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Abstract: A certain class of unitary representations of Uq(sl(2,R)) has the property of
being simultanenously a representation of Uq̃(sl(2,R)) for a particular choice of q̃(q).
Faddeev has proposed to unify the quantum groups Uq(sl(2,R)) and Uq̃(sl(2,R)) into
some enlarged object for which he has coined the name “modular double”.

We study the R-operator, the co-product and the Haar-measure for the modular dou-
ble of Uq(sl(2,R)) and establish their main properties. In particular it is shown that the
Clebsch-Gordan maps constructed in [PT2] diagonalize this R-operator.

1. Introduction

Quantum groups have become an indispensable tool in many areas of mathematical
physics and mathematics. In a broad class of quantum theoretical models it has turned
out that finding a relation to a quantum group is the key for obtaining exact information
about the spectrum or the correlation functions.

So far most of the vast amount of work devoted to quantum group theory and their
physical applications was concerned with quantum groups that can be studied in a purely
algebraic manner. This is the case e.g. if the relevant representations are highest weight
representations, as is often assumed.

However, in physical applications to quantum theoretical models the choice of a
scalar product on the space of states usually determines the hermiticity relations for the
representatives of the quantum group generators. In many cases like those corresponding
to the so-called non-compact quantum groups it turns out that the corresponding unitary
representations are always infinite-dimensional and generically neither of highest nor
lowest weight type. In order to exploit the information provided by the appearance of
such a quantum group it is clearly important to have efficient mathematical tools for
analyzing the corresponding representation theory.

Unfortunately there are comparatively few results about the representation theory
of non-compact quantum groups. This seems to be an important obstacle for making
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further progress in many quantum integrable models. Nevertheless there is an interest-
ing example that was first studied independently in [PT1, F2 and PT2]. These references
were considering a particular class of infinite dimensional unitary representations of
Uq(sl(2,R)). This class of representations, henceforth denoted Ps , s ∈ R, was also the
first to be used in a concrete physical application: Understanding the tensor products
of the above-mentioned representations was crucial for obtaining exact results on the
quantum Liouville theory [PT1, T].

A rather remarkable duality phenomenon was observed in [F1, PT1 and F2]. The rep-
resentations in question are simultaneously representations of the two quantum groups

Uq(sl2) and Uq̃(sl2) with deformation parameters q = eπib
2

and q̃ = e
πi

b2 respectively.
This duality turns out to be deeply related to the quantum field theoretical self-duality
of Liouville theory under the change of the coupling constant b into b−1 [T]. Moreover,
it is this duality under b → b−1 that allows one to cover the so-called strong-coupling
regime where |b| = 1 by analytic continuation of the results for real values of b [PT1,
FKV, T, FK2].

The results of the present paper clarify the origin of this phenomenon to a certain
extent. Given the operators X representing one of the two algebras, say Uq(sl2), one
may obtain the representatives of the second algebraUq̃(sl2) as nonpolynomial operator
functions of the operators X. This is found to be consistent with the respective co-prod-
ucts. In particular, restricting attention to only one of the two algebras does not lead to
any degeneracy as is sometimes suggested in the literature.

Faddeev has proposed to unite the quantum groups Uq(sl2) and Uq̃(sl2) into some
enlarged object for which he has coined the name “modular double”. The proposal of
[F2] as refined in [KLS] amounts to defining it as the product of Ûq(sl2) and Ûq̃ (sl2),
where, roughly speaking, Ûq(sl2) is obtained from Uq(sl2) by adjoining a sign to the
center generated by the Casimir of Uq(sl2). We feel that this definition for the modular
double has a disadvantage, though. Most representations of Ûq(sl2)⊗ Ûq̃ (sl2) are sim-
ply tensor products of representations of the two factors. The representations Ps on the
contrary are distinguished by the fact that they do not factorize as a tensor product of
representations forUq(sl2) andUq̃(sl2). This is what makes the duality under b → b−1 a
nontrivial statement. Since the category formed by the representations Ps is closed under
tensor products [PT2] it seems natural to look for the group-like object that contains the
interesting representations Ps only.

We therefore propose to look for a definition of the “modular double” that excludes the
representations ofUq(sl2)⊗Uq̃(sl2)which factorize trivially. This definition should still
capture the duality phenomenon mentioned above. As we have indicated, this naturally
leads us to consider nonpolynomial functions of the generators. The basic objects under-
lying our approach to the modular double will be an algebra A of bounded operators,
a coproduct � on A, an invariant integration (Haar-measure) on A and the R-operator
proposed in [F2]. We are going to establish the main properties satisfied by these objects,
which are all self-dual under b → b−1.

The algebra A can be thought of as being generated from operators that represent
Uq(sl2) in a similar (in fact, closely related) way as the algebra of bounded operators on
L2(R) is related to the usual quantum mechanical position and momentum operators x
and p. Our point of view is inspired by the one of Woronowicz [W1], which has stim-
ulated the development of a theory for noncompact quantum groups in a C∗-algebraic
framework, see e.g. [KV] and references therein. However, although we believe that our
results represent substantial progress towards a proof that the modular double fits into
such aC∗-algebraic framework, it was not our aim to actually carry out such a proof here.
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We also clarify the relation between the R-operator proposed in [F2] and the calculus
of Clebsch-Gordan and Racah-Wigner-coefficients of [PT2]. Establishing this relation
is important for the following reason. In [T] it was shown that certain families of repre-
sentations of the Virasoro algebra and of the quantum groupUq(sl(2,R)) behave equiv-
alently under the respective product operations (fusion and tensor product). Together
with the results of the present paper it follows that the respective braiding operations
are equivalent as well.

To be specific we will mostly consider the case that the deformation parameter is of
the form q = eπib

2
, where b ∈ (0, 1). However, our results will carry over to the “strong

coupling regime” |b| = 1, see the remarks in Subsect. 2.11.

Note added. The referee has brought to our attention the work [KK] where a quantum group related
to SU(1, 1) was studied. These papers address similar issues as treated in our paper. It would be rather
interesting to understand if there is a more direct relation between the example studied in [KK] (where the

deformation parameter q is real) and the example studied in our paper (where q = eπib
2
, (1−|b|)�b = 0).

2. Definitions and Main Results

2.1. Star algebra Uq(sl(2,R)). Uq(sl(2,R)) is a Hopf-algebra with

generators: E, F, K, K−1;
relations: KE = qEK, KF = q−1FK, [E,F ] = K2 −K−2

q − q−1 ;
star-structure: K∗ = K, E∗ = E, F ∗ = F . (2.1)

The center of Uq(sl(2,R)) is generated by the q-Casimir

C = FE + qK2 + q−1K−2 − 2

(q − q−1)2
. (2.2)

Compared to the definition used in [PT2] we have redefined F → −F . This will allow
us to realize F by positive operators.

2.2. The representations Ps of Uq(sl(2,R)). In the present paper we will study a one-
parameter class Ps , s ∈ R, of representations of Uq(sl(2,R)). They are constructed as
follows: The representation will be realized on the space Ps of entire analytic functions
f (x) that have a Fourier-transform f̃ (ω) which is meromorphic in C with the possible
poles contained in

Ss ≡
{

± ω = s + i
(
Q
2 + nb +mb−1), n,m ∈ Z

≥0
}
, (2.3)

whereQ = b+b−1. The representation ofUq(sl(2,R)) on Ps is then defined by choos-
ing the representatives πs(X) for X = E,F,K to be the following finite difference
operators
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πs(E) ≡ Es ≡ e+πbx
cosh πb(p − s)

sin πb2 e+πbx

πs(F ) ≡ Fs ≡ e−πbx
cosh πb(p + s)

sin πb2 e−πbx
πs(K) ≡ Ks ≡ e−πbp , (2.4)

where p and x are self-adjoint operators satisfying [p, x] = (2πi)−1. By embedding Ps
as a dense subspace into the Hilbert space L2(R) one obtains a unitary representation
of Uq(sl(2,R)) generated from the self-adjoint operators E, F and K [S].

2.3. The representations H and K of Uq(sl(2,R)). We will find it convenient to for-
mulate our results in a “universal” setting. Let us define K ≡ L2(R × R). The algebra
B(K) of bounded operators on K is generated by two pairs (xi ,pi ), i = 1, 2 satisfying
[pi , xi] = (2πi)−1. The action of Uq(sl(2,R)) on K is defined by

πK(E) ≡ E = eπb(x1−x2 ) cosh πbp2

sin πb2 eπb(x1−x2 ),

πK(F ) ≡ F = eπb(x2−x1 ) cosh πbp1

sin πb2 eπb(x2−x1 ) ,

πK(K) ≡ K = e
πb
2 (p2−p1) .

