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F U S I O N  OF q - T E N S O R  O P E R A T O R S :  Q U A S I - H O P F - A L G E B R A I C  
P O I N T  OF V I E W  

A. G. Bytsko  UDC 517.9 

We discuss the fusion of tensor operators for Uq( J )  by means of the R-matrix approach. The problem is reduced 
to construction of the twisting element iP which appears in Drinfeld's description of quasi-Hopf algebras. The 
discussion is illustrated by explicit calculations for the case of Uq(sl(2)). Bibliography: 20 titles. 

1. INTRODUCTION 

w MOTIVATIONS AND NOTATION 

Originally the theory of tensor operators arose as a result of a group-theoretical approach to quantum 
mechanics [1]. In turn, the further development of representation theory was inspired by the physical 
interpretation of its mathematical  content. The relatively recent appearance of the theory of quantum 
groups [2] has led to the development of the theory of q-deformed tensor operators [3]. The latter turned 
out to be not a pure mathematical  construction; it is employed, in particular, in the description of the 
quantmn WZW model given in [4, 5]. 

In the present paper, we discuss some aspects of the fusion procedure for (deformed) tensor operators in 
the R-matrix tbrnmlation [6]. We consider a special case of the fusion scheme. Namely, given basic tensor 
operators for two irreducible representations pl and pZ, we construct a set of basic tensor operators for the 
irreducible representation pK appearing in the decomposition of pI | pg. This problem is closely related 
to Drinfeld's construction of quasi-Hopf algebras [7]. Our aim is to obtain exact prescriptions applicable 
in practice. However, to present a precise statement of the problem, we first need to give a rather detailed 
introduction to the subject. 

We suppose that  the reader is familiar with the notion of Hopf algebra. The latter is an associative algebra 
g equipped with a unit c E g, a homomorphism A : g ~-~ g | g (the co-product), an anti-automorphism 
S : g ~ g (the antipode), and a one-dimensional representation c : g ~-* C (the co-unit) which satisfy a 
certain set of axioms [8]. A quasitriangular Hopf algebra [2] possesses in addition an invertible element 
R E g | g (the universal R-matrix) satisfying certain relations which, in particular, imply the Yang-Baxter  
equation. Throughout  the paper, we use the so-called R-matrix formalism [9, 10]. Recall that  its main 
ingredients are the operator-valued matrices (L-operators) 

L I + = ( y  | L x_=(pz |  (1) 

and the numerical matrices (R-matrices) 

J = |  n U ( Y  |  (2) 

where pI is an irreducible representation of G, and R+ = R, R_ = (R~_) -1. In what follows, ~ stands for 
the permutat ion in g | g. 

We consider only the case where g = Uq(J)  with [q[ = 1, and J is a senti-simple Lie algebra (the way 
of generalizing to an arbitrary semisimple modular Hopf algebra ,7 is described in [11]). For simplicity, we 
also assume that q is not a root of unity. 

We perform all explicit computations only in the case of Uq(sl(2)), but they can certainly be repeated 
at least for Uq(sl(n)). Let us also emphasize that, although we deal with deformed tensor operators and 
preserve the index q in some formulas, the classical (i.e., nondeformed) theory is recovered in the limit q = 1 
and, therefore, it does not need special comments. 
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w (DEFORMED) TENSOR OPERATORS. GENERATING MATRICES 

Let a given quasitriangular Hopf algebra G be the symmetry algebra of some physical model. This means 
that the operators corresponding to the physical variables in this model are classified with respect to their 
transformation properties with respect to the adjoint action of G. Recall that if 7/is a Hilbert space such 
that G C EndT/, then the (q-deformed) adjoint action of an element ~ �9 G on any element r] �9 End 7/is 
defined as follows [3]: 

(ad q{)r/ E 1 2 = (3) 
k 

where [~ are the components of the co-product A[  = ~ | ~2 k �9 g | g, and S([)  �9 g stands for the 
k 

antipode of ~. 
From the physical point of view, the space 7-/in (3) is the Hilbert space of the model in question. Since g 

is a (quantum) Lie algebra, one often chooses 7 / a s  the corresponding model space. The latter is defined as 
the sum of all irreducible representations taken with multiplicity one, A,t = | (I  runs over all highest 
weights). 

Let pJ : g ~-~ End V J be an irreducible representation of g with highest weight J and representation 
- j - dim pJ 

space V j. A set of operators {T~,}~=I acting on the Hilbert space 7/ is called a tensor operator (of 
highest weight J)  if 

(adq~)Tg=~Tdn(p ' l (~))nm forall ~ � 9  (4) 
n 

I ' d i m ~  .Ldim~ 
If { Z ~ } m = l  and {T,;(,j,e= 1 are tensor operators acting on the same Hilbert space, then, using the corre- 
sponding (deformed) Clebsch-Gordan coefficients, we can construct the following tensor operator of weight 
t ( '  [31: { },, T,);,, = ~ I J K T/,T;~,. (5) 

Tl ~ )2"J  TI ~ I I 

This formula describes the fusion of tensor operators. 
In the case G = Uq(sl(2)), the tensor operators are labeled by spin .1, and definition (4) takes the form 

,~p:j=rr, J H H=F1 ] :t= J q Ti;~X V/[J :F Jr- 1]Tin:t:1, a 1;;q - = m ] [ J •  
H ,-,. J - H r n  J q 2~q = q  T~, 

(6 )  

where [x] = (qZ _ q-X)/(q _ q-~) denotes the q-nmnber, and X+ and H are the generators satisfying the 
relations 

[g,  3/+] = + X + ,  [X+,X_]  = [2H]. 
An example of a (deformed) tensor operator (of spin 1) is provided by the following set of combinations of 
generators: 

T ~ = q - H X + ,  T ~ ) = ( q - I X _ X + - q X + X _ ) / V ~ . ] ,  T l_ l=- -q -HX_ .  (7) 

However, this is a rather special case because, generally speaking, the components of tensor operators act 
on the model space as shifts between different subspaces 7-//, whereas 7/ are invariant subspaces for the 
components in (7). 

