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We study relations between the deformed cotangent bufdles), for the Borel
subgroup” of a given simple Lie groufs, the quantum Lie algebrg, associated
with the corresponding quantum gro@, and the matrices generating Clebsch—
Gordan coefficients for7, . We reveal the connection of these objects to quantum
analog of the model space” andqg-tensor operators. €996 American Institute

of Physics[S0022-24886)00612-3

I. INTRODUCTION

Among different representations of a given compact Lie gréune model spaceZ plays a
distinguished role. By definitiohthe model space is a direct sum of all irreducible representations
2¢; with multiplicity one

M=, DI, (1.1
J

realized in some universal way. A most popular form.4f is a space of holomorphic functions
on the Borel subgroup? of complexified form of the grous. In this construction the Borel
subgroup is considered as an affine space.

A study of model spaces provides a natural language for investigation of physical models. For
example, the popular model of two-dimensional quantum gravity, introduced by Polyakay,
be interpreted in terms of the model space of Virasoro algérdinite-dimensional quantum
group with deformation parameter, depending on the central charge, naturally appears in this
context.

In the present paper, which was written with an intent to find new applications of model space
in modern mathematical physics, we discusganalog of the model space relatedgtaleformed
Lie group G,. For this purpose we introduce and examine several “coordinatizations” of the
quantum spaceéT*.%),. As a by-product we obtain some generating matrices for the set of
Clebsch—Gordan coefficient€GC). To our knowledge this result is new even for the nonde-
formed case.

Throughout the paper we systematically and intentionally make use d®-thatrix formal-
ism, which we believe is the most convenient and powerful tool to get explicit results in the
domain of quantum groups.

To avoid the known difficulties with compact forms of quantum groups we adopt here a
convention to work with complexified objeci{groups, algebrasand their finite-dimensional
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representations on a formal algebraic level. We also do not discuss subtleties arising in the case of
g being a root of unity.

Most of formulas given in this paper iR-matrix form have universal validity. However, the
concrete results are illustrated on the simplest exar@pte SL,(2). The generalization to other
groups needs more technical details such as an explicit struct&eraftrices and related objects.

Mentioned above, “coordinatizations” c(ﬂ'*./b’)q arise from two possible decompositions of
the matrixL (in usual notationd =L, L_?, it comprises all generators of the corresponding
guantum Lie algebpa

L=UDU™! and L=ABA™ %,

whereD is a diagonal unimodular matrixJ is a deformation of unitary matrix, anrl andB are
unimodular upper and lower triangular matrices. As we shall clarify below, the makiees B
admit a natural interpretation as the coordinates in the base and in the fiﬁé*f.x?ﬂq, whereas
entries of the matrixJ will be shown to provide basic shifts on the model spa¢eand generate
g-analogs of Clebsch—Gordan coefficients for the quantum g@ypThe explicit connection
betweenU and (A,B) will be demonstrated on the example of &2).

It should be mentioned that an object like the matdixappeared first in Refs. 4 and(later
it was used also in Ref.)6where it was interpreted as a “chiral” component of the quantum
grouplike elemeng. In the present paper we give another interpretation and application of the
matrix U in the context of a model space.

Let us briefly describe the contents of the present paper. In Sec. Il the definition of the
cotangent bundle for a quantum group is reminded. Next we introduce an object of especial
interest for us—the algebr& generated by the entries of the mattixwhich diagonalizes the
coordinate in a fiber of T* G)q- We derive explicit relations for this algebra in the case of
G=SL(2).

In Sec. Il we consider a nondeformed linGii=1) of the algebrazz and construct an explicit
representation. For the case ®=SL(2) we show that the matrii, generates Clebsch—Gordan
coefficients(CGC) for the corresponding nondeformed Lie algebra. The Borel subgréuamnd
the spacel*.# naturally appear here. Finally, we discuss a connection of our results with the
Wigner—Eckart theorem.

In Sec. IV we construct representations of the algebréfor q+#1) for the case of S2) in
two different ways. The first one uses the languageg-afscillators. The second is based on
explicit realization of(T*.%’)q and hence involves a notion of quantum model space. Here we
show that the matriXJ is a “generating matrix” for CGC for deformed Lie algebra. We also give
some comments on the generalized version of the Wigner—Eckart theorem.

Il. (T* G), AND RELATED OBJECTS

There exist three symplectic manifolfsom the physical point of view they are phase spaces
naturally related to a given Lie group and its Lie algebraz:

(1) T* G—the cotangent bundle for the groGa
(2) T*.#—the cotangent bundle for the Borel subgroép
(3) “—an orbit of the coadjoint action d& on 7*.

For instance, in the case &=SL(2) (which will be our main examp)ethese spaces are six-,
four-, and two-dimensional, correspondingly.

The method of geometric quantizatioprovides a representation theory fa), (2), (3).
Turning from classical to quantum groups, one can try to construct a representation theory for the
deformed analogs of these manifolds. In the present paper we shall deal with deformations of the
spaceq1) and(2).
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A. Description of ( T* G)4

Let G, be a deformation of the Lie group and 7, be a deformation of the corresponding
Lie algebra 7. The deformed cotangent bundl&@*(G), is a noncommutative manifold, i.e.,
according to the ideology developed by A. Confés, coordinates arénoncommuting genera-
tors of some associative algebra. A point on this manifold is parametrized by thefdajr (vhere
ge G is a coordinate in the base of the bundle, &nt a coordinate in a fiber.

The structure of T* G) is defined via commutation relations between the coordinates in the
base and in a fiber. An approprig®ematrix form of these relations was proposed in Ref. 5:

12 21
R.g9=ggR., 2.1
12 2 1
R_gL=LR,qg, (2.2
1 2 2 1
LRZILR_=R;LR,L. 2.3

Here and below we use the formalism developed in Ref. 9, i.e., objectg bkelL are considered
as matricegsay, L e 7,®V, whereV stands for auxiliary spageWe use the standard notations
1
for tensor productsL =L®l e 7,0V®V, etc.
Let us take the parametgr which appears in the theory of quantum groups, in the following
form:

q=e, (2.9

wheret: is the Planck constaiithe parameter of quantizatipand y is the deformation parameter.
In physical applications it is most natural to suppose thiateither pure realq belongs to the real
axig) or pure imaginary(gq belongs to the unit circle at the complex plane

The second form ofj is typical for the WZW theory:®1°For |q| =1 we suppose also thgt
is not a root of unity. It should be mentioned that for both variants of choice iof (2.4) the
definition of g-number
qQ“—q~*
ER (2.9

[x]=

is invariant with respect to complex conjugation apfi.e., [x] = [x]. This property becomes
important if one discusses involutions of deformed Lie algebras.

