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AN ANSATZ FOR sl2-INVARIANT R-MATRICES

A. G. Bytsko∗ UDC 517.9

We study spectral decomposition of regular sl2-invariant R-matrices R(λ) by the method of reduction of the Yang–
Baxter equation to subspaces of a given spin. Restrictions on the possible structure of several leading coefficients
in the spectral decomposition are derived. The origin and structure of the exceptional solution for spin s = 3 are
explained. A similar analysis is performed for constant R-matrices. In particular, it is shown that the permutation
matrix P is a “rigid” solution. Bibliography: 6 titles.

1. Introduction

The Yang–Baxter equation plays a key role in the quantum inverse scattering method (see, e.g., the reviews
[1, 2]). The braid group form of this equation looks as follows:

R12(λ)R23(λ + µ)R12(µ) = R23(µ)R12(λ + µ)R23(λ). (1)

In this paper, we consider the Yang–Baxter equation (1) on the space V ⊗3
s , where Vs is an irreducible finite-

dimensional representation of the algebra sl2. The dimension of the representation Vs is (2s+1), where s is either
a positive integer or a semi-integer number (called spin below). Here and in what follows, we use the standard
notation: lower indices of R(λ) indicate tensor components of V ⊗3

s where R(λ) acts nontrivially.
An operator-valued function R(λ) : C �→ End V ⊗2

s that satisfies Eq. (1) is called an R-matrix. We consider
sl2-invariant R-matrices, i.e., matrices that have spectral decomposition of the form

R(λ) =
2s∑

j=0

rj(λ)P j . (2)

In (2), P j is the projection onto Vj, the subspace of spin j in V ⊗2
s , and rj(λ) is a scalar function. Additionally,

we assume that R-matrices under consideration are regular, unitary, and normalized, i.e., the following relations
are satisfied:

rj(0) = 1, rj(λ)rj(−λ) = 1, and r2s(λ) = 1. (3)

Let us remark that unitarity is a consequence of regularity and normalization [3].
Since regular R-matrices can be used to construct local integrals of motion for lattice models, in particular for

spin chains, the problem of finding all the solutions of the Yang–Baxter equation with properties (3) is important
for the quantum inverse scattering method. At present, four series of nonequivalent sl2-invariant regular solutions
and one exceptional solution for s = 3 are known (see [4] and references therein). A computer-based check [4]
led to a conjecture that this list of solutions is exhaustive. However, the corresponding classification theorem
has not been proven yet. In the present paper, we apply the approach developed in [3] and make some progress
in this direction. In particular, we explain the origin and structure of the exceptional solution for s = 3.

The paper is organized as follows. Section 2 contains analysis of one ansatz for an R-matrix. Although
the results presented here are well known, we provide all the necessary technical details because our aim is to
develop a similar technique for a more general case. In Sec. 3, we recall briefly the main details of the approach
developed in [3] for analysis of sl2- and Uq(sl2)-invariant R-matrices. Here we also prove one useful additional
relation (Lemma 3). In Sec. 4.1, we demonstrate that analysis of some number of leading coefficients in the
spectral decomposition of an R-matrix can be performed in a way which closely resembles the analysis described
in Sec. 2. In Secs. 4.2–4.3, we give details of this analysis. In particular, it turns out that the exceptional solution
arises as a consequence of degeneration of a certain set of matrices. In Sec. 5, we perform a similar analysis for
constant R-matrices. In particular, it is shown that the permutation P is a “rigid” solution. The Conclusion
summarizes the main results.
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2. Analysis of one ansatz for an R-matrix

Let E denote the identity operator on V ⊗2
s . For s ≥ 1, let us consider R-matrices of the following form:

R(λ) =
1

1 + f(λ)
(
E + f(λ) P + g(λ)P 0

)
. (4)

Here P is the permutation operator on Vs⊗Vs. Recall that this operator can be expressed in terms of projections:

P =
2s∑

j=0

(−1)2s−j P j. (5)

If the scalar functions f(λ) and g(λ) satisfy the condition f(0) = g(0) = 0, then (4) is an ansatz for a solution
of the Yang–Baxter equation in the class (3). It turns out that all the R-matrices of that type can be described
explicitly.