Let -us note that,  along with the tensor operators of covariant type introduced in (4), one can define a 
�9 J - j .  d i m  

contravariant tensor operator as a set of operators {T~}m=[ satisfying the relations 

(adq ) m: = for all �9 G. (S) 
n 

Further we consider only the covariant case since the theory and computations for the contravariant case 
are quite similar. 
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In the case of a quasitriangular Hopf algebra, we can describe tensor operators by means of the R-matrix 
language. Let pJ be an irreducible representation of g with highest weight J and representation space V J. 
Consider the matrix U J E End V g | End 7-/satisfying the following R-matrix relations: 

11 2 j  2 j  i j l i  
L + U  = U R •  L+, (9) 

where L J and R~: J are defined as in (1)-(2). Equations (9) are equivalent to the statement that  each row of 
U J satisfies (4), i.e., all rows of U J are tensor operators of weight J [6]. We shall refer to U J as generating 
matrices because, according to the Wigner-Eckart  theorem, matrix elements of entries of U J (evaluated, 
say, on the corresponding model space) give the (q-deformed) Clebsch-Gordan coefficients. 

Note that  U J in (9) can have an arbitrary number of rows which are not necessarily linearly indepen- 
dent tensor operators. However, from now on we shall work with the case of square generating matrices. 
Moreover, for g = Uq(sl(n))  (and very likely even for Uq(J)  with any semisimple C J )  one can construct 
square generating matrices whose rows are linearly independent tensor operators [4, 5, 12]. Notice also that 
if U J satisfies (9) and M is a matrix with entries comnmting with all elements of g, then 

~?z = l ~ l U  g (10) 
also satisfies (9), i.e., UJ also is a generating matrix. 

Now let U r and U J satisfy (9). The analog of the fusion formula (5) for generating matrices reads [6] 

g f J  IJ I J2 j 1 I IJ V I V J = P ] ( F  U U P~: E | | (11) 

where the left-hand side is a new generating matrix of weight I (  written in the basis of V I | V J. Here 
F IJ E V I | V J stands tbr an arbitrary matrix whose entries commute with all elements of g and pI;] 
denotes a projector (i.e., (pig)2 IJ El,; ) onto the subspace in V I | V J corresponding to the representation 
pK. 

One can rewrite (11) in the standard basis of the space VK: 

U, f K _t ~sJ  = ernCJt, 2 en ,  ?~z,n = 1, . . .  , d imp r'. (12) 

Here {en } is all orthonormal set of the eigenvectors of the projector P~:I'], i.e., P ~ J =  y]~ e~ | %t and ement = 

Fornmla (II) resembles the fusion formula for R-matrices [I0]: 

1,32 L K 23 13 LJ 12 LI 23 
R = P ~ J R •  R •  P~(!. (13) 

Here we use the notation from [10], and on the left-hand side of (13) we have R LK written in the basis of 
V n | V I | V J. Of course, the origin of both (11) and (13) is the Hopf structure of g. 

The fusion formulas given above are of direct practical use since they allow one to construct the corre- 
sponding objects (generating matrices and R-matrices) for higher representations, starting with those for 
the fundamental  irreducible representations. For later use, we rewrite (12)'(13) as follows: 

u K  2 1 
---- C [ I J K ] F I J u J u I c ' [ I J K ] ,  (14) 

R LK 2~[IJIf]IRL, j12 L / 2 3  
= R • C [ I J K ] .  (15) 

Here we used the so-called Clebsch-Gordan maps C [ I J K ]  : V I | V J ~ V K and C ' [ I J K ]  : V K ~-+ V I | V J, 
which are constructed according to the rubs  

dim pK dim pX" 

E E ~t (16) ' C ' [ I J K ]  = e~ | e n C [ I J K ]  = "~,~ | %,  
n = l  n = l  

where ~'~ is the vector e~ rewrit ten in the basis of the space V K. The main properties of the C G  maps are 
as follows: 

C [ I J K ] ( y  | p J ) A ( [ ) C ' [ I J I ( ]  = p/~(~) for any [ r g, (17) 

E C'[IJK]C[L_/ITK] = 5,LSJM, C D [ I J K ] C [ I J L ]  = 5,<L. (18) 
K 
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w E X A C T  GENERATING MATRICES 

Let C denote a commutative .-algebra of functions on the weight space of Uq(ff). It is convenient to 
parametrize the coordinate on C by the vec tor /7  = 2 J  + p, where J runs over all highest weights, and 
p is the sum of the simple roots of CJ.  Thus, C is an algebra of functions depending on the "variable" 
pi-components of/7. 

