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Abstract: We investigate linear combinations of characters for minimal Virasoro mod-
els which are representable as a product of several basic blocks. Our analysis is based
on consideration of asymptotic behaviour of the characters in the quasi-classical limit.
In particular, we introduce a notion of the secondary effective central charge. We find all
possible cases for which factorization occurs on the base of the Gauß-Jacobi or the Wat-
son identities. Exploiting these results, we establish various types of identities between
different characters. In particular, we present several identities generalizing the Rogers–
Ramanujan identities. Applications to quasi-particle representations, modular invariant
partition functions, super-conformal theories and conformal models with boundaries are
briefly discussed.

Introduction

It is a well known fact that the characters of irreducible representations of the Virasoro
algebra for theM(3, 4) minimal model possess the peculiar property to be representable
as infinite products

χ
3,4
1,2(q) = q

1
24

∞∏
n=0

(1 + qn+1) = q
1
24

∞∏
n=0

(
1

1−q2n+1

)
, (0.1)

χ
3,4
1,1(q) ± χ

3,4
1,3(q) = q− 1

48

∞∏
n=0

(1 ± qn+1/2). (0.2)

As was observed in [1], some characters and linear combinations of characters for the
M(4, 5) minimal model admit similar forms.

The question towards a generalization and classification of these identities arises
naturally. Surprisingly, it turned out [2] that the only factorizable single characters for
minimal models are of typeχ2n,t

n,m (q) andχ
3n,t
n,m (q). In [3,2,4–6] it was discussed that
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the factorization of characters in these series is based on the Gauß-Jacobi and Watson
identities.

On the other hand, a factorization of linear combinations of Virasoro characters has
not been studied so far. In the present paper we show that factorization of combinations
χ

s,t
n,m(q)±χ

s,t
n,t−m(q) occurring due to the Gauß-Jacobi and Watson identities is possible

(up to the symmetries of the characters) only fors = 3n, 4n, 6n. Moreover, we will
prove that there are no other factorizable differences of this type which admit the inverse
product form similar to the r.h.s. of (0.1).

We present a systematic analysis based on considerations of the asymptotic behaviour
of (combinations of) characters in the so-called quasi-classical limit,q → 1−. We will
demonstrate that for linear combinations of the above mentioned type we need, besides
the effective central chargeceff , the notion of the “secondary” effective central chargec̃.

The advantage to have the characters (or combinations) in the form of infinite products
rather than infinite sums is many-fold. First of all the problem of finding the dimension of
a particular level in the Verma module of the irreducible representation has been reduced
to a simple problem of partitions. As a consequence one may state the possible mono-
mials of Virasoro generators at a specific level. Also the associated quasi-particle states
may be constructed from this form without any effort, whereas it is virtually impossible
to find them from the infinite sum representation. The quasi-particle form is also related
to a classification of Rogers–Ramanujan type of identities [7]. In the present paper this
subject is discussed rather briefly in 3.4 andAppendix E. However, this point is followed
up further in [31], where the obtained factorized forms of characters were exploited in the
derivation of Rogers–Ramanujan type identities. In addition, the factorized characters
(or combinations) allow to derive various new identities between different combinations
of characters far easier than employing the infinite sum representation. Some of these
identities relate different sectors of the same models, whereas others relate different
models altogether. Factorized combinations of characters appear naturally in the con-
text of coset models, super-conformal extensions of the Virasoro algebra and boundary
conformal field theories. They may even shed some light on massive models, since it
was conjectured in [2] that they allow to identify the space of form factors of descendant
operators.

1. Preliminaries

We use the notation〈n, m〉 = 1 if n andm are co-prime numbers and we employ also

the standard abbreviation for Euler’s function(q)m =
m∏

k=1
(1 − qk) with (q)0 = 1.

1.1. Characters of minimal models.The Virasoro algebra is generated by operator val-
ued Fourier coefficients of the energy-momentum tensorT (z) = ∑

n z−n−2Ln and a
central chargec. For an irreducible highest weight representationVc,h of the Virasoro
algebra with central chargec and weighth one defines the character

χ(q) = trVc,h
qL0− c

24 = qh− c
24

∞∑
n=0

µn qn, (1.1)
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with µn being the multiplicity of the leveln. The corresponding states at a particular
levelk are spanned by the vectors

L−k1 . . . L−kn |h〉, k1 ≤ k2 ≤ . . . ≤ kn, k =
n∑

i=1

ki . (1.2)

Minimal models are the distinguished conformal theories in which the set of highest
weights is finite [8]. These models are labeled by two integer numberss andt such that

s, t ≥ 2 and 〈s, t〉 = 1. (1.3)

The minimal models for which|s − t | = 1 are unitary [9,10]. The minimal model
M(s, t) has the central charge

c(s, t) = 1 − 6(s − t)2

s t
. (1.4)

The corresponding irreducible highest weight representations of the Virasoro algebra
are representations with the weights

hs,t
n,m = (nt − ms)2 − (s − t)2

4 s t
, (1.5)

where the labels run through the following set of integers:

1 ≤ n ≤ s − 1 , 1 ≤ m ≤ t − 1 . (1.6)

The corresponding character is given by [11,1]

χs,t
n,m(q) = qh

s,t
n,m− c(s,t)

24

(q)∞

∞∑
k=−∞

qstk2
(
qk(nt−ms) − qk(nt+ms)+nm

)

= qh
s,t
n,m− c(s,t)

24

(q)∞
χ̂ s,t

n,m(q),

(1.7)

(the second equality defineŝχ(q), which we refer to as “incomplete character”). The
characters possess the following symmetries:

χs,t
n,m(q) = χt,s

m,n(q) = χ
s,t
s−n,t−m(q) = χ

t,s
t−m,s−n(q). (1.8)

It follows from (1.6) and these symmetries that the minimal modelM(s, t) hasD =
(s −1)(t −1)/2 different sectors (inequivalent irreducible representations). In addition,
(1.7) allows to relate some characters of different models

χαs,t
αn,m(q) = χs,αt

n,αm(q), (1.9)

whereα is a positive number such that〈s, αt〉 = 〈t, αs〉 = 1. For instance,χ6,5
2,m(q) =

χ
3,10
1,2m(q).
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1.2. Quantum dilogarithm.In our analysis of factorized characters we will be exploiting
the properties of the quantum dilogarithm, whose defining relations are

lnq(θ) :=
∞∏

k=0

(1 − e2πiθqk) = exp
∞∑

k=1

1

k

e2πiθk

qk − 1
. (1.10)

Taking q = e2πiτ , we assume that Im(τ ) > 0 and Im(θ) > 0 in order to guarantee
the convergence of (1.10). We see from (1.10) that lnq(θ) is a pseudo-double-periodic
function

lnq(θ + 1) = lnq(θ) and lnq (θ + τ) = 1

1 − e2πiθ
lnq(θ) . (1.11)

It follows easily from this that

lnq(θ) =
∞∑

k=0

(−1)kq
k(k−1)

2 e2πiθk

(q)k
and

1

lnq(θ)
=

∞∑
k=0

e2πiθk

(q)k
. (1.12)

For explicit calculations it will further turn out to be convenient to employ the notations
(in which we will omit the explicitq-dependence as long asq is not varying)

{x}−y := lnqy (xτ) and {x}+y := lnqy (xτ + 1/2) , 0 < x ≤ y. (1.13)

These blocks have the following obvious properties:

{x}+y {x}−y = {2x}−2y , {x}±y =
n−1∏
k=0

{x + ky}±ny, (1.14)

ln−qy (xτ) = {x}−2y{x + y}+2y , ln−qy (xτ + 1/2) = {x}+2y{x + y}−2y, (1.15)

{x}−2x = 1

{x}+x
, {x}+2x = 1

{x}−2x{2x}+2x

. (1.16)

The last line is Euler’s identity which, in fact, can be derived from (1.14).1

1.3. Gauß-Jacobi andWatson identities.It will be the principal aim of our manuscript to
seek factorizations of some single characters and some linear combinations of characters
in the following form:

qconst 1

(q)∞

∏N

i=1
{xi}−y

∏M

j=1

{
x̃j

}+
y

. (1.17)

We will encounter the casesN 6= 0, M = 0 andN 6= 0, M 6= 0. The explicit formulae
of this type, which we will obtain, are based on the Gauß-Jacobi identity (see e.g. [12])

∞∑
k=−∞

(−1)kv
k(k+1)

2 w
k(k−1)

2 =
∞∏

k=1

(1−vkwk−1)(1−vk−1wk)(1−vkwk), (1.18)

1 Indeed, using consequently the first and second relation in (1.14) fory =x, we obtain{2x}−2x =
{x}+x {x}−x = {x}+x {x}−2x {2x}−2x , thus deriving the identity{x}+x {x}−2x = 1.
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and the Watson identity [13]

∞∑
k=−∞

v
3k2+k

2 w3k2
(w−2k−w4k+1) =

∞∏
k=1

(1 − vk−1w2k−1)(1−vkw2k−1)

× (1−vkw2k)(1−v2k−1w4k−4)(1 − v2k−1w4k).

