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HALDANE–WU STATISTIC AND ROGERS DILOGARITHM

A. G. Bytsko UDC 517.589 + 536.7 + 530.145

The Haldane–Wu exclusion statistic is considered from the generalized extensive statistics point of view and certain
related mathematical aspects are investigated. A series representation for the corresponding generating function is
obtained. Equivalence of two formulas for the central charge derived for the Haldane–Wu statistic via the thermo-
dynamic Bethe ansatz is established. As a corollary, a series representation with a free parameter for the Rogers
dilogarithm is found. It is shown that the generating function, entropy, and central charge for the Gentile statistic
majorize those for the Haldane–Wu statistic (under an appropriate choice of parameters). This fact is applied in
derivation of a dilogarithm inequality. Bibliography: 14 titles.

1. Introduction

Consider a (1 + 1)-dimensional system of relativistic particles on an interval of length L. If the particle
interaction is described by a factorizable scattering matrix, then the boundary condition for the wave function
of a particle has the following form:

exp(iLmk sinh θk)
N∏

l�=k

Skl(θk − θl) = ςk , k = 1, . . . , N, (1)

where θk and mk are the rapidity and mass of a particle, Skl(θ) is the two-particle scattering matrix, and N is
the total number of particles. The phases ςk can be different for different particles (their exact values are not
relevant for our purposes). For simplicity, we consider the case where all of the particles belong to the same
species and have mass m.

Analysis of the multiparticle system (1) in the thermodynamic limit (L → ∞ while the density N/L remains
finite) is based on the thermodynamic Bethe ansatz [1]. In addition to system (1), this ansatz uses the ther-
modynamic equilibrium condition, i.e., the condition of minimum of the free energy F (F = E − TS, where T
is the temperature, E is the total energy, and S is the entropy of the system). Thus, the initial data for the
thermodynamic Bethe ansatz consist of the two-particle scattering matrix S(θ), spectrum of particle masses,
and statistic which governs filling of states in the momentum space. This statistic, called the exclusion statistic,
determines the exact form of the entropy of the system.

For one-dimensional systems, the exclusion statistics are not necessarily of fermion or boson type but can
depend nontrivially on the number of particles already present at a given state. For instance, a generalized
extensive statistic is defined by a choice of generating function f(t) such that(

f(t)
)N =

∑
n≥0

W (N, n) tn, (2)

where W (N, n) is the number of possible ways for n identical particles to occupy N states. It is natural to
impose the condition f(0) = 1 which implies that vacuum is realized with probability one independently of the
size of the system.

The thermodynamic Bethe ansatz allows one to obtain certain information about the ultra-violet (i.e., high
temperature) limit of the system under consideration. In particular, it allows one to find the effective central
charge for the corresponding conformal model. For instance, in the case of a generalized extensive statistic, the
effective central charge is given by the following formula [2]:

c =
6
π2

[∫ x0

0

dt

t
log f(t) − 1

2
logx0 log f(x0)

]
. (3)

Here x0 is the positive root of the equation

log x0 + Φ log f(x0) = 0, (4)

which is unique if f(t) is monotonically increasing and Φ ≥ 0. From the physical point of view, Φ is related to the
asymptotics of the scattering matrix, 2πiΦ = logS(−∞) − logS(∞), but we treat Φ just as a free nonnegative
parameter.
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2. Haldane–Wu statistic

The Haldane–Wu statistic [3, 4] is one of the most studied cases of an exotic statistic (see, e.g., [4–9]). It has
applications, for instance, in the quantum Hall effect theory. For this statistic, the number of possible ways for
n identical particles to occupy N states is given by the formula

Wg(N, n) =
(N + (1 − g)n + g − 1)!

n! (N − gn + g − 1)!
, (5)

where 0 ≤ g ≤ 1. The Haldane–Wu statistic interpolates between fermions (g = 1) and bosons (g = 0).
The Haldane–Wu statistic is asymptotically extensive in the following sense. For a generalized extensive

statistic (2), the entropy density is defined as follows:

s(µ) = lim
N→∞

1
N

log W (N, µN). (6)