Let J be a Lie algebra of rank n, and let [q[ = 1. Generating matrices for G = Uq(J)  can be constructed 

by the following method [4, 5, 11, 12]. Define D = q2$| E G | C and ~ = q4~| E G | ~, where A |  B is 
n 

understood as ~ Ai | Bi, and Hi are the basic generators of the Cartan subalgebra of G. Next, introduce 
i=1 

the map 
~ : C ~ |  ~(p-~ = ~ |  2H | ~. (19) 

Let ~• E G | G | C be solutions (related, as usual, by ~_(p~) = (~_(/7))-1) of the equations 

12 13 23 23 13 12 
"]-~• (p--~R• ( /72)J~•  = n •  (/71) "~-• (/7) n •  (20) 

[n•  (p-~, qH~ Q qH~] = 0 for all i, (21) 

2 2 
n _  (/7) D = ~ D n +  (p-') , (22) 

(p-3 = nT? (y). (23) 

The subscripts in (20) denote the shifts of the corresponding arguments 1 according to (19). It is easy to 
verify that  the uni tary property 2 (23) of ~ •  (p-~ is consistent with (20)-(22) for Iq] = 1. 

In general, for a given ,7, there exists a family of solutions of Eq. (20). However, in the case f f  = sl(n), 
additional conditions (21)-(23) fix the solution uniquely [5, 13], and it is very likely that  the same picture 
holds for any (deformed) semisimple Lie algebra ft.  Moreover, such a solution has the following remarkable 
property [4, 5, 20]: the entries of ~ : J  (/7) are nothing but the corresponding (deformed) 6j-symbols (involving 
the weights I, J ,  and all h" admissible by the triangle inequality). 

Now we consider the element U E G | End 7~ which satisfies the equations 

2 1 1 2  
n •  (p-')UU = UUR•  (24) 

1 2  2 1  
UD = f iDU, (25) 

U -  1 D U  = q2C(p-') L + L - 1  (26) 

where C(p-~ = �88 p)( /7-  p) is the Casimir element. It can be shown [4, 5, 11, 12] that  such a U (if it 
exists) is a generating matrix 3 for G. Note that  (20)-(21) are nothing but consistency conditions for (24) 
and (25), and (21) are the same symmetry  conditions which are known 4 for the s tandard R-matrices of 
Uq(ff). Relation (25) is a matrix form of the equation 

u g  = u. (27) 

Equation (26) is a kind of normalization condition. 

1 Note  tha t  (20) takes values in G | G @ G | G. The  subscript i = 1, 2, 3 means t h a t / 4 - t e r m  of (19) appears  in the i *h tensor  
component .  

2The  conjugat ion of an object  belonging to the  n-fold tensor product  G | is unders tood as follows: (~1 | ~2 .- �9 @ ~n)* = 
~ | 1 7 4  

3To be more precise, U and T~• ~) are not  matr ices  but  the so-called universal objects.  If  we fix representat ions of their  
G-parts,  U J = (pJ @ id)U, 7~ IJ (p-) = ( p i g  pJ)7-~• (p~), we obtain  a generat ing mat r ix  and C-valued counterpar ts  of the s tandard  
R-matr ices .  

4Recall  that  quant iza t ion  does not deform the  co-mult ipl icat ion for elements of the Car tan  subalgebra.  
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Notice that,  from the group of transformations (10), only the transfbrmations 

U ~ D ~ U ,  a E C ,  (28) 

survive for the solution U of Eqs. (24)-(26). The validity of (28) can easily be checked with the help of (21) 
and (22). Furthrmore,  it is easy to verify that  the rescaiing 

U ~ (e | f ( f ) ) U ( e  | f-1 (p~) (29) 

with an arbitrary function f(/Y) E C is allowed. 
Let us explain why the generating matrix satisfying (24)-(27) is of special interest from the viewpoint of 

the theory of tensor operators. Notice that  property (27) ensures that  if such a U exists, then its rows are 
linearly independent tensor operators. In other words, if for a given irreducible representation p~ and a given 
vector II, m} in the model space 3d of G, we consider a set of vectors U/J IS, m) i , j  = 1, . . .  , dim p J, then 
all nonvanishing vectors in this set are pairwise linearly independent. In particular, if J is a fundamental  
irreducible representation, then the entries of U J provide a set of basic shifts on 3d. Thus, the solution of 
(24)-(26) presents a very special but, in fact, the most interesting case of the generating matrix.  We shall 
refer to it as the exact generating matrix. 

It is worth mentioning that the matrix elements ( K , m " ] U i } I I  , m'} coincide with the Clebsch-Gordan 

coefficients { s J t , ' }  m m '  m" (up to some p<dependent  factors allowed by (28) and (29)) which appear in the 
q 

decomposition of the tensor product p~ ~, p J  (with the weights I, J,  and K restricted by the triangle 
inequality). This property of exact generating rnatrices makes them especially important  from the practical 
point of view. 

As for the physical content of the relations given above, Eq. (20) has appeared in various forms in studies 
of quantum versions of the Liouville [14], Toda [16], and Calogero-Moser [17] models. In these models, 7~(/7) 
is regarded as a dynamical R-matrix. From the viewpoint of the theory of tensor operators, relations (19)- 
(27) are most closely connected with the quantization of the WZW model [4, 5, 11]. Here 7Z(9p ~) plays 
the role of the braiding matrix, and Eqs. (24)-(26) with appropriate dependence on the spatial coordinate 
(or its discretized version) describe the vertex operators. Let us mention that, in the WZW theory, the 
quantum-group parameter  of G = Uq(,.7) is given by q = e i~h, where h > 0 is the Planck constant, and 
the deformation parameter  3' > 0 is interpreted as a coupling constant. That  is why we consider the case 

Iql = 1. 

