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THE ZERO-CURVATURE REPRESENTATION FOR THE N O N L I N E A R  
O(3) SIGMA-MODEL 

A. G. By t sko  UDC 530.145 
D e d i c a t e d  to L. D.  Faddeev  

on the  occas ion  of  his 60 th  b i r t h d a y  

We consider the 0(3) sigma-model as a reduction of the principal chiral field. This approach allows us to 
introduce currents with ultralocal Poisson brackets and to obtain the zero-curvature equation which admits the 
fundamental Poisson bracket. Bibliography: 5 titles. 

INTRODUCTION 

In the present paper we consider the nonlinear 0(3) sigma-model, which is one of the field theory models, 
within the classical framework of the inverse scattering method. An important step in this approach is to 
find a zero-curvature representation for the investigated model. An attempt to obtain this representation 
for the 0(3) sigma-model was made in [1]. But in [1] some extra conditions on the components of the 
energy-momentum tensor were imposed. In addition, an essential point in [t] is transition to variables 
of the sine-Gordon type and application of the Backlund transformation. This transition is classically 
admissible, but it presents a serious obstacle for further using the quantum version of the inverse scattering 
method. 

On the other hand, one may consider the 0(3) sigma-model as a reduction of the model of the principal 
chiral field, which is more general. The zero-curvature representation for the principal chiral field was 
obtained in [2]. The quantum inverse scattering method was applied to this model in [3], where an essential 
trick was the change of the Poisson brackets for the currents. In the present paper we realize this approach 
for the 0(3) sigma-model by means of constructing a new pair of currents. We shall see, though, that it is 
impossible to obtain directly the XXX-magnetic model in a way similar to that used in [3]. 

Thus, in the present paper new currents are constructed for the model investigated and a new U - V  pair 
is obtained via these variables. Also, the fundamental Poisson bracket is given and some properties of the 
new currents are studied. 

1. THE Z-FIELD MODEL 

The nonlinear 0(3) sigma-model (also known as the g-field model) describes a three-dimensional vector 
77 = (nl,  n2, n3) whose components depend on the coordinates in the (1+1)-dimensional space-time. The 
vector g is subject to the space-periodicity condition 

~(x + L , t ) =  ~(z , t ) .  

The Lagrangian of the model coincides with that of the free field, 

L 1/ 
c = ( ( 0 0 g )  - d x  

0 

(1) 

0 0K = o )  We also impose the extra condition that the length of the (here we use the notation O0 = ~ ,  0K " 
vector 77 is fixed, 

= + + = 1 (2 )  
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The Lagrangian (1), combined with constraint (2), implies the following equations of motion: 

ao~-  a ~  + ( (o0~)  ~ - ( a ~ ) ~ ) ~  = 0. 

To obtain the Hamiltonian description of the model we introduce the variable of momentum density, 

0C 
g--- - -  = 0 0 ~ .  

O(O0~) 

The Legendre transformation of the Lagrangian (1) yields the Hamiltonian of the model, 

L L 

H = g .  0o if) dx  - s = -~ "i 2 

0 0 

+ (a~ ~)~) dx. 

(3) 

The Poisson brackets of the variables ~ and ~ can be obtained from the canonical brackets as the Poisson- 
Dirac brackets under the constraints 

~2 =1 ,  ~ . f f = 0 .  

These Poisson brackets have the following form: 

{ ~ ( x ) , ~ b ( ~ ) }  = 0 ,  

{ ~ ( x ) ,  ~ % ) )  = (~,b _ ~ , ( x ) ~ b ( x ) ) ~ (  ~ _ y), 

{ ~ ( ~ ) ,  ~b(y)}  = ( ~ b ( x ) ~ ~  _ ~ ~  - y). (4) 

Since our model is O(3)-invariant, it is more efficient to describe it in terms of the variables/ 'and if, where 

l '(the angular momentum) is defined by 

Here A denotes the vector product, and so 1 ~ = e~b%bn c. Note that ~(x) = g 2 ( x ) .  