Lemma 1. The following relations hold on V ⊗3
s :

P 0
l P 0

l = P 0
l Pl, Pl = E, P 0

l Pl = Pl P 0
l = ξ P 0

l , (6)

Pl Pl′ Pl = Pl′ Pl Pl′ , (7)

P 0
l Pl′ Pl = Pl′ Pl P 0

l′ , Pl P 0
l′ Pl = Pl′ P 0

l Pl′ , (8)

P 0
l Pl′ P 0

l = η P 0
l , P 0

l P 0
l′ P 0

l = η2 P 0
l , (9)

P 0
l P 0

l′ Pl = ξη P 0
l Pl′ , Pl P 0

l′ P 0
l = ξη Pl′ P 0

l , (10)

where l = {12}, l′ = {23} or l = {23}, l′ = {12}, and ξ and η are scalar constants:

ξ = (−1)2s and η =
1

2s + 1
. (11)

Proof. The third relation in (6) follows from (5). Equalities (7) and (8) are obvious. Relations (9) follow from
the well-known relation

P 0
12 P j

23 P 0
12 =

2j + 1
(2s + 1)2

P 0
12 (12)

(see, e.g., [3]). Relation (10) can be derived as follows:

P 0
12 P 0

23 P12 = P 0
12 P12 P 0

13

(6)
= ξ P 0

12 P 0
13 = ξ P 0

12 P23 P 0
12 P23

(9)
= ξη P 0

12 P23. (13)

�
Substituting (4) in (1) and using the relations of Lemma 1, it is not difficult to check that the Yang–Baxter

equation for the ansatz under consideration is equivalent to the following equation:

Fλ,µ F + Gλ,µ G + Hλ,µ H + Hµ,λ H̃ = 0, (14)

where

F = P12 − P23 , G = P 0
12 − P 0

23,

H = P 0
12 P23 − P12 P 0

23, H̃ = P23 P 0
12 − P 0

23 P12 , (15)

Fλ,µ = f(λ) + f(µ) − f(λ + µ), (16)

Gλ,µ = g(λ)+g(µ)−g(λ + µ)+ξf(λ)g(µ)+ξg(λ)f(µ)+g(λ)g(µ)+ηg(λ)g(µ)f(λ + µ) + η2g(λ)g(µ)g(λ + µ), (17)

and

Hλ,µ = g(λ)f(λ + µ)− f(λ)g(λ + µ) + ξη g(λ)f(µ)g(λ + µ). (18)
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Lemma 2. For s ≥ 1, the matrices F, G, H, and H̃ in (15) are linearly independent.

The proof is given in Appendix B.
As a consequence of Lemma 2, we see that Eqs. (14) are equivalent to the following system of functional

equations:

Fλ,µ = 0, (19)

Gλ,µ = 0, (20)

Hλ,µ = Hµ,λ = 0. (21)

Analysis of system (19)–(21) is fairly simple. There are the following three nontrivial cases:
(1) f(λ) �= 0 and g(λ) = 0. In this case, it is obvious from (16) that f(λ) is a linear function. Without loss

of generality, one may choose f(λ) = λ.
(2) f(λ) = 0 and g(λ) �= 0. In this case, there remains a single equation for g(λ):

g(λ) + g(µ) − g(λ + µ) + g(λ)g(µ) + η2g(λ)g(µ)g(λ + µ) = 0, (22)

which has (for η �= 1
2
) the following solution:

g(λ) = b
1 − eγλ

eγλ − b2
, b + b−1 = η−1. (23)

Here γ is an arbitrary finite constant, which can be chosen equal one without loss of generality.
(3) f(λ) �= 0 and g(λ) �= 0. Again, one may take f(λ) = λ. Introducing a new function h(λ) = f(λ)/g(λ), we

can rewrite Eq. (21) in the following form:

h(λ + µ) = h(λ) − ξη f(µ) = h(µ) − ξη f(λ). (24)

Hence, h(λ) is a linear function. Therefore, the solution for g(λ) is as follows:

g(λ) =
λ

β − ξη λ
. (25)

The function (25) solves Eq. (20) provided that the following restrictions are imposed:

ξ2 = 1 and β = η − ξ/2. (26)

R-matrices that correspond to cases (1), (2), and (3) are known as the R-matrices of Yang, Baxter, and
Zamolodchikov, respectively. The above analysis shows clearly that there are no other solutions of the form (4).
It is remarkable that the ansatz (4) covers three of the four known series of sl2-invariant regular R-matrices.
Therefore, it is natural to study a generalization of the ansatz which could be analyzed in a similar way.