(1.19)

Substitutingv = qa , w = qb, we can rewrite the identities in terms of the blocks (1.13)

∞∑
k=−∞

(−1)kq(a+b) k2
2 + k

2 (a−b) = {a}−a+b{b}−a+b{a + b}−a+b, (1.20)

∞∑
k=−∞

q
3k2
2 (a+2b)

(
qk(a/2−2b) − qk(a/2+4b)+b

)
= {b}−a+2b{a + b}−a+2b{a + 2b}−a+2b

×{a}−2a+4b{a + 4b}−2a+4b. (1.21)

Other useful substitutions arev = qa , w = −qb andv = −qa , w = qb (for (1.18) it
suffices to consider only the first of them, because of the symmetryv ↔ w), which yield

∞∑
k=−∞

(−1)
k(k+1)

2 q(a+b) k2
2 + k

2 (a−b) (1.22)

= {a}−2(a+b){b}+2(a+b){a + b}+2(a+b){a + 2b}−2(a+b){2a + b}+2(a+b){2a + 2b}−2(a+b),

∞∑
k=−∞

(−1)3k2
q

3k2
2 (a+2b)(qk(a/2−2b) + qk(a/2+4b)+b)

= {b}+a+2b{a + b}+a+2b{a + 2b}−a+2b{a}−2a+4b{a + 4b}−2a+4b, (1.23)

∞∑
k=−∞

(−1)
k(k−1)

2 q
3k2
2 (a+2b)(qk(a/2−2b) − qk(a/2+4b)+b)

= {a}+2a+4b{b}−2a+4b{a + b}+2a+4b (1.24)

× {a + 2b}+2a+4b{a + 3b}+2a+4b{a + 4b}+2a+4b{2a + 3b}−2a+4b{2a + 4b}−2a+4b.

Here we used (1.15) in order to obtain the r.h.s. in the desired form.
Now one can try to find factorizable linear combinations of characters simply by

matching the l.h.s. of (1.20)–(1.24) with appropriate combinations of (1.7). However,
this is a cumbersome task. Below we will develop a more systematic and more elegant
approach exploiting the quasi-classical asymptotics of characters.

1.4. Quasi-classical asymptotics of characters.As can be seen from (1.10), the limit
τ → 0 of lnq(θ) (since we require Im(τ ) > 0, this is the limitq → 1−) is singular. The
asymptotics is given by
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lim
τ→0

lnq(θ) = exp

{
1

2πiτ
Li2

(
e2πiθ

)
+ 1

2
ln(1 − e2πiθ ) + O(τ )

}
, (1.25)

whereLi2(x) = ∑∞
n=1

xn

n2 is the Euler dilogarithm2 (see e.g. [15]).
Introducing q̂ = exp{−2πi/τ }, we derive from (1.13) and (1.25) the following

asymptotics for the limitq → 1−:

{x}−y ∼ q̂
Li2(1)

4π2y = q̂
1

24y , {x}+y ∼ q̂
Li2(−1)

4π2y = q̂
− 1

48y . (1.26)

Here we used the fact thatLi2(1) = −2Li2(−1) = π2/6 holds.3 Notice thatq → 1−
implies thatq̂ → 0+, so that{x}−y and{x}+y tend to zero and infinity, respectively.

From a physical point of view, say if we regardχ(q) as a partition function, the
limit τ → 0 can be interpreted as a high-temperature limit (with temperatureT ∼ 1/τ )
which is singular and known to be ruled by the effective central charge only (i.e. it is
sector-independent) [16]. Indeed, in order to carry out this limit, one may exploit the
behaviour ofVirasoro characters under the modular transformation. It is well known [17,
3], that the S-modular transformation (q ↔ q̂) of a character has the following form:

χs,t
n,m(q) =

∑
n′,m′

Sn′m′
nm χ

s,t
n′,m′(q̂), (1.27)

whereSn′m′
nm are explicitly known constants (see (2.17)). Now it is obvious from (1.7)

and (1.27) that

χs,t
n,m(q) ∼ Sn̄m̄

nm q̂ − ceff (s,t)
24 (q → 1−). (1.28)

Here we have introduced the so-called effective central chargeceff(s, t) = c(s, t) −
24hs,t

n̄,m̄ = 1 − 6
st

(n̄t − m̄s)2, whereh
s,t
n̄,m̄ denotes the lowest of all conformal weights

in the model. Let us remark that the conditions (1.3) and (1.6) allow us to invoke the
well-known theorem of the greatest common divisor and show that|n̄t−m̄s| = 1. Hence

ceff(s, t) = 1 − 6

s t
(1.29)

holds for any minimal model.
Comparison of (1.28) with (1.26) imposes a constraint on the possible structure of

characters factorized in form (1.17). Namely, each factor of the type({x}−y )±1 and

({x}+y )±1 contributes,∓ 1
y

and± 1
2y

to the effective central charge, respectively. Notice
that this is anx independent property. These contributions must sum up to the value
given by (1.29).

2 This motivated the authors of [14] to coin lnq (θ) a quantum dilogarithm.
3 Equations (1.26) can also be obtained by a saddle point analysis of the identities (1.12) for ln

qb (θ) if we

putθ = xτ +1/2 andθ = xτ , respectively [6]. In this approach one finds:{x}−y ∼ q̂

L(1)

4π2y , {x}+y ∼ q̂
− L(1/2)

4π2y ,

asτ → 0. HereL(z) = Li2(z) + 1
2 ln z ln(1− z) denotes the Rogers dilogarithm [15]. These results coincide

with (1.26) sinceL(1) = 2L(1/2) = π2/6.
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2. Factorization of Characters

Below it will be useful to refer to the following simple statement:

ζ nm + ζ−1st = nt + ms ⇐⇒ t = ζm or s = ζn. (2.1)

Equations of these form will arise as necessary conditions for factorization of (combina-
tions of) characters. Clearly, fors, t , n, m obeying (1.3) and (1.6) the parameterζ may
assume only some rational values greater than unity.

2.1. Factorization of single characters.The factorization of someVirasoro characters in
theM(3, 4) andM(4, 5) models was already observed in [1], whereas the factorization
of all characters of typeχ2n,t

n,m (q) andχ
3n,t
n,m (q) was discovered in [2]. It was already

discussed in [3,2,4–6] that the factorization of characters in these series may be obtained
by exploiting the Gauß-Jacobi and Watson identities. Nevertheless, we wish to present
here a systematic derivation of these results based on alternative arguments which will
also be applicable in a more general situation.

It is straightforward to see from (1.7) that the first three terms in the expansion of the
incomplete character are

χ̂ s,t
n,m(q) = 1 − qnm − q(s−n)(t−m) + . . . , (2.2)

and that further terms are of higher powers inq. Let us assume that the incomplete
character in question is a particular case of the l.h.s. of the Gauß-Jacobi identity (1.20)
for somea andb. Noticing that the series on the l.h.s. of (1.20) is 1− qa − qb+ higher
order terms, we conclude thata = nm, b = (s − n)(t − m) or vice versa. Furthermore,
the r.h.s. of (1.20) allows to calculate the effective central charge for the character in
question. As was explained in Subsect. 1.4, each of the three blocks contributes− 1

a+b
to

ceff . Therefore,ceff = 1− 3
a+b

(the 1 is a contribution of(q)∞ = lnq(τ ) = {1}−1 , which
appears in (1.7) and whose limit is also ruled by (1.26)). Comparison of this result with
(1.29) yields the equation

2nm + 1

2
st = nt + ms, (2.3)

which is a particular case of (2.1) withζ = 2 and, hence, eithers = 2n or t = 2m. This
implies thatχ2n,t

n,m (q) is the only (up to the symmetries (1.8)) possible type of characters
factorizable with the help of the Gauß-Jacobi identity and that its factorization has to be
of the following form

χ2n,t
n,m (q) = q h

2n,t
n,m− c(2n,t)

24

(q)∞
{nm}−nt {nt − nm}−nt {nt}−nt , (2.4)

wheret is an odd number according to (1.3). One can verify that Eq. (2.4) is indeed valid
by a direct matching of the l.h.s. of (1.20) for the specifieda andb with the formula
(1.7) for characters (see e.g. [6]).

The same type of consideration applies if we seek characters which are factorizable
with the help of theWatson identity. Namely, since the series on the l.h.s. of (1.21) is again
1− qa − qb+ higher order terms, we conclude thata = nm, b = (s −n)(t −m) or vice
versa (in contrast to the previous case, these two possibilities lead to different equations).
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The r.h.s. of (1.21) allows to calculate the effective central charge:ceff = 1 − 4
y
, where

y = a + 2b. Comparison of this value forceff for the two choices ofa andb with (1.29)
yields the following equations:

3

2
nm + 2

3
st = nt + ms and 3nm + 1

3
st = nt + ms, (2.5)

respectively. According to (2.1) this implies:n = 2s/3 orm = 2t/3 in the first case and
n = s/3 orm = t/3 in the second. Notice that these cases are related via the symmetries
(1.8). Thus, we conclude that the only possible type of characters factorizable on the
base of the Watson identity isχ3n,t

n,m (q) (again up to the symmetries (1.8)) and that its
factorization has to be of the following form:

χ3n,t
n,m (q) = q h

3n,t
n,m− c(3n,t)

24

(q)∞
{nm}−2nt {2nt − nm}−2nt {2nt}−2nt

×{2nt − 2nm}−4nt {2nt + 2nm}−4nt , (2.6)

where〈3, t〉 = 1. Again, one verifies this formula directly matching it with (1.7) (see
[6]).

Thus, we have found all types of characters which are factorizable on the base of the
Gauß-Jacobi and the Watson identities. In fact, it was shown in [2] that this exhausts the
list of characters of minimal Virasoro models which admit the form (1.17) with M=0
andxi 6= xk. This implies that for the purpose of factorizing a single character in such a
form one does not have to invoke the higher Macdonald identities [18] (also known as
the Weyl-Macdonald denominator identities).

