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Abstract. Characters and linear combinations of characters that admit a fermionic sum
representation as well as a factorized form are considered for some minimal Virasoro models. As
a consequence, various Rogers—Ramanujan-type identities are obtained. Dilogarithm identities
producing corresponding effective central charges and secondary effective central charges are
derived. Several ways of constructing more general fermionic representations are discussed.

1. Introduction

A minimal Virasoro model [1]M (s, 1) is parametrized by two positive integerand: such
that(s, ) = 1 (i.e. they are co-prime numbers). It has the central charge) = 1 — 8612

The qharacters of its irreducible representations with highest welgfts= W
are given by [2]
Mm

(Q)oo k=—00

where 1< n <s —1,1<m <t — 1,18, = k3!, — S and(q)m = [T, (1 — ¢%). The
characters possess the following symmetries:

X;f;tn(q) — stkz(qk(ntfms) _ qk(nt+ms)+nm) (11)

X @D = Xonon @) = XLt @) = XD 5—n (@D (1.2)
In addition, (1.1) allows us to relate some characters of different models
Xamm @) = Xo'om (@) (1.3)

wherex is a positive number such th@gt af) = (¢, as) = 1. Forinstancq 2(q) = szl,fj(q)

m = 1, 2. Below we will also use the identity proven in [3]:

X2 (@) = X205 (@) = X2 (@) — xr (@) (1.4)

wherem < t/2 and{¢, 6) = (n,2) = (t,n) = 1.
In some cases characters (1.1) admit the form named ‘fermionic representation’

m/Armrh.é
t
x(@)=q*") —— (1.5)
Z (6] Yy - (Dm,
* Dedicated to Professd. D Faddeev on his 65th birthday.
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Hitherto examples of such representation were obtained for two large classes of characters.
For A being related to the inverse Cartan matrix for some Lie algebra they were studied in [4].
In this case certain restrictions are often imposed on the summatiomo¥tamples of (1.5)

for A = 0 or, at most, being a diagonal matrix (afd,,, being replaced wittig®),,,, b > 0)

were obtained in [3,5] as consequences of representation of characters in the ‘factorized form’

M N
x(@) = g [ [ ey [ [}y (1.6)
m=1 n=1
where the multiplicitiesxl.i are integer. Here and below we use the notation of [3]:

{x}}i, = H(l:i: g O<x<y

k=0 ) (1.7)

{x1; ...;)c,l};E = n{xa};c-
a=1

The equivalence of fermionic and factorized forms for characters which admit both types of
representation gives rise to nontrivial identities. We will refer to them as to Rogers—Ramanujan-
type identities.

The paper is organized as follows. Section 2 contains fermionic sum representations
for certain families of characters and linear combinations of charactetsti@&; r). These
results are extensions of some previously known examples. Here, several fermionic sum
representations fam 4, 5), M (5, 6) and M(6, 7) that seem to be new are also given. In
section 3 we observe that all the considered (combinations of) characters also admit the
factorized form (1.6) and present the corresponding Rogers—Ramanujan-type identities. In
section 4 we apply the saddle point analysis to the fermionic representations given in section 2
and derive Bethe-ansatz-type equations that yield the corresponding effective central charge
or (for the differences of characters) the secondary effective central charge as a sum of
dilogarithms. For the latter case we show how to modify the saddle point analysis if we
are dealing with a fermionic sum with alternated signs in summation. We solve the Bethe-
ansatz-type equations explicitly and obtain four infinite dilogarithm sum rules corresponding
to M (3, t) and one nontrivial identity foAM (4, 5). In section 5 we employ certain identities
for Virasoro characters and expand the list of fermionic representationd fdr 5), M (5, 6)
andM(6, 7). Section 6 contains a brief discussion and conclusion.