Definition 1: The algebra” is an associative algebra generated by entries of the matrix L
which obeys relation (2.3)

An important fact—the connection of algeba with the corresponding quantum Lie algebra
74 Was established in Ref. 11 in the following form:

Proposition 1: Let matrices L. and L_ obey the following exchange relations:

1 2 2 1 1 2 2 1 1 2 2 1
RiL+L+:L+L+R:, RtL_L_:L_L_Ri, R+L+L_:L_L+R+. (2.6)

Then the matrix =L, L_? satisfies the relation (2.3)

This statement implies that the algebrais isomorphic(up to some technical details which
we do not discuss heréo corresponding quantum Lie algeldsg( 7) [which is defined by2.6),
see, e.g., Ref.]9

Consider now the relation®.1)—(2.3) for g andL being 2<x2 matrices,
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01 92) (A B)
- , L= 2.
g (93 4 C D @7
and theR-matrices taken in the form
—-1/2

R,=q , o=q—-q % R_=PR;'P (2.8

O O o <o
o O r O
o+~ & O
2 o O o

1 2
(P denotes the permutation operatBigP = g, etc). In this casg2.1)—(2.3) define the cotangent
bundle for the quantum group,=GL,(2); each ofR-matrix equationg2.1) and(2.3) is equiva-
lent to six independent relations:

09192=0201, 00193=0391, 09294=0402, 09394=0493,
(2.9
0295= 0302, 0192~ 0 '049:1= — 00,03;

and
[A,B]=—q 'wBD, [A,C]=q '«DC, [A,D]=0,
(2.10
CD=qg°DC, BD=q DB, [B,C]=q lwD(D-A).
The equation2.2) gives the following relations:
0:A=qAg, +wBg;, 0:B=Bg;,
0.A=0gAg,+wBg,, g,B=Bgs,
9sA=0 'Ags+wg;C, g3B=Bgs+wg;D,
9,A=q 'Ags+ 0g,C, g4B=Bg,+wyg,D,
(2.11)
9:C=Cg;+q 'wDgz, 9;D=q 'Dg;,
0,.C=Cg,+q 'wDg,, 9,D=q 'Dg,,
03C=Cgz, g3sD=qDgs,
9.C=Cgs, 94sD=qDg,.

Next, let us recall the well-known statemeste, e.g., Ref.)9
Proposition 2: The algebra generated by the entries of the matrix g obeying (2.9) possesses
the central element (“deformed determinant”)

det, 9=0194— 09 '09,0s. (2.12

Similarly, for the algebra” in the case of G(2) one can check the following.
Proposition 3: The algebra with generators B\,C,D obeying (2.10) possesses two central
elements:
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Ki=qA+q D, K,=q !AD—qgBC. (2.13

Finally, using the commutation relatioi®.11), one can check the following.

Proposition 4: The operatordet, g and K, commute with all entries of the matrices g and L

This implies that, fixing values of dgg andK,, one gets a certain subalgebra of the algebra
defined by(2.9—-(2.11).

Definition 2: Relations (2.9)(2.11) fordet, g=1 and K,=constdefine the cotangent bundle
for the quantum group G=SLy(2).

Let us underline that the above definitions and statements can be easily generalized, say to the
case of SK(N).

In our case the algebr&’ is isomorphic to the quantum Lie algebra,=U(sl(2)) (intro-
duced first in Ref. 1Rwhich is defined by the relations

23 4—2l3

T8 o2, qe.=qTl.qs, (2.14

[l 1=~

and the matrice& . can be chosen as follows:
qs wqvd_ q's 0
L,.= 0 q's |’ L_= Cwq YA, 3] (2.15

Note that the matrix. in the Proposition 1 is defined only up to a scaling factor. Thuslfor
andL_ given in(2.15, we may choosé as follows:

qC—q 23 20l _q s
S P
L=g°L.L_ _(q1/2w|+ql3 q2q~2s (2.16
Here C stands for the Casimir operator of,(81(2)):
C=w2I,I++q2'3+1+q_<2'3+1)=q2]+1+q_(2}+1), 2.17

wherej is the operator of spin.

According to Proposition 1, the matri2.16) satisfies(2.3). Therefore, it provides &unda-
menta) representation of the algebra for U,(sl(2)). In this representation the central elements
(2.13 are given by

Ki=9°C, K,=¢°, (2.18

Note that the scaling factay® introduced in(2.16 has changed the values Kf andK,. The
choice of such a normalization i2.16 will be explained later.

B. Connection with quantum 6 j-symbols

Let us remember the theorem which describes an important property of the algefma
Uq(sl(2)) (this statement first appeared in Ref. 5
Theorem 1: Let D=D(p) be the unimodular diagonal matrix

qp/ﬁ
D=( q_p,ﬁ), (2.19

and let 2x2 matrix U satisfy the following exchange relations:
J. Math. Phys., Vol. 37, No. 12, December 1996
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12 21 21 12

DU=UDo, DU=UDo, o=diagq %,q9,9,9%), (2.20
12 21 12 21
R,UU=UU.Z,(p), R_UU=UU.Z_(p), (2.21)

where R. are the standard Rnatrices (2.8) and

q
Jp/f+1][plh—1] Pl
h =
*%Jr(p)zp.,%:l(p)p:q—l/z [p/fi] [p/A] |
e VIp/A+10[plA—1]
LPra] [p/]

(2.22

(here[x] denotes &' g-numbet’ (2.5)). Then matrix L constructed by means of the similarity
transformation

L=UDU %, (2.23

satisfies the relation (2.3) and therefore its entries generate an alggbisomorphic toU,(sl(2)).
The proof is given in Appendix A. It makes use of the identity

1 1
Z-(p)=(D) "2, (p)oD. (2.24

Remark:A consequence of2.20 is the commutativity ol. andD

12 21
LD=DL, (2.25

which implies thatp commutes with all elements of. Later we shall interprep as the operator
of spin.

Remark:Properly generalizing objects which enter Theorem 1, one can extend this theorem to
the case of any quantum semisimple Lie algéBrim particular, the matrixD for Uq(sl(N)) is
found to beD(p) = const- g"®P, wherep consists of the operators corresponding to components
of the weight vector(i.e., on each irreducible representation they are multiples of uaitg H
consists of the generatok$; of the Cartan subalgebra. An explicit form .gf(p) for U,(sI(N))
was obtained in Ref. 14.

Remark:The matrix.72(p) obeys the deformed Yang—Baxter equafidfi;*®which can be
written, for example, as follows:

1 23 1 13 312 3 12 213 2 23
Q2. (p)(Q) 1 2,(p)QZ,(P)(Q) " =2,(p)Q7Z,(P)(Q) 24 (p), (2.26

where for 7,=Uq(sl(2)) the matrixQ = (eige—ig) contains an extra variabkg conjugated withp:

[p, £]=—ih, qPfeé=qeégP. (2.27)
J. Math. Phys., Vol. 37, No. 12, December 1996
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This variableé belongs to the algebra but does not enter matrilk. An explicit expression for
& will be given below. The general form @& for U,(sI(N)) can be easily foundf Q = eH®¢
where component§ are operators conjugated p:[p;, &= —i% .

