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We study relations between the deformed cotangent bundle~T*B!q for the Borel
subgroupB of a given simple Lie groupG, the quantum Lie algebraJ q associated
with the corresponding quantum groupGq and the matrices generating Clebsch–
Gordan coefficients forJ q . We reveal the connection of these objects to quantum
analog of the model spaceM andq-tensor operators. ©1996 American Institute
of Physics.@S0022-2488~96!00612-3#

I. INTRODUCTION

Among different representations of a given compact Lie groupG the model spaceM plays a
distinguished role. By definition,1 the model space is a direct sum of all irreducible representations
H j with multiplicity one

M5(
j

%H j ~1.1!

realized in some universal way. A most popular form ofM is a space of holomorphic functions
on the Borel subgroupB of complexified form of the groupG. In this construction the Borel
subgroup is considered as an affine space.

A study of model spaces provides a natural language for investigation of physical models. For
example, the popular model of two-dimensional quantum gravity, introduced by Polyakov,2 may
be interpreted in terms of the model space of Virasoro algebra.3 A finite-dimensional quantum
group with deformation parameter, depending on the central charge, naturally appears in this
context.

In the present paper, which was written with an intent to find new applications of model space
in modern mathematical physics, we discuss aq-analog of the model space related toq-deformed
Lie groupGq . For this purpose we introduce and examine several ‘‘coordinatizations’’ of the
quantum space~T*B!q . As a by-product we obtain some generating matrices for the set of
Clebsch–Gordan coefficients~CGC!. To our knowledge this result is new even for the nonde-
formed case.

Throughout the paper we systematically and intentionally make use of theR-matrix formal-
ism, which we believe is the most convenient and powerful tool to get explicit results in the
domain of quantum groups.

To avoid the known difficulties with compact forms of quantum groups we adopt here a
convention to work with complexified objects~groups, algebras! and their finite-dimensional
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representations on a formal algebraic level. We also do not discuss subtleties arising in the case of
q being a root of unity.

Most of formulas given in this paper inR-matrix form have universal validity. However, the
concrete results are illustrated on the simplest exampleGq5SLq~2!. The generalization to other
groups needs more technical details such as an explicit structure ofR-matrices and related objects.

Mentioned above, ‘‘coordinatizations’’ of~T*B!q arise from two possible decompositions of
the matrix L ~in usual notationsL5L1L2

21, it comprises all generators of the corresponding
quantum Lie algebra!:

L5UDU21 and L5ABA21,

whereD is a diagonal unimodular matrix,U is a deformation of unitary matrix, andA andB are
unimodular upper and lower triangular matrices. As we shall clarify below, the matricesA andB
admit a natural interpretation as the coordinates in the base and in the fiber of~T*B!q , whereas
entries of the matrixU will be shown to provide basic shifts on the model spaceM and generate
q-analogs of Clebsch–Gordan coefficients for the quantum groupGq . The explicit connection
betweenU and (A,B) will be demonstrated on the example of SLq~2!.

It should be mentioned that an object like the matrixU appeared first in Refs. 4 and 5~later
it was used also in Ref. 6!, where it was interpreted as a ‘‘chiral’’ component of the quantum
grouplike elementg. In the present paper we give another interpretation and application of the
matrix U in the context of a model space.

Let us briefly describe the contents of the present paper. In Sec. II the definition of the
cotangent bundle for a quantum group is reminded. Next we introduce an object of especial
interest for us—the algebraU generated by the entries of the matrixU which diagonalizes the
coordinate in a fiber of (T*G)q . We derive explicit relations for this algebra in the case of
G5SL~2!.

In Sec. III we consider a nondeformed limit~q51! of the algebraU and construct an explicit
representation. For the case ofG5SL~2! we show that the matrixU0 generates Clebsch–Gordan
coefficients~CGC! for the corresponding nondeformed Lie algebra. The Borel subgroupB and
the spaceT*B naturally appear here. Finally, we discuss a connection of our results with the
Wigner–Eckart theorem.

In Sec. IV we construct representations of the algebraU ~for qÞ1! for the case of SL~2! in
two different ways. The first one uses the language ofq-oscillators. The second is based on
explicit realization of~T*B!q and hence involves a notion of quantum model space. Here we
show that the matrixU is a ‘‘generating matrix’’ for CGC for deformed Lie algebra. We also give
some comments on the generalized version of the Wigner–Eckart theorem.

II. (T*G)q AND RELATED OBJECTS

There exist three symplectic manifolds~from the physical point of view they are phase spaces!
naturally related to a given Lie groupG and its Lie algebraJ :

~1! T*G—the cotangent bundle for the groupG;
~2! T*B—the cotangent bundle for the Borel subgroupB;
~3! O—an orbit of the coadjoint action ofG onJ* .

For instance, in the case ofG5SL~2! ~which will be our main example! these spaces are six-,
four-, and two-dimensional, correspondingly.

The method of geometric quantization7 provides a representation theory for~1!, ~2!, ~3!.
Turning from classical to quantum groups, one can try to construct a representation theory for the
deformed analogs of these manifolds. In the present paper we shall deal with deformations of the
spaces~1! and ~2!.

6325A. G. Bytsko and L. D. Faddeev: (T*B)q , q-model space and CGC generating matrix

J. Math. Phys., Vol. 37, No. 12, December 1996

Downloaded¬28¬Sep¬2004¬to¬129.70.36.163.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jmp.aip.org/jmp/copyright.jsp



A. Description of ( T*G)q

Let Gq be a deformation of the Lie groupG andJ q be a deformation of the corresponding
Lie algebraJ . The deformed cotangent bundle (T*G)q is a noncommutative manifold, i.e.,
according to the ideology developed by A. Connes,8 its coordinates are~noncommuting! genera-
tors of some associative algebra. A point on this manifold is parametrized by the pair (g,L), where
gPGq is a coordinate in the base of the bundle, andL is a coordinate in a fiber.

The structure of (T*G)q is defined via commutation relations between the coordinates in the
base and in a fiber. An appropriateR-matrix form of these relations was proposed in Ref. 5:

R6g
1

g
2

5g
2

g
1

R6 , ~2.1!

R2g
1

L
2

5L
2

R1g
1

, ~2.2!

L
1

R2
21L

2

R25R1
21L

2

R1L
1

. ~2.3!

Here and below we use the formalism developed in Ref. 9, i.e., objects likeg andL are considered
as matrices~say,LPJ q^V, whereV stands for auxiliary space!. We use the standard notations

for tensor products:L
1

5L^ IPJ q^V^V, etc.
Let us take the parameterq, which appears in the theory of quantum groups, in the following

form:

q5eg\, ~2.4!

where\ is the Planck constant~the parameter of quantization! andg is the deformation parameter.
In physical applications it is most natural to suppose thatg is either pure real~q belongs to the real
axis! or pure imaginary~q belongs to the unit circle at the complex plane!.

The second form ofq is typical for the WZW theory.4,6,10For uqu51 we suppose also thatq
is not a root of unity. It should be mentioned that for both variants of choice ofg in ~2.4! the
definition ofq-number

@x#[
qx2q2x

q2q21 ~2.5!

is invariant with respect to complex conjugation ofq, i.e., @x# 5 @ x̄#. This property becomes
important if one discusses involutions of deformed Lie algebras.

Definition 1: The algebraL is an associative algebra generated by entries of the matrix L
which obeys relation (2.3).

An important fact—the connection of algebraL with the corresponding quantum Lie algebra
J q was established in Ref. 11 in the following form:

Proposition 1: Let matrices L1 and L2 obey the following exchange relations:

R6L1

1

L1

2

5L1

2

L1

1

R6 , R6L2

1

L2

2

5L2

2

L2

1

R6 , R1L1

1

L2

2

5L2

2

L1

1

R1 . ~2.6!