As a last remark in this subsection, we notice that in the case〈2, m〉 = 〈3, n〉 =
〈n, m〉 = 1 the combination of (2.4) and (2.6) yields

χ2n,3m
n,m (q) = q

nm−1
24

(q)∞
{nm}−nm. (2.7)

The first non-trivial example of this kind isχ3,4
1,2(q) = q

1
24/{1}−2 = q

1
24{1}+1 (the second

equality is due to the Euler identity). Furthermore, noticing the symmetryn ↔ m of the
r.h.s. of Eq. (2.7), we derive an identity relating different models (it can also be obtained
employing (1.9) twice)

χ2n,3m
n,m (q) = χ2m,3n

m,n (q), (2.8)

where〈6, n〉 = 〈6, m〉 = 〈n, m〉 = 1. The first non-trivial example isχ2,15
1,5 (q) =

χ
3,10
1,5 (q).

2.2. Factorization of linear combinations. Preliminary ideas.We commence the in-
vestigation of factorized linear combinations,χ

s,t
n,m(q) ± χ

s,t
n′,m′(q), by introducing the

quantity

1hn′,m′
n,m (s, t) := h

s,t
n′,m′ − hs,t

n,m

=
(
(m + m′)s − (n + n′)t

) (
(n − n′)t − (m − m′)s

)
4 s t

, (2.9)
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where we will often omit the labelss andt . Then

χs,t
n,m(q) ± χ

s,t
n′,m′(q) = qh

s,t
n,m− c(s,t)

24

(q)∞

(
χ̂ s,t

n,m(q) ± q 1h
n′,m′
n,m χ̂

s,t
n′,m′(q)

)
. (2.10)

The combinationχ̂ s,t
n,m(q) ± q 1h

n′,m′
n,m χ̂

s,t
n′,m′(q) can be represented as a product of few

blocks{ }± only if 1h
n′,m′
n,m is an integer or a fraction with sufficiently small denomi-

nator (otherwise the product will generate terms with powers ofq1h
n′,m′
n,m which are not

presented in the combination). On the other hand, the numerator in (2.9) is, in general,
not divisible byst because of the conditions (1.3) and (1.6). The only possibility to make
this fraction reducible byst is to putn = n′ andm + m′ = t or, alternatively,m = m′
andn + n′ = s. Thus, we are led to consider the combinations

χs,t
n,m(q) ± χ

s,t
n,t−m(q). (2.11)

Let us denote1h
n,t−m
n,m (s, t) for such pairs by1h

s,t
n,m; its explicit value is

1hs,t
n,m = 1

4
(t − 2m)(s − 2n). (2.12)

If s or t is even (in particular, this includes all unitary minimal models), then1h
s,t
n,m

is integer or semi-integer. Let, for definiteness,s be even. Then, taking into account the
symmetries (1.8), we see that each character in the minimal modelM(s, t) is either of
the formχ

s,t
s/2,m(q) (i.e., a “single” character, factorizable per se) or there exists exactly

one more character such that they form a pair of type (2.11). It follows from this and
Eq. (1.6) that the modelM(s, t) hasD0 = t−1

2 “single” characters. Consequently, there

areD1 = (D−D0)/2 = (s−2)(t−1)
4 pairs. If boths andt are odd, then apparentlyD0 = 0

andD1 = D/2 = (s−1)(t−1)
4 .

Consider (2.11) forn andm in the range

n < s/2 , m < t/2. (2.13)

For this range all involved characters are different (see e.g. [3]), and it is easy to see
that we cover all possibleD1 combinations. Moreover, conditions (2.13) ensure that
1h

s,t
n,m > 0. This in turn implies that (2.11) contains only non-negative powers ofq.

Thus, from now on we will assume thatn andm in (2.11) are restricted as in (2.13).
As we have seen in the previous subsection, the knowledge of the asymptotic be-

haviour of the characters in theq → 1− limit proves to be very useful in the search of
factorized characters. It turns out that in the case of linear combinations we have to take
into account also the next to leading term in (1.28),

χs,t
n,m(q) ∼ Sn̄m̄

nm q̂ − ceff (s,t)
24 + Sñm̃

nm q̂ − c̃(s,t)
24 + . . . (q → 1−), (2.14)

where we denoted

ceff(s, t) = c(s, t) − 24h
s,t
n̄,m̄ , c̃(s, t) = c(s, t) − 24h

s,t
ñ,m̃

. (2.15)

Here h
s,t
n̄,m̄ and h

s,t
ñ,m̃

are the smallest and the second smallest conformal weights in
the model corresponding to the minimal and the next to minimal value of|nt − ms|,
respectively. We will refer tõc(s, t) as the secondary effective central charge.
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As we mentioned above, the theorem of the greatest common divisor ensures that
ceff(s, t) = 1 − 6/st . Furthermore, one can show in the same way that|ñt − m̃s| = 2,

so thaths,t
ñ,m̃

= 4−(s−t)2

4 s t
holds.4 Thus, employing (1.4) and (2.15), we obtain

c̃(s, t) = 1 − 24

s t
. (2.16)

The only case where this argument fails isM(2, t). Here|ñt −m̃s| = 3 (unlesst = 3, in
which casehs,t

ñ,m̃
does not exist). But, as we demonstrated, in this case all the characters

are factorizable per se.
Now, using the explicit form of the matrixS [17,3] involved in the S-modular trans-

formation (1.27)

Sn′,m′
n,m =

√
8

st
(−1)nm′+mn′+1 sin

(π nn′t
s

)
sin
(π mm′s

t

)
, (2.17)

we observe thatSn′,m′
n,t−m = −S

n′,m′
n,m (−1)n

′t−m′s . Taking into account that|n̄t − m̄s| = 1

and|ñt − m̃s| = 2, we conclude thatSn̄,m̄
n,t−m = S

n̄,m̄
n,m andS

ñ,m̃
n,t−m = −S

ñ,m̃
n,m . Therefore,

for the combinationχs,t
n,m(q) − χ

s,t
n,t−m(q) the leading terms in (2.14) corresponding

to ceff(s, t) cancel but those corresponding toc̃(s, t) survive5 and for the combination
χ

s,t
n,m(q) + χ

s,t
n,t−m(q) the leading terms corresponding toceff(s, t) do not cancel. Thus,

we obtain the following asymptotics of the combinations in question:

χs,t
n,m(q) + χ

s,t
n,t−m(q) ∼ q̂ − ceff (s,t)

24 (q → 1−), (2.18)

χs,t
n,m(q) − χ

s,t
n,t−m(q) ∼ q̂ − c̃(s,t)

24 (q → 1−). (2.19)

2.3. Factorization of linear combinations. Exact formulae.Now we are in the position
to find all combinations of type (2.11) which are factorizable on the base of the Gauß-
Jacobi and Watson identities. First, it follows from (1.7) that

χ̂ s,t
n,m(q) ± q1h

s,t
n,m χ̂

s,t
n,t−m(q) = 1 − qnm ± q1h

s,t
n,m + · · · , (2.20)

and the further terms are of higher powers inq. Here1h
s,t
n,m is given by (2.12) and we

assumen < s/2, m < t/2, notice that thennm 6= 1h
s,t
n,m

We will consider the sum of characters first. Let us assume that it is factorizable on the
base of the Gauß-Jacobi identity (1.22), whose expansion on the l.h.s. is 1− qa + qb+
higher order terms. Then we infer from (2.20) thata = nm and b = 1h

s,t
n,m. The

r.h.s. of (1.22) gives the following effective central charge of the combination in question:
ceff = 1 − 3

4(a+b)
. Comparing it with (1.29), we obtain the equation 8(a + b) = st , or

more explicitly

4nm + 1

4
st = nt + ms. (2.21)

4 In fact, a more general statement is valid: fors and t obeying (1.3) and positive integerk such that
k < min(s, t) there exists always a solution of the equation|nt − ms| = k obeying (1.6). It is given by
n = kn̄ − ps andm = km̄ − pt , wherep is some integer depending onk.

5 ForM(2, t) these terms cancel since|ñt − m̃s| = 3. This is not surprising because in this caseχ
2,t
1,m(q)−

χ
2,t
1,t−m(q) vanishes due to (1.8).
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According to (2.1), this implies 4n = s or 4m = t .
If we assume that the difference of characters in (2.20) is factorizable on the base

of the Gauß-Jacobi identity (1.20), we have to puta = nm, b = 1h
s,t
n,m or vice versa.

According to (2.19), the asymptoticsq → 1− defines the secondary effective central
charge, and comparison with the r.h.s. of (1.20) yieldsc̃ = 1 − 3

a+b
. Together with

(2.16), we obtain the equation 8(a + b) = st which leads to the same condition (2.21)
found for the sum of characters.

Thus, we have shown that the only possible (up to the symmetries (1.8)) combination
of characters factorizable on the base of the Gauß-Jacobi identity isχ

4n,t
n,m (q)±χ

4n,t
n,t−m(q)

and that its factorization has to be of the following form:

χ4n,t
n,m (q) + χ

4n,t
n,t−m(q) = qh

4n,t
n,m− c(4n,t)

24

(q)∞
{nm}−nt {nt − nm}−nt {nt}−nt

×{nt/2 − nm}+nt {nt/2}+nt {nt/2 + nm}+nt , (2.22)

χ4n,t
n,m (q) − χ

4n,t
n,t−m(q) = qh

4n,t
n,m− c(4n,t)

24

(q)∞
{nm}−nt

2
{nt/2 − nm}−nt

2
{nt/2}−nt

2
. (2.23)

Here 〈t, 2〉 = 〈t, n〉 = 1. The direct proof of these relations is performed again by
matching them with (1.7) (see Appendix B). Notice that in the case of oddn it suffices
to prove only one of the relations, say (2.23). Indeed, in this case1h

4n,t
n,m = n(t −2m)/2

is semi-integer, so that changing the signs of all semi-integer powers in the series on the
l.h.s. of (2.22), we obtain the series on the l.h.s. of (2.23). Therefore, the r.h.s. of (2.22)
is derived from the r.h.s. of (2.23) with the help of (1.15).