The matrix.72(p) was discussed in physical literature in different contexts. In particular, it
plays significant role in studies of quantum Liouviié®and WzwW -8 models; its relation to the
Calogero—Moser model was recently discussed in Ref. 17. But for us the more important fact is a
connection of72(p) with the quantum §-symbols: the entries d2.22 calculated on irreducible
representations coincideip to some normalizationwith the values of some jésymbols for
Uy (sl(2)) (exact formulas are given in Ref. 20, generalizations are discussed in RefTHi8
connection allows us to assume that objects like the matrshould be interpreted in terms of
Clebsch—Gordan coefficient€GC). Below we demonstrate that is indeed a “generating ma-
trix” for CGC and clarify its relation to(T*.%’)q.

C. Algebra 7

Definition 3: The algebra# is an associative algebra generated by entries of matrix
U U
U =
Uz Uy
and the operator p such that relations (2.£92.22) hold
Remark: For simplicity we restricted our consideration to the casez¢fassociated with
Uq(sl(2)). Let us stress that the case#fassociated with LIsl(N)) can be studied similarly but
it will involve more technical details. On the other hand, it might be rather cumbrous to obtain
exact formulas for7Z associated with [{7) in the case of 7 being generic semisimple Lie

algebra.
Let us give an explicit form of the defining relatiof®.21):

UiUs=q 'UsU;, UoU,=q 'U,U,, (2.28
Uluzzuzulxl%, U3U4=U4u3\/%, (2.29
U,U,=U,U; J[p/ﬁJE;/]fE?/ﬁ_l]— s 2%, (2.30
UsU,=U,U, J[p/hJE;/]fE?/h_l] —U,U, &)/—Z?. (2.31

The rest of the relations contained(®:21) are not independent and can be deduced f{@:28—

(2.3).
Additionally, from (2.20 one gets

g?"U,=q tU,q”", gP"U,=qU,q"*,
iy, =g~ 1U.gP/" iy =qU,pPt (2.32
q 3= 3977, g 4a=qUgsp™ .

Thus, relationg2.28—(2.32 describe the algebrég. Using them, one may verify the follow-
ing statement:

Proposition 5: A central element o¥ is given by the “deformed” determinant of the matrix
u:
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If+1 Ih—1 Ih—1 Ifi+1
Dot U=U,U, /[p[p/ﬁ] 1 0,0, /[p[p/h] | qUU; /[p[p/ﬁ] L quau,+ /[p[p/ﬁ] !
(2.33

For a fixed value of Det), the algebra?z contains only four independent generators. In
classical limit(A=0) they become the coordinates on four-dimensional phase space.
For further discussion it is convenient to introduce new variables insteaq :of

U,=U[p/a]. (2.34

The coordinates{p,LAJi} form a new set of generators of the algelta The commutation
relations(2.28—(2.32 rewritten in terms of the new generators acquire a simpler form:

U;U03=q"'050;, U,U0,=q '0,0,, U,0,=0,0;, Uy0,=0,0; (2.39

0,0,=0,0, PAHL_g ¢ @ 236
1Y4— Y4Y1 [p/ﬁ] 3 Z[D/ﬁ]y .
o~ [piH1] . g P
UsU,=U,Uy ————U,U, ——, 2.3
3Y2 2% 3 [p/h] 1 4[p/h] ( 7)
qp/holzqflolqp/h. qp/hozzqoqu/h,
~ ~ . ~ (2.38
aP"Us=q tU3q"", gP"U,=qU,q"".
The central elemen2.33 in new variables looks as follows:
Det U=(U;0,5—0503) — = (0,0, U305) — 23
et U=(U,U,— 23)[p/_ﬁ]_(41_ 32)[p/—h]' (2.39
The explicit form of the matrix inverse tfi, which we shall need later, is
. 1 (U, -qU,| 1
0-1= ( N LA (2.40
DetU \ —u, qu, | [p/%]

Finally, from (2.34 we conclude that the expressi@h23) for the matrixL looks similar in
terms of new matrixXJ:

L=UDU =UDU % (2.4))

IIl. NONDEFORMED CASE

A. Representation of algebra %,

First, we consider the limiy—0, 2#0 (note thatg-numbers turn into ordinary numberse.,
here we deal with a well understood situation—the representation theory(2f. 3in investiga-
tion of this simple nondeformed case will make further results more transparent.

Let us denote the corresponding limit algebraZgs The definingR-matrix relations(2.22)
now degenerate to

1 2 2 1
UoUo=UoUo 22 (p), (3.)

J. Math. Phys., Vol. 37, No. 12, December 1996
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where
1
V(p/hi+1)(plh—1) h
(p/h) p
20 — /j)o — . .
(P =7=(p) h V(p/t+1)(plth—1) (3.2
p (p/f)

1

The analogs of relation®.35—(2.38 for 77, are (from now on we omit the index O for the
generators o¥/)

pU;=Uy(p—#), pU,=Ux(p+#), pUs=Us(p—7), pUs=Uup+h), (3.3
[U;,U5]1=[U;,05]=[U,,U,]=[U3,U,]=0, (3.4
[01,04]:DetU0, [03,02]:_DetU0, (35)

where DetU, stands for a limit version of2.39):
N i h
DetUOZ(U1U4_U2U3)B:(U4U1_U3U2)B' (36)

Proposition 6: A possible solution for (3-33.6) is
U]_:&l, UZZZZI U3: _072, U4zzl; (37)
pP=%(z101+2,d,+1), (3.9

where we denoté;=4/dz; .
_ Remark:The representation given §8.7) and(3.8) is not unique. In particular, the rescaling
U;,—c;U,; (wherec; are numerical constants such tleat,=c,c5) is allowable.

Proposition 6 together with the connection form®a34) allows us to write out the explicit

form of the matrixU,:
91 22) \/%
Up= —. 3.9
° (_32 Z; p 39

Note that this matrix is “unimodular,” i.e., D&llg=(d,z,+ z,d,)h/p=1.

To describe the obtained representation of the algegacompletely one has to define a
space where operatof3.7)—(3.9) act. It is natural to think that this spacelgz, ,z,)—a space of
holomorphic functions of two complex variables.

Let us recall thaD(z,;,z,) is a space spanned on the vectors

Zlerijzfm
j,m)y= . j=0,%1,3..., m=—j,...j, 3.1
[, m) I Jooe] (3.10
and equipped with the scalar product
1 YR 271~ 27207, -7
(f,g}zm f(21,2,)9(21,25)e” 171" 2%2d2,d2,d 2, Z, . (3.1

J. Math. Phys., Vol. 37, No. 12, December 1996
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The system(3.10 is orthonormal with respect to the scalar prod(&tL1), that is(j,m|j’,m’)
= &jj' Omny - For the given scalar product a rule of conjugation of operators looks as follows:

(z)*=9;, (d)*=z. (3.12

The question concerning unitarity of the mattilg is discussed in Appendix B.

B. Connection with T*%

The generators of @) can be realized oD (z,,2,) as differential operators:
| =2105, |-=2,01, |3=32101—2,0,). (3.13

Using these expressions we can compare the representation of the algébramore precisely,
its limit version %) given by Theorem 1 with the representation given by Proposition 1.
Indeed, in the limity—0 the initial formula(2.23 acquires the form

L=1+yLo+O(»?), Lo:uo(Io )uol. (3.19

-p

Substituting here the explicit expressions forJ,, (3.8) and(3.9) and using the representa-
tion (3.13 for generators of §P), one derives the following limit form of the-operator:

2+Zlﬁ1—22ﬁ2 222(71 1+|3 I, )

221(92 2_21(91+ 22(92

Lo=ti L1, (3.15

Notice that(3.15 exactly coincides witt{2.16) taken in the limity—0. This explains why we had
to introduce the factog? in (2.16).