(2.5)

This representation of Uq(sl(2,R)) on K is reducible: The operator s = 1
2 (p1 + p2)

commutes with E, F, K and determines the representation of the Casimir via

C ≡ πK(C) = cosh2 πbs

sin2 πb2
. (2.6)

The action of (2.5) on an eigenspace of s reduces to the action (2.4) on Ps upon iden-
tification p = 1

2 (p1 − p2) and x = x1 − x2. This means that K decomposes into the
representations Ps as follows:

K �
∫ ⊕

R

ds Ps . (2.7)

The representations Ps and P−s are unitarily equivalent [PT2]: There exists a unitary
operator Js : Ps → P−s such that X−sJs = JsXs for allX ∈ Uq(sl(2,R)). The operator
Js defines an operator J : K → K if one considers the operator function J ≡ Js.

It will sometimes be convenient to consider instead of K a space H in which Ps and
P−s are identified:

H = {v ∈ K; (id − J)v = 0}.

H is of course isomorphic to
∫ ⊕
R+ ds Ps .

2.4. Operator functions of E, F, K. It is important to also consider nonpolynomial
functions of the operators E, F, K. Let us first note that standard functional calculus for
positive selfadjoint operators allows one to consider complex powers of the generators
such as Eγ , γ ∈ C. The following result offers a partial explanation for the phenomenon
of modular duality.
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Lemma 1. (i) The operators Ẽs , F̃s , K̃s obtained by replacing b → b−1 in (2.4),

Ẽs ≡ e+πb
−1x cosh πb−1(p − s)

sin πb−2 e+πb
−1x

F̃s ≡ e−πb
−1x cosh πb−1(p + s)

sin πb−2 e−πb
−1x

K̃s ≡ e−πb
−1p , (2.8)

generate a representation of Uq̃(sl(2,R)) with q̃ = eπib
−2

. The generators Ẽs , F̃s ,
K̃s commute with the operators Es , Fs , Ks on Ps .

(ii) For γ = b−2 we have
(

sin(πb2)Es
)γ = sin(πb−2) Ẽs ,(

sin(πb2)Fs
)γ = sin(πb−2) F̃s ,

Kγs = K̃s . (2.9)

Being operator functions of Es , Fs , Ks , the operators Ẽs , F̃s , K̃s do not commute
with Es , Fs , Ks in the usual sense (commutativity of the spectral projections).

We shall now define an algebra of bounded operators that can be considered as oper-
ator functions of E, F, K. To begin with, let Os , s ∈ R be a family of bounded operators
on L2(R) such that

sup
s∈R

‖Os‖ < ∞.

A bounded operator O on K can be defined for each such family (Os)s∈R by means of
(2.7). These operators O form a subalgebra B0 of the algebra of all bounded operators
on H. Let B be the C∗ subalgebra obtained as the completion of B0 w.r.t. the operator
norm. This algebra can be thought of as being generated from the unbounded elements
p, x, s.

However, there is no canonical way to define sgn(s) as a function of E, F, K. The
center of the algebra of bounded operators generated from E, F, K should be gener-
ated from operator functions of the Casimir, or equivalently |s|, cf. Eq. (2.6). This is
closely related to the fact that the representations Ps and P−s are unitarily equivalent.
Elements of the “true” algebra A ⊂ B should therefore commute with the operator J
which establishes the equivalence between Ps and P−s ,

A ≡ {O ∈ B; J−1OJ = O}. (2.10)

This amounts to considering only those elements of B that leave H invariant.

2.5. The Hopf algebra structure. A co-product is defined on Uq(sl(2,R)) via

�(E) =E ⊗K +K−1 ⊗ E ,

�(F) =F ⊗K +K−1 ⊗ F ,
�(K) = K ⊗K . (2.11)

In the following we shall adopt the convention to denote

�(X) ≡ (πH ⊗ πH) ◦�(X) for X ∈ Uq(sl(2,R)) . (2.12)

It follows from [PT2, Theorem 2] that�(E),�(F) and�(K) are self-adjoint and positive
and therefore generate a representation ofUq(sl(2,R)) on H⊗H. The following Lemma
proven in Sect. 3 establishes consistency of the co-product with modular duality:
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Lemma 2. The co-product (2.11),(2.12) acts on the dual part of the modular double as
follows:

�(Ẽ) = Ẽ ⊗ K̃ + K̃−1 ⊗ Ẽ,

�(F̃) = F̃ ⊗ K̃ + K̃−1 ⊗ F̃,
�(K̃) = K̃ ⊗ K̃. (2.13)

A representation of the co-product on the algebra A can be defined by means of the
Clebsch-Gordan maps defined in [PT2]. These maps yield a three parameter family of
maps C[s3|s2, s1] : Ps2 ⊗ Ps1 → Ps3 that satisfy the intertwining property

C[s3|s2, s1] ◦ (πs2 ⊗ πs1 ) ◦�(X) = πs3 (X) ◦ C[s3|s2, s1] (2.14)

and extends to a two-parameter family of unitary operators C[s2, s1] : L2(R2) → H.
Let us introduce the operators s1 = id ⊗ s, s2 = s ⊗ id on H ⊗ H respectively. The
identification (2.7) allows us to consider C[s2, s1] as a unitary operator

C : H ⊗ H → H ⊗ Hspec,

where the operators si , i = 1, 2 are realized on the space Hspec � L2(R+ × R
+) as

multiplication operators.
For each element X ∈ A we may now define �(X) by

�(X) ≡ C† ◦ (
X ⊗ id

) ◦ C. (2.15)

Since C is unitary and X is bounded we clearly have boundedness of�(X) : H ⊗ H →
H ⊗ H.

Theorem 1. The coproduct � is coassociative on A, i.e.

(id ⊗�) ◦�(X) = (�⊗ id) ◦�(X) for any X ∈ A.

The antipode consistent with (2.11) is defined as an anti-automorphism of
Uq(sl(2,R)) such that

σ(K) = K−1 , σ (E) = −qE , σ(F ) = −q−1F . (2.16)

The action of the antipode on nonpolynomial functions of E, F and K can be introduced
by means of

σ(p) = −p, σ (s) = −s, σ (x) = x + i
2Q. (2.17)

The fact that x is shifted by an imaginary amount means that σ is not defined on all of
A. This unboundedness of the antipode is not unexpected [KV].
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2.6. The Haar-measure. Let us first note that the decomposition (2.7) induces a fam-
ily of projections πs : A → B(L2(R)). We shall often use the shorthand notation
Os ≡ πs(O).

Definition 1. Define linear functionals hl and hr on dense subsets Al
h and Ar

h of A
respectively by

hl(O) = ∫ ∞
0 dm(s) Tr(e−2πQpOs), (2.18)

hr(O) = ∫ ∞
0 dm(s) Tr(e+2πQpOs),

where the measure m is defined by

dm(s) ≡ 4 sinh 2πbs sinh 2πb−1s ds. (2.19)

Theorem 2. (i) The Haar-measures hl and hr are left and right invariant respectively,

(id ⊗ hl) ◦�(O) = hl(O) id ,
(2.20)

(hr ⊗ id) ◦�(O) = hr(O) id ,

where we assume O to be taken from the respective domains of definition.
(ii) For any X ∈ Uq(sl(2,R)), the Haar-measures satisfy, respectively

hl(adl
XO) = hl(O) ε(X) , (2.21)

hr(adr
XO) = hr(O) ε(X) ,

where ε(X) is the co-unit, and the left and right q-adjoint actions are defined as
adl

X(Y ) = ∑
i X

′
iY σ (X

′′
i ) and adr

X(Y ) = ∑
i σ (X

′
i )YX

′′
i if �(X) = ∑

i X
′
i ⊗X′′

i .

Remark 1. We believe that the triple (A,�, h) that we have defined above constitutes
a somewhat more satisfactory definition of the modular double, although more work is
needed to show that it fits into the axiomatics for noncompact quantum groups of [KV].
The self-duality under b → b−1 is manifest in this formulation.

It also becomes clear that the modular double can not be considered as a deformation
of a classical group: The Haar-measure has no classical limit b → 0 due to the factor
Q = b + b−1 that appears in the definition of h.