Now we apply the same technique as above in order to find the differences of type
(2.11) which are factorizable on the base of the Watson identity. We assume they have
the form of Eq. (1.21), whose expansion on the l.h.s. is 1− qa − qb+ higher order
terms. Then we infer from (2.20) thata = nm andb = 1h

s,t
n,m or a = 1h

s,t
n,m and

b = nm. The r.h.s. of (1.21) gives the following secondary effective central charge of
the combination in question:̃c = 1 − 4

a+2b
. Comparing it with (2.16), we obtain the

equation 6(a + 2b) = st , which gives for the two possible choices ofa andb,

3nm + 1

3
st = nt + ms, and 6nm + 1

6
st = nt + ms, (2.24)

respectively. According to (2.1), this implies 3n = s or 3m = t in the first case and
6n = s or 6m = t in the second.

Assuming that the sum of characters in (2.20) is factorized on the base of the Watson
identity (1.23), we have to puta = nm, b = 1h

s,t
n,m. Then the r.h.s. of (1.23) gives

ceff = 1− 1
a+2b

. Comparing it with (1.29), we obtain the equation 6(a + 2b) = st and,
thus, we recover the first equation in (2.24). So, this is once more the casen = s/3 or
m = t/3.

It turns out that the sum of characters in (2.20) cannot be factorized on the base of the
Watson identity (1.24). Indeed, its l.h.s. is the following series 1+ qa − qb + q2a+b −
qa+5b+ higher order terms. On the other hand, forn < s/2, m < t/2 we have

χ̂ s,t
n,m(q) ± q1h

s,t
n,m χ̂

s,t
n,t−m(q) = 1 − qnm ± q1h

s,t
n,m ∓ q1h

s,t
n,m+n(t−m)

∓ q1h
s,t
n,m+m(s−n) + . . . ,

(2.25)
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where further terms are of higher powers inq. Evidently, these two series cannot match
because of the wrong sign of theq2a+b term.

Thus, the only possible (up to the symmetries (1.8)) combinations of characters
factorizable on the base of the Watson identity areχ

3n,t
n,m (q)±χ

3n,t
n,t−m(q) andχ

6n,t
n,m (q)−

χ
6n,t
n,t−m(q) and their factorizations have to be of the following form

χ3n,t
n,m (q) ± χ

3n,t
n,t−m(q) = qh

3n,t
n,m− c(3n,t)

24

(q)∞
{nm}−nt {nt − nm}−nt

×
{

nt

2

}−

nt
2

{
nt − 2nm

4

}±

nt
2

{
nt + 2nm

4

}±

nt
2

, (2.26)

χ6n,t
n,m (q) − χ

6n,t
n,t−m(q) = qh

6n,t
n,m− c

24(6n,t)

(q)∞
{nm}−nt {nt − nm}−nt {nt}−nt

×{nt − 2nm}−2nt {nt + 2nm}−2nt . (2.27)

Here〈t, 3〉 = 〈t, n〉 = 1 in (2.26) and〈t, 6〉 = 〈t, n〉 = 1 in (2.27). The direct proof of
these relations is performed again by matching them with (1.7) (see Appendix B).

Combining (2.22)–(2.23) and (2.26), we also obtain

χ4n,3m
n,m (q) + χ

4n,3m
n,2m (q) = q

nm−2
48

(q)∞
{nm}−nm{nm/2}+nm, (2.28)

χ4n,3m
n,m (q) − χ

4n,3m
n,2m (q) = q

nm−2
48

(q)∞
{nm/2}−nm

2
, (2.29)

where〈n, 3〉 = 〈m, 2〉 = 〈n, m〉 = 1.
To conclude this subsection we mention an interesting byproduct, which follows from

(2.6) and (2.26),

{nm}−nt {nt − nm}−nt

{
nt

2

}−

nt
2

{
nt − 2nm

4

}±

nt
2

{
nt + 2nm

4

}±

nt
2

= {2nt}−2nt {nm}−2nt {2nt − nm}−2nt {2nt − 2nm}−4nt {2nt + 2nm}−4nt

± q
nt−2nm

4 {2nt}−2nt {nt − nm}−2nt {nt + nm}−2nt {2nm}−4nt {4nt − 2nm}−4nt , (2.30)

which may also be rewritten as{
nt

2

}−

nt

{
nt − 2nm

4

}±

nt
2

{
nt + 2nm

4

}±

nt
2

= {nt}+nt {nt − nm}+2nt {nt + nm}+2nt ± q
nt−2nm

4 {nt}+nt {nm}+2nt {2nt − nm}+2nt .

(2.31)

This identity resembles particular formulae in [19] ((A5) and (A6) therein), which
were useful to derive a different type of identities between characters.

Analogous identities following from (2.28)–(2.29) and (2.26) are

{3nm}+8nm{5nm}+8nm ± q
nm
2 {nm}+8nm{7nm}+8nm

= {nm/2}±nm{2nm}−4nm{4nm}−8nm.
(2.32)
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2.4. Remarks on the factorized combinations.The factorized characters given by (2.4)
and (2.6) can be rewritten in the “inverse product” form (examples of such representation
are given in Appendix A)6

qconst 1∏N
i=1{xi}−yi

. (2.33)

In order to achieve this, one rewrites(q)∞ = {1}−1 with the help of (1.14) as a product
of some number of blocks and then cancels all blocks in the numerator with some of
those in the denominator. The only problem here is to verify that all blocks in (2.4)
and (2.6) are different. Equation (2.4) could have coinciding blocks only ift = 2m.
This is however excluded by the condition〈t, 2〉 = 1 which must hold because of (1.3).
Equation (2.6) could have coinciding blocks ift = 3m, t = 3m/2 or t = 2m. The first
two possibilities are excluded by the condition〈t, 3〉 = 1. The last one is allowed, but
this case is described by the reduced formula (2.7), which is obviously representable in
the form (2.33).

The inverse product form (2.33) (it is rather common for characters of Kac-Moody
algebras [12]) can be interpreted as a character of a module with states created by bosonic
type operators. Having the characters in the form (2.33) implies that the dimension of
the levelk in the Verma module of the irreducible representation is simply the number of
partitionsk = x1+. . .+xN +∑N

i=1 niyi with ni being an arbitrary non-negative integer.
This suggests that the states at this level are simply monomials of the form (1.2). If any
power of a generator having a given gradingk is allowed, the character acquires a factor
(1 − qk) in the denominator. It is guaranteed that any monomial by itself (apart from
L−1|h = 0〉) can never constitute a null-vector, as follows from the following simple
argument. A null-vector has by definition zero norm or equivalently it is annihilated by
Ln for all n > 0. Hence to prove our statement it is sufficient to show for onen thatLn

acting on (1.2) is non-vanishing. It is easy to verify fork1 6= k thatLk acting on (1.2)
vanishes only forh = 0. In casek1 = k 6= 1, the action ofLk−1 is always non-vanishing.
However, one may not guarantee that all these monomials are linearly independent.

It turns out that all of the factorized combinations of characters (2.22)–(2.27) and
(2.28)–(2.29) can be rewritten in the inverse product form generalizing (2.33), namely
as

qconst 1∏N
i=1{xj }−yj

∏M
j=1{x̃i}+yi

. (2.34)

In particular, (2.23) for evenn, the lower sign in (2.26) for integernt/4 andnm/2, and
(2.27) can be analyzed easily in the way we presented above and correspond to (2.34)
with M = 0. The analysis of other cases is slightly more involved (since we encounter
{ }+ blocks and blocks with non-integer arguments) but goes essentially along the same
lines. Consider, for instance, (2.22). Using (1.14) and (1.16), we can rewrite its r.h.s. as
follows (we use here the notation{x1; . . . ; xn}±y := {x1}±y . . . {xn}±y )

qconst {nm; n(t − 2m); n(t − m); nt; n(t + m); n(2t − m); n(t + 2m); 2nt}−2nt

{1}−1 {nt/2 − nm; nt/2; nt/2 + nm)}−nt {nt}+nt

.

For n andm in the range (2.13) the numerator could have coinciding blocks only if
t = 3m. However, in this case we have the reduced formula (2.28) which is readily seen

6 Exactly this form was an aim in [2].
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to be representable in form (2.34) if we take (1.16) into account.Analysis of (2.23), (2.26)
and (2.29) is performed analogously (notice only that for (2.26) one has to distinguish
the casesnt/2 = 0, 1 mod 2).

Thus, all the factorizable combinations of characters of type (2.11) admit the form
(2.34). Examples of such representation are given in Appendix A. Moreover, we prove
(seeAppendix C) that there are no other factorizable differences of this type which admit
the inverse product form (2.33). This is a rather surprising fact because the Gauß-Jacobi
and Watson identities are the specific Macdonald identities [18] for theA

(1)
1 andA

(2)
2

algebras and one could expect that the higher Macdonald identities also lead to similar
factorizations.

It is worth to notice that some of the factorizable combinations discussed above admit
the following form

qconst

∏M
j=1{x̃i}+yi∏N
i=1{xj }−yj

. (2.35)

This is the most natural form if we consider such an expression as a character (e.g. in the
context of the super-conformal models, see Subsect. 3.4) of a module with states created
not only by bosonic type operators but also by fermionic type operators, which produce
the blocks in the numerator. Also, the form (2.35) gives particularly simple formulae for
quasi-particle momenta (see Subsect. 3.3).

