ON CONSTANT $U_{\boldsymbol{q}}(sl_2)$ -INVARIANT R-MATRICES

A. G. Bytsko*

UDC 517.9

We consider the spectral resolution of a $U_q(sl_2)$ -invariant solution R of the constant Yang-Baxter equation in the braid group form. It is shown that if the two highest coefficients in this resolution are not equal, then R is either the Drinfeld R-matrix or its inverse. Bibliography: 13 titles.

§1. Introduction

Recall that the algebra $U_q(sl_2)$ is generated by generators X_+ , X_- , q^H , q^{-H} satisfying the following relations (see [9]):

$$[X^+, X^-] = \frac{q^{2H} - q^{-2H}}{q - q^{-1}}, \quad q^H X^{\pm} = q^{\pm 1} X^{\pm} q^H, \quad \text{and} \quad q^{\pm H} q^{\mp H} = 1.$$
 (1)

The homomorphism Δ which is defined on the generators as follows:

$$\Delta(X^{\pm}) = X^{\pm} \otimes q^{-H} + q^{H} \otimes X^{\pm} \quad \text{and} \quad \Delta(q^{\pm H}) = q^{\pm H} \otimes q^{\pm H}$$
 (2)

turns $U_q(sl_2)$ into a bialgebra (moreover, into a Hopf algebra [12]).

We consider the standard finite-dimensional representation π_s of the algebra $U_q(sl_2)$ in which generators act on basis vectors ω_k of a module V_s (dim $V_s = (2s+1), 2s \in \mathbb{N}$) as follows:

$$\pi_s(X^{\pm})\,\omega_k = \sqrt{[s \mp k][s \pm k + 1]}\,\,\omega_{k\pm 1} \quad \text{and} \quad \pi_s(q^{\pm H})\,\omega_k = q^{\pm k}\,\omega_k,\tag{3}$$

where $[t] \equiv (q^t-q^{-t})/(q-q^{-1})$ and k=-s,-s+1,...,s.

The universal R-matrices for algebra (1)–(2) are given by

$$R^{\pm} = q^{\pm H \otimes H} \sum_{n=0}^{\infty} rac{q^{\pm rac{1}{2}(n^2 - n)}}{\prod\limits_{k=1}^{n} [k]_q} (\pm (q - q^{-1})X^{\mp} \otimes X^{\pm})^n q^{\pm H \otimes H}$$
 (4)

(see [6]).

Let \mathbb{P} denote the operator which permutes the tensor components in $U_q(sl_2)^{\otimes 2}$. Then the operator

$$R \equiv \mathbb{P} R^+ = (R^-)^{-1} \mathbb{P}$$

satisfies the Yang-Baxter equation in the braid group form:

$$R_{12} R_{23} R_{12} = R_{23} R_{12} R_{23}. (5)$$

The spectral resolution of R in the representation π_s is given by

$$R \equiv \pi_s^{\otimes 2}(R) = \sum_{k=0}^{2s} \xi_k \, \mathsf{P}^{2s-k} \tag{6}$$

(see [8]), where P^j stands for the projector onto the irreducible submodule V_j in $V_s^{\otimes 2} = \bigoplus_{j=0}^{2s} V_j$. Here and below, we use the following notation:

$$\xi_k \equiv (-1)^k \, q^{\rho(2s-k)-2\rho(s)} \quad \text{and} \quad \rho(t) \equiv t(t+1).$$
 (7)

Consider a $U_q(sl_2)$ -invariant solution R' of the Yang–Baxter equation (5). Its spectral resolution in the representation π_s is given by

$$R' \equiv \pi_s^{\otimes 2}(R') = \sum_{k=0}^{2s} r_k P^{2s-k}, \tag{8}$$

where $r_0 \neq 0$ by Lemma 6 of [4], which applies to the case $q \neq 1$ as well. We prove the following statement.

Proposition 1. If $r_1 \neq r_0$ in the spectral resolution (8), then R' coincides either with R or with R^{-1} up to normalization.

This statement is a q-analogue of the second part of Proposition 1 of [4], where sl_2 -invariant solutions of the Yang–Baxter equation were considered. Note that the limit $q \to 1$ is degenerate in the sense that both operators \mathbb{R} and \mathbb{R}^{-1} turn into the permutation operator \mathbb{P} .

^{*}St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg, Russia, e-mail: bytsko@pdmi.ras.ru.