2.7. The R-operator. To begin with, we introduce the special function gb(x) that will
be used to define the R-operator. It may be defined via (recall that Q = b + b−1)

log gb(x) = −
∫

R+i0

dt

t

e
tQ
2
x

t
2πib

(1 − ebt )(1 − et/b)
. (2.22)

Let us furthermore introduce an anti-self-adjoint element H such that K = qH . Define

R = qH⊗H gb
(
4(sin πb2)2E ⊗ F

)
qH⊗H , (2.23)

where H ≡ πH(H). As we will explain below (see Corollary 2), R coincides with the
R-operator proposed by L. Faddeev in [F2]. Notice that the property (3.5) implies that
|gb(x)| = 1 for x ∈ R

+. This makes R manifestly unitary.
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Theorem 3. The operator R has the following properties:

(i) R�(X) = �′(X)R , (2.24)

(ii) (id ⊗�)R = R13R12, (�⊗ id)R = R13R23 , (2.25)

(iii) (σ ⊗ id)R = R−1, (id ⊗ σ)R = R−1, (σ ⊗ σ)R = R .
(2.26)

Remark 2. The R-operator allows us to introduce the braiding of tensor products of the
representations Ps . Specifically, let the operator B : Ps2 ⊗Ps1 → Ps1 ⊗Ps2 be defined
by Bs2 ,s1 ≡ PRs2 ,s1 , where P is the operator that permutes the two tensor factors. Prop-
erty (i) from Theorem 3 implies as usual that Bs2 ,s1 ◦�(X) = �(X) ◦ Bs2 ,s1 .

2.8. Integral operator representation. The operator R can clearly be projected to an
operator Rs2 s1 ≡ (πs2 ⊗ πs1 )R on Ps2 ⊗ Ps1 . The action of this operator admits a
representation by means of a distributional kernel:

Theorem 4. Let ψ̃(k2, k1) = ∫
R
dx2dx1e

2πi(k1x1+k2x2)ψ(x2, x1) be a Fourier transform
of ψ(x2, x1) ∈ Ps2 ⊗ Ps1 . The action of the R-operator on Ps2 ⊗ Ps1 admits the fol-
lowing representations as an integral operator in “coordinate” and “momentum” space
respectively:

(
Rs2s1 ψ

)
(x2, x1) =

∫

R

dx′
2dx

′
1 Rs2s1(x2, x1|x′

2, x
′
1) ψ(x

′
2, x

′
1) , (2.27)

(
Rs2s1 ψ̃

)
(k2, k1) =

∫

R

dk′
2dk

′
1 R̃s2s1(k2, k1|k′

2, k
′
1) ψ̃(k

′
2, k

′
1) , (2.28)

with the kernels given by

Rs2s1(x2, x1|x′
2, x

′
1)

= e
2πi

(
s1(x

′
1−x1)+s2(x2−x′

2)+ iQ
2 (x2+x′

2−x1−x′
1)+s1s2+ 1

4Q
2
)

×Gb
(
Q
2 + i

2 (s1 + s2)+ i(x2 − x1)
)

Gb
(
Q+ i

2 (s1 − s2)+ i(x2 − x′
1)

) Gb
(
Q
2 − i

2 (s1 + s2)+ i(x′
2 − x′

1)
)

Gb
(
Q+ i

2 (s2 − s1)+ i(x′
2 − x1)

) ,
(2.29)

R̃s2s1(k2, k1|k′
2, k

′
1)

= δ(k′
2 + k′

1 − k2 − k1)
e−πi(k′1k2+k1k

′
2)

Gb(Q+ i(k′
1 − k1))

wb(s1 + k1)

wb(s1 + k′
1)

wb(s2 − k2)

wb(s2 − k′
2)
. (2.30)

The functions wb(x) and Gb(x) are close relatives of the function gb(x) that will be
defined in Subsect. 3.1 below, and G−1(Q + ix) is taken as a short notation for the
distribution G−1

(
Q+ i(x + i0)

)
.

2.9. Highest weight representations. In order to demonstrate that the R-operator we are
considering here indeed deserves to be called “universal” we are now going to show that
the usual R-matrix for highest weight representations of Uq(sl(2,R)) can be extracted
from the analytic properties of the matrix elements given in Theorem 4.
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As a preparation let us consider the representation of Uq(sl(2,R)) on the dual space
P ′
s of Ps . An interesting class of elements of P ′

s is furnished by the (complexified)
delta-functionals δk ,

〈δk, f 〉 = f (k).

The δk are well-defined for all k ∈ C \ Ss , and the action of Uq(sl(2,R)) is realized by

Etsδk = + [
Q
2b − i

b
(k − s)

]
q
δk+ib

Ftsδk = − [
Q
2b + i

b
(k + s)

]
q
δk−ib

Ktsδk = e−πbkδk, (2.31)

where [t]q ≡ sin(πb2t)

sin(πb2)
is the standard definition of a q-number, and the superscript “t”

on the generators indicates transposition.
Let us restrict attention to the set Ds of functionals δk for which k is an element of{

k = −s+ i(Q2 +nb), n ∈ Z
≥0

}
. It is easy to verify that (2.31) realizes a highest weight

representation on Ds .

Theorem 5. The action of Rt on H ⊗ Ds is given by

R+
s = qH⊗Hs

∞∑
n=0

q
1
2 (n

2−n)
∏n
k=1[k]q

(
(q − q−1)E ⊗ Fs

)n
qH⊗Hs . (2.32)

2.10. Diagonalization of the R-operator.

Theorem 6. The Clebsch-Gordan maps C[s3|s2, s1] diagonalize the R-operator in the
following sense:

C[s3|s1, s2] Bs2 s1 = 	(s3|s2, s1)C[s3|s2, s1] , (2.33)

with eigenvalue 	(s3|s2, s1) given as

	(s3|s2, s1) = e−πi(hs3 −hs2 −hs1 ), hs ≡ s2 − Q2

4 .

2.11. The strong coupling regime |b| = 1. We would finally like to point out that our
results carry over to the strong coupling regime b = eiθ , θ ∈ [0, π/2). This is almost
obvious for those results whose proof relies mainly on the properties of the special func-
tions gb(x), Gb(x) and wb(x). In this case the operators E, F and K are normal (as
follows from Eq. (3.19) below), and the hermitian conjugation acts as

E† = Ẽ, F† = F̃, K† = K̃.

Concerning the results that rely on [PT2] one may note that they all amount to certain
identities between distributions that are defined by a standard analytic regularization
in terms of the meromorphic functions gb(x), Gb(x) and wb(x). The relevant analytic
properties underlying the validity of these identities all remain intact upon analytically
continuing from the case of real b to |b| = 1.
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3. Preliminaries and Auxiliary Results

3.1. Special functions. The Double Gamma function �2(x|ω1, ω2) was introduced and
studied by Barnes [Ba]. In what follows we will be dealing with (recall thatQ = b+b−1)

Gb(x) ≡ e
πi
2 x(x−Q) �2(x|b−1, b)

�2(Q− x|b−1, b)
. (3.1)

This function is closely related to the remarkable special functions introduced under
the names of “quantum dilogarithm” in [FK1], “hyperbolic G-function” in [Ru] and
“quantum exponential function” in [W2].Gb(x) is a meromorphic function that has the
following properties [Ba, Sh]:

self-duality Gb(x) = Gb−1(x) , (3.2)

functional equation Gb(x + b) = (1 − e2πibx)Gb(x) , (3.3)

reflection property Gb(x)Gb(Q− x) = eπix(x−Q) , (3.4)

complex conjugation Gb(x) = eπix̄(Q−x̄) Gb(x̄) , (3.5)

asymptotics Gb(x) ∼
{
ζ b for �(x) → +∞
ζb e

πix(x−Q) for �(x) → −∞ , (3.6)

Gb(x) has poles at
Gb(x) has zeros at

x = −nb −mb−1

x = Q+ nb +mb−1 n,m ∈ Z
≥0 , (3.7)

where ζb = e
πi
4 + πi

12 (b
2+b−2). By Proposition 5 in [Sh], theGb-function admits for �b2 >

0 the following infinite product representation

Gb(x) = ζ b

∏∞
n=1(1 − e2πib−1(x−nb−1))∏∞
n=0(1 − e2πib(x+nb))

. (3.8)

We are also going to use two other functions that are closely related toGb(x), namely

gb(x) ≡ ζ b

Gb
(
Q
2 + 1

2πib log x
) , and wb(x) ≡ e

πi
2

(
Q2
4 +x2

)
Gb

(Q
2

− ix
)
. (3.9)

The representation (2.22) for gb introduced above follows easily from the integral rep-
resentation for the Double Gamma function introduced in [Sh].

For the reader’s convenience we shall also list the relevant properties of wb(x) that
follow from (3.2)–(3.7):

self-duality wb(x) = wb−1(x) , (3.10)

functional equation wb(x + ib) = 2wb(x) sin πb
(
Q
2 − ix

)
, (3.11)

reflection property wb(x) wb(−x) = 1 , (3.12)

complex conjugation wb(x) = wb(−x̄) , (3.13)

wb(x) has poles at
wb(x) has zeros at

x = −i (Q2 + nb +mb−1)

x = i (
Q
2 + nb +mb−1)

n,m ∈ Z
≥0 . (3.14)

Notice that |wb(x)| = 1 if x is real. Hencewb(X) is unitary if X is a self-adjoint operator.
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3.2. Operator algebraic preliminaries.