The Poisson brackets 

{e(x),  I%)} = e~ - y), (5) 

{e(~), ~%)}  = ~%c(~)~(z  - y), (6) 

{~~ = 0  (7) 

of these variables define the current algebra of the group E(3). The phase space of the model is the 
simplectic orbit 

f f 2 = l ,  ;.~=0. (8) 

2.  T H E  STANDARD Z E R O - C U R V A T U R E  R E P R E S E N T A T I O N  

The inverse scattering method is a basic tool for studying the classical as well as quantum models 
corresponding to different nonlinear equations (see, e.g., [4]). This method starts from representation of 
the nonlinear equation in the form of the zero-curvature condition, 

OtU(x ,  ~,) - O ~ Y ( x ,  ,i) + [U(x, A), V(x, A)] = 0. (9) 

Here U and V are square matrices-of equal size whose elements depend on the space-time variables x and 
and on an extra spectral parameter A. Equations (9) should be satisfied for all values of A. 
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Let us consider the model of the principal chiral field. In this model the dynamical variable g(x, t) takes 
the values in a certain compact group G. The equations of motion have the form 

020g - O~g = Oog . g - l  . 0og O~g . g - l  . 0~g. (10) 

Zakharov and Mikhailov [2] found an appropriate the U - V  pair for this model, 

I Lo(x) + Ll(x) 1 Lo(x) - L l (x )  ALo(x) + LI(X) 
U( x ,A) =  2 1 ] ~  - 2  I ~ A  = l - A  z ' (11) 

Here 

1 Lo(x) + Ll(x) 1 L o ( x ) -  L, (x )  )~Ll(x) + Lo(x) 
V(x, .k) : ~ 1 -  .~ + 2 1 + A = 1 - . \ 2  (12) 

are left currents, taking values in the Lie algebra of the group 
U - V  pair (11), (12) is written via the currents L~, as follows: 

L o ( x , t ) = O o g . g  -1, L , ( x , t ) = O r g . g  -1 (13) 

G. The zero-curvature condition (9) for the 

00L0 - c3~L1 = 0, (14) 

OoL~ - O~Lo + [L~, Lo] = O. (15) 

Note that Eq. (15) follows from definitions (13), 

Oo(O~g . g-~) - O~(Oog . g-~) + [O~g . g-~,Oog . g-~] =- O, 

while Eq. (14) follows from the equations of motion (10). 
The Lagrangian and the Hamiltonian of the model can be expressed in terms of the currents L~,, 

L L 1/ 1/ 
s  ~ t r ( L ~ - L ~ ) d x ;  H = - 4  tr(L~ +L~)dx" (16) 

0 0 

The Poisson brackets of the components of currents L,  are 

{L~(x),Lbo(y)} = e"bCL~(x)8(x - y), 

{L~(x) ,L~(y)}  = eabcL~(x)8(x - -  y) - -  6ab~'(X - -  y), 

a x L b { L I ( ) ,  = 0. 

(17) 

(is) 
(19) 

In the general case of a principal chiral field with values in the group G, the equations of motion (10) admit 
an extra reduction, 

g2(x,t) = I. (20) 

This reduction preserves the form of the U - V  pair, as wet1 as the zero-curvature equations (14), (15) and 
relations (16). It also preserves the Poisson brackets (17)-(19) because the brackets of the currents with 
the constraint (20) vanish. 

Applying reduction (20) to the case of the principal chiral field for G = SU(2), we obtain the 0(3) 
sigma-model. Indeed, in this case the variable g(x, t) can be written in the form 

g(x,t) = K. ~ ~ n"(x,t)0".,  K2 = 1, 

where c% are Pauli matrices 

(0,) (0/) 0) 
0 - 1  ~--" 1 0 ' 0 "2  ----- i 0 ' 0"3  = _ - 
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For the given representation of g(x, t) the equations of motion (10) turn into the equations of motion (3) 
for the if-field. 

Using the relation 
(~3), (~3) = S ) -  z + ;(~ A ~). 3, 
3 we can express the currents L u = Y'~=I iL~aa via the variables of the if-field, 

L0(x,  t)  = i(Ooif A if) .  3 = i['. 3, 

L l ( z , t )  = i ( 0 , i f  A if) �9 3. 

(21) 

(22) 

Thus, considering the 0(3) sigma-model as a reduction of the principal chiral field for the group G = 
SU(2), we immediately obtain for it a zero-curvature representation with the U - V  pair given by (11), (12) 
and with the equations for the currents given by (14), (15). As mentioned above, one of these equations is 
a consequence of the equations of motion (3), 

OoLo - OxL1 ~-- i ( 02 i f  A i f -  02 i f  A if) . 3 -~ i ( ( 0 2 i f  - 02i f )  A i f ) .  3 = O. 