One can show that (see, e.g., [2])
s(µ) = log f(x) − µ log x, (7)

where x ≡ x(µ) is the positive root of the equation (the prime denotes a derivative)

x f ′(x) = µ f(x). (8)

It follows that
f
(
x(µ)

)
≡ f(µ) = exp{s(µ) − µ∂µs(µ)}. (9)

In the case of the Haldane–Wu statistic, application of the Stirling formula to formula (5) yields the relation

sg(µ) = (1 + µ(1 − g)) log(1 + µ(1 − g)) − µ logµ − (1 − gµ) log(1 − gµ). (10)

Comparison of formulas (9) and (10) shows that

fg(µ) =
1 + (1 − g)µ

1 − gµ
; (11)

therefore, Eq. (8) takes the following form:(
gfg(t) + 1 − g

)
t f ′

g(t) = f2
g (t) − fg(t). (12)

Determining the integration constant from the condition fg(0) = 1, we see that

fg(t) − 1 = t
(
fg(t)

)1−g
. (13)

If f1−g on the right-hand side is understood as exp[(1−g) log f ], where �(log f) = 0 for f > 0, then for 0 ≤ g ≤ 1,
Eq. (13) has a unique positive solution. Equations (11) and (13) are well known in the context of exotic exclusion
statistics [4–6]. Note that the solution to (13) satisfies a duality relation:

fg(t) f1−g(−t) = 1. (14)

Furthermore, it follows from (12) that tf ′
g/(fg − 1) > 0, i.e., fg(t) is a monotonically increasing function. From

(13) we infer (applying inequality (48) with g > 1) that

fg(t) <
1
g

+ t
1
g (15)

for nonnegative t. In fact, the right-hand side of (15) gives an asymptotic of fg(t) for large t.
Using Eq. (13), we can compute derivatives of fg at t = 0 in a recursive way:

f(n)
g (0) = n ∂n−1

t (f1−g
g )|t=0. (16)

The first few values allow us to conjecture that fg is given by the following Taylor series:

fg(t) = 1 + t +
∞∑

n=2

( n∏
k=2

(
1 − gn

k

))
tn. (17)

This series for fg has been suggested in [6]; some confirming combinatorial arguments were given in [8] (for
positive integer values of g). Furthermore, it was also suggested in [10, 5, 8] that the logarithm of fg is given by
the series

log fg(t) = t +
∞∑

n=2

( 1
n

n−1∏
k=1

(
1 − gn

k

))
tn. (18)

Let us prove the following statement.
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Proposition 1. Series (17) and (18) are absolutely convergent for

log |t| < log t0 = −g log g − (1 − g) log(1 − g). (19)

On this interval, series (17) and (18) are the positive solution of Eq. (13) and its logarithm, respectively. In
addition, for an integer m,

(
fg(t)

)m = 1 + mt +
∞∑

n=2

(
m

n∏
k=2

(
1 +

m− 1 − gn

k

))
tn (20)

on the same interval.

Proof. Let fn and wn, n = 0, 1, 2, . . ., denote the coefficients at tn in series (17) and (18), respectively (so that
w0 = 0 and f0 = f1 = w1 = 1). Note that these coefficients can be written in terms of the gamma–function:

fn =
Γ(1 + (1 − g)n)

n! Γ(2− gn)
= −sinπgn

π n!
Γ(1 + (1 − g)n) Γ(gn − 1) (21)

and

wn =
Γ((1 − g)n)
n! Γ(1− gn)

=
sinπgn

π n!
Γ((1 − g)n) Γ(gn) . (22)

Introduce the following notation: f̃n = fn/ sinπgn and w̃n = wn/ sinπgn. Applying the Stirling formula (for
large z and δ � z) in the form log Γ(z + δ) − logΓ(z) = δ log z + o(1), we see that

lim
n→∞

log
∣∣∣ f̃n+1

f̃n

∣∣∣ = lim
n→∞

log
∣∣∣ w̃n+1

w̃n

∣∣∣ = g log g + (1 − g) log(1 − g). (23)