Lemma 3. Let A and B be self-adjoint operators such that [A,B] = 2πi. Let ϕ(t) be
a function on the positive real axis and let γ = 1

b2 . Then we have

ϕ(u+ v) = wb
(
2π(A− B)

)
ϕ
(
e
b
2 (A+B))wb

(
2π(B − A)

)
, (3.15)

(u+ v)γ = uγ + vγ , (3.16)

where u = ebA, v = ebB .

Proof. It is convenient to introducep ≡ B−A
2π and x ≡ A+B

4π . Observe that [p, x] = 1
2πi ;

so that we have

f
(
p
)
eπbx = eπbx f

(
p − i b2

)
(3.17)

for any function f (t) that is bounded and analytic in the strip b
2 ≤ �(p) ≤ 0. Using the

Baker-Campbell-Hausdorff formula for Weyl-type operators and the properties of the
function wb, we may calculate as follows:

wb(−p) e2πbx wb(p)
(3.12)= 1

wb(p)
e2πbx wb(p)

(3.17)= eπbx
wb(p + i b2 )

wb(p − i b2 )
eπbx

(3.11)= 2eπbx (cosh πbp) eπbx

= e
b
4 (A+B)(e b2 (B−A) + e

b
2 (A−B))e b4 (A+B) = u+ v.

The last expression is therefore unitarily equivalent to the positive self-adjoint oper-
ator e2πbx . Our claim (3.15) follows by applying the standard functional calculus of
self-adjoint operators.

Relation (3.16) can be proven along the same lines taking into account that, thanks
to self-duality (3.10), wb obeys also the equation

wb(x + i
b
) = 2wb(x) sin

(
π
b

(
Q
2 − ix

))
. (3.18)

Therefore, for ϕ(t) = tγ we have

(u+ v)γ = wb(−p) e 2π
b
x wb(p)

(3.17)= e
π
b
x
wb(p + i

2b )

wb(p − i
2b )
e
π
b
x

(3.18)= 2e
π
b
x (cosh π

b
p) e

π
b
x

= e
1

4b (A+B)(e 1
2b (B−A) + e

1
2b (A−B))e 1

4b (A+B) = uγ + vγ . ��
Remark 3. Another way to prove relation (3.16) in Lemma 3 is to use the b-binomial
formula (B.4) that we derive in the Appendix. When t approaches the value −iγ , the
b-binomial coefficient (B.5) vanishes unless τ takes special values determined by (3.7).
Furthermore, for t = −iγ the b-binomial coefficient has nonvanishing residues only
at τ = 0 and τ = −iγ . The contributions from these two poles yield the two terms
on the r.h.s. of (3.16). Similar consideration for t approaching −inγ , n > 1 shows
that the b-binomial coefficient has nonvanishing residues at τ = 0,−iγ, . . . ,−inγ .
Therefore (u+ v)nγ can be represented as sum of (n+ 1) terms which is analogous to
the q-binomial formula in the compact case.
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The proven lemma leads to useful representations for the generators and the R-oper-
ator of Uq(sl(2,R)). For brevity, we denote eb ≡ (2 sin πb2)E and fb ≡ (2 sin πb2)F,
whereas e 1

b
and f 1

b
will stand for their counterparts with b replaced by 1

b
.

Lemma 4. πH(E) and πH(F ) admit the following representation:

eb = wb(p2) e
2πb(x1−x2 ) wb(−p2) , fb = wb(p1) e

2πb(x2−x1 ) wb(−p1) . (3.19)

R may be represented as follows:

R = qH⊗H (
wb(p2)⊗ wb(p1)

)
gb

(
e2πb(x1−x2) ⊗ e2πb(x2−x1)

)

×(
wb(−p2)⊗ wb(−p1)

)
qH⊗H . (3.20)

Proof. In Lemma 3, we can identify 1
2π (A−B) = pn+1 and 1

4π (A+B) = xn − xn+1,
where n = 1, 2 (with the convention that n+ 2 ≡ n). Then, as seen from the definition
(2.5), we have u+ v = eb for n = 1 and u+ v = fb for n = 2. Therefore, (3.19) is just
a particular case of (3.15). Furthermore, for functions ϕ(t) defined on R

+ we have

ϕ(eb) = wb(p2) ϕ
(
e2πb(x1−x2 )

)
wb(−p2) , (3.21)

ϕ(fb) = wb(p1) ϕ
(
e2πb(x2−x1 )

)
wb(−p1) .

In particular, we can take ϕ(t) = gb(x) (recall that |gb(x)| = 1 for x ∈ R
+). For this

choice of ϕ(t), the representation (3.20) for R follows immediately from the defini-
tion (2.23). ��
Corollary 1. For γ = 1

b2 we have

(eb)γ = e 1
b
, (fb)γ = f 1

b
. (3.22)

Proof. Notice that, ifu andv are identified as in the proof of Lemma 4, thenuγ + vγ = e 1
b

for n = 1 and uγ + vγ = f 1
b

for n = 2. Thus, relations (3.22) are a particular case
of (3.16) . ��

This proves the relations (2.9) from Lemma 1.

Corollary 2. The definition of the R-operator proposed in [F2],

R = qH⊗H
∏∞
n=0(1 + q2n+1 eb ⊗ fb)∏∞
n=0(1 + q̃2n+1 e 1

b
⊗ f 1

b
)
qH⊗H , q̃ = e−iπb

−2
, (3.23)

which is valid for b = eiϑ , ϑ ∈ (0, π2 ), coincides with our definition (2.23).

Proof.

q−H⊗H R q−H⊗H (2.23)= gb
(
eb ⊗ fb

) (2.22)= ζ b

(
Gb

(
Q
2 + 1

2πib log(eb ⊗ fb)
))−1

(3.8)=
∏∞
n=0(1 − e2πib(Q2 +nb) eb ⊗ fb)

∏∞
n=1(1 − e2πib−1(

Q
2 −nb−1) (eb ⊗ fb)

1
b2 )

(3.22)=
∏∞
n=0(1 + q2n+1 eb ⊗ fb)∏∞
n=0(1 + q̃2n+1 e 1

b
⊗ f 1

b
)
. ��
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Corollary 3. πH(E) and πH(F ) admit the following representation:

eb = e2πb(x1−x2 )+bψb(p2) , fb = e2πb(x2−x1 )+bψb(p1) , (3.24)

where ψb(t) ≡ i ∂t (logwb(t)).

Proof. Equations (3.21) for ϕ(t) = log(t) yield

log(eb) = wb(p2) 2πb(x1 − x2) wb(−p2)

= 2πb(x1 − x2)+ 2πb [wb(p2), (x1 − x2)]wb(−p2)

= 2πb(x1 − x2)+ ib∂twb(t)

∣∣∣
t=p2

1

wb(p2)

and, analogously, log(fb) = 2πb(x2 − x1) + bψb(p1). Exponentiating these relations,
we obtain (3.24). ��
Remark 4. Alternatively, Eqs. (3.24) can be derived from (2.5) with the help of the Baker-
Campbell-Hausdorff formula. Observe also that (log eb+ log fb) = b(ψb(p1)+ψb(p2))

commutes with C and H.

We may now give the proof of Lemma 2. In Lemma 3, let us choose A = (2π(x1 −
x2)+ψb(p2))⊗1+1⊗ π

2 (p2−p1) andB = 1⊗(2π(x1−x2)+ψb(p2))+ π
2 (p1−p2)⊗1.

In view of (3.24) this implies the identificationu = eb⊗Kb and v = K−1
b ⊗eb. Therefore,

we have

�(e 1
b
)
(3.22)= �

(
(eb)

1
b2

) = (
�(eb)

) 1
b2 (2.11)= (

eb ⊗ Kb + K−1
b ⊗ eb

) 1
b2

(3.16)= (
eb ⊗ Kb

) 1
b2 + (

K−1
b ⊗ eb

) 1
b2 (3.22)= e 1

b
⊗ K 1

b
+ K−1

1
b

⊗ e 1
b
.

The relation for F̃ in (2.13) is proven similarly. ��
Lemma 5. Let the powers Eα and Fα with �α �= 0 be defined on H in the sense of
(3.21). Then we have

[E,Fα] = [α]q [2H + α − 1]q Fα−1 , [Eα,F] = [α]q [2H − α + 1]q Eα−1 , (3.25)

where the q-numbers are defined as in Theorem 5.

Proof.