To apply the inverse scattering method for solving the if-field model, one should represent the Poisson 
brackets of elements of the matrix U(x, A) as a fundamental Poisson bracket, 

1 2 1 2 

{u(x, ~), uo ,~)}  = [~(~, ~), u(~, ~1 + u(x, ~)1~(~- y). (23) 

Here r(A) is some classical r-matrix and we use the notation 

1 2 
U = U |  U = I Q U .  

Unfortunately, since formula (18) has a term with 6'(x - y) (the so-called nonultralocal term), it is 
impossible to introduce an appropriate fundamental Poisson bracket. 

3. CURRENTS J# AND THE NEW U - V  PAIR 

In order to find the new U - V  pair, which satisfies the zero-curvature representation and possesses an 
ultralocal fundamental Poisson bracket, we define the new current v "iables 

Z o ( z , t )  = ~i(Oo~, ^ i f -  i o ,  if) . 3 - ~ ( l  - i o ,  if) . 3 ,  (24) 

j , ( z , t )  = ~i(o~,~ A i f -  iOoif) . 3 =__ i(o~if  A if - i~)  . 3.  (25) 

Note that in the case of SU(2), adding terms like 1 1 ~O~,g = ~O~,n. 3 to the currents L u does not bring them 
out of the Lie algebra su(2). Consequently, Ju can be regarded as current variables. But if we apply the 
above formulas for constructing new currents in the case of an arbitrary Lie group G, then the new objects 
J ,  will not belong to the Lie algebra of this group (but, nevertheless, they will satisfy the zero-curvature 
equations). 

Let us consider an analogue of the pair (II), (12) for the currents J~, 

U'(x,  A) = AJo(z) + Sl(x) V'(x ,  ~) = AJI(x) + Jo(x) (26) 
1 - )~z ' 1 - )~z 

The zero-curvature condition (9) leads to the system of equations 

OoJo -O~J1 =0, 

OoJx - G J o  =[Jo, J1]. 

(27) 

(28) 
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Formally, system (27), (28) coincides with (14), (15), but it should be noted that  now both Eqs. (27) and 
(28) follow from the equations of motion (3), 

1 2-. 
OoJo-O Jx = 

In order to check Eq. (28) one should write the new currents Ju in the form 

1 9-1 1 1 1 0 1 1 Jo = -~Oog. + -~O,~g = -~(Lo + Lag), Ja = -~ ~g .g--i "t- "~Oog = ~ ( i l  ~t- Log) 

and use the condition of reduction 

as well as its corollaries 

and 

g 2 = (fT. ~ ) ~  = g 2 .  I --- I ,  (29) 

-1 (30) g = g  

Lug = -gLu.  (31) 

(Identity (31) is obtained by differentiating Eq. (30).)* 
Now the left-hand side of Eq. (28) can be written in the form 

I 1 2 
OoJa - O~:Jo = ~(OoL, - O,;Lo) + -~(OoLo - O~La)g + -~(Lo - L~)g, 

and taking Eqs. (14), (15) into account (in fact, this means that  we use the equations of motion) we obtain 

1  (Lo Ll )g OoJ1 -O~Jo = ~[L0, L1] + z - 

The r ight-hand side of Eq. (28) can be given the same form by using conditions (29)-(31), 

1 ~ 1 1 L1]+~[Llg ,  Log] [J0, J1] = ~[L0 + L,g, La + Log] = [L0,La] + ~[Lo,Log] + ~[Llg, 

: ~ [ i o , i l ] - ~ ( i 2 g - L o g i o ) 2 l - ~ ( i l g i l - i 2 g ) - t - ~ ( i l g i o g - i o g i l g )  

= -  1 2 1 2 1 1 L 1 2 
1150 L1] q- FLog - ~i ig- t -  "~[io,il]g 2 = ~[Lo, 1] q- ~ ( i o  - i2)g �9 
4:  ' 

Thus, in contrast  to the case of the unreduced principal chiral field, in the case of the g-field there exists 
a second Ut-V r pair. The next step in studying the model considered is calculation of the Poisson brackets 
for the new currents. 