Then the matrix L5L1L2
21 satisfies the relation (2.3).

This statement implies that the algebraL is isomorphic~up to some technical details which
we do not discuss here! to corresponding quantum Lie algebraUq~J ! @which is defined by~2.6!,
see, e.g., Ref. 9#.

Consider now the relations~2.1!–~2.3! for g andL being 232 matrices,
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g5S g1 g2

g3 g4
D , L5S A B

C DD ~2.7!

and theR-matrices taken in the form

R15q21/2S q 0 0 0

0 1 v 0

0 0 1 0

0 0 0 q

D , v[q2q21; R25PR1
21P ~2.8!

~P denotes the permutation operator:Pg
1

P 5 g
2

, etc.!. In this case~2.1!–~2.3! define the cotangent
bundle for the quantum groupGq5GLq~2!; each ofR-matrix equations~2.1! and~2.3! is equiva-
lent to six independent relations:

qg1g25g2g1 , qg1g35g3g1 , qg2g45g4g2 , qg3g45g4g3 ,
~2.9!

g2g35g3g2 , g1g42q21g4g152vg2g3 ;

and

@A,B#52q21vBD, @A,C#5q21vDC, @A,D#50,
~2.10!

CD5q2DC, BD5q22DB, @B,C#5q21vD~D2A!.

The equation~2.2! gives the following relations:

g1A5qAg11vBg3 , g1B5Bg1 ,

g2A5qAg21vBg4 , g2B5Bg2 ,

g3A5q21Ag31vg1C, g3B5Bg31vg1D,

g4A5q21Ag41vg2C, g4B5Bg41vg2D,
~2.11!

g1C5Cg11q21vDg3 , g1D5q21Dg1 ,

g2C5Cg21q21vDg4 , g2D5q21Dg2 ,

g3C5Cg3 , g3D5qDg3 ,

g4C5Cg4 , g4D5qDg4 .

Next, let us recall the well-known statement~see, e.g., Ref. 9!:
Proposition 2: The algebra generated by the entries of the matrix g obeying (2.9) possesses

the central element (‘‘deformed determinant’’)

detq g5g1g42q21g2g3 . ~2.12!

Similarly, for the algebraL in the case of GLq~2! one can check the following.
Proposition 3: The algebra with generators A,B,C,D obeying (2.10) possesses two central

elements:
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K15qA1q21D, K25q21AD2qBC. ~2.13!

Finally, using the commutation relations~2.11!, one can check the following.
Proposition 4: The operatorsdetq g and K2 commute with all entries of the matrices g and L.
This implies that, fixing values of detq g andK2, one gets a certain subalgebra of the algebra

defined by~2.9!–~2.11!.
Definition 2: Relations (2.9)–(2.11) fordetq g51 and K25constdefine the cotangent bundle

for the quantum group Gq5SLq~2!.
Let us underline that the above definitions and statements can be easily generalized, say to the

case of SLq(N).
In our case the algebraL is isomorphic to the quantum Lie algebraJ q5Uq„sl~2!… ~intro-

duced first in Ref. 12! which is defined by the relations

@ l1 ,l2#5
q2l32q22l3

q2q21 [@2l 3#, ql3l65q61l6q
l3, ~2.14!

and the matricesL6 can be chosen as follows:

L15S ql3 vq1/2l2

0 q2 l3 D , L25S q2 l3 0

2vq21/2l1 ql3D . ~2.15!

Note that the matrixL in the Proposition 1 is defined only up to a scaling factor. Thus, forL1

andL2 given in ~2.15!, we may chooseL as follows:

L5q2L1L2
215S qC2q22l3 q5/2v l2q

2 l3

q21/2v l1q
2 l3 q2q22l3 D . ~2.16!

HereC stands for the Casimir operator of Uq„sl~2!…:

C5v2l2l11q2l3111q2~2l311!5q2 ĵ111q2~2 ĵ11!, ~2.17!

where ĵ is the operator of spin.
According to Proposition 1, the matrix~2.16! satisfies~2.3!. Therefore, it provides a~funda-

mental! representation of the algebraL for Uq„sl~2!…. In this representation the central elements
~2.13! are given by

K15q2C, K25q3, ~2.18!

Note that the scaling factorq2 introduced in~2.16! has changed the values ofK1 andK2. The
choice of such a normalization in~2.16! will be explained later.

B. Connection with quantum 6 j -symbols

Let us remember the theorem which describes an important property of the algebraL for
Uq„sl~2!… ~this statement first appeared in Ref. 5!.

Theorem 1: Let D[D(p) be the unimodular diagonal matrix

D5S qp/\ q2p/\D , ~2.19!

and let 232 matrix U satisfy the following exchange relations:
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D
1

U
2

5U
2

D
1

s, D
2

U
1

5U
1

D
2

s, s5diag~q21,q,q,q21!, ~2.20!

R1U
1

U
2

5U
2

U
1

R1~p!, R2U
1

U
2

5U
2

U
1

R2~p!, ~2.21!

where R6 are the standard R-matrices (2.8) and

R1~p!5PR2
21~p!P5q21/2S q

A@p/\11#@p/\21#

@p/\#

qp/\

@p/\#

2
q2p/\

@p/\#

A@p/\11#@p/\21#

@p/\#

q

D ,

~2.22!

(here [x] denotes a‘‘ q-number’’ (2.5)). Then matrix L constructed by means of the similarity
transformation

L5UDU21, ~2.23!

satisfies the relation (2.3) and therefore its entries generate an algebraL isomorphic toUq„sl~2!….
The proof is given in Appendix A. It makes use of the identity

R2~p!5~D
1

!21R1~p!sD
1

. ~2.24!

Remark:A consequence of~2.20! is the commutativity ofL andD

L
1

D
2

5D
2

L
1

, ~2.25!

which implies thatp commutes with all elements ofL. Later we shall interpretp as the operator
of spin.

Remark:Properly generalizing objects which enter Theorem 1, one can extend this theorem to
the case of any quantum semisimple Lie algebra.13 In particular, the matrixD for Uq„sl(N)… is
found to be:D(p) 5 const• qH^p, wherep consists of the operators corresponding to components
of the weight vector~i.e., on each irreducible representation they are multiples of unity! andH
consists of the generatorsHi of the Cartan subalgebra. An explicit form ofR(p) for Uq„sl(N)…
was obtained in Ref. 14.

Remark:The matrixR(p) obeys the deformed Yang–Baxter equation,5,14–16which can be
written, for example, as follows:

Q
1

R1

23

~p!~Q
1

!21R1

13

~p!Q
3

R1

12

~p!~Q
3

!215R1

12

~p!Q
2

R1

13

~p!~Q
2

!21R1

23

~p!, ~2.26!

where forJ q5Uq„sl~2!… the matrixQ 5 (e
i j

e2 i j) contains an extra variablej, conjugated withp:

@p, j#52 i\, qp/\ei j5qei jqp/\. ~2.27!
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This variablej belongs to the algebraU but does not enter matrixL. An explicit expression for
j will be given below. The general form ofQ for Uq„sl(N)… can be easily found:13 Q 5 eiH^ j,
where componentsji are operators conjugated topi :[pj , jk]52 i\d jk .

The matrixR(p) was discussed in physical literature in different contexts. In particular, it
plays significant role in studies of quantum Liouville15,16and WZW4–6 models; its relation to the
Calogero–Moser model was recently discussed in Ref. 17. But for us the more important fact is a
connection ofR(p) with the quantum 6j -symbols: the entries of~2.22! calculated on irreducible
representations coincide~up to some normalization! with the values of some 6j -symbols for
Uq„sl~2!… ~exact formulas are given in Ref. 20, generalizations are discussed in Ref. 13!. This
connection allows us to assume that objects like the matrixU should be interpreted in terms of
Clebsch–Gordan coefficients~CGC!. Below we demonstrate thatU is indeed a ‘‘generating ma-
trix’’ for CGC and clarify its relation to~T*B!q .