2. Fermionic representations forM (3, t), M(4,5), M(5, 6) and M(6, 7)

It was observed in [4] that the characters***(¢) and x;*"*(¢) as well as all the four

characters of\1(3, 5) admit the fermionic form (1.5) witt; and A, given by

(Ap)ij = (Ap)ji = min(, j) for 1<i,j<k-1 (2.1)
io1—k

(Apij = (A jx = > + T(Sjk (2.2)

(Ap)ij = (Ap)ij — %5ik5jk- (2.3)

It turns out that these results can be extended as follows:
33 (il)mqu[AkM+’h'§z?k+l
Ko @) £ AT @) = ¢ Y (2.4)
A (Q)ml e (C])mk

m=0

00 7! Agintin- BH2
3,342 3,342 3352 (ED)"g™ "

X1n ¥ (q) £ X1,3k:2_n (@) = qnl"’ E (2-5)
= @Dm - (Dmy
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where 1< n < (k+1), the matricest, andAy are defined by (2.1)—(2.3) and the corresponding
k-component vector8>*! and B3*2 are such that

. k-2
(B%), =maxj —n+1,0) + ”Tajk (2.6)
(B¥*?); = (B3 + 154 (2.7)
For example B! = (1,2,3,...,k — 1, 1), B¥*1 = 0 andB¥1 = (0,...,0, -1).

It turns out that besides the infinite families (2.4) and (2.5) of fermionic sums for the
combinations of characters there exist similar ones for ‘single’ characters:
00 i Ag_yi+i-C2L
3,60—2 382 q
Xia-1(q) =q"st ) —————— (2.8)
1,3t ! I;l=6 (q)ml cte (q)mZz—l
it Agiin-C?

o0
3,6 2 3.61+2 q
Xaa1 (@) = g R (2.9)
771:6 q nmip » - q ma;

wherer = 1,2,3..., A andA are defined in (2.1)—(2.3), and

> t > t+2
(C* ™Y, =max(j —t+1,0) — 58i2-1 (CH);=maxj —t+1,0) — ——6; 2.

2
(2.10)

For exampleC! = (1), C? = (1, 1),C?=(0,1,1),C3= (0, 1,2, 1).

Although formal derivation of (2.4), (2.5) and (2.8), (2.9) is beyond the scope of this paper,
I have verified these identities using Mathematicakfag 7, < 5 expanding them typically
up to¢*%. A rigorous proof can presumably be achieved with the help of the machinery of
Bailey pairs (see, e.g., [6]). In contrast to a generic fermionic representation, equations (2.4)
and (2.5) do not have restrictions on the summation. However, if we combine them to obtain
an expression for a single character, the summationmyevill be restricted to either odd or
even numbers. In particular, equation (2.4) in the cage-efl, n = 2 gives two expressions
for Xff(q) (as also noted in [4]). Moreover, equation (2.8) yields one more expression for the
same character and hence we get

1,2 1 1,2 1 00 1 1
_34 34 q2™ 2" ga" am gamtam
q "2x15(q) = — = — = (2.11)
L2 n;l (@m ; (@m ,,; (@
m—odd m—even

While (2.4) and (2.5) extend previously known examples, the following fermionic
representations fok1(4, 5), M(5, 6) and M (6, 7) to my knowledge have not been discussed
in the literature so far.

M(4,5). Two characters are representable in the form (1.5) with

1/4 1
A:§<1 1) 2.12)

namely, forn = 1, 2 the following equality holds:

o0 2m2+ 3 m2+mymo+(4—2n)my+im,
475 45 q 1°2"%2 2
Xon(q) =q"n > o) . (2.13)
Py q)mi\g)m;
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M(5, 6). Certain linear combinations of characters admit the form (1.5) with

A:%(i i) (2.14)