3. Reduced Yang–Baxter equation

Let us recall the main details of the approach developed in [3] to analyze Uq(sl2)-invariant R-matrices (we
take into account from the very beginning that q = 1 in our case). Denote by �t� the entire part of a number t.
For n = 0, 1, . . . , �3s�, the subspace W

(s)
n ⊂ V ⊗3

s is defined as the linear span of the highest weight vectors of
spin (3s − n), i.e.,

W (s)
n = {ψ ∈ V ⊗3

s

∣∣ S+
123ψ = 0, Sz

123ψ = (3s − n)ψ }. (27)

For a given R-matrix of the form (2), we construct a set of diagonal matrices D(n)(λ) as follows:

D
(n)
kk′(λ) = δkk′ r2s−k(λ), where

{
0 ≤ k ≤ n for 0 ≤ n ≤ 2s;
n − 2s ≤ k ≤ 4s− n for 2s ≤ n ≤ �3s�.

(28)

Set D̂(n)(λ) ≡ A(s,n) D(n)(λ)A(s,n), where A(s,n) is a certain special matrix with properties described below.
Then the condition that the Yang–Baxter equation (1) is fulfilled on the subspace W

(s)
n can be written as the

following matrix equation:

D(n)(λ) D̂(n)(λ + µ) D(n)(µ) = D̂(n)(µ) D(n)(λ + µ) D̂(n)(λ), (29)
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which we call the reduced Yang–Baxter equation (of level n). The initial Eq. (29) is equivalent to the system of
reduced Eqs. (29) with n = 0, 1, . . . , �3s�.

The matrix A(s,n), which plays an important role in the outlined approach, has the following basic properties.
Entries of the matrix are expressed (for q = 1) in terms of 6–j symbols of the algebra sl2 as follows (see also
Appendix A):

A
(s,n)
kk′ = (−1)2s−n

√
(4s − 2k + 1)(4s− 2k′ + 1)

{
s s 2s− k′

s 3s − n 2s − k

}
, (30)

where k and k′ take the same values as in (28). The matrix A(s,n) is orthogonal, symmetric, and coincides with
its own inverse (t stands for matrix transposition):

A(s,n) =
(
A(s,n)

)t =
(
A(s,n)

)−1
. (31)

For the purpose of the present work, we need one more property which we formulate as follows.

Lemma 3. For all n = 0, . . . , �3s�, the following matrix relation holds:

A(s,n) D
(n)
0 A(s,n) = (−1)n D

(n)
0 A(s,n) D

(n)
0 , (32)

where the diagonal matrix D
(n)
0 has the form

(
D

(n)
0

)
kk′ = (−1)kδkk′ (33)

and k and k′ take the same values as in (28).

Proof. Let us write out matrix entries of (32) taking into account that A(s,n) is symmetric:∑
m

(−1)m A
(s,n)
km A

(s,n)
k′m = (−1)n+k+k′

A
(s,n)
kk′ . (34)

Now, taking into account formula (30), it is easy to see that relation (34) can be reduced to the Racah identity
for 6-j symbols (see, e.g., [5]):

∑
p

(−1)p (2p + 1)
{

r1 r3 l
r2 r4 p

}{
r1 r2 l′

r3 r4 p

}
= (−1)l+l′

{
r3 r1 l
r2 r4 l′

}
, (35)

where we have to set r1 = r2 = r3 = s, r4 = 3s − n, l = 2s− k, l′ = 2s − k′, and p = 2s −m. �

It is obvious from (5) that D
(n)
0 and D̂

(n)
0 ≡ A(s,n)D

(n)
0 A(s,n) correspond to the restrictions of the operators

P12 and P23 to W
(s)
n . In particular, reduction of Eq. (7) on the subspace W

(s)
n leads to the following relation:

D
(n)
0 A(s,n) D

(n)
0 A(s,n) D

(n)
0 = A(s,n) D

(n)
0 A(s,n) D

(n)
0 A(s,n) D

(n)
0 A(s,n); (36)

the correctness of (36) follows immediately from the statement of Lemma 3. One more corollary of Lemma 3 is
that (−1)nA(s,n) corresponds to the restriction of the operator P13 = P12P23P12 to W

(s)
n .

4. Partial analysis of the general ansatz

4.1. Derivation of the equations
We note that any sl2-invariant R-matrix of spin s ≥ 1 can be represented by the following ansatz:

R(λ) =
1

1 + f(λ)
(
E + f(λ) P + g(λ)P 2s−m +

2s−m′∑
j=0

r̃j(λ)P j
)
, (37)

where 2 ≤ m ≤ 2s and m < m′ (if m = 2s, then the last sum in (37) is omitted). Below we assume that g(λ) �= 0,
since otherwise (37) belongs to the known case (1) of Sec. 2. The regularity requirement imposes the condition

f(0) = g(0) = r̃j(0) = 0. (38)
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Let π(m,n) denote the matrix such that (π(m,n))kk′ = δkmδk′m, k = 0, . . . , n. Then π(m,n) and π̂(m,n) ≡
A(s,n)π(m,n)A(s,n) correspond to the restrictions of the operators P 2s−m