C. Algebra U

Definition 3: The algebraU is an associative algebra generated by entries of matrix

U5SU1 U2

U3 U4
D

and the operator p such that relations (2.19)–(2.22) hold.
Remark:For simplicity we restricted our consideration to the case ofU associated with

Uq„sl~2!…. Let us stress that the case ofU associated with Uq„sl(N)… can be studied similarly but
it will involve more technical details. On the other hand, it might be rather cumbrous to obtain
exact formulas forU associated with Uq~J ! in the case ofJ being generic semisimple Lie
algebra.

Let us give an explicit form of the defining relations~2.21!:

U1U35q21U3U1 , U2U45q21U4U2 , ~2.28!

U1U25U2U1A@p/\21#

@p/\11#
, U3U45U4U3A@p/\21#

@p/\11#
, ~2.29!

U1U45U4U1

A@p/\11#@p/\21#

@p/\#
2U3U2

qp/\

@p/\#
, ~2.30!

U3U25U2U3

A@p/\11#@p/\21#

@p/\#
2U1U4

q2p/\

@p/\#
. ~2.31!

The rest of the relations contained in~2.21! are not independent and can be deduced from~2.28!–
~2.31!.

Additionally, from ~2.20! one gets

qp/\U15q21U1q
p/\, qp/\U25qU2q

p/\,
~2.32!

qp/\U35q21U3q
p/\, qp/\U45qU4p

p/\.

Thus, relations~2.28!–~2.32! describe the algebraU. Using them, one may verify the follow-
ing statement:

Proposition 5: A central element ofU is given by the ‘‘deformed’’ determinant of the matrix
U:
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Det U[U1U4A@p/\11#

@p/\#
2U2U3A@p/\21#

@p/\#
5qU4U1A@p/\21#

@p/\#
2qU3U2A@p/\11#

@p/\#
.

~2.33!

For a fixed value of DetU, the algebraU contains only four independent generators. In
classical limit~\50! they become the coordinates on four-dimensional phase space.

For further discussion it is convenient to introduce new variables instead ofUi :

Û i5UiA@p/\#. ~2.34!

The coordinates$p,Û i% form a new set of generators of the algebraU. The commutation
relations~2.28!–~2.32! rewritten in terms of the new generators acquire a simpler form:

Û1Û35q21Û3Û1 , Û2Û45q21Û4Û2 , Û1Û25Û2Û1 , Û3Û45Û4Û3 ~2.35!

Û1Û45Û4Û1

@p/\11#

@p/\#
2Û3Û2

qp/\

@p/\#
, ~2.36!

Û3Û25Û2Û3

@p/\11#

@p/\#
2Û1Û4

q2p/\

@p/\#
, ~2.37!

qp/\Û15q21Û1q
p/\, qp/\Û25qÛ2q

p/\,
~2.38!

qp/\Û35q21Û3q
p/\, qp/\Û45qÛ4q

p/\.

The central element~2.33! in new variables looks as follows:

Det U[~Û1Û42Û2Û3!
1

@p/\#
5~Û4Û12Û3Û2!

q

@p/\#
. ~2.39!

The explicit form of the matrix inverse toÛ, which we shall need later, is

Û215
1

Det U S Û4 2qÛ2

2Û3 qÛ1
D 1

@p/\#
. ~2.40!

Finally, from ~2.34! we conclude that the expression~2.23! for the matrixL looks similar in
terms of new matrixÛ:

L5UDU215ÛDÛ21. ~2.41!

III. NONDEFORMED CASE

A. Representation of algebra U0

First, we consider the limitg→0, \Þ0 ~note thatq-numbers turn into ordinary numbers!, i.e.,
here we deal with a well understood situation—the representation theory of SL~2!. An investiga-
tion of this simple nondeformed case will make further results more transparent.

Let us denote the corresponding limit algebra asU0. The definingR-matrix relations~2.21!
now degenerate to

U0

1

U0

2

5U0

2

U0

1

R6
0 ~p!, ~3.1!
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where

R1
0 ~p!5R2

0 ~p!5S 1

A~p/\11!~p/\21!

~p/\!

\

p

2
\

p

A~p/\11!~p/\21!

~p/\!

1

D . ~3.2!

The analogs of relations~2.35!–~2.38! for U0 are ~from now on we omit the index 0 for the
generators ofU0!

pÛ15Û1~p2\!, pÛ25Û2~p1\!, pÛ35Û3~p2\!, pÛ45Û4~p1\!, ~3.3!

@Û1 ,Û2#5@Û1 ,Û3#5@Û2 ,Û4#5@Û3 ,Û4#50, ~3.4!

@Û1 ,Û4#5Det U0 , @Û3 ,Û2#52Det U0 , ~3.5!

where DetU0 stands for a limit version of~2.39!:

Det U05~Û1Û42Û2Û3!
\

p
5~Û4Û12Û3Û2!

\

p
. ~3.6!

Proposition 6: A possible solution for (3.3)–(3.6) is

Û15]1 , Û25z2 , Û352]2 , Û45z1 ; ~3.7!

p5\~z1]11z2]211!, ~3.8!

where we denote] i[]/]zi .
Remark:The representation given by~3.7! and~3.8! is not unique. In particular, the rescaling

Û i→ciÛ i ~whereci are numerical constants such thatc1c45c2c3! is allowable.
Proposition 6 together with the connection formula~2.34! allows us to write out the explicit

form of the matrixU0:

U05S ]1 z2

2]2 z1
DA\

p
. ~3.9!

Note that this matrix is ‘‘unimodular,’’ i.e., DetU05(]1z11z2]2)\/p51.
To describe the obtained representation of the algebraU0 completely one has to define a

space where operators~3.7!–~3.9! act. It is natural to think that this space isD(z1 ,z2)—a space of
holomorphic functions of two complex variables.

Let us recall thatD(z1 ,z2) is a space spanned on the vectors

u j ,m&5
z1
j1mz2

j2m

A~ j1m!! ~ j2m!!
, j50, 1

2, 1,
3
2,... , m52 j ,...,j , ~3.10!

and equipped with the scalar product

^ f ,g&5
1

~2p i !2 E f ~z1 ,z2!g~z1 ,z2!e
2z1 z̄12z2 z̄2dz1dz̄1dz2dz̄2 . ~3.11!
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The system~3.10! is orthonormal with respect to the scalar product~3.11!, that is ^ j ,mu j 8,m8&
5 d j j 8dmm8 . For the given scalar product a rule of conjugation of operators looks as follows:

~zi !*5] i , ~] i !*5zi . ~3.12!

The question concerning unitarity of the matrixU0 is discussed in Appendix B.

B. Connection with T*B

The generators of sl~2! can be realized onD(z1 ,z2) as differential operators:

l15z1]2 , l25z2]1 , l 35
1
2~z1]12z2]2!. ~3.13!

Using these expressions we can compare the representation of the algebraL ~or, more precisely,
its limit versionL0! given by Theorem 1 with the representation given by Proposition 1.

Indeed, in the limitg→0 the initial formula~2.23! acquires the form

L5I1gL01O~g2!, L05U0S p 2pDU0
21. ~3.14!

Substituting here the explicit expressions forp, U0, ~3.8! and~3.9! and using the representa-
tion ~3.13! for generators of sl~2!, one derives the following limit form of theL-operator:

L05\S 21z1]12z2]2 2z2]1

2z1]2 22z1]11z2]2
D 52\S 11 l 3 l2

l1 12 l 3
D . ~3.15!