3. Applications

In the rest of the paper we will present some corollaries and applications of the obtained
results both in a mathematical and physical context.

3.1. Identities between characters.We commence by matching the product sides of the
formulae for the factorized linear combinations of characters with those for the factorized
single characters. For (2.23) this yields

χ
8n,t
2n,m(q) − χ

8n,t
2n,t−m(q) = χ

2n,t
n,2m(q), (3.1)

where〈t, 2〉 = 〈t, n〉 = 1. Notice that this identity is exact in the sense that is it does
not need an extra factor of typeqconst on the r.h.s. becauseh2n,t

n,2m − c(2n, t)/24 =
h

8n,t
2n,m − c(8n, t)/24.7 Sinceχ

2,3
1,1(q) = 1, we obtain, as a particular case, the identity

(which was also presented in [3] in a different context)

χ
3,8
1,2(q) − χ

3,8
1,6(q) = 1.

This is the only possible identity of the typeχs,t
n,m(q) − χ

n,t
s,t−m(q) = qconst because it

requiresc̃(s, t) = 0. According to (2.16), this impliesst = 24. The latter equation is
solved uniquely (up to a permutation ofs andt) due to (1.3).

For (2.27) and (2.26) we obtain analogously

χ
12n,t
4n,m (q) − χ

12n,t
8n,m (q) = χ

3n,t
2n,2m(q), χ

12n,t
2n,m (q) − χ

12n,t
10n,m(q) = χ

3n,t
n,2m(q), (3.2)

7 This property, which actually holds for all identities in this subsection, hints on specific modular properties
of the combinations of type (2.11).
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where〈t, 6〉 = 〈n, t〉 = 1. These identities are also exact. The first nontrivial examples
of this kind areχ12,5

4,m (q) − χ
12,5
8,m (q) = χ

3,5
2,2m(q) andχ

12,5
2,m (q) − χ

12,5
10,m(q) = χ

3,5
1,2m(q),

m = 1, 2. Furthermore, the characters on the r.h.s. of (3.2) form a pair of the type (2.11),
and applying (2.26), we obtain (assumingm < t/4 for definiteness)

χ
12n,t
2n,m (q) − χ

12n,t
10n,m(q) ± χ

12n,t
4n,m (q) ∓ χ

12n,t
8n,m (q) (3.3)

= q
h

3n,t
n,2m− c(3n,t)

24

(q)∞
{2nm}−nt {nt − 2nm}−nt {nt/2}−nt

2
{nt/4 − nm}±nt

2
{nt/4 + nm}±nt

2
.

Finally, matching the r.h.s. of (3.3) for the lower sign with (2.6), we obtain

χ
48n,t
8n,m (q) − χ

48n,t
16n,m(q) + χ

48n,t
32n,m(q) − χ

48n,t
40n,m(q) = χ

3n,t
2n,4m(q). (3.4)

The first nontrivial example isχ48,5
8,1 (q) − χ

48,5
16,1(q) + χ

48,5
32,1(q) − χ

48,5
40,1(q) = χ

3,5
1,1(q).

Another way to derive some new identities is to match the product sides of different
factorized linear combinations. In particular, one easily recovers the property (1.9) for
combinations

χs,αt
n,αm(q) ± χ

s,αt
n,α(t−m)(q) = χαs,t

αn,m(q) ± χ
αs,t
αn,t−m(q), (3.5)

if α is a positive integer such that〈t, α〉 = 〈s, α〉 = 1. For instance,χ3,10
1,2m(q) ±

χ
3,10
2,2m(q) = χ

5,6
m,2(q) ± χ

5,6
m,4(q), m = 1, 2.

Less obvious identities between characters of different models having the sameceff
follow if we compare the r.h.s. of (2.26) and (2.27):

χ
3n,2t
n,t−2m(q) − χ

3n,2t
n,t+2m(q) = χ6n,t

n,m (q) − χ
6n,t
5n,m(q), (3.6)

where〈t, 6〉 = 〈n, 2〉 = 〈t, n〉 = 1, m < t/2. For instance,χ3,10
1,1 (q) − χ

3,10
2,1 (q) =

χ
5,6
2,1(q) − χ

5,6
2,5(q).

Employing the factorized form of (combinations of) characters, we can derive iden-
tities involving their bilinear combinations. For instance, it is straightforward to verify
the following relations (see Appendix D for a sample proof)

χ3n,2m
n,m χ

4n,5m
2n,m = χ

3n,4m
n,2m

(
χ

6n,5m
n,2m − χ

6n,5m
n,3m

)
, (3.7)

χ3n,2m
n,m χ

4n,5m
2n,2m = χ

3n,4m
n,2m

(
χ6n,5m

n,m − χ
6n,5m
n,4m

)
, (3.8)

χ3n,2m
n,m

(
χ4n,5m

n,m ± χ
4n,5m
n,4m

)
=
(
χ

6n,5m
2n,2m ∓ χ

6n,5m
2n,3m

) (
χ3n,4m

n,m ± χ
3n,4m
n,3m

)
, (3.9)

χ3n,2m
n,m

(
χ

4n,5m
n,2m ± χ

4n,5m
n,3m

)
=
(
χ

6n,5m
2n,m ∓ χ

6n,5m
2n,4m

) (
χ3n,4m

n,m ± χ
3n,4m
n,3m

)
, (3.10)

which in turn lead to the identities

χ
4n,5m
2n,m

(
χ6n,5m

n,m − χ
6n,5m
n,4m

)
= χ

4n,5m
2n,2m

(
χ

6n,5m
n,2m − χ

6n,5m
n,3m

)
, (3.11)(

χ
4n,5m
n,2m ± χ

4n,5m
n,3m

) (
χ

6n,5m
2n,2m ∓ χ

6n,5m
2n,2m

)
=
(
χ4n,5m

n,m ± χ
4n,5m
n,4m

) (
χ

6n,5m
2n,m ∓ χ

6n,5m
2n,4m

)
. (3.12)
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We have omitted theq-dependence for compactness of the formulae. Once more we like
to point out these relations are exact (see (D.1)). A particular case of (3.11) and (3.12)
for n = m = 1 was found in [19]. Further interesting identities are for instance

(
χ3n,4m

n,m (q) + χ
3n,4m
n,3m (q)

) (
χ3n,4m

n,m (q) − χ
3n,4m
n,3m (q)

)
= q− nm

24

(
χ3n,2m

n,m (q)
)2 {nm}−2nm,

(3.13)

χ
5,6
1,2(q)χ

5,6
2,2(q) − χ

5,6
1,4(q)χ

5,6
2,4(q) =

(
χ

3,4
1,2(q)

)2
, (3.14)

(
χ

4,5
1,2(q) ± χ

4,5
1,3(q)

) (
χ

5,6
2,2(q) ∓ χ

5,6
2,4(q)

)
= χ

4,15
1,5 (q) ± χ

4,15
3,5 (q). (3.15)

Equation (3.13) forn = m = 1 yields the well-known relation

(
(χ

3,4
1,1(q))2 − (χ

3,4
1,3(q))2

)
χ

3,4
1,2(q) = 1

It is of a certain interest to search for relations between (combinations of) characters
with rescaledq. The rescaling,q → qr or, equivalently,τ → rτ can be regarded as a
transformation relating theories on two different tori. In statistical mechanics, whereτ

is considered as a physical parameter (e.g. inverse temperature or width of a strip), this
transformation relates two models at different values of this parameter.

In order to match the factorized (combinations of) characters involving those with
rescaledq it is useful to take into account that such rescaling,q → qr , also leads to the
rescaling ofceff → ceff/r (andc̃ → c̃/r).We present here only several examples relating
characters of some models with interesting physical content under the transformation
q → q2:

χ
3,4
1,1(q2) − χ

3,4
1,3(q2) =

(
χ

3,4
1,2(q)

)−1
, (3.16)

χ
5,6
1,2(q2) + χ

5,6
1,4(q2) = χ

2,5
1,1(q), χ

5,6
2,2(q2) + χ

5,6
2,4(q2) = χ

2,5
1,2(q), (3.17)

χ
5,6
1,1(q) − χ

5,6
1,5(q) = χ

2,5
1,2(q2), χ

5,6
2,1(q) − χ

5,6
2,5(q) = χ

2,5
1,1(q2), (3.18)

χ
6,7
2,1(q2) + χ

6,7
2,6(q2) = χ

6,7
1,3(q) − χ

6,7
1,4(q), (3.19a)

χ
6,7
2,2(q2) + χ

6,7
2,5(q2) = χ

6,7
1,1(q) − χ

6,7
1,6(q), (3.19b)

χ
6,7
2,3(q2) + χ

6,7
2,4(q2) = χ

6,7
1,2(q) − χ

6,7
1,5(q). (3.20)

Finally, it may be of some interest to consider relations between (combinations of)
incomplete characters with rescaledq. For instance, we have

χ̂4n,t
n,m (q2) − χ̂

4n,t
3n,m(q2) = χ̂

2n,t
n,2m(q), χ̂6n,t

n,m (q2) − χ̂
6n,t
5n,m(q2) = χ̂

3n,t
n,2m(q). (3.21)