12 and P 2s−m
23 to W

(s)
n . Note that π(m,n)

and π̂(m,n) are projections of rank 1.
For n < m′, the matrices D(n)(λ) and D̂(n)(λ) corresponding to the R-matrix (27) look as follows:

D(n)(λ) =
1

1 + f(λ)
(
E + f(λ)D

(n)
0 + θmn g(λ)π(m,n)

)
and (39)

D̂(n)(λ) =
1

1 + f(λ)
(
E + f(λ) D̂

(n)
0 + θmn g(λ) π̂(m,n)

)
,

where θmn = 0 for n < m and θmn = 1 for m ≤ n < m′.
The following observation is a key place of the present work: analysis of the reduced Yang–Baxter equation

(29) for the ansatz (39) is absolutely analogous (except for one special case) to analysis of Eq. (1) for the ansatz
(4) given in Sec. 2. This observation is based on the following assertion.

Lemma 4. Relations (6)–(10) of Lemma 1 remain true after the replacement

Pl → D
(n)
0 , Pl′ → D̂

(n)
0 , P 0

l → π(m,n), P 0
l′ → π̂(m,n), (40)

as well as after the replacement

Pl → D̂
(n)
0 , Pl′ → D

(n)
0 , P 0

l → π̂(m,n), P 0
l′ → π(m,n). (41)

The corresponding scalar constants ξ and η become dependent on m and n:

ξm = (−1)m and ηm,n = (−1)n A(s,n)
mm . (42)

Proof. The analogs of relations (6) follow from the definition of the matrices D
(n)
0 , D̂

(n)
0 , π(m,n), and π̂(m,n) and

from the property (A(s,n))2 = E. The analog of relation (7) is identity (36), which we have established above.
The analogs of relations (8) can be reduced to the identity

π(m,n) A(s,n) D
(n)
0 A(s,n) D

(n)
0 A(s,n) = A(s,n) D

(n)
0 A(s,n) D

(n)
0 A(s,n) π(m,n), (43)

which is easily verified with the help of relation (32) and the analogs of relations (6). The analogs of relations
(9) and (10) are derived as follows:

π(m,n) D̂
(n)
0 π(m,n) = π(m,n) A(s,n)D

(n)
0 A(s,n) π(m,n) (32)

= (−1)n π(m,n) D
(n)
0 A(s,n)D

(n)
0 π(m,n)

= (−1)n π(m,n) A(s,n) π(m,n) = (−1)n A(s,n)
mm π(m,n) = ηm,n π(m,n),

π(m,n) π̂(m,n) π(m,n) = π(m,n) A(s,n) π(m,n) A(s,n) π(m,n) =
(
A(s,n)

mm

)2
π(m,n) = η2

m,n π(m,n),

π(m,n) π̂(m,n) D
(n)
0 = π(m,n) A(s,n) π(m,n) A(s,n)D

(n)
0

= A(s,n)
mm π(m,n) A(s,n)D

(n)
0

(
A(s,n)

)2 (32)
= ηm,n π(m,n) D

(n)
0 A(s,n)D

(n)
0 A(s,n)

= ξmηm,n π(m,n) A(s,n)D
(n)
0 A(s,n) = ξmηm,n π(m,n) D̂

(n)
0 .

Let us emphasize that Lemma 3 plays a key role in this proof. �
The derivation of Eq. (14) is based only on relations of Lemma 1. Therefore, Lemma 4 implies that for

the R-matrix (37), the reduced Yang–Baxter equation at levels n < m′ leads to the same Eq. (14). The only
difference is that the scalar coefficients (apart from Fλ,µ) now depend on m and n:

Fλ,µ = f(λ) + f(µ) − f(λ + µ), (44)

G
(m,n)
λ,µ = θm,n

(
g(λ) + g(µ) − g(λ + µ) + ξmf(λ)g(µ) + ξm g(λ)f(µ)

+ g(λ)g(µ) + ηm,ng(λ)g(µ)f(λ + µ) + η2
m,ng(λ)g(µ)g(λ + µ)

)
, (45)

H
(m,n)
λ,µ = θm,n

(
g(λ)f(λ + µ) − f(λ)g(λ + µ) + ξmηm,n g(λ)f(µ)g(λ + µ)

)
, (46)

and the matrices F, G, H, H̃ are given by formula (15) after substitution (40), i.e.,