Notice that~3.15! exactly coincides with~2.16! taken in the limitg→0. This explains why we had
to introduce the factorq2 in ~2.16!.

The next observation concerning the limit of theL-operator reads as follows.
Proposition 7: The matrix L0 in the representation (3.15) admits the decomposition

L05A0B0A0
21, ~3.16!

where

A05S z121/2 2z1
21/2z2

0 z1
1/2 D , B05\S p/\11/2 0

2]2 2~p/\21/2!D ~3.17!

and p is defined as in (3.8).
This statement can be verified directly.

Let us comment on the meaning of this proposition. First, note thatA0 is a realization of a
grouplike element of the Borel subgroup of SL~2!. Moreover, this explicit form ofA0 is straightly
connected with the construction of the model spaceM developed by Gelfandet al.1 Indeed, the
spaceD(z1 ,z2) being a realization of the model space for SL~2! @compare~1.1! and ~3.10!# is
spanned on monomials with arguments which are combinations of the entries ofA0. On the other
hand,B0 is of opposite~with respect toA0! triangularity and its entries are operators acting on a
given realization of the model space. Therefore,B0 can be regarded as an element of the space
dual to the corresponding Borel subalgebra.

Thus,A0 andB0 are coordinates in the base and in a fiber of the cotangent bundleT*B. At
this stage the appearance ofT*B ‘‘inside’’ the algebraL looks somewhat mysterious, but we
shall clarify it later.
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C. Clebsch–Gordan coefficients

Let us consider an action of the generators of the algebraU0 defined in~3.8! and~3.9! on the
spaceD(z1 ,z2) ~which is a realization of the model space!. The action of these operators on the
basic vectors~3.10! is given by

pu j ,m&5~2 j11!\u j ,m&, ~3.18!

U1u j ,m&5S j1m

2 j11D
1/2

u j2
1

2
,m2

1

2
&, U2u j ,m&5S j2m11

2 j11 D 1/2u j1 1

2
,m2

1

2
&,

~3.19!

U3u j ,m&52S j2m

2 j11D
1/2

u j2
1

2
,m1

1

2
&, U4u j ,m&5S j1m11

2 j11 D 1/2u j1 1

2
,m1

1

2
&.

Formula~3.18! allows us to identify the operatorp asp52 ĵ11, where ĵ is the operator of
spin. Hence, invariant subspaces ofp on the model space are those with fixed value of spinj .

Formulas~3.19! show thatUi are generators of the basic shifts on the model space~as
illustrated on Fig. 1!. This observation is very important. As we shall see later, the same picture
holds forqÞ1.

Now comparing the matrix elements^ j 9,m9uUi u j ,m& following from ~3.19! with values of the
Clebsch–Gordon coefficients~CGC! for decomposition of the tensor product of irreducible rep-
resentationsVj ^V1/2 for sl~2! which are given by the Van-der-Waerden formula

H jm 1
2

m8

j 9
m9J 5dm9,m1m8A~ j1 1

22 j 9!! ~ j1 j 92 1
2!! ~ j 91 1

22 j !!

~ j1 j 91 3
2!!

3(
r>0

~21!rA~ j1m!! ~ j2m!! ~ j 91m9!! ~ j 92m9!! ~2 j 911!

r ! ~ j1 1
22 j 92r !! ~ j2m2r !! ~ 1

21m82r !! ~ j 92 1
21m1r !! ~ j 92 j2m81r !!

, ~3.20!

we establish the following correspondence:

FIG. 1. Action of the operatorsUi on the model space.
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^ j 9,m9uU1u j ,m&5d j 9, j21/2H j
m

1
2

2 1
2

j 9
m9J , ^ j 9,m9uU2u j ,m&5d j 9, j11/2H j

m

1
2

2 1
2

j 9
m9J ,

~3.21!

^ j 9,m9uU3u j ,m&5d j 9, j21/2H j
m

1
2

1
2

j 9
m9J , ^ j 9,m9uU4u j ,m&5d j 9, j11/2H j

m

1
2

1
2

j 9
m9J .

Thus, we proved the following statement:
Proposition 8: The generators Ui of the algebraU0 are operators of the basic shifts on the

model space forsl~2! and they generate the Clebsch–Gordan coefficients corresponding to de-
composition of the product Vj ^V1/2 of the irreps ofsl(2).

This statement allows us to call the matrixU0 a ‘‘generating matrix’’~by analogy with the
notion of a generating function! for CGC.

Remark:Usually, introducing a generating object~well-known examples are the generating
functions for different sets of polynomials, e.g., for the Legendre polynomials!, one makes prop-
erties of the objects under consideration more evident. We think that the notion of generating
matrix will be useful for calculations involving CGC of classical and quantum algebras.

D. Wigner–Eckart theorem

One should underline a connection of the results obtained above~Proposition 8! and the
well-known mathematical construction—Wigner–Eckart theorem,18 which has important applica-
tions in quantum mechanics.

Let us remember that the Wigner–Eckart theorem gives CGC for classical Lie algebraJ as
matrix elements of some set of operators. These operators are calledtensor operators. They map
the corresponding model spaceM onto itself and have special transformation properties under
adjoint action of the algebra. In the case ofJ5sl~2! the Wigner–Eckart theorem reads as follows.

Theorem 2:Let l1 , l2 and l3 be the generators ofsl~2! and let Tm
j ,m52 j ,...,j , be a system

of operators acting onM and obeying the commutation relations

@ l 3 ,Tm
j #5mTm

j , @ l6 , Tm
j #5A~ j7m!~ j6m11!Tm61

j , ~3.22!

where j( j11) is an eigenvalue of the Casimir operator forsl~2!. Then the matrix elements of Tm
j

onM are proportional to Clebsch–Gordan coefficients:

^ j 9m9uTm
j u j 8m8&5Cj9 j8

j H j 8m8
j
m

j 9
m9J ,

where the coefficients Cj 9 j 8
j do not depend on m, m8, m9.

Proposition 8 says that any tensor operators of spinj51/2 ~that is, $T1/2
1/2,T21/2

1/2 %,
Tm
1/2 :Vj°Vj ^V1/25Vj11/2%Vj21/2! may be constructed via the operatorsUi ~in fact, it is evident

from Fig. 1!. Indeed, comparing the commutation relations obtained directly from~3.9! and~3.13!

@ l1 ,U1#5U3 , @ l1 ,U2#5U4 , @ l1 ,U3#50, @ l1 ,U4#50,

@ l2 ,U1#50, @ l2 ,U2#50, @ l2 ,U3#5U1 , @ l2 ,U4#5U2 , ~3.23!

@ l 3 ,U1#52 1
2U1 , @ l 3 ,U2#52 1

2U2 , @ l 3 ,U3#5 1
2U3 , @ l 3 ,U4#5 1

2U4

with Theorem 2, we get the following.
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Proposition 9: The generators Ui of the algebraU0 form a basis for tensor operators of spin
1/2, that is components T1/2

1/2 and T21/2
1/2 of any tensor operator of spin 1/2 can be realized as linear

combinations of Ui :

T21/2
1/2 5m~p!U11n~p!U2 , T1/2

1/25m~p!U31n~p!U4 , ~3.24!

wherem(p) and n(p) are functions only of p52 ĵ11.

IV. DEFORMED CASE

Now we want to extend the results obtained in the previous section to the case ofqÞ1. In
particular, we are going to examine the representations of the algebraU ~see Definition 3 above!
and to show that the corresponding matrixU generates Clebsch–Gordan coefficients for the
deformed Lie algebra. For these purposes we shall exploit a natural connection ofU with
~T*B!q .

A. The q -oscillators approach

There exist different ways to obtain desirable representations of the algebraU. First we
describe a more direct but less instructive method, which is similar to that used in the nonde-
formed case.