[E,Fα]
(3.19)=

[
wb(p2)

e2πb(x1−x2 )

2 sin πb2 wb(−p2) , wb(p1)
e2παb(x2−x1 )

(2 sin πb2)α
wb(−p1)

]

(3.17)=
(wb(p1 + ib)wb(p2)

wb(p1) wb(p2 − ib)
− wb(p1 + (1 − α)ib)wb(p2 + αib)

wb(p1 − αib)wb(p2 + (α − 1)ib)

)

×wb(p1)
e2π(α−1)b(x2−x1 )

(2 sin πb2)α+1 wb(−p1)

(3.11)=
([

Q
2b − ip1

b

]
q

[
Q
2b + ip2

b

]
q

− [
Q
2b − α − ip1

b

]
q

[
Q
2b − α + ip2

b

]
q

)
Fα−1

= [α]q
[
Q
b

− α + i
b
(p2 − p1)

]
q

Fα−1 = [α]q
[ 1
ib
(p2 − p1)+ α − 1

]
q

Fα−1

(2.5)= [α]q
[
2H + α − 1

]
q

Fα−1 .
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In the fourth line we used the definition of q-number; in the fifth line we used the iden-
tities [x]q [y]q − [x − α]q [y − α]q = [α]q [x + y − α]q and [t + b−2]q = −[t]q . The
second formula in (3.25) is derived analogously. ��
Lemma 6. Let A and B be self-adjoint operators such that [A,B] = 2πi. Then for the
function gb(x) defined in (2.22) we have

gb(u) gb(v) = gb(u+ v) , (3.26)

gb(v) gb(u) = gb(u) gb(q
−1uv) gb(v) , (3.27)

where u = ebA, v = ebB and q = eiπb
2
. Furthermore, (3.26) ⇔ (3.27).

In the literature, Eqs. (3.26) and (3.27) are often referred to as the quantum expo-
nential and the quantum pentagon relations. They also hold for the function sq(x) =∏∞
n=0(1 + xq2n+1) which is the compact counterpart of gb(x). For sq(x), the quantum

exponential relation has been known for a long time [Sch] and the quantum pentagon
relation was found in [FV].

Since (3.26) and (3.27) are equivalent, it suffices to prove one of them. Proofs of
the quantum pentagon relation were given in [FKV] and [W2]. Nevertheless, we find
it instructive to give another proof of the quantum exponential relation in Appendix B
since it will allow us to introduce the notion of b-binomial coefficients.

3.3. Alternative representations of the R-operator.

Lemma 7. R and R−1 may be decomposed into powers of E ⊗ F as follows:

R = b

∫

R

dt
e−πib2t2

Gb(Q+ ibt)
qH⊗H(

4(sin πb2)2 E ⊗ F
)it
qH⊗H , (3.28)

R−1 = b

∫

R

dt
e−πbQt

Gb(Q+ ibt)
q−H⊗H(

4(sin πb2)2 E ⊗ F
)it
q−H⊗H , (3.29)

where the integration contour goes above the pole at t = 0.

Proof. By Lemma 15 in [PT2] (see also [FKV, Ka]) we have:
∫

R

dτ e−2πτβ Gb(α + iτ )

Gb(Q+ iτ )
= Gb(α)Gb(β)

Gb(α + β)
. (3.30)

The function 1
Gb(Q+iτ ) has a pole at τ = 0 and is analytic in the upper half-plane. The

integration contour in (3.30) goes above this pole.
Considering the asymptotics of (3.30) for �α → −∞ and �α → +∞, using the

properties (3.4) and (3.6), and making a change of variables, we obtain the following
Fourier transformation formulae

b

∫

R+i0
dt e2πibtr e−πib2t2

Gb(Q+ ibt)
= ζ b

Gb
(
Q
2 − ir

) = gb(e
2πbr ) , (3.31)

b

∫

R+i0
dt e2πibtr e−πbQt

Gb(Q+ ibt)
= ζb Gb

(
Q
2 − ir

) = (
gb(e

2πbr )
)−1

. (3.32)
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Lemma 7 follows if we put here r = 1
2πb log(4(sin πb2)2E ⊗ F) and compare the result

with the definition (2.23). ��
We now come to the proof of Theorem 4. Consider the product representation of the

R-operator of Lemma 4 projected to Ps2 ⊗ Ps1 by means of the reduction described in
Subsect. 2.3,

Rs2 s1
(3.20)= qH2⊗H1

(
wb(s2 − p)⊗ wb(s1 + p)

)
gb

(
e2πbx ⊗ e−2πbx)

×(
wb(s2 − p)⊗ wb(s1 + p)

)−1
qH2⊗H1

(3.31)= qH2⊗H1
(
wb(s2 − p)⊗ wb(s1 + p)

) ∫

R

dτ
e−πiτ 2

e2πiτx ⊗ e−2πiτx

Gb(Q+ iτ )

×(
wb(s2 − p)⊗ wb(s1 + p)

)−1
qH2⊗H1 . (3.33)

It is now easy to compute the “matrix elements” of Rs2 s1 on the states |k2, k1〉 = |k2〉⊗
|k1〉, where |k〉 ≡ e2πixk . Taking into account that p|k〉 = k|k〉 and 〈k|k′〉 = δ(k′ − k),
we find

R̃s2s1(k2, k1|k′
2, k

′
1) = 〈k2, k1|Rs2s1 |k′

2, k
′
1〉

=
∫

R

dτ
e−πi(τ 2+k1k2+k′1k′2)

Gb(Q+ iτ )

wb(s1 + k1)

wb(s1 + k′
1)

wb(s2 − k2)

wb(s2 − k′
2)

×δ(k′
2 − k2 + τ) δ(k′

1 − k1 − τ) (3.34)

which gives us the kernel (2.30) of the “momentum” representation in Theorem 4.
The kernel of the “coordinate” representation (2.27) can be obtained as a Fourier

transform of (3.34):

Rs2s1(x2, x1|x′
2, x

′
1)

=
∫

R

dk′
2dk

′
1dk2dk1 e

2πi(x2k2+x1k1−x′
2k

′
2−x′

1k
′
1) R̃s2s1(k2, k1|k′

2, k
′
1)

=
∫

R

dτdk′
2dk

′
1
eπi(τ(k

′
2−k′1)−2k′1k

′
2)

Gb(Q+ iτ )
e2πi(τ(x2−x1)+k′1(x1−x′

1)+k′2(x2−x′
2))

× wb(s1 + k′
1 − τ)

wb(s1 + k′
1)

wb(s2 − k′
2 − τ)

wb(s2 − k′
2)

.

The remaining integrations are performed by using relation (3.30) three times. The result
of this straightforward but tedious calculation is given by (2.29).

4. Proofs of the Main Results

4.1. Proof of Theorem 1: Co-associativity. First, it is straightforward to write out (id ⊗
�) ◦�(X) and (�⊗ id) ◦�(X) in terms of the Clebsch-Gordan maps C[s3|s2, s1]:

(πs3 ⊗ πs2 ⊗ πs1) ◦ (id ⊗�) ◦�(X)
=

∫

R+
dm(s4)dm(s21) C†

3(21)(s21) · X · C3(21)(s21),

(πs3 ⊗ πs2 ⊗ πs1) ◦ (�⊗ id) ◦�(X)
=

∫

R+
dm(s4)dm(s32) C†

(32)1(s32) · X · C(32)1(s32),
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where we have introduced

C3(21)(s21) ≡ C[s4|s3, s21] · (
id ⊗ C[s21|s2, s1]

)
,

(4.1)
C(32)1(s32) ≡ C[s4|s32, s1] · (

C[s32|s3, s2] ⊗ id
)
.

Proposition 7 in [PT2] is equivalent to

C3(21)(s21) =
∫

R+
ds32

{
s1 s2 s21
s3 s4 s32

}
b

C(32)1(s32),

where
{
s1 s2 s21
s3 s4 s32

}
b

are the b-Racah-Wigner coefficients introduced in [PT2]. It follows
that

(πs3⊗πs2 ⊗ πs1) ◦ (id ⊗�) ◦�(X)
=

∫

R+

dm(s4)dm(s21)

∫

R+

dm(s32)dm(s′32)
{ s1 s2 s21
s3 s4 s

′
32

}∗
b

{
s1 s2 s21
s3 s4 s32

}
b

·

· C†
(32)1(s32) · X · C(32)1(s32).

Exchanging the integrations over s21 and s32, s′32, and using formula (89) from [PT2],

∫

R+

dm(s21)
{ s1 s2 s21
s3 s4 s

′
32

}∗
b

{
s1 s2 s21
s3 s4 s32

}
b

= m(s32)δ(s32 − s′32),

yields the claim.

4.2. Proof of Theorem 2: Invariance of the Haar-measure. We shall consider the left
invariant Haar measure hl only, the proof for the case of hr being completely analogous.

