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ON CONSTANT Ugq(sl,)-INVARIANT R-MATRICES
A. G. Bytsko* UDC 517.9

We consider the spectral resolution of a Uq(sls)-invariant solution R of the constant Yang—Bazter equation in the
braid group form. It 1s shown that if the two highest coefficients in this resolution are not equal, then R is either
the Drinfeld R-mairiz or its tnverse. Bibliography: 13 titles.

§1. INTRODUCTION

Recall that the algebra U,(sls) is generated by generators X4, X_, ¢/, ¢ satisfying the following relations
(see [9]):

@H — g 2H
X+, X7 )= = ¢"XF=¢" X ¢", and gt =1 (1)

The homomorphism A which is defined on the generators as follows:
AXH) =X 0g T+¢"oX" and A =g 0g™ (2)

turns Uy (sl2) into a bialgebra (moreover, into a Hopf algebra [12]).
We consider the standard finite-dimensional representation w, of the algebra U, (sle) in which generators act
on basis vectors wy, of a module V; (dim V, = (2s+1), 2s € N) as follows:

s (XN wp =V[sTkl[stk+1] wpr and 7,(¢™ ) wp = ¢ wy, (3)
where [t] = (¢ — ¢ ?)/(¢—q ') and k= —s, —s+1,...,s.
The universal R-matrices for algebra (1)-(2) are given by

< 3P n)

R* = gtH®H Z q (£(g—g HXT® Xi)ﬂqu@H (4)
n=0

n

11 (Kl

(see [6]).
Let P denote the operator which permutes the tensor components in U, (sly)®2. Then the operator
R=PR*=R")'P

satisfies the Yang—Baxter equation in the braid group form:

Ri2 Ra3 Ria = Ras Raa Ras. (5)
The spectral resolution of R in the representation 7, is given by
2s
R=nf2(R) =) &P* " (6)
E=0

(see [8]), where P/ stands for the projector onto the irreducible submodule V; in V22 = @?iij. Here and below,
we use the following notation:

& = (—1)k g7 R)=20(8)  and  p(t) = t(t+1). (N

Consider a U,(sle)-invariant solution R’ of the Yang—Baxter equation (5). Its spectral resolution in the
representation 7, is given by

2s
R=r2*(R) =) P> %, 8)
k=0

where 79 # 0 by Lemma 6 of [4], which applies to the case ¢ #1 as well. We prove the following statement.

Proposition 1. If r; # ro in the spectral resolution (8), then R’ coincides either with R or with R™! up to
normalization.

This statement is a g-analogue of the second part of Proposition 1 of [4], where slp-invariant solutions of the
Yang-Baxter equation were considered. Note that the limit ¢ — 1 is degenerate in the sense that both operators
R and R™! turn into the permutation operator P.
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§2. REDUCTION TO THE SUBSPACE WT(LS)

Let us recall the method of analyzing U, (sl )-invariant solutions of the Yang—Baxter equation developed in [3].

Let |t] denote the entire part of ¢. The subspace WT(LS) CVE forn=0,1,...,|3s] is defined as the span of the
highest weight vectors of weight (3s —n), i.e.,

W’I'(LS) — {d} c Vs®3 | Xi‘r23 =0, qH123¢ — q337n¢ } (9)
Here and below, for O € U,(sls) we use the notation O125 = 723 ((A ® id)A(O)).