By analogy with the nondeformed case studied above, one can assume that the entries of the
matrixU might be realized as operators~deformations of those obtained in Proposition 6! acting
on the space of two complex variables. Indeed, using the definition~2.33! of the central element
of U and taking into account the identity forq-numbers

@a#qb1@b#q2a5@a1b#, ~4.1!

we can rewrite~2.35!–~2.37! in the following way:

Û1Û35q21Û3Û1 , Û2Û45q21Û4Û2 , Û1Û25Û2Û1 , Û3Û45Û4Û3 , ~4.2!

Û1Û42q21Û4Û15q21 Det U qp/\, Û3Û22qÛ2Û352Det U q2p/\. ~4.3!

The relations~4.3! are well known in the theory ofq-oscillators~q-bosons!.19 Recall that
q-analogs of creation, annihilation, and number operators form a deformed Heisenberg algebra
defined by the commutation relations

aa12qa1a5N21, Na5q21aN, Na15qa1N, ~4.4!

and they can be realized in terms of multiplication and difference operators:

a15z, a5z21@z]z#, N5qz]z. ~4.5!

Using two pairs of generators of the deformed Heisenberg algebra, one can construct the
generators of Uq„sl~2!…: l15a1

1a2 , l25a2
1a1 , andq

l3 5 N1
1/2N2

21/2. Applying here the represen-
tation ~4.5! one gets

l15z1z2
21@z2]2#, l25z2z1

21@z1]1#, ql35q1/2~z1]12z2]2!. ~4.6!

The Casimir operator~2.17! of Uq„sl~2!… in this realization is given by

C5qN1N21q21N1
21N2

21. ~4.7!
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Now, comparing,~4.2! and~4.3! with ~4.4!, it is easy to conclude that the pairs (Û1 ,Û4) and
(Û2 ,Û3) are similar to two pairs ofq-boson operators.

Taking into account the Weyl-like form of relations~4.2! and having already found explicit
expressions~3.7! and ~3.8! for the generators of algebraU0, one gets an answer forD andÛ in
terms ofq-oscillators. More precisely, a straightforward calculation allows us to verify the fol-
lowing statement:

Proposition 10: Equations (4.2) and (4.3) have the family of solutions:

qp/\5qN1N2 , Û5S a0a1N1
aN2

2b b0a2
1N1

bN2
2a

2g0a2N1
2~11b!N2

a d0a1
1N1

2aN2
11bD , ~4.8!

wherea0d05qb0g0.
Let us note that this form ofÛ is consistent with the condition~2.32!.
Taking into account the connection formula~2.34! and applying to the generatorsai , ai

1, and
Ni the representation~4.5!, one obtains from~4.8! a family of representations of the algebraU. To
select some of them, we have to impose an additional condition.

As mentioned above@see ~3.14! and ~3.15!#, in the nondeformed case substitution of the
generating matrixU0 in the formula~2.23! gives the matrixL0 which exactly coincides with the
limit version of the matrix~2.16!. It is natural to suppose that the generating matrixU correspond-
ing to deformed algebra produces in the same way the matrix~2.16! itself. Bearing in mind the
property~2.41!, we obtain the following.

Proposition 11: The condition Uˆ DÛ215L, where L is the matrix (2.16), D is given by

D5S pp/\ q2p/\D 5S qN1N2

q21N1
21N2

21D , ~4.9!

and Û is given by~4.8!, imposes the following restrictions:

a1b1 1
250, a05qg0 , b05d0 . ~4.10!

Substitution of~4.10! into ~4.8! completes description ofÛ in terms ofq-oscillators.

B. Connection with ( T*B)q

Now we are going to develop another approach to constructing representations ofU. It is
more universal since it is based on the connection~which takes place for arbitrary quantum Lie
algebra! of the algebraL ~see Definition 1! with ~T*B!q and on the interpretation of the de-
formed Borel subgroupBq as a quantum model space.

To clarify the announced connection we start with the following theorem~this is a version of
the theorem given in Ref. 10 forL-operators with nonultralocal relations!.

Theorem 3: Let the matrices AandB obey the relations of type (2.1),

R6A
1

A
2

5A
2

A
1

R6 , R6B
1

B
2

5B
2

B
1

R6 , ~4.11!

and the additional exchange relation

A
1

B
2

5B
2

A
1

R1 , A
2

B
1

R25B
1

A
2

. ~4.12!

Then the L-operator constructed by means of similarity transformation

L5ABA21 ~4.13!

6337A. G. Bytsko and L. D. Faddeev: (T*B)q , q-model space and CGC generating matrix

J. Math. Phys., Vol. 37, No. 12, December 1996

Downloaded¬28¬Sep¬2004¬to¬129.70.36.163.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jmp.aip.org/jmp/copyright.jsp



satisfies the relation (2.3).
Remark:Since~4.11! defines a quantum group structure,A21 in ~4.13! should be understood

as an antipode ofA.
Proof of Theorem 3 is straightforward:

L
1

R2
21L

2

R25A
1

B
1

~A!
1

21R2
21A

2

B
2

~A!
2

21R25A
1

B
1

A
2

R2
21~A!

1
21B

2

~A!
2

21R2

5A
1

A
2

B
1

B
2

R1
21~A!

1
21~A!

2
21R25R1

21A
2

A
1

B
2

B
1

R2~A!
2

21~A!
1

21

5R1
21A

2

B
2

A
1

R1~A!
2

21B
1

~A!
1

215R1
21A

2

B
2

~A!
2

21R1A
1

B
1

~A!
1

215R1
21L

2

R1L
1

.

Thus, for a given quantum groupGq , the algebraL is embedded into the algebra generated
by entries ofA and B obeying ~4.11! and ~4.12!. To argue that~4.11! and ~4.12! describe a
q-analog ofT*B, let us notice that the nonsymmetric~with respect toR-matrices! form of the
relations~4.12! imposes some restriction on the structure of the matricesA andB. Say, ifR1 is an
upper triangular matrix, thenA andB must be upper and lower triangular, respectively. Therefore,
one may think ofA andB as coordinates in the deformed Borel subgroupBq and in the dual
quantum space, respectively. In other words, the matricesA andB are coordinate and momentum
on the deformed phase space~T*B!q , respectively. Thus~4.11! and~4.12! may be regarded as a
definition of ~T*B!q ~for additional comments see Ref. 10!.

We should underline here that, although the matricesA andB look similar on the quantum
level, they transform into different objects whenq→1. Indeed, in the limitq→1 one has
L→I1g\L0 and the corresponding limit forms ofA andB are

A→A0 , B→I1g\B0 , ~4.14!

whereA0 is a grouplike element, whereasB0 is rather an element of algebra@see~3.17! as an
example ofA0 andB0 for sl~2!#.

Comparing the statements of Theorems 1 and 3 and taking into account the equality~2.41!, we
get the formula

L5ABA215ÛDÛ21, ~4.15!

which points out a possibility to construct the matrixÛ obeying~2.35!–~2.38! via the generators
of ~T*B!q . This connection is very important; below we consider it for SLq~2! in all details.

Now let us turn to the example of SLq~2!. ForR6 defined as in~2.8! one can choose

A5S a c

0 a21D , B5S b 0

d b21D . ~4.16!

Explicit relations for the generators of~T*B!q following from ~4.11! and ~4.12! are

ac5q21ca, bc5q1/2cb, ab5q1/2ba; ~4.17!

bd5q21db, ad5q1/2da, cd5q21/2dc1q21/2vb21a. ~4.18!

Performing the following decomposition,

d5d01d15d01q1/2c21b21a, ~4.19!

we transform~4.18! to homogeneous form:
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bd05q21d0b, ad05q1/2d0a, cd05q21/2d0c. ~4.20!