The next observation concerning the limit of theoperator reads as follows.

Proposition 7: The matrix b in the representation (3.15) admits the decomposition

Lo=AoBoA, 1, (3.16
where

plf+1/2 0

20, —(plh—1/2) .17

ZI 172 ZI ZI./222
AOZ 1/2 y Bo = h

0 z;

and p is defined as in (3.8)
This statement can be verified directly.

Let us comment on the meaning of this proposition. First, note Alas a realization of a
grouplike element of the Borel subgroup of @). Moreover, this explicit form of\; is straightly
connected with the construction of the model spa¢edeveloped by Gelfandt al! Indeed, the
spaceD(z;,z,) being a realization of the model space for(3L[compare(1.1) and (3.10] is
spanned on monomials with arguments which are combinations of the entgs ©h the other
hand,B,, is of opposite(with respect toA,) triangularity and its entries are operators acting on a
given realization of the model space. Therefddg,can be regarded as an element of the space
dual to the corresponding Borel subalgebra.

Thus,A, and By, are coordinates in the base and in a fiber of the cotangent buifidie At
this stage the appearance Bf.% “inside” the algebra.# looks somewhat mysterious, but we
shall clarify it later.
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FIG. 1. Action of the operatord; on the model space.

C. Clebsch—Gordan coefficients

Let us consider an action of the generators of the algélydefined in(3.8) and(3.9) on the
spaceD(z,;,z,) (which is a realization of the model spac&he action of these operators on the
basic vectorg3.10 is given by

pli.m)=(2j+1)#[j,m), (3.18
Uil my— (A 1o Ui e j—m+1\12 1
alimy= 2+ 1 i=5:m=5), Ualj,m)= 21+ 1 i+5.m=3),
(3.19
_ m\ Y2 1 _ j+m+1\¥2 1 1
Usli-m)==|5751) img:mtg) Valm={0 | [i+5.me3).

Formula(3.18 allows us to identify the operatqr asp=2j+ 1, wherej is the operator of
spin. Hence, invariant subspacespobn the model space are those with fixed value of gpin

Formulas(3.19 show thatU; are generators of the basic shifts on the model sgase
illustrated on Fig. L This observation is very important. As we shall see later, the same picture
holds forq#1.

Now comparing the matrix elementg’,m"|U;|j,m) following from (3.19 with values of the
Clebsch—Gordon coefficient€GC) for decomposition of the tensor product of irreducible rep-
resentationd/;®V,, for sl(2) which are given by the Van-der-Waerden formula

3\ N=

"l \/(j+%—j">!<j+j"—%)!<j"+%—j>!
LU B (j+j"+ D!

3\_.

(3.20

xS (=D)VG+mMIG—m)!(j7+m)H (" —m")(2]"+1)
=0 r1(j+ =i =) —m=r)(3+m =) =+ m+r) (7 —j—m +r)

we establish the following correspondence:
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m] (i",m |U2|J,m>=5j~,j+uz[m m]
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N

S aAlt : J
<J M |Ul|Jim>:5j",jl/2[ m

|
N
N

j n
m” .

s . J j” T . J
<] ,m |U3|j,m>:5j//’j_l/2|m m”}! <J ,m |U4|],m>=5j~'j+1/2[m

NI NI
NI= NI

Thus, we proved the following statement:

Proposition 8: The generators ;Wf the algebraZ/, are operators of the basic shifts on the
model space fosl(2) and they generate the ClebsegBordan coefficients corresponding to de-
composition of the product;¥V,, of the irreps ofsl(2).

This statement allows us to call the mattily a “generating matrix” (by analogy with the
notion of a generating functigrior CGC.

Remark:Usually, introducing a generating obje@tell-known examples are the generating
functions for different sets of polynomials, e.g., for the Legendre polynomiate makes prop-
erties of the objects under consideration more evident. We think that the notion of generating
matrix will be useful for calculations involving CGC of classical and quantum algebras.

D. Wigner—Eckart theorem

One should underline a connection of the results obtained at@Praposition § and the
well-known mathematical construction—Wigner—Eckart theot®mhich has important applica-
tions in quantum mechanics.

Let us remember that the Wigner—Eckart theorem gives CGC for classical Lie algeasa
matrix elements of some set of operators. These operators are teaiba operatorsThey map
the corresponding model spacé& onto itself and have special transformation properties under
adjoint action of the algebra. In the case gtsl(2) the Wigner—Eckart theorem reads as follows.

Theorem 2: Let |, ,|_ and |; be the generators afi(2) and let T, m=—j,...,j, be a system
of operators acting on# and obeying the commutation relations

[s,Thl=mT,, [l., T 1=VGFm(=m+1)T.,, (3.22

where (j+1) is an eigenvalue of the Casimir operator fsit2). Then the matrix elements of,T
on .7 are proportional to ClebschGordan coefficients:

j/

L S ) j J j”
<J m |TJm|J m >:C}//j/[m/ m m/!]a

where the coefficients}q, do not depend on m’, m".

Proposition 8 says that any tensor operators of spinl/2 (that is, {T3/3, T2},
T2 Vi—=>V® V=V, 18 V|_1,,) May be constructed via the operatbrs(in fact, it is evident
from Fig. 1). Indeed, comparing the commutation relations obtained directly &8y and(3.13

[l+,U]=Us, [I4,U]=Uy, [I4,U3]=0, [I+,U4]=0,
[I_,U]_]:O, [I_,Uz]:O, [|—1U3]:U1! [|—1U4]:U2! (323
[15,U]=—3U, [l3,Uz]=—3U,, [l3,U3]l=3Us, [l3,Us]=3U,

with Theorem 2, we get the following.
J. Math. Phys., Vol. 37, No. 12, December 1996
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Proposition 9: The generators;Wf the algebraZZ, form a basis for tensor operators of spin
1/2,that is componentsifs and T2, of any tensor operator of spin 1/2 can be realized as linear
combinations of

TY2 = w(P)Us+ v(p)U,,  T12=pu(p)Us+v(p)Uy, (3.24

where u(p) and v(p) are functions only of 92]+ 1.

IV. DEFORMED CASE

Now we want to extend the results obtained in the previous section to the caselofin
particular, we are going to examine the representations of the algelisge Definition 3 abovye
and to show that the corresponding mattix generates Clebsch—Gordan coefficients for the
deformed Lie algebra. For these purposes we shall exploit a natural connectign with
(T* A)q-

A. The g-oscillators approach

There exist different ways to obtain desirable representations of the algebkrst we
describe a more direct but less instructive method, which is similar to that used in the nonde-
formed case.