II. F U S I O N  OF EXACT GENERATING MATRICES 

w  F O R M U L A T I O N  OF THE PROBLEM 

Suppose we are given generating matrices U I and U J for some irreducible representations of G. Then, 
using relation (11), we can build up the generating matrices U K for every irreducible representation flK 
which appears in the decomposition of p1 ~ pJ. For brevity, we shall call them descendant matrices. As 
explained above, it is natural  to deal not with all possible generating matrices but only with the exact ones, 
i.e., with those satisfying additional equations (24)-(27) with 7r (/Y), D, and t2 introduced above. Here we 
face the problem of finding a matrix F zJ such that  the descendant matrix U K obtained by fornmla (11) is 
also an exact generating matrix. 

Let us point out that this problem would not arise if the left-hand side of Eq. (24) contained the s tandard 
R-matr ix instead of 7~(p-'). Indeed, for an operator-valued matrix g J E End V J | G (it may be regarded as 
an L-operator type object 5) which satisfies the usual quadratic relations 6 

R" Jb' : J (' ol 

5For G replaced by its dual G ~, the matr ix  gJ is regarded as a quan tum group-like element.  In this case, fusion formulas 
(31)-(32) are also valid. 

%Ve prefer this order of auxiliary spaces since it is the same as in (24). 
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the fusion fornmla is well known (Eq. (13) is its specific realization): 

g K ) m  n t 2 j l I  = emg g c~, (31) 

where, as before, en, n -- 1 , . . .  , d imp K, are the eigenvectors of the projector P / J .  For example, in the case 

G = Uq(sl(2)), we start with g~ and, applying (31) sufficiently many times, obtain the matr ix gg for any 
spin J: 

a 2 q -  ~ v / ~ a b  b 2 

gl --_ q-�89 ~ a c  ad + q- lbc  q-�89 v / ~ b d  , . . . .  
c 2 q -  �89 v ~ c d  d 2 

(32) 

For generating matrices, the fusion problem is more complicated because ~(p-~ in Eqs. (20) and (24) is 
an attr ibute not of a Hopf algebra but of a quasi-Hopf algebra. In this section, we discuss some general 
aspects of the fusion problem in the quasi-Hopf case. In the next section, we consider, as an exmnple, the 
case Uq(sl(2)). 

It should also be noted that  the fusion problem (in the form stated above) does not appear if one uses 
the language of universal objects (see, e.g., [19, 11]) instead of the language of operator-valued matrices. 
For example, instead of the set of matrices gJ E End V 2 | G satisfying (30), we can introduce the element 
g E G | G and fix its functoriality relation as follows: 

21 
(A | id)(g) = gg. (33) 

Then both quadratic relations (30) and fusion formula (31) can be obtained from (33) with the help of 
the axioms of the quasi-triangular Hopf algebra. In fact, in this approach we do not even need the fusion 
fornmla because each gY can simply be obtained by evaluation of g ina fixed representation: gJ = (pJ~id)g .  

Similarly, we can introduce the universal object U E G | EndT-/with the functoriality relation [11] 

2 1 

(A | id)(U) = FUU,  (34) 

where F satisfies certain axioms. Then quadratic relations (24) (with ~(p~ constructed from ~ and R 
according to (41)) are consequences of (34). Again, fixing a representation of the G-part of the universal 
element U, we obtain a generating matr ix  U y = (pY | id)U and, therefore, we do not need the fusion 
formula. 

Although the language of universal objects is more convenient in abstract  theoretical constructions, 
in practice we usually do not have explicit formulas for the universal objects involved (for instance, the 
universal R-matrices are known only for Uq(sl(2)) and Uq(sl(3)). Therefore, in the present paper, we 
intentionally adopted the matr ix  language to discuss how to construct exact generating matrices for different 
representations from those of given representations if explicit universal formulas are unknown. 

w QUASI-HoPF FEATURES 

Let us recall that  an associative algebra G is said to be a quasi-Hopf algebra [7] if its co-multiplication 
is "quasicoassociative," i.e., if, for all f E G, the following relations hold: 

((id | A)A(~))~ _-- ~((A | id)A(~)), 

(e | id)A(~) = (id | e) = (id | e)A(~) = ~. (35) 

Here (I) E G | G | G is an invertible element (co-associator) which must satisfy certain equations. For the 
definition of a quasitriangular quasi-Hopf algebra, one postulates, in addition, the existence of an invertible 

E G | G (twisted R-matrLx) such that  

T~A(~) -- A'(~)T~ for all ~ E ~, (36) 
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13 23 13 12 
(A| = (I)31274@~-12 74(I)123, (id| = (i)23,-I 74q)21374,i)~-)3 ' (37) 

(e | id)74 = ( id | e)74 = e. (38) 

An analog of the Yang-Baxter  equation for 74 follows from (36) and (37) and appears as 

12 13 23 23 13 12 
74(I)31274(I)[~274(I)12 3 =- ~32174~2~174(I)21374. (39) 

A crucial observation [5, 11, 18] is that  the construction used in w167 and 3 for the description of exact 
generating matrices involves the quasi-Hopf algebra (where 74+ (p-) plays the role of the element 74) which is 
obtained as a twist of the quasitriangular Hopf algebra g. More precisely, there exists an invertible element 
)c(/7) e g | g | g whereby one can construct the objects below (which satisfy the axioms of the quasi-Hopf 
algebra) 

f = (40) 

"~4- (p) = (.~,Ft(y))-IR4-.~F('/:'~), (41) 

12 12 
~(P-)123 = j c - 1  (~3)jr( iff)  (42)  

from the standard comultiplication and R-matrices (which satisfy the axioms of the Hopf-algebra) 7. In 
particular, (20) provides a realization of the abstract form (39) of the twisted Yang-Baxter  equation. 