Thus, ~4.17! and ~4.20! describe four variables obeying Weyl-like commutation relations.
Using the jargon of conformal field theory, we shall call these formulas ‘‘free field representa-
tion’’ and the generatorsa, b, c, andd0 ‘‘free field’’ variables.

Remark:The last of equations~4.18! is nothing but a commutation relation entering the
definition of deformed Heisenberg algebra. Indeed, comparing~4.17! and ~4.18! with ~4.4!, one
can establish the following correspondence~r stands for arbitrary numerical constant!:

c;Nra1, d;2vN21/22ra, b21a;qrN23/2.

Thus, the transformation~4.19! can be interpreted as ‘‘bosonization’’ ofq-oscillators.
Now, substituting~4.16! in ~4.13!, we get

L5q1/2S a c

0 a21D S b 0

d b21D S a21 2qc

0 a D
5S q~b1b21!1a21cd0 2q2ac~b1qa21cd0!

~ac!21~b211q21a21cd0! 2q2a21cd0
D . ~4.21!

This matrix provides a ‘‘free field’’ realization of the algebraL for Uq„sl~2!…. Note that the
additional scaling factorq1/2 was introduced in~4.21! to ensure a coincidence of the Casimir
operators calculated by formulas~2.13! for the matrix~4.21!:

K15q2~b1b21!, K25q3 ~4.22!

with those for the matrix~2.16!. In fact, we redefined the matrixB in ~4.16! as

B̃5q1/2B. ~4.23!

Comparing the Casimir operatorK1 given by ~4.22! with one given by~2.18!, we identify the
operatorb with the power of the operator of spinĵ :

b5q2 ĵ11. ~4.24!

It follows from ~4.22! that matrixL contains only three independent variables@it is easy to see
from the explicit form~4.21! that these areb, ac, anda21cd0#. Moreover, direct calculation using
~4.17! and ~4.20! shows that all elements of the matrixL commute with operatorb. That agrees
with the property~2.25!.

Now exploiting the connection described by formula~4.15!, one can obtain an exact expres-
sion for Û.

Theorem 4: The algebraU[$Û,p% with defining relations (2.35)–(2.38) has the following
realization in terms of generators a, b, c, andd0:

b5qp/\, Û5S 1

v
a~b1a21cd0!e

2 i j/2 cei j/2

1

v
c21~b211q21a21cd0!e

2 i j/2 a21ei j/2
D , ~4.25!

wherev[q2q21, d0 is defined in (4.19), and
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ei j5a21bgc21d0
21 ~4.26!

with g being an arbitrary constant.
This theorem gives a ‘‘free field’’ representation of the algebraU. Let us remark that the

remaining freedom in~4.26! corresponds only to canonical transformations~since j and p are
conjugate variables!.

The formulated theorem will be proved in several steps. First, we introduce a lower-triangular
matrix which diagonalizes the matrixB̃:

V5S v1 0

v3 v2
D , B̃5VB̃0V

21, B̃05S q1/2b 0

0 q1/2b21D[q1/2B0 . ~4.27!

Proposition 12: A possible solution for the matrix V is

v15v1~b!, v25v2~b!, v35dv1~b! f ~b!, ~4.28!

wherev1(b) andv2(b) are arbitrary functions of b and f(b)5(b2qb21)21.
Thus, matrixL given by ~4.21! admits a decomposition of the form

L5Û0B̃0Û0
21, Û05AV. ~4.29!

However, this diagonalization is not unique. Using an arbitrary power of the diagonal matrix
Q, which depends on the variable conjugate tob,

Q5S ei j e2 i jD , bei j5qei jb, ~4.30!

we obtain a family of diagonalizing matrices:

L5Ûd B̃d Ûd
21, Ûd5AVQd, B̃d5Q2dB̃0Q

d5qdB̃05qd11/2B0 . ~4.31!

An explicit form of the diagonalizing matrix is

Ûd5AVQd5S ~av11cdv1f !eidj cv2e
2 idj

a21dv1f e
idj a21v2e

2 idj
D . ~4.32!

Here we should describe a new objectei j which appeared in the matrixÛ. We assume that the
following Weyl-like relations hold:

aei j5qaei ja, bei j5qei jb, cei j5qbei jc, d0e
i j5qgei jd0 . ~4.33!

Proposition 13: The set of equations (4.33) is equivalent to

ei j5ab1~g21!/2bgc~g21!/22ad0
21. ~4.34!

Now we have to remember that the matrixU ~andÛ as well! described in Theorem 1 has to
satisfy the relation~2.20! or, equivalently, the relation

B
1

0Û
2

d5Û
2

d B
1

0s, ~4.35!

wheres andB0 were introduced in~2.20! and~4.27!, respectively. A straightforward calculation
using ~4.17! and ~4.18! leads to the following.
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Proposition 14: The matrix Uˆ d given by (4.32) satisfies the relation (4.35) only ford521/2.
It is worth mentioning that such a choice ofd exactly compensates the renormalization of

the matrixB in ~4.23!, i.e., B̃21/25B0 .
Bearing in mind the formula~4.19!, one can rewrite~4.32! for d521/2 as follows,

Û[Û21/25S a~b1a21cd0!we
2 i j/2 cvei j/2

c21~b211q21a21cd0!we
2 i j/2 a21vei j/2

D , ~4.36!

wherew[ f (b)v1(b) andv[v2(b).
Finally, a direct check shows~see Appendix C! that the matrix~4.36! obeys Eqs.~2.35!–

~2.38! if the functionsw andv are constant@we chose them as follows:v(b)51,w(b)51/v# and
the coefficients in~4.33! and~4.34! satisfy the conditionsb52a andg5a2b2152a21. Thus,
Theorem 4 is proven.

Let us end the discussion of relation of~T*B!q to algebrasL andU with one more state-
ment:

Theorem 5: The algebra generated by coordinates on~T*B!q is isomorphic to the algebra
generated by entries of the matrix LandQ.

Proof: Indeed, formulas~4.21! and~4.26! provide explicit expressions for entries ofL andQ
via the generatorsa, b, c, andd0 @up to unessential canonical transformation in~4.26!#. Con-
versely, suppose matrixL and the elementei j are given. Then, as it follows from~4.21!, one can
construct from entries ofL the combinationsb, ac, anda21cd0 . Together with~4.26! this allows
us to recover the ‘‘coordinates’’a, b, c, andd0.

Although we considered this theorem only for the case of SLq~2!, there is, evidence that it
holds for the generic case. For example, in the case ofGq5SLq(N) a point on the quantum bundle
~T*B!q is parametrized byN3N matricesA andB. As above, the matrixL5ABA21 satisfies
~2.3! and therefore its entries generate the corresponding algebraL. However, the dimension of
~T*B!q exceeds the dimension ofL: dim~T*B!q2dimL5(N21N22)2(N221)5N21. It is
very probable that the remaining~N21! generators are exactly those that enter the diagonal
unimodularN3N matrixQ.

C. Explicit representation

Now we face the problem of constructing an explicit representation for the generatorsa, b, c,
andd0. A Weyl-like form of the commutation relations~4.17! and~4.20! points out the possibility
of getting a realization for these generators in terms of two pairs of canonical variables. This also
means@due to the interpretation of~4.19! as ‘‘bosonization’’ ofq-oscillators# that the generators
a, b, c, andd admit a realization viaq-oscillators. Evidently, such a representation is not unique.

It is natural to realizea, b, c, and d0 as operators acting on theq-analog of the space
D(z1 ,z2). We shall denote this space asDq(z1 ,z2). The spaceDq(z1 ,z2) is spanned on the basic
vectors of form~remember that [x] stands forq-numbers!

u j ,m&5
z1
j1mz2

j2m

A@ j1m#! @ j2m#!
, j50, 1

2, 1,
3
2,..., m52 j ,..,j . ~4.37!