By analogy with the nondeformed case studied above, one can assume that the entries of the
matrix U might be realized as operatdideformations of those obtained in Propositignaéting
on the space of two complex variables. Indeed, using the defini@@&® of the central element
of 72 and taking into account the identity fgrnumbers

[alg°+[b]lg~2=[a+b], 4.9

we can rewrite(2.395—(2.37) in the following way:
U,Us=q"050;, UyU,=q7'0,U,, U;0,=U0,0,, UsU,=U,Us, (4.2
U,0,—q 10,U,;=q ! DetU g”*, Uz0,—qU,Us=—DetU q P, 4.3

The relations(4.3 are well known in the theory ofj-oscillators (g-boson$.*® Recall that
g-analogs of creation, annihilation, and number operators form a deformed Heisenberg algebra
defined by the commutation relations

aat—ga*a=N"!, Na=q 'aN, Na'=qga'N, (4.4
and they can be realized in terms of multiplication and difference operators:

+

a*=z, a=zYz9,], N=qg%-. (4.5

Using two pairs of generators of the deformed Heisenberg algebra, one can construct the
generators of Wsl(2)): 1, =aj a,,|_=aja,, andqg's = N}”N; 2. Applying here the represen-
tation (4.5) one gets

| =212, '[2,0,], |_=2,2; [z0,], q3=qY2an2%7%2), (4.6

The Casimir operatof2.17) of U,(sl(2)) in this realization is given by

C=qN;N,+q N7 N, .. 4.7
J. Math. Phys., Vol. 37, No. 12, December 1996
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_ Now, comparing(4.2) and(4.3) with (4.4), it is easy to conclude that the paird {,U,) and
(U,,U3) are similar to two pairs of-boson operators.

Taking into account the Weyl-like form of relatiori4.2) and having already found explicit
expression$3.7) and(3.8) for the generators of algebre,, one gets an answer f@ andU in
terms ofg-oscillators. More precisely, a straightforward calculation allows us to verify the fol-
lowing statement:

Proposition 10: Equations (4.2) and (4.3) have the family of solutions:

. R agaNIN, # Boaz NIN;
g”"=gN;N,, U= : (4.8
- 7032NI(1+B)N3 50a1+NIaN%+B

where ad=0dBo Y- -
Let us note that this form df) is consistent with the conditio(2.32.

Taking into account the connection forma34) and applying to the generataas, a;", and
N, the representatiof#.5), one obtains front4.8) a family of representations of the algebta To
select some of them, we have to impose an additional condition.

As mentioned abovégsee (3.14 and (3.15], in the nondeformed case substitution of the
generating matrixJ, in the formula(2.23 gives the matrix_, which exactly coincides with the
limit version of the matrix2.16). It is natural to suppose that the generating matrigorrespond-
ing to deformed algebra produces in the same way the merb itself. Bearing in mind the
property(2.41), we obtain the following.

Proposition 11: The condition DU ~*=L, where L is the matrix (2.16D is given by

pP'* qNiN;
andU is given by(4.8), imposes the following restrictions:
a+pB+3=0, ag=0qyo, Bo=5- (4.10

Substitution 0f(4.10 into (4.8) completes description dd in terms ofg-oscillators.

B. Connection with ( T*.%),

Now we are going to develop another approach to constructing representatiorisIbfs
more universal since it is based on the connecfighich takes place for arbitrary quantum Lie
algebra of the algebra” (see Definition 1 with (T*.,%?)q and on the interpretation of the de-
formed Borel subgroup#, as a quantum model space.

To clarify the announced connection we start with the following theotttis is a version of
the theorem given in Ref. 10 fdr-operators with nonultralocal relations

Theorem 3: Let the matrices AandB obey the relations of type (2,1)

12 21 12 21
R.AA=AAR., R.BB=BBR., (4.11

and the additional exchange relation

12 21 21 12
AB=BAR,, ABR_=BA. (4.12

Then the L-operator constructed by means of similarity transformation

L=ABA! (4.13
J. Math. Phys., Vol. 37, No. 12, December 1996
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satisfies the relation (2.3)

Remark:Since(4.11) defines a quantum group structufe, in (4.13 should be understood
as an antipode oA.

Proof of Theorem 3 is straightforward:

1 2 11 1 22 2 112 1 2 2
LR™ILR_=AB(A) 'R_'AB(A) 'R_=ABAR_}(A)"1B(A)'R_

1212 1 2 2121 2 1
=AABBR;}A)"Y(A)'R_=R;'AABBR_(A) }(A)?

221 2 11 22 2 11 1 2 1
=R;'ABAR, (A) !B(A) '=R;'AB(A) 'R,AB(A) '=R;LR,L.

Thus, for a given quantum groug,, the algebraZ is embedded into the algebra generated
by entries ofA and B obeying(4.11) and (4.12. To argue that4.11) and (4.12 describe a
g-analog of T*.%, let us notice that the nonsymmetfiwith respect toR-matrices form of the
relations(4.12 imposes some restriction on the structure of the matdcasdB. Say, ifR, is an
upper triangular matrix, theA andB must be upper and lower triangular, respectively. Therefore,
one may think ofA andB as coordinates in the deformed Borel subgrotip and in the dual
guantum space, respectively. In other words, the matAcasdB are coordinate and momentum
on the deformed phase spa(d'é‘.,%?)q, respectively. Thu$4.11) and(4.12 may be regarded as a
definition of (T*.%), (for additional comments see Ref.)10

We should underline here that, although the matridesnd B look similar on the quantum
level, they transform into different objects whep—1. Indeed, in the limitg—1 one has
L—1+ yAL, and the corresponding limit forms & andB are

A—A,, B—l+yhBy, (4.14

where A, is a grouplike element, where&, is rather an element of algebfaee(3.17) as an
example ofA, and B, for sl(2)].

Comparing the statements of Theorems 1 and 3 and taking into account the e@uélitywe
get the formula

L=ABA !=UDU 1, (4.15

which points out a possibility to construct the matﬁxobeying(2.35)—(2.38) via the generators
of (T*.%’)q. This connection is very important; below we consider it for,&) in all details.
Now let us turn to the example of $(2). For R.. defined as in2.8) one can choose

a ¢ b O
a‘1>’ B:(d b‘l)' (4.16

A:
0

Explicit relations for the generators ()T*.ﬁ”)q following from (4.11) and(4.12) are
ac=q 'ca, bc=qY¥xch, ab=qYba; (4.17
bd=q 'db, ad=qYda, cd=q Ydc+q Y?wb ‘a. (4.18
Performing the following decomposition,
d=do+d;=do+qY%c b 1a, (4.19

we transform(4.18 to homogeneous form:

J. Math. Phys., Vol. 37, No. 12, December 1996
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bdy=q 'dgb, ady=qYdpa, cdy=q YZdqc. (4.20

Thus, (4.17 and (4.20 describe four variables obeying Weyl-like commutation relations.
Using the jargon of conformal field theory, we shall call these formulas “free field representa-
tion” and the generatora, b, ¢, andd, “free field” variables.