Identities between the corresponding full characters are then obtained by multiplication

of the r.h.s. with(q
1
24{1}+1 )−1.
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3.2. Rogers-Ramanujan type identities.Once we have achieved factorization of (com-
binations of) characters in the form (2.35), we can employ (1.12) in order to re-express
the product as a sum of type distinct from (1.7). More precisely, combining (1.12) with
(1.13) and substituting into (2.35), we obtain

qconst

∏M
j=1{x̃i}+y∏N
i=1{xj }−y

=
∑

l

q(l21+...+l2M−l1−...−lM)y/2+B·l

(qy)l1 . . . (qy)lM+N

, (3.22)

whereB = {x̃1, . . . x̃M, x1, . . . xN } andl has(M+N) components running through non-
negative integers.The structure of this identity resembles the famous Rogers–Ramanujan
identities (which are in fact just two ways of writing down the charactersχ

2,5
1,1 andχ

2,5
1,2

– see Appendix A)

1

{1; 4}−5
=

∞∑
l=0

ql2

(q)l
,

1

{2; 3}−5
=

∞∑
l=0

ql2+l

(q)l
. (3.23)

However, whereas Eq. (3.22) may be decomposed into a product of identities (1.12),
such simplifications are not possible in the proof of the Rogers–Ramanujan identities
(see e.g. [23]). Thus, in order to obtain more interesting generalizations of the Rogers-
Ramanujan identities involving our factorized form of (combinations of) characters as
a product side, we need another expression for the sum on the r.h.s. of (3.22). For this
purpose we make use of the results of [21] where it was observed that some Virasoro
characters admit the following form:

qconst
∑

l

qltAl+B·l

(q)l1 . . . (q)ln
, (3.24)

whereA is a realn×n symmetric matrix (sometimes coinciding with the inverse Cartan
matrix of a simply-laced Lie algebra),B is ann-component vector, and the summation
may be restricted by a condition of the typeγ · l = Q (modα) with some integer valued
γ and positiveQ andα. It turns out that some of the characters of minimal models
admitting the form (3.24) are either factorizable per se or can be combined into the
factorizable combinations considered above. This circumstance allows us to apply the
results of Sect. 2 and derive a set of Rogers–Ramanujan type identities. For instance

q− 1
40χ

3,5
1,1(q) =

∞∑
l=0
even

q(l2+2l)/4

(q)l
= {4}+10{6}+10

{2}−10{3}−10{5}−10{7}−10{8}−10

, (3.25)

q− 1
40χ

3,5
1,4(q) =

∞∑
l=1
odd

q(l2+2l)/4

(q)l
= q

3
4

{1}+10{9}+10

{2}−10{3}−10{5}−10{7}−10{8}−10

. (3.26)

Furthermore, we can apply (2.26) to combinations of the l.h.s. which yields

q− 1
40
(
χ

3,5
1,1(q) ± χ

3,5
1,4(q)

)= ∞∑
l=0

(±)l q(l2+2l)/4

(q)l
= {3/4}±5/2{7/4}±5/2

{2}−5 {3}−5 {5/2}+5/2

. (3.27)

We present a set of further Rogers–Ramanujan type identities derived in a similar way
in Appendix E. The product sides of these identities are not unique in the sense that one
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may use the techniques discussed in Subsect. 2.4 and bring them, if possible, to the form
(2.33), (2.34) or (2.35) (compare (3.27) and the corresponding formula inAppendixA). It
is also worth noticing that, combining these identities further, we again obtain identities
of the Rogers–Ramanujan type. For instance, multiplying (3.25) and (3.26), we find

∞∑
l1,l2=0

ql21+l22+l1+2l2

(q)2l1(q)2l2+1
=

{1}+5 {4}+5
(
{5}+5

)2

(
{2}−5 {3}−5

)2 . (3.28)

It should be mentioned that there exists a more general type of formulae than (3.24)
(involving aq-deformed binomial factor) [20] which covers the whole range of characters
in all minimal models. Therefore when our factorization technique applies we also have
Rogers–Ramanujan identities for these more general types.

3.3. Quasi-particle representation.Once a character admits a factorizable form, it is
easy to obtain a quasi-particle spectrum following the prescription of [21,22,6]. Let
P(n, m) be the number of partitions of a positive integern into m distinct non-negative
integers andQ(n, m) be the number of partitions of a positive integern into positive
integers smaller or equal tom. In the theory of numbers the following formulae are
well-known (e.g. [23]):

∞∑
n=0

P(n, m) qn = qm(m−1)/2

(q)m
,

∞∑
n=0

Q(n, m) qn = 1

(q)m
. (3.29)

Combining them with (1.12) and (1.13), we obtain

{x}+y =
∞∑

n,m=0

P(n, m) qny+mx =
∞∑

n,m=0

Q(n, m) q(n+m(m−1)/2)y+mx, (3.30)

1

{x}−y
=

∞∑
n,m=0

Q(n, m) qny+mx =
∞∑

n,m=0

P(n, m) q(n−m(m−1)/2)y+mx. (3.31)

We assume now the character to be of the form (3.22), and proceed in the usual way
in order to derive the quasi-particle states. For this one interprets the characters as a
partition function withχ(q = e−2πv/LkT ) = ∑∞

l=0 P(El)e
−El/kT ,k being Boltzmann’s

constant,T the temperature,L the size of the quantizing system,v the speed of sound,
El the energy of a particular level andP(El) its degeneracy. The contribution of a single
particle of typea and momentumpia

a (ia being an additional internal quantum number)

to the energy is assumed to be of the formEl = v
∑N+M

a=1
∑la

ia=1

∣∣∣pia
a

∣∣∣. One has now

the option to construct either a purely fermionic (in units of 2π/L)

pi
a( l ) = Ba + y

2

(
1 −

N+M∑
k=M+1

lk

)
+ yNi

a (3.32)

or purely bosonic spectrum (in units of 2π/L)

pi
a( l ) = Ba + y

2

(
1 −

M∑
k=1

lk

)
+ yMi

a. (3.33)
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Table 1.Bosonic and fermionic spectrum forχ
3,4
1,2 (q) = q1/24

{1}−2
. k denotes the level andµk its degeneracy

k µk pi = 1 + 2Mi pi(l) = (2 − l) + 2Ni

1 1 |1〉 |1〉
2 1 |1, 1〉 |0, 2〉
3 2 |1, 1, 1〉 , |3〉 |−1, 1, 3〉 , |3〉
4 2 |1, 1, 1, 1〉 , |1, 3〉 |−2, 0, 2, 4〉 , |0, 4〉
5 3 |1, 1, 1, 1, 1〉 , |1, 1, 3〉 , |5〉 |−3, −1, 1, 3, 5〉 , |−1, 1, 5〉 , |5〉

6 4
|1, 1, 1, 1, 1〉 , |3, 3〉 ,

|1, 5〉 , |1, 1, 1, 3〉
|−2, 0, 2, 6〉 , |0, 6〉 ,

|−4, −2, 0, 2, 4, 6〉 , |2, 4〉

7 5
|1, 1, 1, 1, 1, 1〉 , |1, 3, 3〉 ,

|1, 1, 5〉 , |1, 1, 1, 1, 3〉 , |7〉
|−5, −3, −1, 1, 3, 5, 7〉 , |−1, 1, 7〉 ,

|−1, 3, 5〉 , |−3, −1, 1, 3, 7〉 , |7〉

HereNi
a are distinct positive integers andMi

a are some arbitrary integers. The fermionic
nature of this spectrum is here expressed through the fact that the integersNi

a are all
distinct, such that we have a Pauli principle. An example for such spectra is presented
in Table 1. A particular interesting spectrum arises when we allow bosons and fermions

pi
a = Ba + yNi

a, pi
b = Bb + yMi

b (3.34)

with a ∈ {1, M} andb ∈ {M+1, N+M}. Notice now the dependence onl has vanished.
WhenN = M this may be interpreted in a supersymmetric way.

Following the procedure of this subsection, the answer to the question [24]: “How
many fermionic representations are there for the characters of each modelM(s, t)?”
would beinfinite for factorizable characters due to the second relation in (1.14). One
could also change the approach and start with a given spectrum and search for the related
character [25] which shifts the problem to finding all possible integrable lattice models.
A possible selection mechanism is given by using information from the massive models
which in the conformal limit lead to certain modelsM(s, t). In this spirit for instance
the choiceA1 andE8 for the algebras of the related Cartan matrices in (3.24) appears
quite natural.

3.4. Super-conformal characters.Linear combinations of characters may be found in
various contexts as for instance when considering superconformal theories. The two N=1
unitary minimal superconformal extension of the Virasoro algebra are characterized by
an integerl and a labels = R, NS, which refers to the Ramond or Neveu-Schwarz
sector. The Virasoro central charge was found [26] to be

c(l) = 3

2

(
1 − 8

l(l + 2)

)
, l = 3, 4, . . . . (3.35)

The corresponding irreducible representations are highest weight representations
with weights

Hl,s
n,m = ((l + 2)n − ml)2 − 4

8l(l + 2)
+ 1

16
δs,R , (3.36)
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where the labels are restricted as 1≤ n ≤ l − 1, 1≤ m ≤ l + 1 together withn − m =
even, odd whens = NS, s = R, respectively. Realizing these models asˆSU(2)l−2 ⊗
ˆSU(2)2/ ˆSU(2)l+2-cosets the corresponding characters4

l,s
n,m(q) were constructed in

[10]. One notices from (1.4) and (3.35) thatc(3) = c(4, 5) and indeed, applying twice the
GKO-sumrules one may identify supersymmetric characters with linear combinations
of some non-supersymmetric Virasoro characters

4
3,NS
1,1 (q) = χ

4,5
1,1(q) + χ

4,5
1,4(q), 4

3,ÑS
1,1 (q) = χ

4,5
1,1(q) − χ

4,5
1,4(q), (3.37)

4
3,NS
1,3 (q) = χ

4,5
1,2(q) + χ

4,5
1,3(q), 4

3,ÑS
1,3 (q), = χ

4,5
1,2(q) − χ

4,5
1,3(q), (3.38)

4
3,R
2,1 (q), = χ

4,5
2,1(q), 4

3,R
2,3 (q), = χ

4,5
2,2(q). (3.39)

Notice that all these characters factorize (see Appendix A for the explicit formulae).
Moreover, they admit the form (2.35) (which is due to Rocha-Caridi [1]) as well as
the form (2.33) (see Appendix A). It is interesting that the latter does not appear to
be manifestly supersymmetric. We observe easily the property for these expressions
under the T-modular transformation (assumingy to be an integer, the effect of this
transformation is that{x}±y → {x}±y whenx is an integer and{x}±y → {x}∓y whenx

is a semi-integer) which relates4l,NS
n,m (q) and4

l,ÑS
n,m (q) and leaves4l,R

n,m(q) invariant.
Fermionic representations for all characters4

l,s
n,m(q) were found in [27] and we leave it

for future investigations to settle the question whether they also factorize or not.As in the
non-supersymmetric case the modular properties of these characters [28] will certainly
turn out to be useful.