4. THE FUNDAMENTAL POISSON BRACKET 

Now let U, a = 1, 2, 3, be the basis elements of the algebra su(2), which are normalized with respect to 
the Killing form, 

t r (Ut  b ) = - l - ~ b ;  [t ~ t b]= f"bctc 
2 ' " 

The generators t ~ are expressed via the Pauli matrices, 

$a : l icra ' fabc = gabc _ �9 _ _  , 

2 

*It is interesting to note that relation (31) leads to coincidence of the right and left currents in this model, R u ~ _g-1.0ug =- 
cg~g �9 g-1 -- L~. 
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In order to calculate the Poisson brackets of the components of the current Jo(x )  = J ~ ( x ) t  ~, we use formulas 
(5)-(7)* and obtain 

(J;(~), J~(~)} = ( l~ (~ ) -  io,~o(~), Ib(y)- i0~b(y)} 

=~t~(x )~(x  - ~) + i ~ ( ( x  - v ) o ~ , ~ ( x ) ) r  - v) 

=~~ - ~ ) -  i # ~ o , , ~ ( x ) e ( ~  - ~) = ~ ~  - ~).  

(32) 

We also have 
{ J ~ ( x ) , n b ( y ) }  = {l~(z) - iO~n~(x) ,nb(y)} = e~br - y) ,  (33) 

{ J ; ( x ) , n b ( y ) }  = {(0~ff h i f -  i Y ) ~ ( x ) , n b ( y ) }  = i ( n ~ ( x ) n b ( x )  - U b ) ~ ( x  - y). (34) 

In order to calculate the other Poisson brackets it is convenient to use the following relations for currents 
(let us recall t ha t / ' ,  ff = Y. ff = 0~ff. fi = 0): 

(35) 

i ( L  A if) = i ( i ' -  iO~ff) A ff = O~ff A g - i Y  = ~ .  (36) 

( H e r e f .  = j1 2 3 ( . '  Ju'  J . ) ' )  Taking into account the relation fg A ff = - ~  A f .  one may write formulas (35), 
(36) as follows: 

J i g  = - g  J1 = 3"0, (37) 

Jo = - g J o  = J1. (38) 

Now, using (32)-(36) we obtain 

(jg(x),  s ,%)} = i2 :d(sg( ,) ,  sg(v)~d(y)} = i ~ d ( ~ = :  :~o(~),~%) + ~od: sg(~) ,~:(~))~( ,  - v) 

= i ( -Sbo(z)na(x)  + S~(x)nb(x))~J(x - y) = e"bcJ;(x)~J(x - y). (39) 

Similarly one obtains 
{S;(x), J~(y)} = e~ - y). (40) 

An important  property of brackets (32), (39), (40) is their ultralocality (this means that  they do not include 
terms like 6' (x  - y)).  This allows us to find the fundamental Poisson bracket for the matrix U ' ( x ,  .~) in the 
g-field model. 

Indeed, using (32), (39), (40) and fonowing [4] we obtain 

1 2 1 ~r a | a b 
(U ' ( z , )~ ) ,  U'(y, #)} = - ~  (1 - ~2)(1 - #2) {s + J ~ ( x ) , f J b o ( y )  + Jib(y)} 

1 gabcffa | 
( ( ~  + i)j~(x) + (~ + ~ ) j f ( x ) ) ~ ( z  - y). 

= - 4 ( 1 - ~ 2 ) ( 1 - #  2) 

Now, introducing the permutation operator 

P = l ( I  Q I + a m NCr ~) 
Z 

and using its property 
eabca ~ | crb = - i [ P ,  a c | I] = -2[P,  t c | I] 

*We also need a well-known property of generalized functions: (xF(x),  6'(x)) = - (F ( z ) ,  6(x)). 
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we obtain 

1 1 

, 2 [P, ( l #  + 1)d0(x) + (I + #)dl(z)] 5 ( z  - y)  
{U ' ( x ,1 ) ,U ' (g ,# ) }  = 2 ( 1 -  1 2 ) ( 1 - #  2 ) 

1 P 1 1 1 1 
= (1 - 12)(1 - #2) [2(1- -  #) ' ( t2  - 1)#J0(x) + (1 - #2)lJ0(x) + ( I  2 - 1)Jl(x)  + (1 - #2)J l (x)]6(x  - y) 

p 1 1 ~ 1 2 
- - U'(x,  I )  + U'(z ,  # ) ]5 (x  - y). -[2(t_~),U'(x,I) V'(~,#)]~(~ Y)=[2(t #)' 

Thus, we have found the fundamental Poisson bracket for the matrix Ut(x, I )  with r-matrix 

P 
r(1,#) - 2 ( I -  #) 

Our success in finding the fundamental Poisson brackets is due to the observation that the transition 
from the standard currents L0 and L1 (which correspond by formulas (21), (22) to the pair of variables 
and O~ifA if) to the currents J0 and J~ leads to the disappearance of the term with 5'(x - y )  in the Poisson 
brackets. At first glance, this disappearance is quite unexpected. It is explained by the fact that the new 
currents are not deformations of the standard currents. 