Since [Xft%, Rio] = [Xf%, Ras] =0, Wr(f) is an invariant subspace for Ris and Rog; thus, we can consider reduc-
tions of these operators to WT(LS). We can choose a basis of WT(LS) in which the operator Ry W is represented

by a diagonal matrix D(()") of the following form:
(DS™) g = Ot &k (10)
here 0 <k <nfor 0 <n <2sand (n—2s) <k < (4s—n) for 2s <n < [3s].
In the same basis, the operator R23|W(s) is represented by the following matrix:
D = Al=m) pim) Alsm), (11)

where A(®™) is a matrix with the following properties (see [3]): it is symmetric, orthogonal, equal to its inverse,
and self—dual in ¢:

s,n) __ s,n t_ s,n -1 s,n) __ (s,n)
Al = (Al = (Am) ™ and  AP™ = AT (12)
Entries of this matrix are expressed in terms of 6—j symbols of the algebra U,(sls) as follows:
(sm) _(_1\25—n _ _ S s 2s — k
AG = (—1)% " /s 2K+ 1], [4s 2K+ 1], { S e }q. (13)

The statement that the Yang—Baxter equation (5) holds when it is reduced to the subspace Wr(f) is equivalent
to the following equality:

(D AC)? = (46 DY, (149

In fact, however, a stronger statement holds: The r.h.s. and lLhs. of (14) are equal up to a multiplicative

constant to the identity operator on WL*). This follows from the following statement (which is a g-analogue of
Lemma 3 of [4]).

Lemma 1. For alln =0,...,|3s], the following relation holds:
Alsm) D(()n) Alsm) — g (D(()n))fl As:m) (D(()n))fl, (15)
where 6, = (—1)" g°(3s—7)—30(s)

The proof of this and other lemmas is given in the Appendix.
The statement of Lemma 1 can be written in the following form:

(Ri2 Reg R12)|W,(f): (Rag Ri2 R23)|W,(ﬁ): 0, A, (16)

For ¢ = 1, this relation turns into (]P’13)|W(s): (—1)"A(3’”).
From (16) and (12) it follows that

((Ri2 Res)?®) |WT(LS)= ((R23 Ri2)?) |W7(f): g*P3s—m)=6p(s) (17)

Let us note that
(Ri2 Ras R12)2 = (Ras Ry2 R23)2 = (Ri2 R23)3 = (Ras R12)3 (18)
= n8% (B Riaia) (BLELRS) ) = 782 (xexs AO (1)), (19)

where the element x is constructed in the following way: Write the R-matrix (4) as Rt = > r{¥ ® 7, and let
a

S stand for the antipode operation; then x = ¢ (Z S (rff))rff)). It is known [7] that the element x is central,
a

7s(x) = ¢ 2, and x1x2 A(x ') = (R’)71R+. The last relation allows us to derive the last equality in (19)
(and its generalization for AY)(x 1), see the proof of Lemma 1 in [5]). Thus, relation (16) can be regarded as

the definition of a certain square root of the operator given by the r.h.s. of (19).
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§3. YANG—BAXTER EQUATION ON WT(LS)
We prove Proposition 1 using the following statement (a g-analogue of Lemma 4 of [4]).

Lemma 2. Let 0 < <n <2s, where m=(2s —m). The reductions of the operators P7,, PT%, Rﬁl, and R%l

to WT(LS) satisfy the following relations:
RiRv R =Ry RiRy,

(20)
PP PP P = 1 P
PP Ry PP = (0n87) " in,im P (1)
lezl ;'/n lezl — (enf%l)j:2 R;El P;’n Rf/l,
+1 __ —1y+1 1
le lr/n Rl - (enfm ) Mn,m le Rf/ ) (22)

R PP P = (Bnéi )™ s R PT
where | = (12}, I’ = {23} orl = {23}, I' = (12}, and npm = A(ms’%)

Let us remark that not all the relations in Lemma 2 are independent. For instance, the second relation in
(21) follows from (22); the first relation in (21) and the second relation in (20) can be derived from each other
with the help of (22).