The fact that  74+(/7) introduced in (20)-(22) admit decompositions of type (41) is very important in 
the context of the fusion problem for exact generating matrices. Indeed, suppose we are given two exact 
generating matrices, U I and U J, which satisfy (24)-(27) with certain 741,J(p-). Applying formula (11) 
with some matrix FH(/7) (it can be C-valued) to these U I and U J, we obtain a new matrix U]~ J which 
automatically satisfies (9). Moreover, it is easy to verify that the exchange relations between U~: j and any 
exact generating matrix U L are again of the form (24) but with a new R-matrix on the left-hand side which 
in the basis of V L | V I ~ V J looks like 

1,32 . 23 13 12 23 123 i /  
74 r=k (g) = p I Y  (F1)74~J (p-.)74LI (~3)(FIJ (p-) ) -  p)(: . (43) 

This is an analog of fusion fornmla (13) for the standard R-matrices. Since the new generating matrix U[ / 
is exact, and, in particular, satisfies (24), we see that  expression (43) rewritten in the basis of V I G, V J 
coincides with 74LK~p~ Taking into account that  744-(/~) satisfies (41) for some matrix .T, we obtain the 4- kW" 
equation 

~r~ I J ~-~ + ('-,) 

23 23 13 21 21 19 12 12 - C [ I J K ] F I J ( g l ) 7 4 L J ( ~ ( . ~ ; L ) - I  g3 .yIL p ~ L I  g .~-LI --15~LI 23 23 - ( ) 4 - ( ) (  ) ( y3 ) (F ;J ) - l ( y )C ' [_ rJK] .  (44) 

The latter is equivalent (due to (17) and (40)) to the identity 

(pL @ pI  | pJ)(id | A~)7~ 

IL 1 IL  LI  LI  1 LI  
= ~ [P)) [Pl)  4- (P-)(a ~ ) -  (ff3)5 r" (P-')744- ( if)(5 r" ) -  (/Y).T" (/Y3), 

which, as we see from (37) and (42), takes place only if F IJ = ~ I J ( p - ) .  

7In fact, here we deal with a general izat ion of Drinfeld 's  scheme since 5(p~), T~+(p~), and dP(p ~) possess addi t ional  C-valued 
tensor  components .  However, all Hopf-algebra opera t ions  are appl ied only to g -pa r t s  of these objects .  
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w P R O P E R T I E S  OF THE TWISTING ELEMENT 

The practical summary  of the previous section is as follows. If we are given exact generating matrices 
U I and U J (and, hence, we know ~:J(p-)), then to construct a new exact matr ix  U ~ ,  we must substitute 
the matr ix  F IJ = (pI | pJ)Sc(/7), where 9V(p -) is the twisting element of the quasi-Hopf algebra introduced 
above, in the fusion formula (11). An obstacle to the application of this prescription is that  usually an 
explicit universal expression for .~-(p-~ is unknown. However, assuming that  such an 5C(p-~ exists, we can look 
for ~-IJ(p-) as a matr ix  satisfying the following conditions: 

1 . . ~ I J  (p-) is a solution of Eq. (41) for given 7~: J (p-), which can be rewrit ten in the following form, which 
is more convenient in practice: 

RIJjz'IJ[P ~,.,] = (~IJ(p~)'7~g(fi); (45) 

2..T'XJ(p -') satisfies the symmetry  condition 

[~-tJ(p-~,qg[ | qH~] = 0 for all i; (46) 

3..~IJ(p-) is such that ,  for any weight M, all entries of the matrix s 

UJJ nlJ.-,-IJ, ~,2rjIrl r~lJ 
= t~6 .I-  ~ p ) u  u t" 6 , (47) 

or, equivalently, of the matrix 
2 1 

U 0 = C[IJO].T'IJ(p-)UJuzct[fflO], (48)  

comnmte with all entries of the generating matrix uM; 

4. 5clg(g)(brtJ(iff))* is a p-independent object, or, in other words, 2~I"](p-')(FIJ(g)* = X, where X is 
an element of G | ~. 

Let us comment on these conditions. The necessity of the first of them was explained in the previous 
section. Since, in general, Eq. (45) possesses a family of solutions, the above condition is not sufficient. In 
principle, we could separate the right solution in this family verifying whether  tile substitution of this solu- 
tion in fusion formulas (43) or (44) yields matrices 7~(iff) satisfying (20)-(23). However, such a verification 
would be quite tedious in practice. 

The second condition ensures that  the descendant matrix U ~" satisfies (27), and, consequently, (25). 
This can easily be checked by applying (27) to (11). Notice also that  (46) implies that,  for this specific 
quasi-Hopf algebra, the comultiplication on the Cartan subalgebra is not deformed and, hence, it is the 
same as for Uq(ff) and CJ.  

The third condition follows from (38) and the same property (e | id )~  = (id | e)7~ = e known for the 
s tandard R-matrices (recall that  e is the trivial one-dimensional representation of G). Indeed, applying 
(e | id) or (id | e) to (24), we conclude that  U ~ = (e | id)U commutes with all entries of U j for any J.  
Therefore, if the trivial representation p0 __- e appears in the decomposition of the product pI | pg (e.g., 
in the case where both  irreducible representations coincide with the fundamental  one), then the left-hand 
side of Eqs. (47) and (48) do not vanish and represent a tensor operator of zero weight (i.e., a scalar) with 
respect to the adjoint action of ~. In this case, the third condition is nontrivial because a tensor operator 
of zero' weight can be p-dependent and, hence, in general, this operator does not commute with the other 
tensor operators. 