Remark: The last of equation$4.18 is nothing but a commutation relation entering the
definition of deformed Heisenberg algebra. Indeed, compa#dty) and (4.18 with (4.4), one
can establish the following corresponderipestands for arbitrary numerical constant

c~Nra®, d~—-wN Y?ra b la~g’N %2

Thus, the transformatio.19 can be interpreted as “bosonization” gfoscillators.
Now, substituting(4.16) in (4.13), we get

a c|\[b 0\[lal —qc
L:ql/Z o _
0 a d b 0 a

( q(b+b Y +atcd, —qzac(b+qalcdo))
(

(4.2

ac) (b *+q a lcdy) —qg2a tcd,

This matrix provides a “free field” realization of the algebrd for U(sl(2)). Note that the
additional scaling facton? was introduced in4.21) to ensure a coincidence of the Casimir
operators calculated by formulé2.13 for the matrix(4.21):

Ki=g*b+b™h, K,=¢* (4.22
with those for the matriX2.16). In fact, we redefined the matri in (4.16) as
B=q'8. (4.23

Comparing the Casimir operatét; given by (4.22) with one given by(2.18, we identify the
operatorb with the power of the operator of spjn

b=q2*1, (4.24

It follows from (4.22) that matrixL contains only three independent varialliéss easy to see
from the explicit form(4.21) that these arb, ac, anda™*cd,]. Moreover, direct calculation using
(4.17) and (4.20 shows that all elements of the mattixcommute with operatob. That agrees
with the property(2.25.

Now exploiting the connection described by form{al5), one can obtain an exact expres-
sion forU. R

Theorem 4: The algebrazz={U,p} with defining relations (2.35)2.38) has the following
realization in terms of generators, &, ¢, anddg:

1 ) :
—a(b+ a~lcdy)e '¢2 ceé?
b=gP* U= L : (4.29

- c_l(b_1+q_1a_1cd0)e_i§/2 a lelé?

wherew=q—q %, d, is defined in (4.19), and
J. Math. Phys., Vol. 37, No. 12, December 1996

Downloaded-28-Sep-2004-t0-129.70.36.163.-Redistribution-subject-to-AlP-license-or-copyright,—~see-http://jmp.aip.org/jmp/copyright.jsp



6340 A. G. Bytsko and L. D. Faddeev: (T*.%),, g-model space and CGC generating matrix

et=atb’c d,* (4.26)

with y being an arbitrary constant

This theorem gives a “free field” representation of the algebralLet us remark that the
remaining freedom in4.26 corresponds only to canonical transformatidasice ¢ and p are
conjugate variablgs

The formulated theorem will be proved in several steps. First, we introduce a lower-triangular
matrix which diagonalizes the matrB:

q“% 0 12
0 4%t =0~ Bog. (4.27

(2] 0 —~ —~ —~
V= , B=VByVl By=
Uz VU2

Proposition 12: A possible solution for the matrix V is
v1=v1(b), vy=va(b), vz=dvy(b)f(b), (4.28

whereuv(b) andv,(b) are arbitrary functions of b and(b)=(b—qb~1) .
Thus, matrixL given by (4.21) admits a decomposition of the form

L=UoBoUgt, Up=AV. (4.29

However, this diagonalization is not unique. Using an arbitrary power of the diagonal matrix
Q, which depends on the variable conjugateébto

e'¢ , 4
Q:( eif)’ be'é=qe*b, (4.30
we obtain a family of diagonalizing matrices:
L=U,B;U;% U,=AVQ’ B;=Q °BoQ’=q’By=0q""8,. (4.31

An explicit form of the diagonalizing matrix is

U,=AVQ’= (4.32)

(av,+cduf )e'%  cue % )
a ldv,fe'% a ly,e 1%

Here we should describe a new objeltwhich appeared in the matrls. We assume that the
following Weyl-like relations hold:

agdt=qee'fa, bef=qetb, cef=qgPe'lc, doe'‘=q"e'‘d,. (4.33
Proposition 13: The set of equations (4.33) is equivalent to
elé=gBft(r—Di2yy(v—1)2—- ada 1 (4.34

Now we have to remember that the matUx(andO as wel) described in Theorem 1 has to
satisfy the relatior(2.20 or, equivalently, the relation

12 2 1
B()U 5: U5 B()O', (435)

whereo and B, were introduced inf2.20 and(4.27), respectively. A straightforward calculation
using(4.17) and(4.18 leads to the following.
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Proposition 14: The matrix Jgiven by (4.32) satisfies the relation (4.35) only #5¢r —1/2.

It is worth mentioning_that such a choice éfexactly compensates the renormalization of
the matrixB in (4.23, i.e.,B_,=B,.

Bearing in mind the formul#4.19, one can rewritd4.32 for 6=—1/2 as follows,

a(b+a tcdy)we '¢? cve't’?

U=uU —10= _ e (4.36
c Yb t+q talcdywe 2 a lye'd?

wherew=f(b)v,(b) andv=v,(b).

Finally, a direct check show&see Appendix Cthat the matrix(4.36 obeys Eqs(2.35—
(2.38) if the functionsw andv are constanfwe chose them as follows:(b) =1, w(b) =1/w] and
the coefficients in4.33 and(4.34) satisfy the condition®=—a« and y=a—B—1=2a—1. Thus,
Theorem 4 is proven.

Let us end the discussion of relation (dT".%?)q to algebras” and 7Z with one more state-
ment:

Theorem 5: The algebra generated by coordinates (drf‘%’)q is isomorphic to the algebra
generated by entries of the matrixdnd Q.

Proof: Indeed, formulag4.21) and(4.26) provide explicit expressions for entries lofandQ
via the generators, b, ¢, andd, [up to unessential canonical transformation(4n26)]. Con-
versely, suppose matrix and the elemerg'¢ are given. Then, as it follows frorf#.21), one can
construct from entries df the combination®, ac, anda™ lcdo. Together with(4.26) this allows
us to recover the “coordinatesd, b, c, andd,.

Although we considered this theorem only for the case of(3). there is, evidence that it
holds for the generic case. For example, in the casg,efSL,(N) a point on the quantum bundle
(T*.%’)q is parametrized byN X N matricesA and B. As above, the matrit =ABA™ ! satisfies
(2.3) and therefore its entries generate the corresponding algébidowever, the dimension of
(T*.%), exceeds the dimension of: dim(T*.%),—dim Z=(N?+N-2)—(N?-1)=N-1. Itis
very probable that the remainingN—1) generators are exactly those that enter the diagonal
unimodularN <X N matrix Q.

C. Explicit representation

Now we face the problem of constructing an explicit representation for the genesatmrs,
andd,. A Weyl-like form of the commutation relationd.17 and(4.20 points out the possibility
of getting a realization for these generators in terms of two pairs of canonical variables. This also
meang due to the interpretation ¢#.19 as “bosonization” ofg-oscillatord that the generators
a, b, ¢, andd admit a realization vig-oscillators. Evidently, such a representation is not unique.