Indeed, if we take the initial Hamiltonian with an extra parameter 7, 

L 

H = ~ (~ + 7~(O~if)~)&, 
0 

then we obtain the following standard and new currents: 

L ( , )  = r(x), ~ , ( ~ )  = ~0~if  ^ if; 

s  = ~(x) - TO~if, ~ ( x )  = "/O,~if h if - i Y =  - ( Y  + i',/O,:if h if). 

These formulas imply that one can consider the currents J0 and J1 as deformations with parameter 7 of 
the variables/ 'and -i77. The same conclusion follows from simply comparing relations (32), (39), (40) for 

J0 and J1 with formulas (4), (5) fo r / ' and  Y. 

5. LAGRANGIAN, HAMILTONIAN, AND CURRENTS Jg 

As mentioned above, the Lagrangian and the Hamiltoman of the if-field can be written via the cur- 
rents Lu, 

L L 

f ' /  1 tr(L~ - L2o)dx. = ~ (~2 _ (O, if A if)2)dx, 

o o 

L L 

H = - ~  -~ ([~ +(O, ifA~)2)dx. 
o 0 

It turns out that similar formulas can be obtained in terms of the new currents Jg(x) as well. 
consider the Lagrangian 

L 

0 
L 

:!2 f(?- (~ 
o 

L L L / / :/ tr j2 dx = - tr j2 dx = [ ([-iOn:if) 2 dx 

o o o 

L 

f (/.. o~if) dz, 
o 

(41) 

(42) 

Indeed, 

(4a) 
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which differs from the initial Lagrangian (1). But the difference 

L L 

o 0 

between these Lagrangians is the so-called topological term, which gives no contribution to the variation of 
the action (see, e.g., [5]). Indeed, we have 

t2 

So = / 

t; 

t2 t2 

t~ tx 

and since the form f~ is closed, dft = O, it follows that 5S = i fit12 dQ = O. Thus, the Lagrangians s and/2 
are equivalent. 

The Hamiltonian of the model can be written in the form 

L L L 

H = -  trJoJodx= t r J l f l d x = - ~  (~2_t_(O~)2)dx. 
o 0 0 

Here we have introduced one more pair of currents, which up to sign are Hermit ian conjugates of the 
currents Jr,, 

^ l 
Jo(x,t) =_ -J ; ( z , t )  = ~i(l + io~)  .3  (44) 

1 _. 
Jl(x,t) = - J ; ( x , t )  = ~i(O~nA~ + i~).~. (45) 

It is easy to check that  it, satisfy zero-curvature Eqs. (27), (28), while Eqs. (37), (38) take the form 

g J,  = - f i g  = • ,  (46) 

g ] 0  = --3~0g ---~ J1 . (47) 

The Poisson brackets of the currents J.  e• repeat (32), (a9), and (40), 

{~*~(~), 2,  (~)) = ~%*~(x)~(~ - ~), (48) 

However, as one should have expected, the Poisson brackets of J .  and f .  contain nonultralocal terms, 

{J~(x), 20 (y)} = ea~Ic(x)5(x - g ) -  iea%~(x)  + '~C(y))5'(x - y) = 

= ~b~j~(~)~(~ _ y) _ 2i~o%~(~)~,(~ _ y), 

( j g ( z ) ,  ~ ( y ) }  = ~ b ~ ( x ) ~ ( ~  _ ~ ) _  2~b~,(x _ ~), 

J;  (~), Jib(y)) = ~~ - ~ ) -  ~ ' ( x  - ~). 

Note that  the simultaneous presence of currents J ,  and Ju in the Hamiltonian H is quite natural.  Indeed, 
from the standard currents Lt, , one can obtain four new variables: 

1 1 
Jo = -~(Lo + n~g), Z~ = -~(n~ + Log), 

1 1 
=-~(Lo-L~g) ,  ~ =-~(L~-Log) .  
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It follows from relations (37), (38) and (46), (47) that neither the pair J0, J~ nor the pair ~ ,  ~ are actually 
independent variables. Therefore, in the general case, in order to preserve the number of independent 
variables one should use, for example, the pair of currents J0 and o70 . From this point of view, it is rather 
unexpected that the formulas for the U - V  pair and the expression for the Lagrangian contain, in fact, only 
one independent current. 