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 374, 2010, pp. 82–91. Original article submitted February 24, 2010.

Let us recall the method of analyzing $U_q(sl_2)$ -invariant solutions of the Yang–Baxter equation developed in [3]. Let $\lfloor t \rfloor$ denote the entire part of t. The subspace $W_n^{(s)} \subset V_s^{\otimes 3}$ for $n=0,1,\ldots,\lfloor 3s \rfloor$ is defined as the span of the highest weight vectors of weight (3s-n), i.e.,

$$W_n^{(s)} = \{ \psi \in V_s^{\otimes 3} \mid \mathsf{X}_{123}^+ \psi = 0, \quad q^{\mathsf{H}_{123}} \psi = q^{3s-n} \psi \}. \tag{9}$$

Here and below, for $O \in U_q(sl_2)$ we use the notation $O_{123} = \pi_s^{\otimes 3} ((\Delta \otimes id)\Delta(O))$.

Since $[X_{123}^{\pm}, R_{12}] = [X_{123}^{\pm}, R_{23}] = 0$, $W_n^{(s)}$ is an invariant subspace for R_{12} and R_{23} ; thus, we can consider reductions of these operators to $W_n^{(s)}$. We can choose a basis of $W_n^{(s)}$ in which the operator $R_{12}|_{W_n^{(s)}}$ is represented by a diagonal matrix $D_0^{(n)}$ of the following form:

$$(D_0^{(n)})_{kk'} = \delta_{kk'} \, \xi_k; \tag{10}$$

here $0 \le k \le n$ for $0 \le n \le 2s$ and $(n-2s) \le k \le (4s-n)$ for $2s \le n \le \lfloor 3s \rfloor$.

In the same basis, the operator $R_{23}|_{W^{(s)}}$ is represented by the following matrix:

$$\hat{D}_0^{(n)} = A^{(s,n)} \ D_0^{(n)} \ A^{(s,n)}, \tag{11}$$

where $A^{(s,n)}$ is a matrix with the following properties (see [3]): it is symmetric, orthogonal, equal to its inverse, and self-dual in q:

$$A^{(s,n)} = (A^{(s,n)})^t = (A^{(s,n)})^{-1}$$
 and $A_q^{(s,n)} = A_{q^{-1}}^{(s,n)}$. (12)

Entries of this matrix are expressed in terms of 6-j symbols of the algebra $U_q(sl_2)$ as follows:

$$A_{kk'}^{(s,n)} = (-1)^{2s-n} \sqrt{[4s-2k+1]_q [4s-2k'+1]_q} \begin{cases} s & s & 2s-k \\ s & 3s-n & 2s-k' \end{cases}_q.$$

$$(13)$$

The statement that the Yang-Baxter equation (5) holds when it is reduced to the subspace $W_n^{(s)}$ is equivalent to the following equality:

$$(D_0^{(n)} A^{(s,n)})^3 = (A^{(s,n)} D_0^{(n)})^3. (14)$$

In fact, however, a stronger statement holds: The r.h.s. and l.h.s. of (14) are equal up to a multiplicative constant to the identity operator on $W_n^{(s)}$. This follows from the following statement (which is a q-analogue of Lemma 3 of [4]).

Lemma 1. For all $n = 0, ..., \lfloor 3s \rfloor$, the following relation holds:

$$A^{(s,n)} D_0^{(n)} A^{(s,n)} = \theta_n \left(D_0^{(n)} \right)^{-1} A^{(s,n)} \left(D_0^{(n)} \right)^{-1}, \tag{15}$$

where $\theta_n \equiv (-1)^n q^{\rho(3s-n)-3\rho(s)}$.

The proof of this and other lemmas is given in the Appendix.

The statement of Lemma 1 can be written in the following form:

$$\left(\mathsf{R}_{12}\,\mathsf{R}_{23}\,\mathsf{R}_{12}\right)\big|_{W^{(s)}} = \left(\mathsf{R}_{23}\,\mathsf{R}_{12}\,\mathsf{R}_{23}\right)\big|_{W^{(s)}} = \theta_n\,A^{(s,n)}.\tag{16}$$

For q=1, this relation turns into $(\mathbb{P}_{13})\big|_{W_n^{(s)}}=(-1)^nA^{(s,n)}$.