3.5. Modular invariant partition functions.Modular invariant partition functions for
minimal models are given by (up to an overall coefficient)

Zs,t (q, q̄) =
∑

n,n′,m,m′
Z

m,m′
n,n′ χs,t

n,m(q) χ
s,t
n′,m′(q). (3.40)

For the so-called main sequence (in the terminology of [17]), or(As−1, At−1) type,
we haveZ

m,m′
n,n′ = δn,n′δm,m′ . Bearing in mind factorizability of all characters in the

M(2, t) andM(3, t) models, one can rewrite the corresponding partition functions as
a sum of products of the type (2.33). This allows, in particular, to apply the technique
of Subsect. 3.3 and obtain quasi-particle representations for these partition functions.

Besides the main sequence some minimal models possess other modular invariants
(complementary sequences) [3,17,29] of the type (3.40) with more generalZ

m,m′
n,n′ . In

particular, forM(4k, t) andM(4k + 2, t) ((D2k+1, At−1) and(D2k+2, At−1) type, re-
spectively) the non-diagonal part ofZ

m,m′
n,n′ isznmδn,n′δm,t−m′ . In this case (3.40) involves

not only squares of modules of single characters but also those of sums of characters of
the type (2.11). Fort = 3 all of these sums are factorizable and we can represent the
corresponding partition functions as a sum of products (of the type (2.35) in general).
Thus, for such partition functions we also can obtain quasi-particle representations.
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3.6. Partition functions in boundary CFT.A partition function of a conformal theory
on a manifold with boundaries, say on a cylinder, is expressed as a sum of characters of
a single copy of the Virasoro algebra [30]

Zα,β(q) =
∑
h

Nh
αβχh(q), (3.41)

where(α, β) is a pair of boundary conditions,χh(q) denotes a character of given weight
h, andNh

αβ are multiplicities (expressible in terms of (2.17) and also related to the fusion
rules).

It is interesting that in some casesZα,β(q) is just a factorizable sum (or several such
sums) of type (2.11), so we can rewrite it in the product form. For instance, for the critical
3-state Potts model (corresponding toM(5, 6)) there are three microscopic states A, B
and C, and for some of possible partition functions we find

ZA,F (q) = χ
5,6
1,2(q) + χ

5,6
4,2(q) = q

11
120

1

{1}−5/2{3/2}−5/2

, (3.42)

ZBC,F (q) = χ
5,6
2,2(q) + χ

5,6
3,2(q) = q− 1

120
1

{1/2}−5/2{2}−5/2

, (3.43)

where F stands for the free boundary condition.As we mentioned in Subsect. 2.3, such an
expression may be interpreted as a character of a module generated by bosonic operators
(in fact, (3.17) shows that (3.42) and (3.43) coincide with the characters ofM(2, 5) of
an argumentq1/2). Also, this form of a partition function allows for a direct extraction
of a quasi-particle spectrum which, (in the spirit of Subsect. 3.3) in particular, can be
used to study connections between theories with distinct boundary conditions.

Conclusion

We have shown how to obtain the factorized form of a single Virasoro character on
the base of the Gauß-Jacobi and Watson identities by exploiting the quasi-classical
asymptotics of the usual sum representation. We have applied this method also to the
factorization of a linear combination of two Virasoro characters and found the explicit
formulae (2.23), (2.26) and (2.27). We presented a rigorous proof that besides the ob-
tained expressions no other differences of two Virasoro characters of the type (2.11)
are factorizable in the form (2.33). It is a remarkable fact, which certainly needs some
deeper understanding, that just like for the single characters none of the Macdonald
identities, other than the ones corresponding to theA

(1)
1 andA

(2)
2 algebras need to be

invoked. We employed the obtained factorized versions of the characters in order to de-
rive a set of new identities, e.g. (3.7)–(3.10), in a very economical way. Some particular
cases of these identities coincide with formulae derived originally in [19], however now
the proof has simplified considerably. As was already pointed out in [19], these iden-
tities belong to a class which is closely related, but not derivable, from a repeated use
of the GKO-sumrules [10]. It is therefore suggestive to assume that the new identities
are related to some higher sumrules. A systematic classification of identities obtainable
from factorised combinations of Virasoro characters will be presented elsewhere. It is
also conceivable, that the presented method will be applicable to non-minimal models
like parafermionic models, i.e.̂SU(2)k/Û(1)k-coset, or general N=1,2,4 supersymmet-
ric models. Concerning the quasi-particle representation of the Virasoro characters with
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their relation to lattice models, the factorized versions constitute a suitable starting point
for a more detailed analysis, as for instance in [22].
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Appendix A

Here we will present some examples of the inverse product representation for characters
and linear combinations of characters in some unitary and non-unitary models. For
shortness we omit the argumentq on l.h.s. and use the notation{x1; . . . ; xn}±y :=
{x1}±y . . . {xn}±y .

χ
3,4
1,1 ± χ

3,4
1,3 = q− 1

48
1

{1/2}∓1 {1}+1
, χ

3,4
1,2 = q

1
24

1

{1}−2
,

χ
4,5
2,1 = q

49
120

1

{1; 4}−5 {3; 5; 7}−10

, χ
4,5
2,2 = q

1
120

1

{2; 3}−5 {1; 5; 9}−10

,

χ
4,5
1,1 ± χ

4,5
1,4 = q− 7

240
1

{3/2; 5/2; 7/2}∓5 {5}+5 {2; 8}−10

,

χ
4,5
1,2 ± χ

4,5
1,3 = q

17
240

1

{1/2; 5/2; 9/2}∓5 {5}+5 {4; 6}−10

,

χ
5,6
1,1 − χ

5,6
1,5 = q− 1

30
1

{2; 8}−10

, χ
5,6
2,1 − χ

5,6
2,5 = q

11
30

1

{4; 6}−10

,

χ
5,6
1,2 ± χ

5,6
1,4 = q

11
120

{1; 4}−5 {3/2; 7/2}∓5
, χ

5,6
2,2 ± χ

5,6
2,4 = q− 1

120

{2; 3}−5 {1/2; 9/2}∓5
,

χ
6,7
1,1 − χ

6,7
1,6 = q− 1

28

{3; 4}−7 {2; 12}−14

, χ
6,7
1,2 − χ

6,7
1,5 = q

3
28

{1; 6}−7 {4; 10}−14

,

χ
6,7
1,3 − χ

6,7
1,4 = q

19
28

{2; 5}−7 {6; 8}−14

,

χ
6,7
2,1 ± χ

6,7
2,6 = q

19
56

{1; 3; 4; 6}−7 {5/2; 9/2}∓7
,

χ
6,7
2,2 ± χ

6,7
2,4 = q− 1

56

{1; 2; 5; 6}−7 {3/2; 11/2}∓7
,

χ
6,7
2,3 ± χ

6,7
2,4 = q

3
56

1

{2; 3; 4; 5}−7 {1/2; 13/2}∓7
,

χ
2,5
1,1 = q

11
60

1

{2; 3}−5
, χ

2,5
1,2 = q− 1

60
1

{1; 4}−5
,
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χ
3,5
1,1 ± χ

3,5
1,4 = q

1
40

1

{2; 8}−10{3/4; 7/4}∓5
2
{3/2; 5/2; 7/2}+5

,

χ
3,5
1,2 ± χ

3,5
1,3 = q− 1

40
1

{4; 6}−10{1/4; 9/4}∓5
2
{1/2; 5/2; 9/2}+5

.

