for the left hand
side upon using (1.14) (we omit here the labselsin order to avoid lengthy formulae
and imagine just for now that};” should always be understood{asim},,,),

~3n,2m (A4n,5m + A4n,5m)

Xn,m Xn,m n,4m

317 (5]"
= ({17) <{1}g{4}g{5}g {E} H {
5 5
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{1}4{3}4{2}2{1}10{6}10{4}10{9}10{5}5{_} { } { }

5 7
2: |2
I B R ] 117 (9
= <{1}4 {31412}, {5}2 {2}2) <{4}1o{6}1o{5}5 {5} {E} )
- (it i) (155 - 1558)

Here we have used several times the identities (1.14).

Appendix E

We complement the list started in Subsect. 3.2 of the Rogers—Ramanujan type identities
obtained by combining our product formulae for (combinations of) characters with the
results of [21]. We adopt the notations explained in Appendix A:

© 1272 1

14834 _ N4 7 _
a7 X1 = = - -, (E.1)
=0 (g {2 14}16{3; 4; 5lg
0 12/2 1
g =Y T =g - (E.2)
= (g1 {6; 10} 6(1; 4; 7}
00 1,122
1/48( 3.4, 34 (£)' ¢ 4
qY (X1,1 + X1,3) = Z o {1/2}7, (E.3)
1=0
(12 n/i2 (1271>/2 1
—1/24_34 _ _ _
q X = = ——, (E.4)
a ,Zo: (@) IZ @ (1)
even odd
1/30. 56 o0 q2(lf+zf+zlzz)/3 g
a7 x5 = = L (E5)
Lo e @u@n (12151695
Ih+2l3=+1(mod 3
00 12/4 .+
1 35 q N {3: }o
9tz =D (@0 {14,569, (E6)
1=0 s Ty My Uy 10
even
2
gty 35 = o~ da e (28 ETD)
’ - (g {1, 4;5; 6; 91,
X (1) ¢4 {1/405,,19/405,
L (£)' ¢ {1/45,219/ 45,2
q% (xlgzs + Xf’:f) = = / / (E.8)

= @ (Las5/2L,

More identities will be given elsewhere [31].
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