To clarify condition 4, we first recall that,  for [ql = 1, the s tandard comultiplication has the following 
property with respect to the conjugation in 6 : A*(~) = A'(~*). On the other  hand, relations (23) imply 
the equation (see also [11]) 

(A~=(~))* = A~-(~*). (49) 

SFormulas (47) and (48) can be regarded [6] as a generalization of the formula for the q u a n t u m  de te rminant  [9, 10]. 
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Hence, the self-conjugate element X = $-(p-)~c,(/~) satisfies the relation xA  = A'X. Moreover, we obtain 
from (23) that 

-~:hX(P) ~--- (X(P))t /~T 1. (50) 

Next, we notice that,  from (23), (37), and (49), the following unitary property of the coassociator follows: 

(I)*(~:~)123 ~-- ( ~ - - 1 ( p ' * ) 1 2 3  " (51) 

According to (42), the latter equation leads to the condition }~(p-) 12 _ . = X(P3), whmh, due to the possibility of 
applying (27) to (51) arbitrarily many times, implies the p-independence of X. It should be mentioned that  
the universal expression for the element X E G | G was found in [11]. 

III. T H E  CASE OF gq(81(2)) 

In this section, we illustrate the preceding discussion by some explicit calculations. Although solutions 
of the twisted Yang-Baxter  equation (20) are known [5, 13, 14, 16] for the fundamental representations 
of G = Uq(sl(n)),  here we consider only the case of Uq(sl(2)). However, we emphasize that,  in the more 
general case of Uq(sl(n)),  the computations are essentially the same. 

w 7~(/~) AND U IN THE FUNDAMENTAL REPRESENTATION 

As mentioned above, the twisted Yang-Baxter  equation possesses a family of solutions. This takes place 
even in the simplest case of the fundamental  representation of Uq(sl(2)). Imposing additional conditions 
(21)-(23), we obtain a unique solution [5, 13] which depends on the single variable p = 2J  + 1, where J is 
the spin. In particular, the fundamental  matrices ~ •  (i.e., with both auxiliary spaces of spin 1/2) are 
given by (all nonspecified entries are zeros) 

/ ) 1 1 .  1 I 1 v/[PJc i] [P -I ] qP 
= P (  = q - -  [pl [,1 (52) 

q-, v/[p+ll[p-1] 
- [p] [p] q 

where [x] = (qX _ q -X) / (q  _ q - l )  is, as usual, the q-number. The entries of matrices (52) coincide with 
values of certain 6j-symbols for Uq(sl(2)) [20]. 

Note that the asymptotics 
1 1 1 1 

(p) - ,  R •  ( ; )  (53) 

hold in the formal limits qP ~ +oo and q-P --* +oc, respectively; that  is, here we return to the case of the 
Hopf algebra, in particular, the eoassociator becomes trivial, ~5123 = e | e | e. Moreover, (53), together 
with (41) and (50), allows us to add the following condition to the list presented in w 

5. (Asymptotic behavior) 

U(qP --* +oc) = e | e, .F (q  - p  ~ + ~ )  = X,  

where X E G | G was described at the end of w It should be noted that  this additional condition is 
obtained only for ,.7 = s/(2). It would be interesting to find its generalization for the case .7 = s l (n) ,  where 
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we have the vector/7 instead of a single variable. 

J 
U2 J-r 7 _ _ 

J 
I 

J -5  [ U4t, 

i I 

1 

f J I U 
L_ L_#_d 

L _ ' _  _ 1 _ _  

r 1 J t ,,../Ir~3 
J I t 

I I 

! 1 

I I 

t I 7Tt 
l -  

FIG. 1. The action of the operators Ui on the model space 

I 1 

Now let us turn  to the solution of Eqs. (24)-(26) for ~ :  5 (p) given by (52) and considered in different 
contexts in [4, 5, 12]. It was shown that  this solution is unique up to transformations (28), (29) and, in 
particular, can be writ ten in terms of the operators of multiplication and shift (difference derivative) of two 
complex variables [12]: 

U�89 = U1 U2 zlq�89 ~2~ zo_q-~-~ ' 1 
~- --1 - -2  _ t ( 5 5 )  

U3 U4 - z  2 [z202]q 2 ( z l ~  7(z~02+1) v ~ "  

Here p = z101 + z202 + 1, and rthe ight-hand side of (55) is a realization of the exact generating matr/x 
of spin 1/2. This means, in agreement with tile general description of w that  the entries of U~ act on 
the model space 34 = | z as the basic shifts (see Fig. 1). This can be directly verified [12] if we 
realize the model space as the space Dq(Zl, z2) of holomorphic functions of two complex variables with a 

~J+m ~ J - - ~  
scalar product (a deformation of the s tandard one) such that  the mononfials l J, m) = ~1 ~ [.r~,~]!TY-m]! form an 
orthonormal basis. Moreover, for specific realization (55), the matrix elements (J', rn]UilJ", m"} (evaluated {J' ~/2 J"} 
on  Dq(Zl, z2)) coincide with the Clebsch-Oordan coefficients m' +1/2 m" (foul" of them do not vanish); 

q 
we call this property "preciseness." 

Now we encounter the simplest version of the fusion problem, namely, the problem of constructing the 
exact generating matrix of spin 1 from U�89 To this end, we must find an explicit form of the corresponding 
twisting element 5 c in the fundamental  representation. 