It is natural to realizea, b, ¢, andd, as operators acting on thgeanalog of the space
D(z;,2,). We shall denote this space Bg(z;,2,). The spacd4(z;,2,) is spanned on the basic
vectors of form(remember that){] stands forg-number$

Zj+mzj7m
S i=0,%1,%.... m=—j,.. (4.37)

=

One can define oD ,(z;,2,) such a scalar product that the systehB7) is orthonormal, that is
<j!m|j,vm,>:5jj'5mm’-

Remark:This scalar product is a deformation (8.11). Its explicit form makes use of the
g-exponent and the Jackson integral. See Ref. 19 for details.

In all formulas concerning the spak,(z,,2,) we suppose tha is chosen as described in
Sec. lI(i.e., it belongs either to the real axis or to the unit circle at the complex planthis case
an analog of the rule of conjugatidB.12) is

J. Math. Phys., Vol. 37, No. 12, December 1996

Downloaded-28-Sep-2004-t0-129.70.36.163.-Redistribution-subject-to-AlP-license-or-copyright,—~see-http://jmp.aip.org/jmp/copyright.jsp



6342 A. G. Bytsko and L. D. Faddeev: (T*.%),, g-model space and CGC generating matrix

(z)*=zYza]l, (zd)*=277;. (4.38

The formulas(4.24) and(4.25 imply that the generatds is a power of the operator of spin.
Hence, on the spadg(z;,2,) it is given by

b=qn/1" 2% = qN;NS,. (4.39

Next, let us remember that we already know the limit versions of the genemtbrsc, and
d [see Proposition 7; one should take into account the rescai@g]. Their appropriate defor-
mations for generig) are described by

Proposition 15: The set of operators (with arbitrary constants v;)

)\172NV2

_ N _
a=qhoz; 2 N, c=qz; vz, N2 v,

(4.40
b=qN;N,, d=—gro~"0""2 Zgl(Nz_Ngl)NlN;VZ

satisfies (4.17) and (4.18) and gives in the limit-:0 the generators found in (3.17).

Although due to Theorem 4 this proposition gives a family of representatior fove again
should impose an additional condition using the mat#ix6 as a standar¢justification for this
trick was given above

Proposition 16: Matrix L given by (4.21) coincides with the matrix (2.16) taken in the rep-
resentation (4.6) provided that

1/2

b=qN;N,, ac=q Y%z 'z,N; YN, Y2, a‘cdy=—N;'N,. (4.41)

Comparing the statements of Propositions 15 and 16, we derive
a= quZI 1/2N§/4' b=gN;N,, c=q"z; 1/§2N1_5/4N2_1/2,
(4.42

_ hg-vg-li2—1 32 Mot g o~ 1/8
do=—0q"0" 0"z, "NyN3%, gt ro=q~ "

Substituting(4.42) into (4.26) [and remember tha#.26) is defined only up to a coefficiehtwe
get

ef=q%z;N7 N, (4.43

where y and e are arbitrary. Finally, substitutin4.42 and (4.43 into (4.36), we obtain(one
should remember thad andU are defined only up to arbitrary scaling fagtor

1
CAp L 26 32— yi2 —1 yI2— 3120 72— 1
o Y04 N7 "N "(N;—N; ) BozoN{ NJ

C»
I

. (4.4

1 - 1a 12— yi2n 1 2 1 V2= 1n yI2—1/2
— 50 Tz N7 7N3 7 "(Np— N3 ) BozaN{™ "NJ

It is easy to check that the family of matric&k44) exactly coincides with what was obtained
in g-oscillator approaclisee Propositions 10 and )11

D. Quantum Clebsch—Gordan coefficients

Using the connection formul@.34) we get from(4.44) a family of matricedJ which provide
possible representations of the algelralt is natural to study an action of the entries of these
matrices on the spad®(z;,2,) described above. On the basic vect@s37) these operators act
as follows:
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G+ml .,
[2J+1] J 21m 2>1

: i li—m+1] .
Uylj,m)=Cyq~H2U+M™ [2j—+1|]+%’m_%>’

[j—m]
[2j+1]

. m irmEl]
Uglj,m)=C,q+20~m™ [2j—+1]“+%'m+%>’

where the coefficient€; do not depend om.
Note that, similar to the classical case, the operdthrsorrespond to the basic shifts on the
model space. Comparing the matrix elemefjtsm’|U;|j,m) following from (4.45 to values of

CGC for U,(sl(2)) given byg-analog of the Van-der-Waerden formdfe* which for the decom-
position of V;®V, looks like following,

I
m m m"

U 1|J ,m> — Clq(lIZ)(j —m+1)

(4.45

Uslj,m)=—Caq~ 420+ i—3m+d,

q

[i+3=i" N+ 30"+ 5~
[i+i"+3]!

= S m+m

1/2
) q(l/2)(j+1/2—j”)(j+j"+3/2)+jm'—(1/2)m

(=1)rq IR mp [ —m] [+ m - mr 2]+ 1]) Y
=0 [P+ 3= —rPi—m=r][3+m —r ][ = 3 m+r ][ —j—m +r]

(4.46

we establish the following correspondence:

1

. 1 “n
_ Co 1-yj-12) )2 )
(i",m"|Uqlj,m)= 6y 11 ao g+~ 72 [m 1 m”] ’
2

4

. 1
i " H —1)j J 2 J
(" |Ualj.m)= 80 112 Bo 927 M) ‘ m"]

m _
j "
m’

j!/
m// .
q
Thus we derive an analog of Proposition 8:

Proposition 17: The generators;Wf the algebrazz are operators of the basic shifts on the
model space fot,(sl(2)) and they generate the q-ClebseBordan coefficients corresponding to
decomposition of the product; ¥V, of irreps of U,(sl(2)).

Remark:Putting ap=q2, B,=1, andy=2 in (4.44), we get the following generating matrix:

N

NlF N[

e i — j
(3",m"|Uglj,m)y=8n j _ 12 ag gt~ 72 1/2[

q
q

m )
q

i m . o J
("M [Uglj,my=8n 11/ Bo g2 [m

Nl N
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77 Y 72,0,]q V2 (z272+ 1) 2,q~ (V220

1
U= , Det U=q'? (4.47
_22 [Zzaz]q (1/2)( 21(71+ 1) Zlq(1/2)22¢92 \ [p/ﬁ]

which may be called “exact” as it satisfi¢d.45 with C;=1. The question about unitarity of the
matrix (4.47) is discussed in Appendix B.

E. Generalized Wigner—Eckart theorem

As we demonstrated in the previous section, entries of the mdyiare tensor operators of
spin 1/2 for 7=sl(2), hence they provide a realization of the Wigner—Eckart theorem. Let us now
consider the matrixJ from this point of view.

The theory of tensor operators for quantum algebras was discussed by many @agbpesg.,

Ref. 22. In particular, the generalized Wigner—Eckart theorigmthe case of 7,=U(sl(2))]
reads as follows.

Theorem 6: Let |, , I_, and I; be the generators of [{sl(2)) and let T, m=-j,...j,bea
system of operators acting on the deformed model spdcand obeying the commutation rela-
tions

(o Thl=mTh, 1.Tha's—gs ' Thl=\[jFml[j=m+1]T}.,. (4.48

Then the matrix elements of,Ton ./ are proportional to q-ClebschGordan coefficients

n " J ' J j”
(i"m|Thlj'm")=Cl;. [ ' m m”]q’
where the coefficients}q, do not depend on pm’, and nf'.