One can define onDq(z1 ,z2) such a scalar product that the system~4.37! is orthonormal, that is
^ j ,mu j 8,m8&5d j j 8dmm8.

Remark:This scalar product is a deformation of~3.11!. Its explicit form makes use of the
q-exponent and the Jackson integral. See Ref. 19 for details.

In all formulas concerning the spaceDq(z1 ,z2) we suppose thatq is chosen as described in
Sec. II~i.e., it belongs either to the real axis or to the unit circle at the complex plane!. In this case
an analog of the rule of conjugation~3.12! is
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~zi !*5zi
21@zi] i #, ~zi] i !*5zi] i . ~4.38!

The formulas~4.24! and~4.25! imply that the generatorb is a power of the operator of spin.
Hence, on the spaceDq(z1 ,z2) it is given by

b5qz1]11z2]2115qN1N2 . ~4.39!

Next, let us remember that we already know the limit versions of the generatorsa, b, c, and
d @see Proposition 7; one should take into account the rescaling~4.23!#. Their appropriate defor-
mations for genericq are described by

Proposition 15: The set of operators (with arbitrary constantsli , ni!

a5ql0z1
21/2 N1

l1, c5qn0 z1
21/2z2 N1

l122N2
n2,

~4.40!
b5qN1N2 , d52ql02n01n2 z2

21~N22N2
21!N1N2

2n2

satisfies (4.17) and (4.18) and gives in the limitg→0 the generators found in (3.17).
Although due to Theorem 4 this proposition gives a family of representations forU, we again

should impose an additional condition using the matrix~2.16! as a standard~justification for this
trick was given above!.

Proposition 16: Matrix L given by (4.21) coincides with the matrix (2.16) taken in the rep-
resentation (4.6) provided that

b5qN1N2 , ac5q21/2z1
21z2N1

21/2N2
21/2, a21cd052N1

21N2 . ~4.41!

Comparing the statements of Propositions 15 and 16, we derive

a5ql0z1
21/2N1

3/4, b5qN1N2 , c5qn0z1
21/2z2N1

25/4N2
21/2,

~4.42!
d052ql02n021/2z2

21N1N2
3/2, ql01n05q21/8.

Substituting~4.42! into ~4.26! @and remember that~4.26! is defined only up to a coefficient#, we
get

ei j5q2ez1N1
g21/2N2

g21, ~4.43!

whereg and e are arbitrary. Finally, substituting~4.42! and ~4.43! into ~4.36!, we obtain~one
should remember thatU and Û are defined only up to arbitrary scaling factor!

Û5S 1

v
a0z1

21N1
12g/2N2

3/22g/2~N12N1
21! b0z2N1

g/223/2N2
g/221

2
1

v
q21a0z2

21N1
1/22g/2N2

12g/2~N22N2
21! b0z1N1

g/221N2
g/221/2D . ~4.44!

It is easy to check that the family of matrices~4.44! exactly coincides with what was obtained
in q-oscillator approach~see Propositions 10 and 11!.

D. Quantum Clebsch–Gordan coefficients

Using the connection formula~2.34! we get from~4.44! a family of matricesU which provide
possible representations of the algebraU. It is natural to study an action of the entries of these
matrices on the spaceDq(z1 ,z2) described above. On the basic vectors~4.37! these operators act
as follows:
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U1u j ,m&5C1q
~1/2!~ j2m11!A @ j1m#

@2 j11#
u j2 1

2,m2 1
2&,

U2u j ,m&5C2q
2~1/2!~ j1m!A@ j2m11#

@2 j11
u j1 1

2,m2 1
2&,

~4.45!

U3u j ,m&52C3q
2~1/2!~ j1m11!A @ j2m#

@2 j11#
u j2 1

2,m1 1
2&,

U4u j ,m&5C4q
~1/2!~ j2m!A@ j1m11#

@2 j11#
u j1 1

2,m1 1
2&,

where the coefficientsCi do not depend onm.
Note that, similar to the classical case, the operatorsUi correspond to the basic shifts on the

model space. Comparing the matrix elements^ j 8,m8uUi u j ,m& following from ~4.45! to values of
CGC for Uq„sl~2!… given byq-analog of the Van-der-Waerden formula,20,21which for the decom-
position ofVj ^V1/2 looks like following,

H jm 1
2

m8

j 9
m9J

q

5dm9,m1m8S @ j1 1
22 j 9#! @ j1 j 92 1

2#! @ j 91 1
22 j #!

@ j1 j 91 3
2#!

D 1/2

q~1/2!~ j11/22 j 9!~ j1 j 913/2!1 jm82~1/2!m

3(
r>0

~21!rq2r ~ j1 j 913/2!~ @ j1m#! @ j2m#! @ j 91m9#! @ j 92m9#! @2 j 911# !1/2

@r #! @ j1 1
22 j 92r #! @ j2m2r #! @ 1

21m82r #! @ j 92 1
21m1r #! @ j 92 j2m81r #!

,

~4.46!

we establish the following correspondence:

^ j 9,m9uU1u j ,m&5d j 9, j21/2 a0 q
~12g/2! j21/2 H j

m

1
2

2 1
2

j 9
m9J

q

,

^ j 9,m9uU2u j ,m&5d j 9, j11/2 b0 q
~g/221! j H j

m

1
2

2 1
2

j 9
m9J

q

,

^ j 9,m9uU3u j ,m&5d j 9, j21/2 a0 q
~12g/2! j21/2 H j

m

1
2

1
2

j 9
m9J

q

,

^ j 9,m9uU4u j ,m&5d j 9, j11/2 b0 q
~g/221! j H j

m

1
2

1
2

j 9
m9J

q

.

Thus we derive an analog of Proposition 8:
Proposition 17: The generators Ui of the algebraU are operators of the basic shifts on the

model space forUq„sl~2!… and they generate the q-Clebsch–Gordan coefficients corresponding to
decomposition of the product Vj ^V1/2 of irreps ofUq„sl~2!….

Remark:Puttinga05q1/2, b051, andg52 in ~4.44!, we get the following generating matrix:
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U5S z1
21@z1]1#q

~1/2!~z2]211! z2q
2~1/2!z1]1

2z2
21@z2]2#q

2~1/2!~z1]111! z1q
~1/2!z2]2

D 1

A@p/\#
, Det U5q1/2, ~4.47!

which may be called ‘‘exact’’ as it satisfies~4.45! with Ci51. The question about unitarity of the
matrix ~4.47! is discussed in Appendix B.

E. Generalized Wigner–Eckart theorem

As we demonstrated in the previous section, entries of the matrixU0 are tensor operators of
spin 1/2 forJ5sl~2!, hence they provide a realization of the Wigner–Eckart theorem. Let us now
consider the matrixU from this point of view.

The theory of tensor operators for quantum algebras was discussed by many authors~see, e.g.,
Ref. 22!. In particular, the generalized Wigner–Eckart theorem@in the case ofJ q5Uq„sl~2!…#
reads as follows.

Theorem 6: Let l1 , l2 , and l3 be the generators of Uq„sl~2!… and let Tm
j , m52 j ,..,j , be a

system of operators acting on the deformed model spaceM and obeying the commutation rela-
tions

@ l 3, Tm
j #5mTm

j , l6Tm
j ql32ql371Tm

j l65A@ j7m#@ j6m11#Tm61
j . ~4.48!

Then the matrix elements of Tm
j onM are proportional to q-Clebsch–Gordan coefficients:

^ j 9m9uTm
j u j 8m8&5Cj 9 j 8

j H j 8m8
j
m

j 9
m9J

q

,

where the coefficients Cj 9 j 8
j do not depend on m, m8, and m9.