F(m,n) = D
(n)
0 − D̂

(n)
0 , G(m,n) = π(m,n) − π̂(m,n),

H(m,n) = π(m,n) D̂
(n)
0 − D

(n)
0 π̂(m,n), H̃

(m,n)
= D̂

(n)
0 π(m,n) − π̂(m,n) D

(n)
0 . (47)
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4.2. Analysis of the equations in the case f(λ) = 0
Assuming that g(λ) �= 0 in (37), let us first consider the case f(λ) = 0. In this case, Eq. (14) at level n = m

is equivalent to the equation G
(m,m)
λ,µ G(m,m) = 0, i.e., to Eq. (22) for g(λ), where η has the form

ηm,m = (−1)m A(s,m)
mm =

(2s)!
(2s− m)!

(4s− 2m + 1)!
(4s −m + 1)!

. (48)

For 2 ≤ m ≤ 2S and S ≥ 1, |A(s,m)
mm | < A

(s,1)
11 = 1

2 . Therefore, g(λ) is given by (23), where η = ηm,m.
The further analysis of the case f(λ) = 0 leads naturally to the following question: is it possible to have

m′ > (m+1) for the ansatz (37)? The inequality above is possible only if the already found function g(λ) solves
Eq. (22) at level n = m + 1, i.e., only if η2 takes the same value for levels n = m and n = m + 1. According to
(42), the condition η2

m,m = η2
m,m+1 is equivalent to the requirement

|A(s,m)
mm | = |A(s,m+1)

mm |. (49)

However, it is easy to derive from formula (82) that

A(s,m+1)
mm =

m2 −m − 3ms + s

2s
A(s,m)

mm . (50)

Since m2 − m − 3ms + 3s < 0 for 2 ≤ m ≤ 2s, we infer that (49) cannot hold for these values of m. Thus, we
conclude that m′ = m + 1.

4.3. Analysis of the equations in the case f(λ) �= 0
Let us now turn to the case f(λ) �= 0. Equations (14) at levels n = 1, . . . , m−1 are equivalent to the equation

Fλ,µF(m,n) = 0, i.e., to Eq. (19) for f(λ). Therefore, without loss of generality we may choose f(λ) = λ.
In order to analyze Eq. (14) for n ≥ m, it is important to note that the analog of Lemma 2 is not true, in

general. That is, the matrices (47) can be linearly dependent. Note that the matrices F(m,n) and G(m,n) are

symmetric and, obviously, linearly independent, whereas the matrices H(m,n) and H̃
(m,n)

are transposed to each
other: H̃

(m,n)
=

(
H(m,n)

)t. It turns out that the following relations:

H̃
(m,n)

= H(m,n) (51)

and
H(m,n) + H̃

(m,n)
= β G(m,n), (52)

where β is a scalar constant, can hold only simultaneously. The case where these relations hold is called
exceptional.

Lemma 5. For m ≥ 2, each of relations (51) and (52) holds only for m = 3 and n = 4. In this case, relation
(52) holds in the following form:

H(3,4) + H̃
(3,4)

= 2G(3,4). (53)

The proof is given in Appendix B.
In the generic case, H(m,n) �= H̃

(m,n)
. Therefore, the antisymmetric matrix part of Eq. (14) imposes the

following condition:
H

(m,n)
λ,µ = H

(m,n)
µ,λ , (54)

and the symmetric part of this equation looks as follows:

Fλ,µ F(m,n) + G
(m,n)
λ,µ G(m,n) +

1
2
(H(m,n)

λ,µ + H
(m,n)
µ,λ ) (H(m,n) + H̃

(m,n)
) = 0. (55)

If F(m,n), G(m,n), and (H(m,n) + H̃
(m,n)

) are linearly independent, then Eqs. (54)–(55) lead to the system of

functional equations (19)–(21). If, however, H(m,n) + H̃
(m,n)

= βG(m,n) + β̃F(m,n), where β̃ �= 0, then (55) is
equivalent to the following system:

2 Fλ,µ + β̃ (H(m,n)
λ,µ + H

(m,n)
µ,λ ) = 0, (56)

2 G
(m,n)
λ,µ + β (H(m,n)

λ,µ + H
(m,n)
µ,λ ) = 0. (57)
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Since our choice f(λ) = λ has already ensured the equality Fλ,µ = 0, we infer that Eqs. (54), (56)–(57) lead
again to system (19)–(21). Thus, we conclude that the analysis of the generic case is absolutely analogous to the
analysis of case (3) in Sec. 2.