Let us also remark that, for ¢ =1, the operators RljEl coincide with the permutation operator P;, and relations
(20)—(22) become the relations of the Brauer algebra [2] (taking into account the additional relation P} =E,
where E is the identity operator). For ¢ # 1, the reductions of the operators RljEl to Wl(s) can be represented as
linear combinations of P[” and the identity operator E. As a consequence, relations (20)—(22) for n=1 can be
derived from the second relation in (20), which is the defining relation for the Temperley—Lieb algebra [13]. For
n > 2, relations (20)—(22) are the relations that hold in the Birman—Wenzl-Murakami algebra [1, 10]. However,
in this algebra an additional relation must also hold, which in our case holds only for n =2 (the operator Rfl

being reduced to WQ(S) can be represented as a linear combination of the operators Ry, P}, and E).
Returning to consideration of the spectral resolution (8), let us note that, without loss of generality, we can
set rg =&. Then R’ can be represented in the following form:

RI=R+4+gP¥ ™4 .., (23)

where n>1 and ... stands for the sum involving projectors whose ranks are smaller than the rank of P25~ 7,

Substitute ansatz (23) in the Yang-Baxter equation and consider its reduction to Wr(f) for n < 2s. With
the help of relations of Lemma 2, one can verify that the Yang—Baxter equation for R’ |W(5) is equivalent to the

following matrix equation:

9+ 0n& i 8 + 1051 9°) G+ (00, " g°)H =0, (24)
where
G = (p%;*" _ P§§7n> |W(S): " _ A(S,H)W(H)A(Sm),
J= (Ri2P33 " Riz — Res P15 " Rag) |0
— D(()”)A(s,n)w(n)A(s,n)D(()") _ 0%6772 (D(()"))flA(s,n)ﬂ_(n)A(s,n) (D(()"))fl,
and

H= (P} ™Ry +Rog PI3 " — P35 "Ry —Rig P35 ") |0
— 9;1€n (ﬂ_(n)A(s,n)D(()") + D(()")A(Sm)ﬂ-(”))
— Az 4l (DFY) 7 — (DFY) T Al glom,

Here 7™ is the matrix such that (W(”))kk/ = 6knOk'n.
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Lemma 3. (i) For n =1, the following relations hold:

J= (0%6626;2 _ ES)G — (q4s(371) _q432) G,

2 (25)
H=2¢,'G=2¢""G.
(ii) For n = 2, the matrices J and G are linearly independent, and the following relation holds:
fobiH=(bo+&)G+ (& +&) (26)

(iii) For n > 3, the matrices J, G, and H are linearly independent, and J#0.

Substituting relations (25) in (24), we infer that, for n =1, the coefficient g must be a root of the following
equation:
M1 g +mabié (& 26 ) g% + (614,767 — &) g =0.

Hence, taking into account that 71,1 = — (¢** + ¢ 2*)~', we conclude that, for n =1, the coeflicient g can take
one of the following values: g=0, g=¢>*¢ "2 (1 —¢%), and g =¢>*C¢ 2 (1 +¢**). In the first and second cases,
the spectral resolution of R’ coincides in the two highest orders with that of R and q432 R1, respectively. In the
third case, r1 =rg.

For n =2, substitute relations (26) in (24) and eliminate H. It is easy to check that the resulting coefficients
at J and G vanish if either g =0 or

Mg =—0:6"¢ "6 (&&& " + &+ &) = —0, &&i& (b + &)

However, the last equality cannot hold because £3£7¢5 = 62 (see Eq. (34)).

For n >3, the coefficient at J in (24) vanishes only if g=0. Thus, the coefficient g in (23) must be zero if
n > 2. Therefore, if R’ coincides with R in the two highest orders, then R’ = R. An analogous statement can be
established if we consider ansatz (23) with R replaced by R™!. Thus, Proposition 1 is proven.

APPENDIX

Proof of Lemma 1. The 6—j symbols of the algebra U,y (sly) satisfy the following g-analogue of the Racah identity

[8, 11]:
_1)? rory 1 p(0)—p(r1)—p(ra) [ 71 T2 1
Z<( 1) [2p+1]q{r2 T4 p}qq rs T4 P q)
? (27)
:(_1)l+l/qp<r2>p<z>{’"3 gl l,} 90 0),
To T4 q

(Note that the identity remains true if we set p(t) = —t(t + 1) since the 6—j symbols are self-dual with respect
to the replacement ¢ — ¢ 1.)