From (16) and (12) it follows that

$$\left((\mathsf{R}_{12} \, \mathsf{R}_{23})^3 \right) \big|_{W_n^{(s)}} = \left((\mathsf{R}_{23} \, \mathsf{R}_{12})^3 \right) \big|_{W_n^{(s)}} = q^{2\rho(3s-n)-6\rho(s)}. \tag{17}$$

Let us note that

$$(R_{12} R_{23} R_{12})^{2} = (R_{23} R_{12} R_{23})^{2} = (R_{12} R_{23})^{3} = (R_{23} R_{12})^{3}$$
(18)

$$=\pi_s^{\otimes 3}\Big(\big(R_{12}^-R_{13}^-R_{23}^-\big)^{-1}\big(R_{12}^+R_{13}^+R_{23}^+\big)\Big)=\pi_s^{\otimes 3}\big(\chi_1\chi_2\chi_3\,\Delta^{(2)}(\chi^{-1})\big), \tag{19}$$

where the element χ is constructed in the following way: Write the R-matrix (4) as $R^+ = \sum_a r_a^{(1)} \otimes r_a^{(2)}$, and let S stand for the antipode operation; then $\chi = q^{2H} \left(\sum_a S(r_a^{(2)}) r_a^{(1)}\right)$. It is known [7] that the element χ is central,

 $\pi_s(\chi) = q^{-2\rho(s)}$, and $\chi_1\chi_2 \Delta(\chi^{-1}) = (R^-)^{-1}R^+$. The last relation allows us to derive the last equality in (19) (and its generalization for $\Delta^{(N)}(\chi^{-1})$, see the proof of Lemma 1 in [5]). Thus, relation (16) can be regarded as the definition of a certain square root of the operator given by the r.h.s. of (19).

We prove Proposition 1 using the following statement (a q-analogue of Lemma 4 of [4]).

Lemma 2. Let $0 \le \overline{m} \le n \le 2s$, where $\overline{m} \equiv (2s - m)$. The reductions of the operators P_{12}^m , P_{23}^m , $\mathsf{R}_{12}^{\pm 1}$, and $\mathsf{R}_{23}^{\pm 1}$ to $W_n^{(s)}$ satisfy the following relations:

$$R_{l} R_{l'} R_{l} = R_{l'} R_{l} R_{l'},$$

$$P_{l}^{m} P_{l'}^{m} P_{l}^{m} = \eta_{n,\overline{m}}^{2} P_{l}^{m},$$
(20)

$$P_{l}^{m} R_{l'}^{\pm 1} P_{l}^{m} = (\theta_{n} \xi_{\overline{m}}^{-2})^{\pm 1} \eta_{n, \overline{m}} P_{l}^{m},
R_{l}^{\pm 1} P_{l'}^{m} R_{l}^{\pm 1} = (\theta_{n} \xi_{\overline{m}}^{-1})^{\pm 2} R_{l'}^{\mp 1} P_{l'}^{m} R_{l'}^{\pm 1},$$
(21)

$$P_{l}^{m} P_{l'}^{m} R_{l}^{\pm 1} = (\theta_{n} \xi_{\overline{m}}^{-1})^{\pm 1} \eta_{n, \overline{m}} P_{l}^{m} R_{l'}^{\mp 1},
R_{l}^{\pm 1} P_{l'}^{m} P_{l}^{m} = (\theta_{n} \xi_{\overline{m}}^{-1})^{\pm 1} \eta_{n, \overline{m}} R_{l'}^{\mp 1} P_{l}^{m},$$
(22)

where l= {12}, l'= {23} or l= {23}, l'= {12}, and $\eta_{n,\overline{m}}=A_{\overline{m}.\overline{m}}^{(s,n)}.$

Let us remark that not all the relations in Lemma 2 are independent. For instance, the second relation in (21) follows from (22); the first relation in (21) and the second relation in (20) can be derived from each other with the help of (22).

Let us also remark that, for q=1, the operators $\mathbb{R}_l^{\pm 1}$ coincide with the permutation operator \mathbb{P}_l , and relations (20)–(22) become the relations of the Brauer algebra [2] (taking into account the additional relation $\mathbb{P}_l^2=\mathbb{E}$, where \mathbb{E} is the identity operator). For $q\neq 1$, the reductions of the operators $\mathbb{R}_l^{\pm 1}$ to $W_1^{(s)}$ can be represented as linear combinations of \mathbb{P}_l^m and the identity operator \mathbb{E} . As a consequence, relations (20)–(22) for n=1 can be derived from the second relation in (20), which is the defining relation for the Temperley–Lieb algebra [13]. For $n\geq 2$, relations (20)–(22) are the relations that hold in the Birman–Wenzl–Murakami algebra [1, 10]. However, in this algebra an additional relation must also hold, which in our case holds only for n=2 (the operator \mathbb{R}_l^{-1} being reduced to $W_2^{(s)}$ can be represented as a linear combination of the operators \mathbb{R}_l , \mathbb{P}_l^m , and \mathbb{E}).