Thus, the series
∑

n≥1 f̃ntn and
∑

n≥1 w̃ntn (hence, the series (17) and (18)) converge absolutely on interval (19).
To prove the second assertion of the proposition, we note that Eq. (12) multiplied by fm−2

g acquires the
following form:

(1 − g)t (log fg)′ = fg − 1 − gt f ′
g for m = 1 (24)

and

fm
g − g

m
t
(
fm

g

)′ = fm−1
g +

(1 − g)
m − 1

t
(
fm−1

g

)′ for m 	= 0, 1. (25)

Similarly, for the function hg(t) = fg(t) − 1, Eq. (12) yields the relation

hm
g − g

m
t
(
hm

g

)′ = −hm−1
g +

1
m− 1

t
(
hm−1

g

)′ for m 	= 0, 1. (26)

From formulas (24)–(26), we derive the following relations between the Taylor coefficients:

wn =
1 − gn

(1 − g)n
fn , n = 1, 2, . . . , (27)

f [m]
n =

m(m − 1 + (1 − g)n)
(m − 1)(m − gn)

f [m−1]
n , n = 0, 1, . . . , (28)

and

h[m]
n =

m(n + 1 − m)
(m − 1)(m− gn)

h[m−1]
n , n ≥ m = 2, 3, . . . . (29)
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Here f
[m]
n and h

[m]
n are the Taylor coefficients of the series

(
fg(t)

)m =
∑

n≥0 f
[m]
n tn and

(
hg(t)

)m =
∑

n≥m h
[m]
n tn,

respectively. Solving Eqs. (27)–(29), we find the relations

f [m]
n = mfn

Γ(2 − gn) Γ(m + (1 − g)n)
Γ(1 + (1 − g)n) Γ(m + 1 − gn)

(30)

and

h[m]
n = mh[1]

n

(n − 1)! Γ(2 − gn)
(n −m)! Γ(m + 1 − gn)

. (31)

Substituting m = n into (31) and taking into account that h
[1]
n = fn and h

[n]
n = 1 for all n ≥ 1, we obtain

precisely formula (21) for the coefficients of series (17). The assertion that series (18) is the logarithm of series
(17) follows now from relation (27). Finally, combining relations (30) and (21), we obtain the formula

f [m]
n =

mΓ(m + (1 − g)n)
n! Γ(m + 1 − gn)

, n = 1, 2, . . . ; (32)

the latter formula yields the series expansion (20). Analysis of absolute convergence of this series on interval
(19) is performed in the same way as for series (17) and (18). Although we have considered only positive values
of m, an easily verified relation (−1)nf

[m]
1−g,n = f

[−m]
g,n together with the duality relation (14) shows that formula

(20) holds for negative m as well. �

Note that if we assume the validity of formula (30) for m = 1− g, then we can use the relation fn+1 = f
[1−g]
n

(following from (13)) to obtain a recurrence relation. Solution of this relation coincides with expression (21).
Thus, formula (20) holds also for noninteger m. Another evidence of the latter fact is that series (18) and (20)
are consistent in the sense that limm→0(fm

g − 1)/m = log fg .

3. Central charge for the Haldane–Wu statistic

Strictly speaking, formula (5) for counting states in the Haldane–Wu statistic needs some refinements for finite
n and N . However, this formula is sufficient for constructing the corresponding thermodynamic Bethe ansatz
along the same lines as in the case of the ordinary statistic. The latter approach does not use the explicit form
of fg and leads to the following expression for the effective central charge [9]:

cg =
6
π2

L(y0) , (33)

where y0 is the positive root of the equation

log y0 = (Φ + g) log(1 − y0) . (34)

The right-hand side of (33) contains the Rogers dilogarithm defined as follows:

L(x) = −1
2

∫ x

0

dt
( log(1 − t)

t
+

log t

1 − t

)
=

∞∑
n=1

xn

n2
+

1
2

logx log(1 − x) . (35)