By Lemma 5, the level n = m corresponds to the generic case. Hence, the function g(λ) is determined by
system (19)–(21) uniquely and has the following form:

g(λ) =
λ

ηm,m − ξm/2 − ξmηm,m λ
, (58)

where ξm and ηm,m are given by formula (42).
The further analysis of the case f(λ) = λ leads to the following question: is it possible to have m′ > (m + 1)

for the ansatz (37)? If m �= 3, then the level n = m + 1 corresponds to the generic case. It is easy to check
that the function (58) can satisfy system (19)–(21) for n = m + 1 only if ηm,m = ηm,m+1. The last equality is
impossible, as was shown in Sec. 4.2. However, for m = 3, this level corresponds to the exceptional case. In this
case, Eq. (55) is equivalent to the equation

G
(3,4)
λ,µ + H

(3,4)
λ,µ + H

(3,4)
µ,λ = 0, (59)

whilst condition (54) is not imposed (since Eq. (14) has no antisymmetric part). Substituting (58) into (59), it is
easy to verify that Eq. (59) is true if (η3,3 − η3,4)(2η3,4 − 1) = 0. It is interesting to note that the last condition
is satisfied for all s ≥ 3

2
since

η3,4 = A
(s,4)
33 = 1/2 (60)

according to (48) and (50). Thus, m′ = 4 or m′ = 5 in the ansatz (37) for m = 3 and for all s ≥ 3
2
. In fact,

m′ > 5 is possible only for s = 3. Indeed, the level n = 5 corresponds to the generic case, and hence, a necessary
condition to have m′ = 6 is the equality

A
(s,3)
33 = A

(s,5)
33 . (61)

However, it is not difficult to derive from (82) the following relation:

A
(s,5)
33 =

10s2 − 32s + 21
s(4s − 7)

A
(s,3)
33 , (62)

which shows that (61) can hold only if (s−3)(6s−7) = 0. Finally, since A
(3,6)
33 �= A

(3,3)
33 , we conclude that m′ ≤ 6

for s = 3.

5. Analysis of constant R-matrices

We call a matrix R ∈ End V ⊗2
s a constant R-matrix if this matrix solves the following Yang–Baxter equation:

R12 R23 R12 = R23 R12 R23. (63)

We consider sl2-invariant R-matrices, i.e., matrices that have spectral decomposition of the form

R =
2s∑

j=0

rj P j, (64)

where the rj are scalar constants. In addition, we assume that

r2s = 1. (65)

The technique of analyzing the spectral decomposition described in Secs. 3–4 is applicable to the case of
constant R-matrices as well. In particular, the following remark explains why condition (65) is natural.
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Lemma 6. There exist no nontrivial sl2-invariant constant R-matrices such that r2s = 0.

Proof. If such an R-matrix exists, then by a suitable normalization, this matrix can be reduced to the form R =
P 2s−m+

∑2s−m−1
j=0 rj P j, where 0 < m ≤ 2s. Then the corresponding reduced Yang–Baxter equation (29) at level

n = m reads
(
A(s,m) πm,m

)3 =
(
πm,m A(s,m)

)3, which is equivalent to the relation (A(s,m)
m,m )2 [A(s,m), πm,m] = 0.

However, this relation cannot hold for m > 0 since A
(s,m)
k,m �= 0 for all k. �

We note that any sl2-invariant constant R-matrix of spin s ≥ 1 that satisfies (65) and has r2s−1 �= −1 can be
represented by the following ansatz:

R =
1

1 + f

(
E + f P + g P 2s−m +

2s−m′∑
j=0

r̃j P j
)
, (66)

where 2 ≤ m ≤ 2s and m < m′ (if m = 2s, then the last sum in (66) is omitted).
Applying the same arguments as in Sec. 3, we can use Lemma 4 to show that the reduced Yang–Baxter

equation for the R-matrix (66) at levels n < m′ is equivalent to the same Eq. (14), where the matrices F, G,
H, and H̃ are given by formula (47), and the scalar coefficients are obtained from (44)–(46) by converting the
functions f(λ) and g(λ) into constants f and g, i.e.:

F = f, (67)

G(m,n) = θm,n

(
g + 2ξmfg + g2 + ηm,ng2f + η2

m,ng3
)
, (68)

and
H(m,n) = θm,n ξmηm,n g2f. (69)

Equation (14) at levels n < m is equivalent to the equation FF(m,n) = 0, which can hold only for f = 0. As
a result, G(m,n) acquires the following form:

G(m,n) = θm,n

(
g + g2 + η2

m,ng3
)
, (70)

and then Eq. (14) at levels m ≤ n < m′ yields the equation G(m,n)G(m,n) = 0, i.e., the following quadratic
equation for g:

1 + g + η2
m,ng2 = 0. (71)

Hence, for n = m we find g = 1
2
(1±

√
1 − 4η2

m,m), where ηm,m is given by formula (48). It was shown in Sec. 4.2

that η2
m,m �= η2

m,m+1 for 2 ≤ m ≤ 2s. Hence, the obtained value of g cannot satisfy (71) for n > m. Thus, we
conclude that m′ = m + 1 in (66).