Returning to consideration of the spectral resolution (8), let us note that, without loss of generality, we can set $r_0 = \xi_0$. Then R' can be represented in the following form:

$$R' = R + g P^{2s-n} + \dots, \tag{23}$$

where $n \ge 1$ and ... stands for the sum involving projectors whose ranks are smaller than the rank of P^{2s-n} .

Substitute ansatz (23) in the Yang–Baxter equation and consider its reduction to $W_n^{(s)}$ for $n \leq 2s$. With the help of relations of Lemma 2, one can verify that the Yang–Baxter equation for $\mathbb{R}' \big|_{W_n^{(s)}}$ is equivalent to the following matrix equation:

$$g \, \mathsf{J} + (\theta_n \xi_n^{-2} \eta_{n,n} \, g^2 + \eta_{n,n}^2 \, g^3) \, \mathsf{G} + (\theta_n \xi_n^{-1} \eta_{n,n} \, g^2) \, \mathsf{H} = 0, \tag{24}$$

where

$$\begin{split} \mathsf{G} &= \left(\mathsf{P}^{2s-n}_{12} - \mathsf{P}^{2s-n}_{23}\right)\big|_{W_n^{(s)}} = \pi^{(n)} - A^{(s,n)}\pi^{(n)}A^{(s,n)}, \\ \mathsf{J} &= \left(\mathsf{R}_{12}\,\mathsf{P}^{2s-n}_{23}\,\mathsf{R}_{12} - \mathsf{R}_{23}\,\mathsf{P}^{2s-n}_{12}\,\mathsf{R}_{23}\right)\big|_{W_n^{(s)}} \\ &= D_0^{(n)}A^{(s,n)}\pi^{(n)}A^{(s,n)}D_0^{(n)} - \theta_n^2\xi_n^{-2}(D_0^{(n)})^{-1}A^{(s,n)}\pi^{(n)}A^{(s,n)}(D_0^{(n)})^{-1}, \\ \mathsf{End} \\ \mathsf{H} &= \left(\mathsf{P}^{2s-n}_{12}\,\mathsf{R}^{-1}_{23} + \mathsf{R}^{-1}_{23}\,\mathsf{P}^{2s-n}_{12} - \mathsf{P}^{2s-n}_{23}\,\mathsf{R}^{-1}_{12} - \mathsf{R}^{-1}_{12}\,\mathsf{P}^{2s-n}_{23}\right)\big|_{W_n^{(s)}} \\ &= \theta_n^{-1}\xi_n\left(\pi^{(n)}A^{(s,n)}D_0^{(n)} + D_0^{(n)}A^{(s,n)}\pi^{(n)}\right) \\ &- A^{(s,n)}\pi^{(n)}A^{(s,n)}(D_0^{(n)})^{-1} - (D_0^{(n)})^{-1}A^{(s,n)}\pi^{(n)}A^{(s,n)}. \end{split}$$

Here $\pi^{(n)}$ is the matrix such that $(\pi^{(n)})_{kk'} = \delta_{kn}\delta_{k'n}$.

Lemma 3. (i) For n = 1, the following relations hold:

$$J = (\theta_1^2 \xi_0^{-2} \xi_1^{-2} - \xi_0^2) G = (q^{4s(s-1)} - q^{4s^2}) G,$$

$$H = 2\xi_0^{-1} G = 2q^{-2s^2} G.$$
(25)

(ii) For n=2, the matrices J and G are linearly independent, and the following relation holds:

$$\xi_0 \xi_1 H = (\xi_0 + \xi_1) G + (\xi_0 + \xi_1)^{-1} J.$$
 (26)

(iii) For n > 3, the matrices J, G, and H are linearly independent, and $J \neq 0$.