Before proceeding with the computations,  recall that  in [15] a universal formula (i.e., applicable for 
representations of any spin) for the solution 7~(p) of Eq. (20) was found, and a universal expression for 
fi(p) satisfying (41) with given 7~(p) was obtained. However, 75,.(p) does not satisfy (23) and, therefore, 
taken, e.g., in the fundamental  representation, this solution differs from (52). Thus, solutions U of (24) 
with such 7Z(p) are not exact generating matrices in our sense. In particular, the solution for spin 1/2 
differs from that  given by (55) and, therefore, does not have the remarkable properties discussed above. 

Let us stress that  these new matrices U are still the generating matrices in the sense of definition (9). 
Therefore, one can examine whether these matrices can be transformed into exact generating matrices by 
means of the transformation U = M(p)U with M(p) E G | C. If such an M(p) exists, then the following 
relations hold: 

1 2 
f-(p) = ( A | id)M (p).T(A~ (p2 )M (p) ) -1, 

2 1 1 2 
(p) = (pl) M (p)n+ (p) (M (p2)M (p))- 1, 
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and we can construct our 5~(p) from 9~(p) and M(p). However, bearing in mind possible extensions to the 
cases where no universal formulas for 7~(p) are known, we prefer to give more direct computations of 5r(p) 
instead of the seeking such an M(p). 

w THE COMPUTATION OF 5c'�89 �89 (p) AND U 1 

�9 1 

The matrix 9c5 �89 must  satisfy the conditions presented in w First of all, this matrix must be a solution 
of Eq. (45), where 7~t:(p) on the right-hand side are given by (52), and the standard R-matrices on the 

1 ( q )  7~_ �89 = q-U2 1 
1 

q 

I T~�89 �89 = q l /2  1 
- - w  1 ' 

q - 1  

left-hand side are 

(56) 

with a~ = q - q - i .  Symmetry  condition 2 dictates that  one look for the solution of Eq. (45) in the following 
form: (1 ) 

~-(P) = v(p) 6(;) " 

1 

(57) 

A straightforward check shows that only two of the functions a(p), /3(p), 7(P), and 6(p) are independent, 
and we can express, say, the entries of' tile third line in (57) via those of the second one. The result reads 

q-P V/b + l]b - I] 
v(p) : ~ ~(p) + 9(;),  

b] (5s) 
~(p) = v/b + I] b - I] r 

b] ~(;) + ~ 9(p). 
Now we should employ condition 3. To this end, we use the following formulas for the fundamental 

R-matrices of Uq(st(~)) (see [9] for details): 

P•  = q14-11~ + _ q - ~ T l ~ _ ,  (59) 
q2 q-2 

where R~: = PR+ and P+, P_ are the projectors in Cn |  C n (the q-symmetrizer and the q-antisymmetrizer) 

of ranks ~ and ~(~-i)2 , respectively. In the case of Uq(sl(2)), these projectors are 

q+iA -t-A 
P+ = 4-A q+iA , (60) 

1 

1 where A = iN = (q + q - i ) - i .  It is easy to find their eigenvectors ~ such that  ~2~j = 5ij, 

3 

t:)+ = @ x i , 
i=1 

~2 = x/] 
q ~ 
qi/2 , 

0 

(i) x 3  = 

(~l) 
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P_ = Zo | ate, g'o = v ~  

(0) 
ql/2 

_q-1/2 �9 

0 

According to (16), we can construct the following CG maps from these vectors: 

(62) 

c [ l  l o] = v/-A(O, qU2 -q-1/2,0) ,  

1 0 0 0 )  
C [ 1  i I I  = 0 v ~ q  -1/2 V/--Aq 1/2 0 . 

0 0 0 1 

(63) 

Now, substituting (60) into (48), we can compute  U ~ which, in this simplest case, is not a matrix but a 
single operator. To be able to use condition 3, we must compare U ~ with the central element of the algebra 
L/generated by the entries Ui of the matrix U�89 and the spin operator p. As was shown in [12], the only 
nontrivial central element of the algebra/1/is given by the following analog of the determinant  of U�89 : 

i [;] 
Det  U�89 = (U1U4 - qY2U3), ~-~]1] - (qg4U1 - U3U2) [p -~- 1]" (64) 

Omitt ing simple calculations, we state the result: U ~ coincides (up to a numerical factor) with (64) only if 
the constraint 

~ ( v ) ~  11- 9(p)v/-~- 1] = ~v/~ (65) 
holds and, thus, we have only one independent variable. Here the numerical constant e on the right-hand 
side can be arbi trary (nonzero), but additional condition 5 says that e = ql/2. 

Finally, we can use conditions 4 and 5. To apply condition 4 in practice, we can first consider the 
nondeformed case (q = 1), where the entries of 5C(p) are self-conjugate, and then extend the solution 
obtained to the generic q so that  condition 5 would be satisfied. After simple calculations, we obtain 

9(;) = -~(v) = ~ q-~ iv] 

(66) 

Thus, 5c�89 �89 (p) is found. Notice that  det 5 ~�89189 (p) = 1. It is instructive to derive the following explicit 
expression for the element X (in the fundamental  representation) with the help of (66) and (54): (1 ) 

2A -wA (67) 
X = wA 2A " 

1 

In the nondeformed limit q = 1, we have X = e | e, as expected. 
Finally, substi tuting (63) into (14) and using the explicit form of 5c�89 �89 (p), we obtain the following exact 

generating matrix of spin 1: 