On the other hand, since the Haldane–Wu statistic is asymptotically extensive, the corresponding effective
central charge cg should also be given by the general formula (3) if we substitute f = fg . Thus, we have
two expressions (rather different at the first sight) for the effective central charge in the Haldane–Wu statistic.
Since the derivation of the formula for an effective central charge in the thermodynamic Bethe ansatz involves
a nontrivial passage to the limit and uses some additional assumptions, it seems to be instructive to provide a
direct proof of the equivalence of the two expressions for cg .
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Proposition 2. Let 0 ≤ g ≤ 1, let Φ ≥ 0, and let fg(t) be the positive solution of Eq. (13). Then the following
equality holds: ∫ x0

0

dt

t
log fg(t) − 1

2
logx0 log fg(x0) = L

(
1 − 1

fg(x0)

)
= L(y0) , (36)

where y0 is the positive root of Eq. (34) and x0 is the positive root of the equation

log x0 + Φ log fg(x0) = 0 . (37)

Proof. Note that, since fg(t) increases monotonically, Eq. (37) has a unique positive solution x0. Furthermore,
x0 ≤ 1 since fg(0) = 1.

Consider the function y(t) = 1−1/fg(t). For this function, Eq. (13) takes the form t = y(1−y)−g . Therefore,∫
dt

t
log fg(t) −

1
2

log t log fg(t) = −
∫

d
(
log y − g log(1 − y)

)
log(1 − y)

+
1
2
(
log y − g log(1 − y)

)
log(1 − y) = −

∫
dy

y
log(1 − y) +

1
2

log y log(1 − y) .

(38)

Comparison of the latter expression with formula (35) yields the first equality in (36). Further, Eqs. (13) and
(37) imply that

log y(x0) = log(fg(x0) − 1) − log fg(x0) = log x0 − g log fg(x0)

= −(Φ + g) log fg(x0) = (Φ + g) log(1 − y(x0)) .
(39)

Since Eq. (34) has a unique positive solution for (Φ + g) ≥ 0, we conclude that y(x0) = y0, which proves the
second equality in (36). �

Let us formulate a mathematical corollary of Propositions 1 and 2.

Proposition 3. Let 0 < g < 1 and Φ ≥ 0 and let y0 be the positive root of Eq. (34). Then

∞∑
n=1

sinπgn
Γ((1 − g)n) Γ(gn)

π n n!

(
y0(1 − y0)−g

)n

+
Φ
2

(
log(1 − y0)

)2 = L(y0) (40)

if t = y0(1 − y0)−g satisfies condition (19).

Proof. By Proposition 1, we can substitute series (17) into the integral on the left-hand side of (36) and integrate
term-wise. The resulting series converges to the value of the integral if the condition (19) of absolute convergence
is satisfied. The quantity x0 at the left-hand side of (36) is the solution to Eqs. (13) and (37); the latter equations
are equivalent, after the change of variable y0 = 1− 1/fg(x0), to Eq. (34) and the relation y0 = x0(1− y0)g. �

An interesting feature of identity (40) is the following one: though the left-hand side of (40) depends on g
and Φ in essentially different ways, its right-hand side depends only on the value of ν ≡ (g + Φ). Thus, for a
fixed y0, identity (40) provides a representation for the dilogarithm L(y0) as a series with a free parameter. As
an example, consider three special cases, namely, ν = 2, 1, 1

2 . For these values, y0 = 1 − ρ, 1
2 , ρ, respectively,

where ρ = (
√

5 − 1)/2. It is known (see, e.g., [11]) that this is a complete list of algebraic points of the interval
(0, 1) at which 6

π2 L(y0) takes rational values (these values are 2
5 , 1

2 , 3
5 , respectively). Thus, keeping g as a free

parameter, we obtain the following identities for the special values of ν:
∞∑

n=1

sinπgn
Γ((1 − g)n) Γ(gn)

π n n!
ρ(2−g)n +

2 − g

2
(logρ)2 =

π2

15
, (41)