Substituting relations (25) in (24), we infer that, for n=1, the coefficient g must be a root of the following equation:

$$\eta_{1,1}^2\,g^3 + \eta_{1,1}\theta_1\xi_1^{-1}(\xi_1^{-1} + 2\xi_0^{-1})\,g^2 + (\theta_1^2\xi_0^{-2}\xi_1^{-2} - \xi_0^2)\,g = 0.$$

Hence, taking into account that $\eta_{1,1}=-(q^{2s}+q^{-2s})^{-1}$, we conclude that, for n=1, the coefficient g can take one of the following values: g=0, $g=q^{2s(s-2)}(1-q^{8s})$, and $g=q^{2s(s-2)}(1+q^{4s})$. In the first and second cases, the spectral resolution of \mathbb{R}' coincides in the two highest orders with that of \mathbb{R} and $q^{4s^2}\mathbb{R}^{-1}$, respectively. In the third case, $r_1=r_0$.

For n=2, substitute relations (26) in (24) and eliminate H. It is easy to check that the resulting coefficients at J and G vanish if either g=0 or

$$\eta_{1,1}\,g = -\theta_2\xi_0^{-1}\xi_1^{-1}\xi_2^{-1}(\xi_0\xi_1\xi_2^{-1} + \xi_0 + \xi_1) = -\theta_2^{-1}\xi_0\xi_1\xi_2(\xi_0 + \xi_1).$$

However, the last equality cannot hold because $\xi_0^2 \xi_1^2 \xi_2^2 = \theta_2^2$ (see Eq. (34)).

For $n \ge 3$, the coefficient at J in (24) vanishes only if g = 0. Thus, the coefficient g in (23) must be zero if $n \ge 2$. Therefore, if R' coincides with R in the two highest orders, then R' = R. An analogous statement can be established if we consider ansatz (23) with R replaced by R^{-1} . Thus, Proposition 1 is proven.

Appendix

Proof of Lemma 1. The 6-j symbols of the algebra $U_q(sl_2)$ satisfy the following q-analogue of the Racah identity [8, 11]:

$$\sum_{p} \left((-1)^{p} \left[2p + 1 \right]_{q} \begin{cases} r_{1} & r_{3} & l \\ r_{2} & r_{4} & p \end{cases}_{q} q^{\rho(p) - \rho(r_{1}) - \rho(r_{4})} \begin{cases} r_{1} & r_{2} & l' \\ r_{3} & r_{4} & p \end{cases}_{q} \right) \\
= (-1)^{l+l'} q^{\rho(r_{2}) - \rho(l)} \begin{cases} r_{3} & r_{1} & l \\ r_{2} & r_{4} & l' \end{cases}_{q} q^{\rho(r_{3}) - \rho(l')}.$$
(27)

(Note that the identity remains true if we set $\rho(t) = -t(t+1)$ since the 6-j symbols are self-dual with respect to the replacement $q \to q^{-1}$.)

Consider the matrix entry (kk') of equality (15). Using formula (10) and taking into account that $A^{(s,n)}$ is a symmetric matrix, we conclude that

$$\sum_{m} (-1)^m A_{km}^{(s,n)} q^{\rho(2s-m)-2\rho(s)} A_{k'm}^{(s,n)} = (-1)^{n+k+k'} q^{\rho(3s-n)+\rho(s)-\rho(2s-k)-\rho(2s-k')} A_{kk'}^{(s,n)}.$$
(28)

Now, taking into account formula (13), it is easy to see that relation (28) follows from identity (27) if we set $r_1 = r_2 = r_3 = s$, $r_4 = 3s - n$, l = 2s - k, l' = 2s - k', and p = 2s - m.

Proof of Lemma 2. We prove those relations of Lemma 2 that contain R^{+1} on the l.h.s. Their counterparts with R^{-1} on the l.h.s. can be proven similarly.

The second relation in (20):

$$\pi^{(\overline{m})}\hat{\pi}^{(\overline{m})}\pi^{(\overline{m})} = \pi^{(\overline{m})}A^{(s,n)}\pi^{(\overline{m})}A^{(s,n)}\pi^{(\overline{m})} = (A^{(s,n)}_{\overline{m}\overline{m}})^2\pi^{(\overline{m})}.$$

Here and below, we denote $\hat{\pi}^{(\overline{m})} \equiv A^{(s,n)} \pi^{(\overline{m})} A^{(s,n)}$.