A few preparations are in order. The elements of Al
h can be represented as integral

operators: If a vector ψ ∈ H is realized by a function ψ(k, s), then

(Oψ)(k, s) =
∫

R

dk′ KO(k, k
′|s)ψ(k′, s).

In terms of the kernel KO(k, k
′|s) one may write the defintion of hl as

hl(O) =
∫

R+
dm(s)

∫

R

dk e−2πQkKO(k, k|s). (4.2)

The distributional matrix elements of an operator O ∈ A are always of the form

〈s, k|O|s′, k′〉 ≡ δ(s − s′)〈〈k|O|k′〉〉s . (4.3)

By using an analogous notation for operators in A ⊗ A one may represent the distribu-
tional matrix elements of �(O) as

〈〈k2, k1|�(O)|k′
2, k

′
1〉〉s2s1

=
∫

R+
dm(s3)

∫

R

dk3dk
′
3 KO(k3, k

′
3|s3)

([ s3 s2 s1
k3 k2 k1

])∗[ s3 s2 s1
k′3 k

′
2 k

′
1

]
. (4.4)
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In order to make the justification for the following manipulations more transparent,
we are going to employ the following regularization for the distributions involved:

[ s3 s2 s1
k3 k2 k1

] = lim
ε↓0

[ s3 s2 s1
k3 k2 k1

]
ε
,

[ s3 s2 s1
k3 k2 k1

]
ε

= e−ε
∑3
i=1 |ki |δε(k3 − k2 − k1)Cs3

[ s2 s1
k2 k1

]
,

where δε(x) = δε(−x) is a symmetric regularization of the delta-distribution. Let us
furthermore note that it suffices to check the invariance property on a dense subset T of
the domain of hl. Consider the matrix element

〈〈ψ2, k1|�(O)|ψ ′
2, k

′
1〉〉s2s1 :=

∫

R

dk2dk
′
2 ψ(k2)ψ

′(k′
2)〈〈k2, k1|�(O)|k′

2, k
′
1〉〉s2s1 ,

where ψ2, ψ ′
2 are smooth functions with compact support. Assuming that KO(k, k

′|s)
has exponential decay w.r.t. k and k′ it is not difficult to show that the matrix element
〈〈ψ2, k1|�(O)|ψ ′

2, k
′
1〉〉s2s1 will also have exponential decay w.r.t. k1, k′

1 that can be made
as large as one likes by choosing the subset T ⊂ Ah appropriately.

Combining (4.2) and (4.4) leads to the following representation for the distributional
matrix elements of (id ⊗ hl)�(O):

〈〈k2|(id ⊗ hl)�(O)|k′
2〉〉s2 =

∫

R+
dm(s3)

∫

R

dk3dk
′
3 KO(k3, k

′
3|s3)

×
∫

R+
dm(s1)

∫

R

dk1 e
−2πQk1

([ s3 s2 s1
k3 k2 k1

])∗[ s3 s2 s1
k′3 k

′
2 k1

]
.

(4.5)

We are going to use the following result:

Proposition 1. The following equation holds as an identity between tempered distribu-
tions:

e2πk3Q

∫

R+
dm(s1)

∫

R

dk1 e
−2πQk1

([ s3 s2 s1
k3 k2 k1

])∗[ s3 s2 s1
k′3 k

′
2 k1

]

= δ(k′
3 − k3)δ(k

′
2 − k2). (4.6)

Proof. The proof of the proposition will be based on the following important symmetries
of the Clebsch-Gordan kernel:

Lemma 8. The Clebsch-Gordan kernel
[ s3 s2 s1
k3 k2 k1

]
ε

has the following symmetries:
([ s3 s2 s1

k3 k2 k1

]
ε

)∗ = e+πQ(k1−k3)e−πihs2
[ s1 −s2 s3−k1 −k2 −k3

]
ε
,

(4.7)([ s3 s2 s1
k3 k2 k1

]
ε

)∗ = e−πQ(k2−k3)e−πihs1
[ s2 s3 −s1−k2 −k3 −k1

]
ε
.

Proof. One may verify directly that for si ∈ R, i = 1, 2, 3,
([

s3 s2 s1
x3 x2 x1

])∗ = e−πihs2
[

s1 −s2 s3

x∗
1 −i Q2 x∗

2 x∗
3 −i Q2

]
,

(4.8)([
s3 s2 s1
x3 x2 x1

])∗ = e−πihs1
[

s2 s3 −s1
x∗

2 +i Q2 x∗
3 +i Q2 x∗

1

]
.

The lemma follows by taking the Fourier-transformation of (4.8), taking into account
that our regularization is compatible with the symmetry (4.7). ��
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With the help of Eq. (4.7) we may rewrite the left hand side of (4.6) as follows:

lim
ε↓0

eπ(k3−k′3)Q
∫

R+
dm(s1)

∫

R

dk1

([ s1 −s2 s3−k1 −k2 −k3

]
ε

)∗[ s1 −s2 s3
−k1 −k′2 −k′3

]
ε
. (4.9)

The proposition now follows by using the Fourier-transform of [PT2, Corollary 1]. ��
Inserting (4.6) into (4.5) yields

〈〈k2|(id ⊗ hl)�(O)|k′
2〉〉s2 = δ(k2 − k′

2)

∫

R+
dm(s3)

∫

R

dk3 e
−2πQk3KO(k3, k3|s3).

Recognizing the definition of the Haar-measure on the right-hand side completes the
proof of the left invariance property of hl.

To prove the property (ii) in Theorem 2 we observe that definition (2.18) can be
rewritten as

hl(O) =
∫ ∞

0
dm(s) Tr(K2K̃2Os) .

Now it is straightforward to verify the first formula in (2.21) for X = E,F,K using
the definition of the adjoint action, the relations (2.1), and the cyclicity of trace. For in-
stance, Tr(K2K̃2adl

K(Os)) = Tr(K2K̃2KOsK−1) = Tr(K2K̃2Os), Tr(K2K̃2adl
E(Os)) =

Tr(K2K̃2(EOsK−1 −qK−1OsE)) = Tr((KE−qEK)K̃2Os) = 0. Further, we notice that
hl(adl

XY(O)) = hl(adl
X(adl

Y(O))) = hl(O) ε(X) ε(Y) = hl(O) ε(XY). Together with
the linearity of trace this implies that (2.21) extends to any element of Uq(sl(2,R)).

4.3. Proof of Theorem 3. Let us adopt the following notations: X1 ≡ X ⊗ 1 ⊗ 1, X2 ≡
1 ⊗ X ⊗ 1, and X3 ≡ 1 ⊗ 1 ⊗ X.

Property (i). First, we compute with the help of Lemma 5:

qH⊗H (E1F2)
it qH⊗H (

K−1
1 E2

) − (
K1E2

)
qH⊗H (E1F2)

it qH⊗H

= qH⊗H [
(E1F2)

it ,E2
]
qH⊗H

(3.25)= −qH⊗H
(

[it]q [2H2 + it − 1]q Eit1 Fit−1
2

)
qH⊗H . (4.10)

Next, we find

qH⊗H (E1F2)
it qH⊗H (

E1K2
) − (

E1K−1
2

)
qH⊗H (E1F2)

it qH⊗H

= qH⊗H
(
(E1F2)

it E1K2
2 − E1K−2

2 (E1F2)
it
)
qH⊗H

= qH⊗H
(
(2i qit sin πb2) [2H2 + it]q Eit+1

1 Fit2
)
qH⊗H . (4.11)

Let us write down the integral representation (3.28) of R in the following form:

R =
∫

R

dt ρ(t) qH⊗H(
E ⊗ F

)it
qH⊗H , (4.12)
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where ρ(t) ≡ b e−πib2 t2

Gb(Q+ibt) (2 sin πb2)2it . Observe that (3.3) implies that ρ(t) satisfies
the following functional equation:

[it + 1]q ρ(t − i) = (2i qit sin πb2) ρ(t) . (4.13)

Adding (4.10) with (4.11), we derive

R�(E)−�′(E)R = R (E1K2 + K−1
1 E2)− (E1K−1

2 + K1E2)R

(4.12)=
∫

R

dt qH⊗H ρ(t)
(
(2i qit sin πb2) [2H2 + it]q Eit+1

1 Fit2

−[it]q [2H2 + it − 1]q Eit1 Fit−1
2

)
qH⊗H

=
∫

R

dt qH⊗H
(
(2i qit sin πb2) ρ(t)

−[it + 1]q ρ(t − i)
)

[2H2 + it]q Eit+1
1 Fit2 q

H⊗H (4.13)= 0 .