∞∑
n=1

sinπgn
Γ((1 − g)n) Γ(gn)

π n n!
2(g−1)n +

1 − g

2
(log 2)2 =

π2

12
, (42)

and

∞∑
n=1

sinπgn
Γ((1 − g)n) Γ(gn)

π n n!
ρ(1−2g)n + (1 − 2g)(log ρ)2 =

π2

10
. (43)

In (41)–(42), 0 < g < 1, while the upper bound for g in (43) is determined from the convergence condition (19)
(approximately, g < 0.88).
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4. Gentile statistics

Another interesting case of an extensive statistic (which had appeared in [12] and is sometimes called the
Gentile statistic) arises if we take the following generating function in (2):

FG(t) = 1 + t + t2 + . . . + tG; (44)

this function also interpolates between fermions (G = 1) and bosons (G = ∞). For this statistic, the general
formula (3) for the effective central charge takes the following form [2]:

c̃G =
6
π2

[
L (x0) −

1
G + 1

L
(
xG+1

0

)]
, (45)

where x0 is the positive root of Eq. (4) for f(t) = F
G
(t).

The maximal value of µ for which Eq. (8) has a positive root is interpreted (since µ = n/N in formula (6)) as
the maximal occupation number for a single state. It is easy to understand that this number equals µmax = G
for the Gentile statistic and µmax = 1/g for the Haldane–Wu statistic. In both cases, the entropy density s(µ)
is a concave function such that s(0) = s(µmax) = 0. Therefore, it is natural to compare properties of the Gentile
statistic with parameter G and the Haldane–Wu statistic with parameter g = 1/G. It has been conjectured in
[2] that the former statistics majorizes the latter one. We prove the following statement.

Proposition 4. Let 1 < G < ∞ and let g = 1/G. Then the Gentile statistic majorizes the Haldane–Wu statistic
in the following sense:

FG(t) > fg(t) (46)

for t > 0.

Proof. To prove this assertion, it is again reasonable to use the function y(t) = 1−1/fg(t); in this case, Eq. (13)
takes the form t = y(1 − y)−g . Hence,

(1 − t)
(
F 1

g
(t) − fg(t)

)
= 1 − t1+ 1

g + (t − 1) fg(t) = y (1 − y)−g−1 φg(y) , (47)

where φg(y) = 1 − y
1
g − (1 − y)g . We claim that φg(y) > 0 for 0 < t < 1, i.e., for 0 < y < y0, where y0 is the

positive root of the equation y0 = (1 − y0)g. The inequality

(1 − y)g < 1 − gy , (48)

which holds for 0 < g < 1 and 0 < y ≤ 1, leads us to the estimate φg(y) > gy − y
1
g . Consequently, φg(y) > 0 for

0 < y ≤ ỹ, where ỹ is the positive root of the equation gỹ = ỹ
1
g . If y > ỹ, then

φ′
g(y) = g(1 − y)g−1 − 1

g
y

1
g −1 < g(1 − y)g−1 − 1 < −1 − g

1 − y

(
1− y(1 + g)

)
, (49)

where we use inequality (48) once more. On the other hand, if y ≤ y0, then it follows from (48) that y < y0 < 1
1+g

.

Therefore, φ′
g(y) < 0 on the interval ỹ < y < y0. Since φg(y0) = 1 − y

1
g

0 − (1 − y0)g = 1 − y
1
g

0 − y0 = 0, we
conclude that φg(y) > 0 on this interval as well. Thus, the right-hand side of (47) is positive for 0 < t < 1. Since
φg(y) = φ 1

g
(1 − y) (note that inequality (48) reverses for g > 1), the same reasoning shows that the right-hand

side of (47) is negative for t > 1. Finally, if t = 1, then (cf. (15))

fg(1) =
1

1 − y0
< 1 +

1
g

= F 1
g
(1) , (50)

which completes the proof. �
Let us note that, as is seen from the proof, the value G in (46) is not necessarily integer if we write FG(t) as

(1 − tG+1)/(1 − t). Following this way, we can consider also the case 0 < G < 1. In this case, inequality (46)
reverses; this can be shown by a proper modification of the above proof. However, for a physical interpretation,
the case of a noninteger G is less natural.