Relations (21):

$$\begin{split} \pi^{(\overline{m})} \hat{D}_{0}^{(n)} \pi^{(\overline{m})} &\overset{(11)}{=} \pi^{(\overline{m})} A^{(s,n)} D_{0}^{(n)} A^{(s,n)} \pi^{(\overline{m})} \\ &\overset{(15)}{=} \theta_{n} \pi^{(\overline{m})} (D_{0}^{(n)})^{-1} A^{(s,n)} (D_{0}^{(n)})^{-1} \pi^{(\overline{m})} \\ &\overset{(10)}{=} \theta_{n} \xi_{\overline{m}}^{-2} \pi^{(\overline{m})} A^{(s,n)} \pi^{(\overline{m})} = \theta_{n} \xi_{\overline{m}}^{-2} A_{\overline{mm}}^{(s,n)} \pi^{(\overline{m})}, \\ D_{0}^{(n)} \hat{\pi}^{(\overline{m})} D_{0}^{(n)} &= D_{0}^{(n)} A^{(s,n)} \pi^{(\overline{m})} A^{(s,n)} D_{0}^{(n)} \\ &\overset{(10)}{=} \xi_{\overline{m}}^{-2} D_{0}^{(n)} A^{(s,n)} D_{0}^{(n)} \pi^{(\overline{m})} D_{0}^{(n)} A^{(s,n)} D_{0}^{(n)} \\ &\overset{(15)}{=} \theta_{n}^{2} \xi_{\overline{m}}^{-2} A^{(s,n)} (D_{0}^{(n)})^{-1} A^{(s,n)} \pi^{(\overline{m})} A^{(s,n)} (D_{0}^{(n)})^{-1} A^{(s,n)} \\ &\overset{(11)}{=} \theta_{n}^{2} \xi_{\overline{m}}^{-2} (\hat{D}_{0}^{(n)})^{-1} \pi^{(\overline{m})} (\hat{D}_{0}^{(n)})^{-1}. \end{split}$$

The first relation in (22) (the second one can be proven similarly):

$$\begin{split} \pi^{(\overline{m})} \hat{\pi}^{(\overline{m})} D_0^{(n)} &= \pi^{(\overline{m})} A^{(s,n)} \pi^{(\overline{m})} A^{(s,n)} D_0^{(n)} = A_{\overline{m}\overline{m}}^{(s,n)} \pi^{(\overline{m})} A^{(s,n)} D_0^{(n)} (A^{(s,n)})^2 \\ &\stackrel{(15)}{=} \theta_n A_{\overline{m}\overline{m}}^{(s,n)} \pi^{(\overline{m})} (D_0^{(n)})^{-1} A^{(s,n)} (D_0^{(n)})^{-1} A^{(s,n)} \stackrel{(10)}{=} \theta_n \xi_{\overline{m}}^{-1} A_{\overline{m}\overline{m}}^{(s,n)} \pi^{(\overline{m})} (\hat{D}_0^{(n)})^{-1}. \end{split}$$

Proof of Lemma 3. For n=1, the matrices G, H, and J are of size 2×2 , and relations (25) can be verified straightforwardly using the explicit form of the matrix $A^{(s,1)}$ (see Eq. (73) of [3]).

In order to examine the case $n \ge 2$, let us write down explicitly the matrix entries of G, H, and J:

$$G_{kk'} = \delta_{kn} \, \delta_{k'n} - A_{nk}^{(s,n)} A_{nk'}^{(s,n)}, \tag{29}$$

$$\mathsf{H}_{kk'} = \theta_n^{-1} \xi_n (\delta_{kn} \, \xi_{k'} A_{nk'}^{(s,n)} + \delta_{k'n} \, \xi_k A_{nk}^{(s,n)}) - (\xi_k^{-1} + \xi_{k'}^{-1}) \, A_{nk}^{(s,n)} A_{nk'}^{(s,n)}, \tag{30}$$

and

$$J_{kk'} = (\xi_k \xi_{k'} - \theta_n^2 \xi_n^{-2} \xi_k^{-1} \xi_{k'}^{-1}) A_{nk}^{(s,n)} A_{nk'}^{(s,n)}.$$
(31)

Recall that k, k' = 0, 1, ..., n.

Considering (31) for k=0 and k'=0,1, it is easy to infer that $J\neq 0$ (since $\xi_0^2\neq \xi_1^2$).