By way of example we give the following expressions for the U - V  pair: 

U'(A) : AJ0(x) + Jl(X) 1 - 12 : Jo(g + A)[(g - A)(g + 1)] -1 : Jo(g - 1) -1 : --(g -t- 1 ) - 1 J 0 ,  

V ' ( 1 )  : 1 J l (X) - t -  J o ( x )  
l - -  1 2  : J l ( g  - 1) -1 : - ( g  + 1 ) - 1 J 1  �9 

Finally, note that replacing the currents J ,  by J ,  in formulas (26) gives us another pair of matrices 
U"(x,  I),  V ' ( x ,  1) satisfying the zero-curvature equation. It follows from relation (48) that the matrix 
U"(x,  I )  has the same fundamental Poisson bracket and r-matrix as the matrix U'(x, 1). 

6. THE LIGHT-CONE COORDINATES 

Since the Lagrangian (1) is relativistic invariant, it is natural to use the light-cone coordinates 

t + x  t - x  
~ -  2 , , 7 =  2 

It is also convenient to introduce the new variables 

6jo,o [ a0 ,-' = z_., + : (Jo(~ , t )  + J , ( x , t ) )  : -~ ~g. + ~ ~ ,  
a=l  

3 ~ 1 0 g-1 1 0 
J _ ( z , t )  =- E Jata : (Jo(x , t )  - S l (X, t ) )  = ~ qg" - ~ .g. 

a=1 

It follows from (37), (38) that 

J+g = - g  J+ = J+, 

g J_ = - J _ g  = J_.  

(49) 

(50) 

Using (32), (39), (40) we get 

+<z~otx - y), 

{ea(x) ,  ]b (y)} : ,ob~ei(~)~(~ _ y), 

{ e ; ( x ) ,  Jb_(u)} : 0 .  

(51) 

(52) 

(53) 

Now, following [3], we can consider the variables S =- J+(x) and T =- J_(x)  as a pair of independent spin 
variables. In [3] this was used for transition from the principal chiral field model to the XXX-magnetic 
modei, and the well-developed approach via the Bethe ansatz was used for further investigation. 

But in our case this method cannot be applied directly. Indeed, (35)-(38) imply the relations 

.i0 ~ = - j ? ,  (54) 

J0 J1 = - J0 g J0 = - J1 J0, (55) 

whence it follows that 

1 
s 2 = Jg = i ( e0  + J,)2 =0 ,  T 2 = j ~  = 1 ~(Jo - J1) ~ = o. (56) 
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Thus, the Casimir operators S: and T 2 corresponding to the spin variables ff and 2g vanish in the quantum 
case and we cannot use the Bethe ansatz approach as was done in [3]. 

Note that relation (56) gives an extra condition on solutions of an auxiliary system of differential equa- 
tions. In our case, taking into account the concrete form of matrices U'(x, 2~) and V'(x, 2~) (26) and using 
light-cone coordinates, we can write the auxiliary problem as follows: 

2xj+p ' O.# 2 ]_p.  
a ~ P -  1 -  - i$~ 

Relations (56) imply the extra conditions 

J+o~P = o, J _ a . #  = o 

Using relations (49), (50) we can write these conditions in the form 

(g + 1)0~ff = 0, ( g -  1)00# = 0. 

(57) 

(hS) 

. Finally, note that relations (57), (58) yield the following second-order differential equations for the vector . 

O~F_ 1_~ 2X(a(j+)ff ' O~T~_ 1St-A2 (O,~J_)#. (69) 
7. CONCLUSION 

As shown above, the fact that the currents J+ and J_ are of zero length does not allow us to apply the 
standard method of quantization. But the same fact points out another possible approach to investigation 
of the model--transition to fermion-type variables. Indeed, if we write the currents J+ and J_ in the form 

i(z 2-52 ) 1 / z2 +52 / 1 z~+5~ ' f - = i  
J+-= 2 2iz121 \ 2iz252 ] 

where zl(x) and z2(x) are the components of the spinor ~(x) with the Poisson brackets 

{ z , ( ~ ) , . ~ j ( y ) }  = ~ i ~ ( x  - ~), 
then we easily check relations (51)-(53) as well as the relation 

= = 0 .  

Thus, in principle, the ~-field model can be quantized by means of fermionization of the current variables. 
We are going to perform a more detailed investigation in a forthcoming paper. 
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