Proposition 17 implies thatUi may be regarded asq-tensor operators. Indeed, using~4.44!
and ~4.6!, one can check thatUi satisfy ~4.48! @one obtains forUi deformations of relations
~3.23!#. Similarly to the classical case we have the following.

Proposition 18: The generators Ui of the algebraU form a basis for q-tensor operators of
spin 1/2, that is components T1/2

1/2 and T21/2
1/2 of any q-tensor operator of spin 1/2 can be realized as

linear combinations of Ui :

T21/2
1/2 5m~p!U11n~p!U2 , T1/2

1/25m~p!U31n~p!U4 , ~4.49!

wherem(p) and n(p) are functions only of p.
Remark:Unlike the classical case, solution~4.44! gives a family of matricesU. However, the

corresponding matrix elements^ j 9m9uUi u j 8m8& differ only by factors which do not depend onm8
andm9. Thus, any representative of the obtained family of matricesU may be used in Proposition
18.

Let us end the description of the algebraU from the point of view of theory ofq-tensor
operators with the following statement:

Proposition 19: The matrices U and L defined in Theorem 1 obey the relation

R2U
1

L
2

5L
2

R1U
1

. ~4.50!

The proof is straightforward:
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R2U
1

L
2

5R2U
1

U
2

D
2

~U !
2

215U
2

U
1

R2D
2

~U !
2

215U
2

U
1

D
2

sR1~U !
2

21

5U
2

D
2

U
1

R1~U !
2

215U
2

D
2

~U !
2

21R1U
1

5L
2

R1U
1

;

it makes use of the relations~2.20! and ~2.21! and the property~2.24!.
A remarkable fact is that~4.50! may be used for definition ofq-tensor operators instead of

~4.48!. Indeed, in the limitg→0 it turns into

@U0

1

, L0
2

#5LU0

1

, L5S 1/2 21/2 1

1 21/2

1/2

D . ~4.51!

Using the explicit form ofL0 given in ~3.14!, one can easily check that this matrix relation is
equivalent to~3.23!. More onR-matrix description ofq-tensor operators is given in Ref. 23.

V. CONCLUSION

In this paper we have constructed theq-analog of the phase spaceT*B and clarified its role
in description of the model representation of the corresponding quantum groupGq . We unraveled
a connection between the algebras generated by entries of matrix (A,B), (U,D), and (L,Q). The
general formulas were concretized by the example ofG5SL~2!.

An extension of the described scheme to the case of arbitrary groupG will definitely improve
understanding of the role played by the matrixR(p) which so far has been discussed in the
literature much less than standard matrixR.

The results of this paper can be generalized in several directions even for the case of SL~2!.
The first is a consideration of the matrixU with an auxiliary space corresponding to the higher
spin representation. It must lead to an exact form of the generating matrix for all CGC. The work
in this direction is in progress now. The second point to be discussed is the case ofq being a root
of unity. The structure ofR(p) allows us to hope that reduction on so-called ‘‘good’’ represen-
tations will be quite natural in our formalism. However, this case is to be examined more care-
fully.

ACKNOWLEDGMENTS

We are grateful to A. Yu. Alekseev, P. P. Kulish, and V. Schomerus for stimulating discus-
sions and useful comments. We would like to thank Professor A. Niemi for hospitality at TFT,
University of Helsinki, where this work was begun.

This work was partially supported by ISF grant R2H000 and by INTAS grant.

APPENDIX A: PROOF OF THEOREM 1

Using ~2.20! and~2.21! together with the identity~2.24! and taking into account that matrices

D
1

, D
2

, ands mutually commute, we check
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L
1

R2
21L

2

R25U
1

D
1

~U !
1

21R2
21U

2

D
2

~U !
2

21R2

5U
1

D
1

U
2

R2
21~p!~U !

1
21D

2

~U !
2

21R2

5U
1

U
2

D
1

sR2
21~p!D

2

s~U !
1

21~U !
2

21R2

5R1
21U

2

U
1

R1~p!D
1

sR2
21~p!D

2

sR2~p!~U !
2

21~U !
1

21

5R1
21U

2

U
1

D
2

sD
1

R2~p!~U !
2

21~U !
1

21

5R1
21U

2

D
2

U
1

R1~p!sD
1

~U !
2

21~U !
1

21

5R1
21U

2

D
2

U
1

R1~p!~U !
2

21D
1

~U !
1

21

5R1
21U

2

D
2

~U !
2

21R1U
1

D
1

~U !
1

215R1
21L

2

R1L
1

.

APPENDIX B: ON CONJUGATION OF U0 AND U

First we consider the matrixU0. Using the rules of conjugation~3.12! ~and taking into
account thatp*5p!, one can check that the matrix conjugated toU0 does not coincide withU0

21;
that is, the matrixU0 itself is not unitary. However, it turns out that the transposed matrix@one
should remember that in general (UT)21Þ(U21)T for matrices with noncommuting entries#

U0
T5S ]1 2]2

z2 z1
DA\

p

satisfies the unitarity condition:

~U0
T!*5A\

p S z1 ]2

2z2 ]1
D 5~U0

T!21.

In the deformed case~recall thatq can be either real oruqu51! the matrixU includes the
operatorN which conjugates in different ways for the different choices ofq. Let us consider the
matrixU given by~4.47!. The conjugated matrix can be constructed according to the rules~4.38!.
Using the formula~4.1!, one can check that the unitarity condition (UT)*UT5UT(UT)*5I ~i.e.,
the same as in the nondeformed case! for the transposed matrix holds only for realq. For uqu51,
see Ref. 13.

APPENDIX C: PROOF OF THEOREM 4

Here we complete the proof of Theorem 4, i.e., we have to prove that matrix~4.36! satisfies
~2.35!–~2.37! if the following conditions,

a1b50, g1b2a1150, v~b!51, w~b!51/v, ~C1!

are fulfilled.
First, using relations~4.17!, ~4.20!, and~4.33! and conditions~C1!, we check
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Û1Û25a~b1a21cd0!e
2 i jcei j5q21/21b/2ca~b1qa21cd0!e

i je2 i j

5qa/21b/2cei ja~b1q~g1b2a11!/2a21cd0!e
2 i j5Û2Û1 ,

Û1Û35a~b1a21cd0!e
2 i jc21~b211q21a21cd0!e

2 i j

5q1/22b/2c21a~b1q21a21cd0!e
2 i j~b211q21a21cd0!e

2 i j

5q2b/2c21a~b211q21a21cd0!~b1q21a21cd0!e
2 i je2 i j

5q21/22b/2c21~b211q21a21cd0!a~b1q21a21cd0!e
2 i je2 i j

5q212a/22b/2c21~b211q21a21cd0!ae
2 i j~b1a21cd0!e

2 i j

5q21Û3Û1 .

The rest of relations~2.35! can be proved similarly.
Next, note that relation~2.36! can be rewritten as follows:

Û1Û4~b2b21!2Û4Û1~qb2q21b21!52vÛ3Û2b. ~C2!

To prove this quality we transform its lhs and rhs as follows

Û1Û4~b2b21!2Û4Û1~qb2q21b21!

5a~b1a21cd0!e
2 i ja21ei j~b2b21!2a21ei ja~b1a21cd0!e

2 i j~qb2q21b21!

5q2a/2~q1/2b1q21/2a21cd0!~b2b21!2q2a/2~q21/2b1q1/2a21cd0!~qb2q21b21!

52q2a/2v~q1/2a21cd0b1q21/2!;

Û3Û2b5c21~b211q21a21cd0!e
2 i jcei jb

5qb/2~q21/2b211q1/2a21cd0!b5qb/2~q21/21q1/2a21cd0b!.

Thus, the equality~C2! is fulfilled if conditions~C1! are valid. The relation~2.37! can be proved
in the same way.
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