Namely, forn = 1, 2, we have

00 (:l:l)mzq %(m§+m%)+m1mg+%m1+(2—n)m2

5.6
K@) £ Xy =q"2 Yy (2.15)
! (Dms (@D,
Lo, 242
56 00 (_1)mzq 3 (m7+ms)+mymo+(n—21)(my+mz)
X02(q) — xe(q) = g™ Z (2.16)

e (@i (@) m,

m=0

M(5, 6). Another fermionic representation for the characters ofié, 6) model can be
obtained if we notice that equations (1.3) and (1.4) allow us to relate these characters to those
of the M(3, 10) model: x,'5(9) £ x,4(@) = x32,(@) £ X310-2,(4) @NAX (@) — x,8(q) =
X35o2,(@) — X1ees (@), n = 1,2. Combining these relations with formulae (2.4) for= 3,

we find

0 (il)mgq%'AM+(2—n)in2+(%—n)mg

56 56 5.6
X2 (@) & X, 4(q) = "2 (2.17)
2 4 rg (q)ml (q)mz (q)mg
00 mg ,m' Am+(n—21)(my+2mo+ms)
56 56 56 (=1)"q
Xn‘ (C]) _ Xn’ (q) — qﬂn,l (218)
1 S5 %2:;) (@D (@D my(@)mg
wheren = 1,2 and
1143
A=<1 2 1). (2.19)
% 1 1

Furthermore, equation (1.3) also implies thats(¢) = x73.(q), n = 1,2. For the

M(2, 2k + 1) model a fermionic representation is well known [7-9]:
22k o ! Ay F
X227 g) = g S - (2.20)
20 (Q)ml cee (q)mk—l

where 1< n < k, (17“,’f)_j = max(j —n + 1, 0), andA; coincides with thek — 1) x (k — 1)
minor (2.1) which is the inverse Cartan matrix of the tadpole graph ith 1) nodes. This
gives us yet another fermionic representationfa(5, 6) with A as the 6x 6 matrix A;.

M(8,7). Employing again equations (1.3) and (1.4), we observejtfigte) £ x5, (q) =

X2 (@) £ Xiiaon(@) aNdxT (@) — % (@) = X3772,(@) — X 742,(q), Wheren = 1,2, 3.
Combining these relations with formulae (2.5) foe 4, we find

X0 (d1)mag ' AmH2=n) (mz+2ma)+(G—n)ma

6,7 6,7 8.7
X2 (@) £ Xq, (@) = g™ n=12 (2.21)
> * r;) @z (@D e (@D (@ g
67 XN (—1)ma ! A+ D"
X (@) — X (q) = q"r > 1 n=123 (2.22)

=% D (Do (@mg (@,
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whereD?! = (0,0,0,0), D2 = (0,0, 1, 1), D3 = (1,2, 3,2) and

A= (2.23)

NIR
P NN R
NI®w W N -
= NIw NI

Furthermore, due to equation (1.3) we can idemﬁj(q) = Xf’s?nl(q),n =1, 2, 3. Therefore,
these three characters.bt(6, 7) admit a fermionic form of the type (2.20) withas the 9< 9
matrix Aqo.

3. Rogers—Ramanujan-type identities

In the previous section we considered some characters and combinations of characters which
possess fermionic representations. It turns out that all of them have another common feature—
they are factorizable, thatis they also admitthe form (1.6). Forthe characters\a{th@k+1)

models this is the well known representation

k
2 2k+1 2,2k+1 1
Xin (@) =q"™ . — (3.1)
t Jl_lzl{J;Zk+1—J}2k+1
Jj#n
where we use the notation of (1.7). Equality of the rhs of equations (3.1) and (2.20) yields
a family of identities known as the Andrews—Gordon identities [7]. et 2, these are the

famous Rogers—Ramanujan identities [10]

o0 qmz+m 1 o qmz 1

> = - = —. (3.2)
— (@D {2; 3}5 = @n L4
Actually, (3.1) is only a particular case of a more general formula

2n,t _ qnuz't"t . . -

Xooi(q) = ——{nm; nt —nm; nt},, (3.3)
‘ {1}

which together with

3n,t qnf”m'