Thus, we have proven (2.24) for X = E. The proof for F goes along the same lines with
the help of the second formula in (3.25). And for K the proof is trivial because �(K)
commutes with (E ⊗ F)it .

Property (ii). Recall that the rescaled generators eb and fb were introduced before
Lemma 4. To prove the first formula in (2.25), we use the quantum exponential relation
(3.26) from Lemma 6 with identification u = e1K−1

2 f3 and v = e1f2K3,

(id ⊗�)R
(2.23)= (id ⊗�)

(
qH1H2 gb(e1f2) qH1H2

)
(2.11)= qH1H2+H1H3 gb

(
e1f2K3 + e1K−1

2 f3
)
qH1H2+H1H3

(3.26)= qH1H2+H1H3 gb(e1K−1
2 f3) gb(e1f2K3) q

H1H2+H1H3

(2.1)= qH1H3 gb(e1f3) qH1H3 qH1H2 gb(e1f2) qH1H2 = R13R12 .

The second formula in (2.25) is proved in the same way.

Property (iii). First, we derive

(σ ⊗ id)
(
qH1H2(E1F2)

it qH1H2
) = (σ ⊗ id)

(
qH1H2(E1)

it qH1(H2+it))(F2)
it

= q−H1(H2+it)(−qE1)
it q−H1H2(F2)

it = q−H1H2q−itH1(−qE1)
it qitH1(F2)

it q−H1H2

= eπb(ibt
2−Qt)q−H1H2(E1F2)

it q−H1H2 . (4.14)

This means that, acting with (σ ⊗ id) on the r.h.s. of (3.28), we obtain the r.h.s. of (3.29).
Thus, we have proven the first formula in (2.25). The second formula is verified anal-
ogously. Finally, acting with (id ⊗ σ) on the last line in (4.14) and performing similar
manipulations, we find that

(id ⊗ σ)
(
eπb(ibt

2−Qt)q−H1H2(E1F2)
it q−H1H2

) = qH1H2(E1F2)
it qH1H2

which together with (4.14) implies the last formula in (2.26).
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4.4. Proof of Theorem 5: R-operator the highest weight representations. We first need
to discuss the analytic continuation of

〈
δk2 ⊗ δk1 ,Rs2s1f

〉 =
∫

R

dk′
2dk

′
1 R̃(k2, k1|k′

2, k
′
1) f (k

′
2, k

′
1) (4.15)

to the values k1 = −s1 + i(Q2 +nb), n ∈ Z
≥0. To begin with, one may trivially perform

e.g. the integral over k′
2 to get an expression of the form

〈
δk2 ⊗ δk1 ,Rs2s1f

〉 =
∫

R

dk′
1 R̃k(k1|k′

1) f (k − k′
1, k

′
1), (4.16)

where k = k2 + k1. The analytic continuation of (4.16) to k1 = −s1 + i
(
Q
2 + nb

)
can

be defined by deforming the contour of integration over k′
1, R, in (4.16) into R + i(Q2 +

nb) + i0 plus a sum of small circles around the poles from the factor w−1
b (s1 + k′

1) in

R̃k(k1|k′
1) that lie between R and R + i

(
Q
2 + nb)+ i0.

We are now in the position to take the limit k1 → −s1 + i
(
Q
2 + nb

)
. The factor

wb(s1 + k1) that appears in R̃k(k1|k′
1), cf. (2.30), makes most of the terms vanish except

for the terms from the poles at k′
1 = −s1 + i(

Q
2 + bn′), 0 ≤ n′ ≤ n. The resulting

expression is of the following form:

Rts2s1 δk2 ⊗ δk1 =
n∑
l=0

Gl e
−πi((k1−ibl)k2+k1k

′
2)
wn−l
wn

wb(s2 − k2)

wb(s2 − k′
2)

∣∣∣∣
k′2=k2+ibl

, (4.17)

where Gn := Resx=nb G−1
b (Q+ x) and wn = Res

x=i Q2 +inb w
−1
b (x).

It remains to calculate the relevant residues. It is easy to derive from (3.2)–(3.4) that

Gb(x)Gb(−x) = − eπix
2

4 sin πbx sin πb−1x
. (4.18)

Hence limx→0(xGb(x))
2 = (2π)−2. In fact, using the modular property of the Dedekind

η-function, it is straightforward to compute the limit directly for the product represen-
tation (3.8) (as was done in [Sh]); which yields

lim
x→0

x Gb(x) = 1

2π
. (4.19)

Hence, taking into account the properties (3.2)–(3.4), we find that

Res
1

Gb(Q+ z)

= − 1

2π

n∏
k=1

(1 − q2k)−1
m∏
l=1

(1 − q̃−2l )−1 at z = nb +mb−1 , (4.20)

where n,m ∈ Z
≥0 and q̃ = e−iπb−2

.
To complete the proof of Theorem 5 is now a matter of straightforward calculation

using the functional relation (3.11), formula (4.20), as well as (2.31).
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4.5. Proof of Theorem 6. Let us first note that the left-hand side of (2.33) satisfies the
intertwining property

C[s3|s1, s2] Bs2 s1 ◦ (πs2 ⊗ πs1 ) ◦�(X) = πs3 (X) ◦ C[s3|s1, s2] Bs2 s1 . (4.21)

A unitary operator that maps Ps2 ⊗Ps1 → Ps3 and satisfies (2.14) must be proportional
to C[s3|s2, s1]. This is a consequence of the analysis used to prove Theorem 2 in [PT2].
It follows that there exists a function 	(s3|s2, s1) such that the statement of Theorem 6
holds. We are left with the task to calculate 	(s3|s2, s1) explicitly.

To this aim let us note that Theorem 6 is equivalent to an identity between meromor-
phic functions. To write this identity down, let us assume that Ps2 ⊗ Ps1 is realized by
functions ψ̃(k2, k1). C[s3|s1, s2] is then realized as an integral operator:

(
C[s3|s1, s2]ψ̃

)
(k3) =

∫

R

dk2dk1
[ s3 s2 s1
k3 k2 k1

]
ψ̃(k2, k1).

The explicit expression for the distributional kernel
[ s3 s2 s1
k3 k2 k1

]
can be found in Appendix

A. For the moment it will be enough to note that it can be factorized as

[ s3 s2 s1
k3 k2 k1

] = δ(k1 + k2 − k3) Cs3
[ s2 s1
k2 k1

]
, (4.22)

where Cs3
[ s2 s1
k2 k1

]
is a meromorphic function by Lemma 20 of [PT2]. It is then easy to

see that Theorem 6 is equivalent to the identity

∫

R

dk2dk1
[ s3 s1 s2
k3 k1 k2

]
R̃s2s1(k2, k1|k′

2, k
′
1) = 	(s3|s2, s1)

[ s3 s2 s1
k3 k

′
2 k

′
1

]
. (4.23)

In order to see that Eq. (4.23) is indeed equivalent to an identity between meromorphic
functions let us note that (4.22) and (2.30) allow one to split off the distributional factors.
What remains on the left-hand side is a convolution of two meromorphic functions, so
is itself meromorphic (cf. Lemma 3 in [PT2]).

Let us note that both sides of (4.23) have a pole at k′
2 = −s2 + i Q2 . In the case of the

right-hand side this is a consequence of Lemma 20 of [PT2]. Concerning the left-hand
side of (4.23) one may as in the proof of Lemma 3 of [PT2] identify the above-mentioned
pole as the consequence of the pinching of the contour of integration by a collision of
two poles of the integrand. First we have the pole of

[ s3 s1 s2
k3 k1 k2

]
at k2 = −s2 + i Q2 . Second

let us note that the factorG−1
b (Q+i(k′

1 −k1)) appearing in R̃s2s1(k2, k1|k′
2, k

′
1) produces

a pole at k2 = k′
2 if one takes into account that R̃s2s1(k2, k1|k′

2, k
′
1) has support only for

k′
1 − k1 = k2 − k′

2. The residue of the resulting pole on the left-hand side of (4.23) is

simply given by the product of the relevant residues of
[ s3 s1 s2
k3 k1 k2

]
and R̃s2s1(k2, k1|k′

2, k
′
1)

respectively.
The equality of the residues of the two sides of Eq. (4.23) implies the following

identity:

Res
k2=−s2+i Q2

Cs3
[ s1 s2
k1 k2

]
eπQk1e2πis2k1 = 	(s3|s2, s1) Res

k2=−s2+i Q2
Cs3

[ s2 s1
k2 k1

]
. (4.24)

By evaluating the relevant residues we may therefore calculate 	(s3|s2, s1).
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Lemma 9.