Appendix B

In this appendix we present a sample proof for the identities of the type (2.22)–(2.23)
and (2.26)–(2.27), that is for the factorization of the sum or difference of two Virasoro
characters related to minimal models. The proof is based on a systematic exploitation of
the Gauß-Jacobi and Watson identities (1.20)–(1.23). We have to compare the l.h.s. of
these expressions with the sum or difference of characters given by (1.7),

χs,t
n,m(q) ± χ

s,t
n,t−m(q) = qh

s,t
n,m− c(s,t)

24

(q)∞

∞∑
k=−∞

qstk2
(
qk(nt−ms) − qk(nt+ms)+nm

± qk(nt+ms−st)+1h
s,t
n,m ∓qk(nt−ms+st)+n(t−m)+1h

s,t
n,m

)
. (B.1)

Here the quantity1h
s,t
n,m is defined by (2.12) and we assumen < s/2, m < t/2, so that

1h
s,t
n,m > 0. We outline the proof for the identity (2.27). All other proofs work along the

same lines.
Recall that (2.27) has been conjectured to be a particular case of (1.21) fora = 1h

s,t
n,m

andb = nm provided that the conditions = 6n holds. Notice that substitution of the
latter relation into (2.12) yieldsa = nt − 2nm. In order to produce the right number
of terms for a possible comparison with (B.1), we have to split the sum in the l.h.s. of
(1.21) into two new sums – over even and oddk. Then the l.h.s. of (1.21) acquires the
form

∞∑
k=−∞

qk2(6a+12b)
(
qk(a−4b) + qk(7a+8b)+2a+b − qk(a+8b)+b − qk(7a+20b)+2a+8b

)
,

which, upon substitution of the explicit values fora andb and the relations = 6n,
becomes

∞∑
k=−∞

qstk2
(
qk(nt−ms) + qk(nt−ms+st)+2nt−3nm

−qk(nt+ms)+nm − qk(nt+ms+st)+2nt+4nm
)

.

We see that the first, second and third terms here exactly match the first, fourth and
second terms on the r.h.s. in (B.1), respectively. Making the shiftk → k − 1 in the last
term, we achieve that it coincides with the third term in (B.1). This completes the proof.
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Appendix C

Here we will prove the following statement: the factorization of the difference of two
minimal Virasoro characters in the form

χs,t
n,m(q) − χ

s,t
s−n,m(q) = qh

s,t
n,m− c(s,t)

24

(q)∞

(
χ̂ s,t

n,m(q) − q1hχ̂
s,t
s−n,m(q)

)
= qh

s,t
n,m− c(s,t)

24∏N
i {xi}−b

,

(C.1)

where 0 < x1 < . . . < xN ≤ b, is up to the symmetries (1.8) only possible for
s = 3n, 4n, 6n. Here1h stands for1h

s,t
n,m defined in (2.12), and we assumen < s/2,

m < t/2, so that1h
s,t
n,m > 0.

Our argumentation goes along the lines of the proof for the factorization of single
characters given in [2]. Surprisingly it is enough to investigate the first five terms in the
sum, which for the incomplete character may be identified uniquely

χ̂ s,t
n,m(q) = 1 − qnm − q(s−n)(t−m) + qts+sm−tn + qts+tn−sm + . . . . (C.2)

For the difference of the two characters they read

χ̂ s,t
n,m(q) − q1hχ̂

s,t
s−n,m(q) = 1 − qnm − q1h + q1h+m(s−n) + q1h+n(t−m) + . . . .

(C.3)

For definiteness we choosesm < nt (so that1h + m(s − n) < 1h + n(t − m)), since
the other case may be obtained from the symmetry properties. The negative terms in
(C.3) allow us to write down the first two factors in the product

χ̂ s,t
n,m(q) − q1hχ̂

s,t
s−n,m(q) = (1 − qnm)(1 − q1h) . . . , (C.4)

which means that after expanding we will generate a termqnm+1h. Sincenm + 1h <

1h+m(s −n), we have to include a factor(1−qnm+1h) on the r. h. s. of (C.4) in order
to cancel this term. Expanding once more we will generate new terms, which in turn
have to be cancelled by additional factors on the right hand side of (C.4) until we obtain
the matching conditionαnm + β1h = 1h + m(s − n) with positive integersα and
β. At first sight it seems a formidable task to bring some systematics into this analysis.
However, it was observed in [2] that this procedure will terminate whenα + β = 5.
Actually also one case from level 6 might be possible.

Performing this analysis up to that level one obtains

1 − qnm − q1h + qαnm+β1h + . . .

= (1 − qnm)(1 − q1h)(1 − qnm+1h)(1 − q2nm+1h)

×(1 − qnm+21h)(1 − q3nm+1h)(1 − qnm+31h)(1 − q2nm+21h)

×(1 − q4nm+1h)(1 − qnm+41h)(1 − q3nm+21h)2(1 − q2nm+31h)2 . . . ,

where in this expressionα + β > 5. It is the occurrence of the quadratic terms(1 −
q3nm+21h)2 and (1 − q2nm+31h)2 which allows us to stop at this point, since they
may never be cancelled against factors within(q)∞ and we can therefore restrict the
investigation to the cases 2≤ α + β ≤ 5. Commencing with the caseα + β = 5 we
obtain two matching conditions, that is for the two smallest powers of the positive terms

st
4 + ms

2 − nt
2 = 3nm + 21h

st
4 − ms

2 + nt
2 = 2nm + 31h

}
⇒ s = 6n − 2m

s

t
.
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Sincen is positive,m is strictly smaller thant , 〈s, t〉 = 1 andt = 2m produces zero
on the left hand side of (C.1), the caseα + β = 5 will never produce any solution. We
may also encounter the situation

st
4 + ms

2 − nt
2 = 4nm + 1h

st
4 − ms

2 + nt
2 = 2nm + 21h

}
⇒ s = 5n and t = 6m.

In the remaining possibilities we only obtain one matching condition, that is forp. The
caseα = β = 2 leads to the condition 2nm+21h = sm−nm+1h which amounts to

m = t
(s − 2n)

(6s − 16n)
.

However, substitution of this relation into the conditionsm < nt leads tos(s − 2n) <

n(6s − 16n), or equivalently,(s − 4n)2 < 0, which is impossible.
The other cases yield

nm + 1h = sm − nm + 1h ⇒ s = 2n,

nm + 21h = sm − nm + 1h ⇒ s = 2n or t = 6m,

2nm + 1h = sm − nm + 1h ⇒ s = 3n,

nm + 31h = sm − nm + 1h ⇒ s = 2n or t = 4m,

3nm + 1h = sm − nm + 1h ⇒ s = 4n ,

5nm + 1h = sm − nm + 1h ⇒ s = 6n .

We observe that we recover the cases we claimed to factorize in the form (C.4), which
concludes the proof.

Appendix D

We will now provide a sample proof for the identities (3.7)–(3.10). Forn = m = 1
some very involved proof which employs identities of theta functions may be found in
[19]. With the help of the product representations (2.22)–(2.27) such identities may be
derived without any effort. We demonstrate this just for Eqs. (3.9) with the upper sign,
the remaining equations may be derived in a similar way. First of all we notice that

h3n,2m
n,m − c(3n, 2m)

24
+ h4n,5m

n,m − c(4n, 5m)

24
= h

6n,5m
2n,2m − c(6n, 5m)

24

+ h3n,4m
n,m − c(3n, 4m)

24
.

(D.1)

After cancelling(q)2∞ on both sides of (3.9) for the upper sign we obtain for the left hand
side upon using (1.14) (we omit here the labelsnm in order to avoid lengthy formulae
and imagine just for now that{x}−y should always be understood as{xnm}−ynm),

χ̂3n,2m
n,m

(
χ̂4n,5m

n,m + χ̂
4n,5m
n,4m

)

= ({1}−1
) ({1}−5 {4}−5 {5}−5

{
3

2

}+

5

{
5

2

}+

5

{
7

2

}+

5

)
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= {1}−4 {3}−4 {2}−2 {1}−10{6}−10{4}−10{9}−10{5}−5
{

3

2

}+

5

{
5

2

}+

5

{
7

2

}+

5

=
(

{1}−4 {3}−4 {2}−2
{

1

2

}+

2

{
3

2

}+

2

)(
{4}−10{6}−10{5}−5

{
1

2

}−

5

{
9

2

}−

5

)

=
(
χ̂3n,4m

n,m + χ̂
3n,4m
n,3m

) (
χ̂

6n,5m
2n,2m − χ̂

6n,5m
2n,3m

)
.

Here we have used several times the identities (1.14).

Appendix E

We complement the list started in Subsect. 3.2 of the Rogers–Ramanujan type identities
obtained by combining our product formulae for (combinations of) characters with the
results of [21]. We adopt the notations explained in Appendix A:

q1/48χ
3,4
1,1 =

∞∑
l=0
even

ql2/2

(q)l
= 1

{2; 14}−16{3; 4; 5}−8
, (E.1)

q1/48χ
3,4
1,3 =

∞∑
l=1
odd

ql2/2

(q)l
= q1/2 1

{6; 10}−16{1; 4; 7}−8
, (E.2)

q1/48
(
χ

3,4
1,1 ± χ

3,4
1,3

)
=

∞∑
l=0

(±)l ql2/2

(q)l
= {1/2}±1 , (E.3)

q−1/24χ
3,4
1,2 =

∞∑
l=0
even

q(l2−l)/2

(q)l
=

∞∑
l=1
odd

q(l2−l)/2

(q)l
= 1

{1}−2
, (E.4)

q1/30χ
5,6
1,3 =

∞∑
l1,l2=0

l1+2l2=±1(mod 3)

q2(l21+l21+l1l2)/3

(q)l1(q)l2
= q2/3

{1; 2}−3 {6; 9}−15

, (E.5)

q
1
40χ

3,5
1,2 =

∞∑
l=0
even

ql2/4

(q)l
= {3; 7}+10

{1; 4; 5; 6; 9}−10

, (E.6)

q
1
40χ

3,5
1,3 =

∞∑
l=1
odd

ql2/4

(q)l
= q1/4 {2; 8}+10

{1; 4; 5; 6; 9}−10

, (E.7)

q
1
40

(
χ

3,5
1,2 ± χ

3,5
1,3

)
=

∞∑
l=0

(±)l ql2/4

(q)l
= {1/4}±5/2{9/4}±5/2

{1; 4}−5 {5/2}+5/2

. (E.8)

More identities will be given elsewhere [31].
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