Yoo (@) = {nm; 2nt — nm; 2nt),, (2nt — 2nm; 2nt + 2nm}y,,, (3.4)

{1y

exhausts the possibility for single characters to be factorizable on the basisqjf'taadA >
Macdonald identities [3, 11, 12]. Furthermore, it was shown in [3] that in certain cases the
following combinations:

X @) £ X (@) (3.5)
also are factorizable on the basis of the same Macdonald identities. The explicit formulae
found in [3] read

3 - +
3n,t 3n,t _ | nt nt —2nm nt +2nm
2 (@) & X2 (@) = st — - ; 3.6
Xn,m (q) XZn,m(CI) {1}I {nm n nm}nt { 2 }m { 4 4 % ( )
4.t +
g £ X;”" (@) = - {nm; nt —nm; nt} n_ nm; n +nm; n (3.7)
n,m ", m {1}I nt 2 2 2 ot
o
X,?ﬁ,‘,’(q) - ng,';(q) =1 {nm; nt —nm; nt}, {nt — 2nm; nt + 2nm};, . (3.8)

Iy
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Combining the fermionic representations given in the previous section with these factorized
representations, we obtain various identities of the ‘sum—product’ type. They can be regarded as
generalizations of the Rogers—Ramanujan identities and it seems that many of them (especially
those with a multivariable summation) have not previously appeared in the literature.

M(3,t). According to (3.6) the fermionic sums on the rhs of (2.4), (2.5) are equal,
respectively, to

3,3k+1 — +
M 3k+1 3k+1—2n 3k+1+2n
T (0 3+ 1— gy i (3.9)
(1) 2 Jan 4 4 s
3,3k+2 — +

M 3k+2 3k+2—2n 3k+2+2n
T (0 3k+2— n)z, s . (3.10)
(1) 2 Jae 4 4 w2
For instance, fok = 1, 2 we get the following identities:

00 12 + o0 1.2 1

(:l:l)lnq 2m 1 (:i:l)qul’ﬂ zm

Z(q—) =15 Z(q—) =1+ D{1; (3.11)
m=0 m 1 m=0 m

00 m, tm?+(1—"2)m {ﬂ, M}:t

(£Dmgam iz 4 a T
= - n=12 (3.12)

,,; (@ (315(8—n;2+ng
i CLyregritine e b = {7:12n; 7221}? 1<n<3 (3.13)
—~ (Dmy (@Dm, {%}2 H?;il Ui7—jt
i S = (2-5:2+ %}z‘t 1<n<3. (3.14)
—~ (D (@Domy 1‘[?;:1 {j:8—jl

Here we simplified the product sides exploiting the Euler idertity/ {x}, = 1 and other
transformations (see[3]). Equations (3.11) are well known (see, e.g., [13]) and equations (3.12)
were presented in [3]. It should be remarked that in some cases the combinations on the lhs of
(2.4), (2.5) belong both to (3.6) and (3.7). Inthis case the product side acquires a more compact
form [3]:

nm—2

m ", & qu - hm *

Xyi,nAn (g) £ X,i,s:: (@) = F{nm}nm 7] . (3.15)
1 nm
Therefore, we obtain

i (:b1)m4r+1qt71fA41+1:71+t?1~§31'12q4 _ {3t + l}?;+1{%}:3tt+l (3 16)
e C ) (1 '
m=0
5 (E1ymang™ A BRE{31+2)5 035 s (3.17)
(Do Dinger itk '
m=0

wherer = 0, 1,2, ..., andA, A andB are defined in (2.1)-(2.3) and (2.6), (2.7). For instance,
(3.17) yields forr = 0,

P qm§+%m§+ml”"2+%m2 _ {1}+{1}+ io: (—1)m2qm%+%m§+m1mz+%mz 1 (3 18)
_ = 1 2 - .
=0 (Q)ml(Q)mz 0 (Q)ml(q)mz

The last equality is due to the fact tb@i’g(q) — Xf‘g(q) =1 (see [3,12]).
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For the fermionic sums (2.8), (2.9) the product side also simplifies since these characters
belong both to (3.3) and (3.4). Namely, we obtainfer 1,2, 3...