The ansatz (66) covers not all of sl2-invariant constant R-matrices of spin s ≥ 1 that satisfy (65). Namely, if
such an R-matrix has r2s−1 = −1, then this matrix can be represented by the following ansatz:

R = P + g P 2s−m +
2s−m′∑

j=0

r̃j P j, (72)

where 2 ≤ m ≤ 2s and m < m′ (if m = 2s, then the last sum in (72) is omitted).
Using relations of Lemma 4, it is not difficult to check that the reduced Yang–Baxter equation for the R-matrix

(72) at level n = m is equivalent to the following equation:

g2(1 + ηm,m g)G + ξm g2
(
H + H̃

)
= 0, (73)

where G, H, and H̃ are given by formula (47). Since the level n = m corresponds to the generic case (cf. Sec. 4.3),
we infer that the only solution of (73) is g = 0. Thus, the ansatz (72) is a solution for (63) only if g = rj = 0. We
have shown that the permutation P is a “rigid” solution, which does not admit a “deformation” of its spectral
decomposition in order 2s− 2 and lower orders.
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Conclusion

The results of analysis carried out in Secs. 4–5 can be formulated as the following restrictions on the structure
of spectral decompositions of R-matrices.

Proposition 1. Let R be an sl2-invariant solution of Eq. (63) on V ⊗3
s for an integer or half-integer spin s ≥ 1

that satisfies condition (65). Then either r2s−1 = 1 or r2s−1 = −1.
(I) In the first case,

R = E + g P 2s−m +
2s−m−1∑

j=0

r̃j P j, (74)

where g is a solution of Eq. (71) and 2 ≤ m ≤ 2s. If m < 2s, then r̃2s−m−1 �= 0.
(II) In the second case,

R = P. (75)

Proposition 2. Let R(λ) be an sl2-invariant solution of Eq. (1) on V ⊗3
s for an integer or half-integer spin s ≥ 1

that satisfies conditions (3). Then either r2s−1(λ) = 1 or r2s−1(λ) = 1−γλ
1+γλ

.

(I) In the first case,

R(λ) = E + g(λ)P 2s−m +
2s−m−1∑

j=0

r̃j(λ)P j, (76)

where 2 ≤ m ≤ 2s. If m < 2s, then r̃2s−m−1(λ) �≡ 0. The function g(λ) has the form

g(λ) = b
1 − eγλ

eγλ − b2
, b + b−1 =

1
ηm,m

, (77)

where ηm,m is given by (48), and γ is a finite constant.
(II) In the second case, either

R(λ) =
1

1 + γλ

(
E + γλ P

)
(78)

or

R(λ) =
1

1 + γλ

(
E + γλ P +

λ

ηm,m(1 − (−1)m γλ) − (−1)m

2

P 2s−m +
2s−m′∑

j=0

r̃j(λ)P j
)
, (79)

where ηm,m is given by (48), γ is a finite constant, 2 ≤ m ≤ 2s and m < m′. If m < 2s, then r̃2s−m′(λ) �≡ 0,
and, moreover,

m′ = m + 1 if m �= 3,

m′ ≤ 5 if m = 3, s �= 3,

and
m′ ≤ 6 if m = 3, s = 3.

The constant γ may be set unity without loss of generality.
Let us make several brief remarks concerning Propositions 1 and 2.
According to Lemma 6, if all the coefficients of the spectral decomposition of R(λ) tend to certain limit values

as λ → ∞ in some direction in the complex plane, then these values are finite. It follows from Propositions 1 and 2
that the corresponding limit R(∞) has the form (74) only for solutions of type (76). In other cases, R(∞) = P.

Concerning Proposition 2, we note that for s = 3, a solution with m′ = 6 really exists (see [4]):

R(λ) = P 6 +
1−λ

1+λ
P 5 + P 4 +

4−λ

4+λ
P 3 + P 2 +

1−λ

1+λ
P 1 +

1−λ

1+λ

6−λ

6+λ
P 0. (80)

It is easy to see that the coefficient at P 3 agrees with formula (79). Apart from this case, it is not known whether
there exist R-matrices of the form (79) with 2 < m < 2s.