Proposition 17 implies that; may be regarded ag-tensor operators. Indeed, usitg44
and (4.6), one can check thadt); satisfy (4.48 [one obtains forJ; deformations of relations
(3.23)]. Similarly to the classical case we have the following.

Proposition 18: The generators;f the algebrazz form a basis for gtensor operators of
spin 1/2, that is components/3and T1 11> Of any ¢ttensor operator of spin 1/2 can be realized as
linear combinations of U

TY2 = n(P)Us+v(p)U,,  T13=pu(p)Us+v(p)Uy, (4.49

where u(p) and v(p) are functions only of p

Remark:Unlike the classical case, solutigfh.44) gives a family of matrices). However, the
corresponding matrix elementg’m”|U;|j’'m’) differ only by factors which do not depend omf
andm”. Thus, any representative of the obtained family of matri¢esay be used in Proposition
18.

Let us end the description of the algelwa from the point of view of theory ofj-tensor
operators with the following statement:

Proposition 19: The matrices U and L defined in Theorem 1 obey the relation

12 2 1
R_UL=LR,U. (4.50
The proof is straightforward:
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12 122 2 21 2 2 212 2
R_UL=R_UUD(U) '=UU2_D(U) '=UUDo.%2,(U)*

221 2 22 2 1 2 1
=UDU.%Z,(U) '=UD(U) 'R,U=LR,U;

it makes use of the relation2.20 and(2.21) and the property2.24).
A remarkable fact is that4.50 may be used for definition af-tensor operators instead of
(4.48. Indeed, in the limity—0 it turns into

1/2

12 1 —-1/2 1

[Uo, Lo]=AUq, A= 1 -1 : (4.5

1/2

Using the explicit form ofL, given in (3.14), one can easily check that this matrix relation is
equivalent to(3.23. More onR-matrix description ofg-tensor operators is given in Ref. 23.

V. CONCLUSION

In this paper we have constructed tp@nalog of the phase spaté. % and clarified its role
in description of the model representation of the corresponding quantum Gipwye unraveled
a connection between the algebras generated by entries of matBy,((U,D), and ,Q). The
general formulas were concretized by the exampl&efSL(2).

An extension of the described scheme to the case of arbitrary @owitl definitely improve
understanding of the role played by the matri#p) which so far has been discussed in the
literature much less than standard matRix

The results of this paper can be generalized in several directions even for the cag@)of SL
The first is a consideration of the matiix with an auxiliary space corresponding to the higher
spin representation. It must lead to an exact form of the generating matrix for all CGC. The work
in this direction is in progress now. The second point to be discussed is the cadeiol a root
of unity. The structure ofZ(p) allows us to hope that reduction on so-called “good” represen-
tations will be quite natural in our formalism. However, this case is to be examined more care-
fully.
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APPENDIX A: PROOF OF THEOREM 1

Using (2.20 and(2.21) together with the identity2.24) and taking into account that matrices
1 2
D, D, ando mutually commute, we check
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1 2 11 1 22 2
LR™!LR_=UD(U) *R-UD(U) 'R_

112 1 2 2
=UDU.Z-Y(p)(U) D(U) 'R_

121 2 1 2
=UUDe.%Z"Y(p)Da(U) Y(U) 'R

21 1 2 2 1
=R;'UU.Z,(p)Do.2- (p)Da.7_(p)(U) " L(U)~*

212 1 2 1
=R;!UUDoD.Z_(p)(U) *(U)*

221 1 2 1
=R;'UDU.Z,(p)oD(U) " }(U)~?

221 ) 2 1 1
=R;'UDU.Z, (p)(U) D(U)"!

22 2 11 1 2 1
=R;'UD(U) 'R, UD(U) *=R;LR,L.
APPENDIX B: ON CONJUGATION OF U, AND U

First we consider the matrixJ,. Using the rules of conjugatiof3.12 (and taking into
account thap* =p), one can check that the matrix conjugatedtpdoes not coincide withJ 5 *;
that is, the matrixJ, itself is not unitary. However, it turns out that the transposed métne
should remember that in general {) "'+ (U~1)" for matrices with noncommuting entries

T (91 - (92 ﬁ
UO = -
Z; p
satisfies the unitarity condition:

Tyk _ ﬁ(zl az)_ Ty—1
(Ug) —\[p B I

In the deformed caséecall thatq can be either real dg|=1) the matrixU includes the
operatorN which conjugates in different ways for the different choicegjof.et us consider the
matrix U given by(4.47). The conjugated matrix can be constructed according to the (4.28.
Using the formula4.1), one can check that the unitarity conditiod )*UT=UT(UT)* =1 (i.e.,
the same as in the nondeformed odse the transposed matrix holds only for replFor |q| =1,
see Ref. 13.

APPENDIX C: PROOF OF THEOREM 4

Here we complete the proof of Theorem 4, i.e., we have to prove that nidiB& satisfies
(2.395—(2.37) if the following conditions,

a+B=0, y+B—a+1=0, v(b)=1, w(b)=1/w, (Cy

are fulfilled.
First, using relation$4.17), (4.20, and(4.33 and conditiongC1), we check
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U,U,=a(b+a lcdy)e fcét=q Y2 F2ca(b+qa lcdy)eite ¢
:qa/2+ﬁ/2cei§a(b+q(y+B—a+1)/2a—1Cd0)e—i§: 0201,
U,Us=a(b+a tcdy)e e L(b 1+q ta lecdye ¢

=qU2- B2~ 1a(h+q ta~tcdy)e {(b 1+ q ta ledy)e ¢
=q A2 ta(b t+q ta tcdy)(b+q ta lcdye e ¢
=q Y2 A Y b 1+ q ta lcdg)a(b+q talcdy)e e
:q*l*a/Z*Blchl(bfl_i_q*laflcdo)ae*if(b_’_a*lcdo)e*ig
=q~t0,0,.

The rest of relation$2.35 can be proved similarly.
Next, note that relatioi(2.36) can be rewritten as follows:

U;U4(b—b™1)~U,Us(ab—q b1 =~ wU3U,b. (€2
To prove this quality we transform its lhs and rhs as follows
U,U4(b—b™1)—U,U;s(gb—q b~
=a(b+a lcdye fa te'é{(b—b ) —a le'a(b+a lcdye '{(gb—q b Y)
:q—a/2(ql/2b+q—l/2a—lcdo)(b_b—l)_q—a/2(q—l/2b+q1/2a—lcd0)(qb_q—lb—l)

— _ q—a/Zw(q1/2a—lcd0b+ q—1/2);

UsUsb=c (b~ 1+q a Tcdg)e ce'th
=qP2(q" Y% 1+ q¥2a lcdg)b=qP2(q~ Y2+ q¥2%a tcdgb).

Thus, the equalityC2) is fulfilled if conditions(C1) are valid. The relatior§2.37) can be proved
in the same way.
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