Assume that the following relation holds:

$$\alpha G + \beta J - \gamma H = 0, \tag{32}$$

where $\alpha\beta\gamma\neq0$. Using formulas (29)–(31), write down the matrix entries of (32) for (k,k')=(0,0), (0,1), and (1,1) dividing them by $A_{nk'}^{(s,n)}A_{nk'}^{(s,n)}$ (note that $A_{nk}^{(s,n)}\neq0$ for all k, see Eq. (97) of [3]):

$$-\alpha + (\xi_0^2 - \theta_n^2 \xi_n^{-2} \xi_0^{-2})\beta + 2\xi_0^{-1} \gamma = 0,$$

$$-\alpha + (\xi_0 \xi_1 - \theta_n^2 \xi_n^{-2} \xi_0^{-1} \xi_1^{-1})\beta + (\xi_0^{-1} + \xi_1^{-1})\gamma = 0,$$

$$-\alpha + (\xi_1^2 - \theta_n^2 \xi_n^{-2} \xi_1^{-2})\beta + 2\xi_1^{-1} \gamma = 0.$$
(33)

The determinant of this system of equations is $d = (\xi_0^{-1} - \xi_1^{-1})^3 (\theta_n^2 \xi_n^{-2} - \xi_0^2 \xi_1^2)$. Since $\xi_0 \neq \xi_1$, the equality d = 0 can be satisfied only if

$$\theta_n^2 = \xi_0^2 \xi_1^2 \xi_n^2,\tag{34}$$

which is equivalent to the following condition: $\rho(3s-n) + 3\rho(s) - \rho(2s) - \rho(2s-1) - \rho(2s-n) = 2s(2-n) = 0$. Thus, relation (32) cannot hold for $n \ge 3$.

For n=2, a solution of system (33) is as follows: $\alpha = \beta^{-1} = \xi_0 + \xi_1$ and $\gamma = \xi_0 \xi_1$. A direct check using the explicit form of the matrix $A^{(s,2)}$ (see Eq. (74) of [3]) shows that relation (32) with such coefficients indeed holds. Since system (33) has no solution for $\gamma = 0$, we conclude that G and J are linearly independent.

Acknowledgments. The author thanks P. Kulish for useful remarks. This work was supported by the RFBR (projects 08-01-00638, 09-01-12150, and 09-01-93108).

Translated by A. G. Bytsko.

REFERENCES

- 1. J. S. Birman and H. Wenzl, "Braids, link polynomials and a new algebra," Trans. Amer. Math. Soc., 313, 249–273 (1989).
- 2. R. Brauer, "On algebras which are connected with the semisimple continuous groups," Ann. Math., 38, 857–872 (1937).
- 3. A. G. Bytsko, "On higher spin $U_q(sl_2)$ -invariant R-matrices," St. Petersburg Math. J., 17, 393–408 (2006).
- 4. A. G. Bytsko, "On an ansatz for sl₂-invariant R-matrices," J. Math. Sci., 143, 2754-2764 (2007).
- 5. A. G. Bytsko, "Non-Hermitian spin chains with inhomogeneous coupling," *Algebra Analiz*, **22**, No. 3, 80–106 (2010).
- 6. V. G. Drinfeld, "Quantum groups," J. Sov. Math., 41, 898-915 (1988).
- 7. V. G. Drinfeld, "Almost cocommutative Hopf algebras," Leningrad Math. J., 1, 321–342 (1990).
- 8. A. N. Kirillov and N. Yu. Reshetikhin, "Representations of the algebra $U_q(sl(2))$, q-orthogonal polynomials, and invariants of links," in: Adv. Series Math. Phys., 7, World Scientific (1989), pp. 285–339.
- 9. P. Rulish and N. Yu. Reshetikhin, "Quantum linear problem for the sine-Gordon equation and higher representation," J. Sov. Math., 23, 2435–2441 (1983).
- 10. J. Murakami, "The Kauffman polynomial of links and representation theory," Osaka J. Math., 24, 745–758 (1987).
- 11. M. Nomura, "Yang-Baxter relation in terms of n-j symbols of $su_q(2)$ algerbra," J. Phys. Soc. Jap., 58, 2694–2704 (1989).
- 12. E. K. Sklyanin, "On an algebra generated by quadratic relations," Usp. Mat. Nauk, 40, 214 (1985).
- 13. H. N. V. Temperley and E. H. Lieb, "Relations between the percolation and coloring problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the percolation problem," *Proc. Roy. Soc. London Ser. A*, **322**, 251–280 (1971).