For m = 2, the three leading order coefficients in (79),

R(λ) = P 2s +
1−λ

1+λ
P 2s−1 +

1−λ

1+λ

1− 2s
2s−1λ

1+ 2s
2s−1λ

P 2s−2 + · · · , (81)

coincide with the corresponding coefficients of the Kulish–Reshetikhin–Sklyanin R-matrix [6]. Let us mention
that it follows from Proposition 2 and results of [3] that only R-matrices of the form (76) and (81) can have
Uq(sl2)-invariant analogs.
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Appendix A. The matrix A(s,n)

Expression (30) for entries of the matrix A(s,n) can be rewritten in a more explicit form:

A
(s,n)
kk′ = F s

k F s
k′

6s−max(n,k+k′)∑
l=6s−n−min(k,k′)

(−1)l(l+1)!
(
(l−4s+k)! (l−4s+k′)!

× (l−6s+n+k)! (l−6s+n+k′)! (6s−n−l)! (6s−k−k′−l)! (8s−n−k−k′−l)!
)−1

, (82)

where k and k′ take the same values as in (28), and

F s
k = (2s−k)!

( (k)! (n−k)! (2s−n+k)! (4s−n−k)!
(4s−k+1)! (6s−n−k+1)!

) 1
2
. (83)

The sum in (82) is taken over those l for which the arguments of factorials are nonnegative, and it is understood
that 0! = 1.

Appendix B. Proofs of Lemma 2 and Lemma 5

Proof of Lemma 2. Using the relations

traEa = 2s + 1, traP j
ab =

2j + 1
2s + 1

Eb, and traPab = Eb (84)

(a, b = 1, 2, 3), we take the trace over the third tensor component of F, G, H, and H̃, which yields:

tr3F = η−1
P − E, tr3G = η−1P 0 − ηE, and tr3H = tr3H̃ = P 0 − ηP.

Since E, P, and P 0 are linearly independent for s ≥ 1, we conclude that F, G, H, and H̃ can be linearly dependent
only if the following equality holds:

η2 F− η G + α H + α̃ H̃ = 0, α + α̃ = 1. (86)

Multiply (86) by P 0
12 from the left, take into account relations (6), and take the trace over the first tensor

component. Using again the linear independence of E, P, and P 0, we deduce that (86) can hold only if α = ξη.
Multiplying (86) by P 0

12 from the right, we deduce analogously that α̃ = ξη. Thus, (86) can hold only if ξη = 1/2,
which is impossible as seen from (11). �
Proof of Lemma 5. Let us write out entries of the matrices H, H̃, and G explicitly:

Hkk′ = (−1)m+k′
δkm A

(s,n)
kk′ − (−1)k A

(s,n)
km A

(s,n)
mk′ , (87)

H̃kk′ = (−1)m+k δkm A
(s,n)
kk′ − (−1)k′

A
(s,n)
km A

(s,n)
mk′ , (88)

and
Gkk′ = δkm δk′m − A

(s,n)
km A

(s,n)
mk′ . (89)

Recall that m ≥ 2 and k, k′ = 0, 1, . . . , n. Comparing (87)–(89) for k = k′ = 0, we note that (52) can hold only
for β = 2. Further, considering (87)–(89) for k, k′ �= m, it is easy to see that each of relations (51) and (52) can
hold only if

A
(s,n)
km A

(s,n)
mk′ = 0 (90)

for all values of k and k′ such that k, k′ �= m and (−1)k +(−1)k′ �= 2. In particular, (90) must hold for k = k′ = 1,
which implies that A

(s,n)
1m = 0. As can be seen from (82), the latter equality is possible only if the following

condition is satisfied (for m < n):
2m2 − 2m + n2 − n = 8ms − 6ns. (91)

Note that A
(s,n)
kn �= 0 for all k. Therefore, (90) implies that m �= n and also that n is an even number. Furthermore,

if m �= n − 1, then (90) must hold for k = k′ = n − 1, which implies that A
(s,n)
1,n−1 = 0. We apply (82) once more

to show that the last equality is possible only if the following condition is fulfilled:

m2 −m = 4ms − ns. (92)
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It is easy to see that conditions (91) and (92) are incompatible since they imply the equality n2 − n + 4ns = 0.
Thus, the only remaining possibility is the case m = n−1. In this case, condition (91) is satisfied only for n = 4.
A direct check shows that relations (51) and (52) indeed hold for m = 3 and n = 4. �
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