Consider the matrix entry (kk’) of equality (15). Using formula (10) and taking into account that A" is a
symmetric matrix, we conclude that

Z (_1)m Ag,nn) qp(2sfm)f2p(8) AS;Z) — (_1)n+k+k/ qp(San)—i-p(s)fp(2sfk)fp(2sfk/) AS:;;/TL) (28)
m
Now, taking into account formula (13), it is easy to see that relation (28) follows from identity (27) if we set
rir=ro=r3=58,174=35s—n,l=2s—k,l'=2s— k', and p=2s — m.

Proof of Lemma 2. We prove those relations of Lemma 2 that contain RT! on the Lh.s. Their counterparts with
R™! on the Lh.s. can be proven similarly.
The second relation in (20):

) ) ) — 1) A(o0m) ) 4(50m) ) — (4502 6)

Here and below, we denote #(™) = As:m) (M) gls:m)
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Relations (21):

7 P ) W) 1 Gm) g(sm) D) g (s.m) ()
@) 6, x ) (D§M)~ A (DS~ 1)
10 g, & 27 glom) 1 (7) — g, g2 40 ()
D& DI = Dl Alem) () gle.m) pln)
@ =2 p{™ alsm) p{V 7 pi Atem pir)
(19) g2¢—2 4(ssm) (D) ~1 AGm) 1) s (D)L o)
W g2 2(D() ™ (DY) .
The first relation in (22) (the second one can be proven similarly):
w(m)ﬁ(m)D(()”) _ W(W)A(s,n)ﬂ_(m)A(S,n)D(()”) — AS—’TZ)TF(W)A(S’”)D(()”) (Alsm))2
1 g, 4&™ 2@ (DM =1 glom) (DGI) 1 glsim) 1 g e—1 glosm) () () -1,
Proof of Lemma 8. For n=1, the matrices G, H, and J are of size 2x2, and relations (25) can be verified

straightforwardly using the explicit form of the matrix AV (see Eq. (73) of [3]).
In order to examine the case n > 2, let us write down explicitly the matrix entries of G, H, and J:

Gh = Ok Srm — AL AL, (29)
Hppr = 9;1€n(5kn fk/Aglsljl) + 8 kaglsI;n)) _ (5121 +£I;/1) AS];”)AS];?)’ (30)

and
Jow = (Gl — 026,76, &) A ALY, (31)

Recall that k,k'=0,1,...,n.
Considering (31) for k=0 and k¥’ =0, 1, it is easy to infer that J#0 (since &2 #&}).
Agsume that the following relation holds:

aG+ fpJ—~4H =0, (32)

where a8y #0. Using formulas (29)—-(31), write down the matrix entries of (32) for (k,%’)=(0,0), (0,1), and
(1,1) dividing them by A%™ A%™ (note that A%™ =0 for all k, see Eq. (97) of [3]):

—a+ (8 - 026,268 +2¢ 'y =0,
—a+ (&b — 026,266 B+ (& + & =0, (33)
—a+ (& 026,76 P)B+2 'y =0.

The determinant of this system of equations is d= (& ' —¢& )3 (62¢,2—£€3¢2). Since & # &1, the equality d=0
can be satisfied only if
0, = &Ein, (34)
which is equivalent to the following condition: p(3s—n)+3p(s) — p(2s) — p(25—1) — p(2s—n) =2s(2 —n) =0.
Thus, relation (32) cannot hold for n > 3.
For n =2, a solution of system (33) is as follows: a=8"1=¢& +& and y=&&. A direct check using the

explicit form of the matrix A(®2) (see Eq. (74) of [3]) shows that relation (32) with such coefficients indeed
holds. Since system (33) has no solution for ¥ =0, we conclude that G and J are linearly independent.
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