- Lo _ Si R s 22 _
2, g Ag—iictin-C2~1 {3t —1)5_, S {3+l

@Dy Doy A Dy @D A

m=

(3.19)

whereA, A andC are defined in (2.1)—(2.3) and (2.10). For instancet ferl, we get
s %mz+%m s q

= >

=0

> 1
m=0
To complete the discussion of the1(3,7) case, we recall that since each of
equations (2.4), (2.5) comprises two equalities, we can express the involved characters as
sums without alternation of the sign, but with the summation eyerestricted to odd or even
numbers. Then, according to (3.4), each character obtained in this way also admits the product
representation. Thus, we getfoe=3k+1,1<n <k+1

2,1 2 1
m1+§m2+m1m2+m1+§mz

= (1525 (3.20)

(@m (@D my (@ my

> q’WAkiﬁﬂﬁJ}; 1
2. @ Dme {1}—{”; 2t —n; 2}, {2t — 205 2t + 20}, (3.21)
~ (D - (D -
mlzn:eglen ' ‘
> q’ﬁ'Akn?ﬂ?ul—?,’l 1
Z @) @ = o {t = n;t+n; 2t},,{2n; 4 — 2n},, (3.22)
S my - m 1
mlkn:o%d

and analogous formulae for= 3k + 2 if A; is replaced by;.

M(4,5). From (2.13) and (3.3) we obtain fer= 1, 2

oo q21n§+%m§+m1m2+(4—2n)ml+%mg _ {5}; (3 23)
— (Dmy (@Dm, {n;5—n}g{5—2n;5+2n},
M(5, 6). Combining (2.15)—(2.18) with (3.6) and (3.8), we obtain/dos 1, 2
o] (:tl)mzq%(m§+m§)+m1m2+%m1+(2—n)m2 1
ﬁ; (‘Z)ml(‘Z)mz N {}’l7 5 — n}g{g —n; 5 + n};:
o] +1)m3 m2+2m2+m2+2m1m2+m1mg+2m2m3+(2—n)m2+(§_n)m3
=Z( A 2 (3.24)
m=0 (Q)ml(Q)mz (Q)mg
i (_1)mzq%(m§+m§)+m1mz+(n—1)(m1+m2) _ 1
£ @D @Dy (20 10— 2u)3,
X (_1)ym3 m2+2m2+m2+2myima+myma+2momat(n—1)(m1+2mo+tms)
:Z( e : (3.25)
r71=6 (q)ml (q)mz (q)m3
M(6, 7). The fermionic sums on the rhs of (2.21) and (2.22) are equal, respectively, to
6,7 6,7
q”Z,n qnl,n
3.26
{1;4—]’1;3"‘]’1; 6}7_{% —n; Z+n};: {d,1;7—d,1}§{2n;l4—2n}14 ( )

whered; = 3,d> = 1,d3 = 2.



8052 A G Bytsko
4. Dilogarithm identities

If a g-seriesy (¢) (not necessarily identified in terms of characters) admits both fermionic
representation (1.5) and product representation (1.6), it implies not only the existence of a
Rogers—Ramanujan-type identity but also leads to a certain identity involving the dilogarithm
function,L(x) = 377, & + ZInxIn(1— x). Indeed, the product side allows us to find easily

the numberces that governs the asymptotics gig) in theg — 1 limit (see, e.g., [3, 5]).