( ) U12 q---~ v / ~ U 1  U2 U2 2 

U 1 ~2][P]UIU3 ~ (q�89 +-7  U2U3) V [ p u  - 4 �9 = V {-74-T V ~ 1 /[2][p] UoU (68) 
v~ q-~ v~u3u~ u~ 
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Let us briefly discuss this formula. First, as we would expect, in the formal limit qP --~ +~c, it coincides 
with expression (32) for g 1. Next, it is easy to see that  the second row of (68) coincides (up to rescaling by 

~ )  with the 1 constructed from the of spin tensor operator (7) generators 

Finally, notice that the elements U~j, i , j  = 1, 2,3, act on the model space ~4 as shifts from the state 
]J, m) to the state [J + (2 - i), rn + (2 - j ) ) ,  which is natural  because we applied the fusion scheme to the 
matrix U[  whose entries are basic shifts on Ad. Furthermore, if we realize the operators Ui in (68) as on 
right-hand side of (55), then U 1 will also have the "preciseness" property. Namely, it can be checked that the 

matrix elements iJ',m' ULJ" m'~ evaluated on Dq(zl,z2) coincide with the CG coefficients 1 ~9 ' / m '  2--j rn" q 

(nine of them do not vanish). Thus, the fusion procedure preserves the "preciseness" of the exact generating 
matrices. This observation might be useful for practical computations. 

w A N O T H E R  CONSTRUCTION FOR 

The computations of the previous section inspire us to introduce p-dependent counterparts of the projec- 
tors P+ used above. Indeed, it is obvious from the connection fornmla ~4-(p-) = $--1R4-S that  the objects 
79+ and 79_ introduced by the analogs of decomposition fornmlas (59) below 

q~4-1~+(p~)  __ q - ~ : l ~ _ ( p ~ )  

794- = q2 _ q-2 (69) 

are projectors of ranks ~ and ,~(,-1)2 , respectively. In the case of Uq(sl(2)), we find (1 ) 
794- /~ [PT1] --t-/~ v/[P+I][p--1] = [p] [p] �9 

~/[p+ 1] [p-- 1] [p~l] 1 • [p] A [p] 

(70) 

Repeating the procedure described in the previous section, we can find the eigenvectors :gi such that  
3 

�9 ~/:gi = 6ij, P -  = :go c~ ~ ,  and 79+ = ~ :gi | ~ .  Next, using the same fornmlas (16), we can construct 
i=1 

p-dependent counterparts of the CG-maps. They appear as follows: 

_ [p] , -  ,0 , 

(i o [) 
v " v  ~ 

(71) 

Now, a straightforward check shows that  the matrix 5 }  �89 (p) found before can be obtained as follows: 
5r�89 �89 (p) = C'[ 1 ~0]Cp[[1 z 10] + C'[ !2 �89 + C'[�89 1~ a]Cp[~-_ ~11]. Actually, we can give a more general version of 
this formula, 

"UIJ (fi) = E C'[IJK]Cp[IJK], (72) 
K 

since very similar expressions have already appeared in [11, 18], where C[IJI(] and Cp[IJK] were taken a 
priori as the CG coefficients and 6j-symbols, respectively, with specific dependence on g. With these objects 
appropriately defined, one can prove [11] that  .F(pO given by (72) satisfies all axioms for the twisting elemeat. 

Thus, we have another way of computing the twisting element in practice, though it is not much simpler 
than that  we used previously. Indeed, to apply it, we must know the values of the CG coefficients and 6j- 
symbols a priori. Here the problem of an appropriate (in the sense of compatibility with the given matrices 
R+ and 7~• basis and normalization arises. Therefore, our prescription (rather "experimental" because 
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we have not proved that  (72) satisfies the conditions for U(p~) given above) for constructing C[IJK] and 
Cp[IJK] from the eigenvectors of the projectors P/-J and P~-J is, possibly, quite useful from the practical 
point of view. 

Finally, let us make the algebraic sense of (72) more transparent. To this end, we note that,  since 
plJ  = C[IJK]C'[IJK], we can rewrite the formula for the decomposition of R-matrices over projectors 
(we used its simplest case (59) above) in the following form: 

= F_, C'[HK]rI, +C[IJK], (Ta) 
K 

where r I J K,+ are the corresponding eigenvalues (for the fundamental representations of the main series, they 
are presented in [9]; for arbitrary irreducible representation of sl(2), see [10]). Now, bearing in mind 
properties (18) of CG maps, we see that ,  according to (41), (72) transforms expression (73) into a similar 
one for the twisted R-matrices, 

~IJ (p~ = Z Cp[IJKlrSKa, +Cp[IJK]" 
K 

(74) 

Thus, the Hopf and quasi-Hopf structures turn out to be identical in terms of projectors. 

CONCLUSION 

In the present paper, we have shown that  the theory of (deformed) tensor operators and, in particular, 
the fusion procedure can most naturally be described by applying the R-matrix approach and revealing the 
underlying quasi-Hopf-algebraic structure. From the practical point of view, the prescription for construct- 
ing exact generating matrices can, possibly, be employed for explicit computations, e.g., for calculations of 
the (deformed) CG coefficients for quantum Lie algebras of higher ranks. On the other hand, the specific 
quasi-Hopf algebra appearing in this context should certainly be studied in more detail since it provides a 
nontrivial (and presumably somewhat simplified) realization of the abstract general scheme. 

Although the present paper is mainly connected with the mattmmatical aspect of the theory of tensor 
operators, we are going to discuss some physical applications in a forthcoming paper. 

Finally, we would like to note that it would be interesting to extend the technique developed to the case 
where q is a root of unity, which will involve truncated quasi-Hopf algebras. 
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