Proposition 4 can be used to establish inequalities between physical quantities related to the statistic in
question. For example, the following statement holds.
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Proposition 5. Let s̃G(µ) and c̃G be the entropy density and effective central charge for the Gentile statistic.
Let sg(µ) and cg be the entropy density and effective central charge for the Haldane–Wu statistic. If 1 < G < ∞
and g = 1/G, then the following inequalities hold:

s̃G(µ) >sg(µ) (51)
and

c̃G >cg , (52)

where 0 < µ < G in (51).

Proof. For a fixed value of µ, Eqs. (7) and (8) define the entropy density as a functional of the generating
function, s = s[f ]. Taking a small variation of the function f (which involves also variation of x due to relation
(8)), we obtain the equalities

δs[f ] = δ(log f − µ logx) =
δf

f
+

f ′

f
δx − µ

x
δx =

δf

f
, (53)

where the latter equality takes Eq. (8) into account.
Similarly, for a fixed value of Φ, Eqs. (3) and (4) define a functional c[f ]. For a small variation of the function

f , we have the following relations:

δ
(π2

6
c[f ]

)
=

1
2

( log f(x0)
x0

δx − logx0

f(x0)
δf − log(x0)

f ′(x0)
f(x0)

δx
)

+
∫ x0

0

dt

t
δf(t) =

∫ x0

0

dt

t
δf(t). (54)

Deriving (54), we use Eq. (4) and the equality f(x0) δx + Φx0 (δf + f ′(x0) δx) = 0 which follows from (4).
Let ψa(t) = aF 1

g
(t)+(1−a)fg(t) for a ∈ [0, 1]. This function is positive for all t. In addition, by Proposition 4,

δψa(t) = δa
(
F 1

g
(t)− fg(t)

)
> 0 if δa > 0 and t > 0. Combining these relations with (53)–(54), we see that s[ψa]

and c[ψa] are monotonically increasing functions of a; hence, relations (51)–(52) follow. �
Relation (52) gives us an inequality involving the Rogers dilogarithm with specifically chosen arguments. Let

us formulate this inequality explicitly.

Proposition 6. Let Φ ≥ 0 and let 0 ≤ g ≤ 1. Let x0 and y0 be the positive roots of the equations

log x0 = Φ log(1 − x0) − Φ log
(
1 − x

1+ 1
g

0

)
(55)

and

log y0 = (Φ + g) log(1 − y0), (56)

respectively. Then

L
(
x0

)
− g

1 + g
L

(
x

1+ 1
g

0

)
≥ L(y0), (57)

and equality takes place if and only if either g = 0 or g = 1.

Proof. If g = 0+, then x
1
g = 0. Thus, Eqs. (55)–(56) yield the equality y0 = x0 and (57) turns into an equality.

For g = 1, Eqs. (55)–(56) yield the equality y0 = x0
1+x0

. In this case, (57) becomes an equality due to the Abel
identity L(t2) = 2L(t) − 2L( t

1+t ), which holds for any t in the interval [0, 1].
For 0 < g < 1, the inequality in (57) follows from relation (52) in Proposition 5, Eqs. (33)–(34), formula (45),

and Eq. (4) for f(t) = (1 − t1+ 1
g )/(1 − t). �

In the simplest case, Φ = 0, we have the equality x0 = 1, and Proposition 6 reduces to the following estimate:

L(y) <
1

1 + g

π2

6
for y = (1 − y)g and 0 < g < 1 . (58)

The case Φ = 1 can be interpreted as a case related to the A2 affine Toda model [2] and to the Calogero–
Sutherland model with coupling constant λ = g [9].

Remark. After completing the manuscript, the author have been informed that multivariable analogs of formulas
(18) and (20) have been obtained in [13] and [14] by means of the multivariable Lagrange inversion theorem.
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