2πi Res
k2=−s2+i Q2

Cs3
[ s1 s2
k1 k2

]

= e−
πi
2 (hs3−hs2 −hs1 )e−

π
2 Qk1e−πis2k1

wb(k1 − s1)wb(s3 + s1 − s2)

wb(k1 + s3 − s2 + i
Q
2 )

,

2πi Res
k2=−s2+i Q2

Cs3
[ s2 s1
k2 k1

]

= e+
πi
2 (hs3−hs2 −hs1 )e+

π
2 Qk1e+πis2k1

wb(k1 − s1)wb(s3 + s1 − s2)

wb(k1 + s3 − s2 + i
Q
2 )

.

Proof. In order to exhibit the singular behavior of Cs3
[ s1 s2
k1 k2

]
near k2 = −s2 + i

Q
2 one

may deform the contour of integration in (A.6) into the union of a small circle around the
pole of the integrand at s = 0 and a contour that separates the pole at s = 0 from all the
other poles in the upper half-plane, approaching asymptotically ±i∞. The contribution
from the residue of the pole at s = 0 exhibits the pole at k2 = −s2 + i

Q
2 explicitly,

whereas the rest is nonsingular.
Similarly, to analyze the singular behavior of Cs3

[ s2 s1
k2 k1

]
near k2 = −s2 + i

Q
2 one

needs to deform the contour in (A.6) into a small circle around the pole at s = −R3
together with a contour separating that pole from all the other poles in the lower half
plane.

It is then straightforward to calculate the values of the corresponding residues from
(A.6). ��

Appendix A. The Clebsch-Gordan Coefficients for the Modular Double

Definition 2. Define a distributional kernel
[
s3 s2 s1
x3 x2 x1

]
(the “Clebsch-Gordan coeffi-

cients”) by an expression of the form
[
s3 s2 s1
x3 x2 x1

] ≡ lim
ε↓0

[
s3 s2 s1
x3 x2 x1

]
ε
, (A.1)

where the meromorphic function
[
s3 s2 s1
x3 x2 x1

]
ε

is defined as

[ −s3 s2 s1
x3 x2 x1

]
ε

= e−
πi
2 (hs3−hs2 −hs1 )

×Db(σ32; y32 + iε)Db(σ31; y31 + iε)Db(σ21; y21 + iε),

(A.2)

hs = s2 + 1
4Q

2, the distribution Db(σ ; y) is defined in terms of the function wb(y) as

Db(σ ; y) = wb(y − i
2Q)

wb(y + σ)
, (A.3)

and the coefficients yji , σji , j > i ∈ {1, 2, 3} are given by

y32 =x2 − x3 + 1
2 (s3 + s2),

y31 =x3 − x1 + 1
2 (s3 + s1),

y21 =x2 − x1 + 1
2 (s2 + s1 − 2s3),

σ32 =s1 − s2 − s3,

σ31 =s2 − s3 − s1,

σ21 =s3 − s2 − s1.

(A.4)
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It is often useful to consider the Fourier-transform of the b-Clebsch-Gordan symbols
defined by

[ s3 s2 s1−k3 k2 k1

] =
∫

R

dx3dx2dx1 e
2πi

∑3
l=1 klxl

[
s3 s2 s1
x3 x2 x1

]
. (A.5)

The distribution
[ s3 s2 s1
k3 k2 k1

]
can be factorized as

[ s3 s2 s1
k3 k2 k1

] = δ(k1 + k2 − k3)Cs3
[ s2 s1
k2 k1

]
,

where Cs3
[ s2 s1
k2 k1

]
is a meromorphic function. A straightforward calculation using [PT2,

Lemma 15] yields the following expression:

C−s3
[ s2 s1
k2 k1

] = e−
πi
2 β21βe

Q
2 π(k1−k2)eπi(k1s2−k2s1)

wb(σ32)wb(σ31)wb(σ21)

∫

R+i0
ds e−πsβ

3∏
l=1

wb(s + Rl)

wb(s + Sl)
,

(A.6)

where we used the abbreviations β = Q
2 + i(s1 + s2 + s3), β21 = Q

2 + i(s1 + s2 − s3)

and

R1 = − s2 + k2,

R2 = − s1 − k1,

R3 =s3 − s2 − s1,

S1 =i Q2 + R1 − σ32,

S2 =i Q2 + R2 − σ31,

S3 =i Q2 .
(A.7)

The analytic properties of
[ s3 s2 s1
k3 k2 k1

]
can be summarized as follows:

Lemma 10 (Lemma 20 in [PT2]).
[ s3 s2 s1
k3 k2 k1

]
depends meromorphically on all of its argu-

ments, with poles at ±iki = Q
2 + isi + nb +mb−1, n,m ∈ Z

≥0, i = 1, 2, 3 only.

Appexdix B. Quantum Exponential Function and b-Binomial Coefficient

The definition (2.22) and the property (3.3) imply that the function gb(x) obeys the
following functional equation:

gb(qx) = (1 + x)−1 gb(q
−1x) . (B.1)

For a pair of Weyl-type variables, uv = q2vu, a consequence of (B.1) is

u+ v = gb(qu
−1v) u

(
gb(qu

−1v)
)−1 = (

gb(quv
−1)

)−1
v gb(quv

−1) . (B.2)

It is now obvious that

gb(u+ v) = gb(qu
−1v) gb(u)

(
gb(qu

−1v)
)−1

= (
gb(quv

−1)
)−1

gb(v) gb(quv
−1) . (B.3)

These relations allow us to prove the equivalence of (3.26) and (3.27) stated in Lemma 6.
For instance, let us show that (3.27) together with the first relation in (B.3) implies (3.26).
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Introduce V ≡ qu−1v. Notice that V = ebB̃ , where B̃ = B − A so that [A, B̃] = 2πi.
Then we have

gb(u+ v)
(B.3)= gb(V ) gb(u)

(
gb(V )

)−1 (3.27)= gb(u) gb(q
−1uV ) = gb(u) gb(v) .

The inverse implication, (3.26) ⇒ (3.27), is proven similarly.
Now we want to prove (3.26). First, we represent (u+ v)it in an integral form:

(u+ v)it
(B.2)= gb(qu

−1v) uit
(
gb(qu

−1v)
)−1

(3.31)= b2
∫

R

dτ1dτ2 e
πbQ(τ1−τ2)

Gb(−ibτ1)

Gb(Q+ ibτ2)
(qu−1v)iτ1 uit (qu−1v)iτ2

= b2
∫

R

dτ1dτ2 e
πbQ(τ1−τ2)−iπb2(τ1+τ2)

2+2iπb2tτ1

× Gb(−ibτ1)

Gb(Q+ ibτ2)
ui(t−τ1−τ2) vi(τ1+τ2)

= b2
∫

R

dτ dτ2 e
πbτ(Q+2ibt)−iπb2τ 2−2πbτ2(Q+ibt)

× Gb(ibτ2 − ibτ )

Gb(Q+ ibτ2)
ui(t−τ) viτ ,

where we introduced τ ≡ τ1 +τ2. Computing the integral over τ2 with the help of (3.30),
we derive an analogue of the binomial formula:

(u+ v)it = b

∫

R+i0
dτ

(
t

τ

)
b
ui(t−τ) viτ , (B.4)

where the b-binomial coefficient is given by

(
t

τ

)
b

= e2πib2τ(t−τ) Gb(Q+ ibt)

Gb(Q+ ibt − ibτ )Gb(Q+ ibτ )
. (B.5)

We see that the functionGb is a b-analogue of the factorial. The b-binomial coefficients
satisfy the q-Pascal identity:

(
t − i

τ

)
b

= q−2iτ
(
t

τ

)
b

+
(

t

τ + i

)
b

=
(
t

τ

)
b

+ q2i(τ−t+i)
(

t

τ + i

)
b

(B.6)

which can be easily verified with the help of (3.3).
Using the b-binomial coefficients and the integral representation (3.31) of gb(x), we

derive the quantum exponential relation:

gb(u+ v)
(3.31)= b

∫

R

dt (u+ v)it
e−πib2t2

Gb(Q+ ibt)

(B.4)= b2
∫

R

dt dτ
(
t

τ

)
b

e−πib2t2

Gb(Q+ ibt)
ui(t−τ)viτ

(B.5)= b2
∫

R

dt dτ
e−πib2(t−τ)2−πib2τ 2

Gb(Q+ ib(t − τ))Gb(Q+ ibτ )
ui(t−τ)viτ

= b

∫

R

dT
e−πib2T 2

Gb(Q+ ibT )
uiT b

∫

R

dτ
e−πib2τ 2

Gb(Q+ ibτ )
viτ

(3.31)= gb(u) gb(v) .

This completes the proof of Lemma 6.
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Remark 5. After this manuscript was written we were informed that a different proof of
the quantum exponential relation and of relation (3.16) is given in [V].
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