On the other hand, the same number can be obtained from the fermionic sum by saddle point
analysis (see, e.g., [4,9]). Equivalence of the two expressionggfas typically a nontrivial
identity. Of course, if it is knowia priori thaty (¢) is a character, then its fermionic form alone
leads to a dilogarithm identity sinegy (effective central charge) is fixed by the properties of

x (g) with respect to the modular transformations. Namelyglet €#*'* and§ = e 27//7,

then for the minimal Virasoro mode¥1(s, 1) we havey;,, (q) ~ 51—%“273“) asq — 1, where
6
ceff(s,t) =c(s,t) —24n =1 — o (4.1
S
Here h’ denotes the lowest conformal weight in the model. Furthermore, as it was shown
in [3], a difference of characters of the type (3.5) for all minimal modelst¢®, ) has the
asymptotics}“(éﬁ” wheng — 1. Herec (secondary effective central charge) is given by

24
E(s, 1) =c(s, 1) —24n" =1 — = (4.2)
N

whereh” stands for the second lowest conformal weight in the model.
For our purposes we need to consider a slightly generalized version of (1.5):

. qrh’Aﬁmﬁ-E
X( ) — cons 43
v=a ; @y - @, “2)
whereb; are some positive numbers. Modifying properly the standard saddle point analysis
of a fermionic sum (sg—:-e [4,9] for the cabe= 1 and [5] forb; = b # 1), we find that (4.3)
has the asymptotics™ % asq — 1 with

6 1
= — E —L(x;). 4.4
Ceff 72 L b; (x:) (4.4)
Here the set of numbers9 x; < 1 satisfies the following equations:

I A HA
vo=[Ja-xpu @™ =1 (4.5)
=1

Letus define{A),-j = %(AU+A,-,-). If matrix A is invertible, it is convenient to introduce
J

I = 2 — (A)~! (generalized incidence matrix) and make the substitutjos 1/M1-2- Then
(4.4) and (4.5) turn into

6 1 1 4 _
T30\ j=1

As we have seen above, certain differences of characters of the type (3.5) admit the
fermionic form with alternated summation over the last variable,
(_1)m,qﬁ1’Aﬁl+ﬁq-l}

x(q) = CICOHSIZ (l])ml—(CI)m 4.7)
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Let us find equations describing the— 1 limit of such series. To this end we notice that

1 1
= (~DrgTEmeh (4.8)
(@m @™ m
Therefore, we can rewrite (4.7) as follows:
. *fA'nzw;l.é/
X( ) _ ,cons 49
V=i Z @ @D 2@ D, *9
where
(A)ij = Ay — 388, (B)); = (B); — 8, (4.10)
Equation (4.9) is a particular case of (4.3) with= - -- = b,_; = —b, = 1 and thus we can
apply equations (4.4), (4.5). We conclude that (4.7) has the asympjoticeisg — 1 with
6 r=1
¢= ;(ZL(M) —L(yr)) (4.11)
i=1
where the set of numbers9 y; < 1 satisfies the following equations:
vi=J@—ypr @ i1 (4.12)

j=1

It is again convenient to introdudé = 2 — (A)~1, where(A’ )ij = 2( 1)%ir (A/ +A/ D
Then, making the substitution = 1/v?, we transform (4.11), (4.12) to

.6 (& 1 1 2 - I
T % Yy j=1

i=1 i

Letus remarkthat performing the following change of variables in (4.11), (4zla Yis
i <randz = m
(4.4), (4.5) (forb = 1) and involving the initial matrixA:

&= % 21: L(z;) (=D z = 1_[1(1 — g) A i=1....r (4.14)
= j=
In contrast to (4.5), now, < 0. Deriving (4.14) we used the definition [14, 15]:(x) =
( —) — L(1) for x < 0, and the property.(x) = —L(;%) forx < 1.

‘Generalization of (4.11)—(4.14) for the case of a fermionic sum involving alternated
summation over several variables is obvious. Now let us list dilogarithm identities that follow
from the formulae (4.6), (4.13) and (4.1), (4.2) for the (combinations of) characters considered
in the previous sections.

M(3, 3k+1) and M (3, 3k +2). The explicit expressions (2.1)—(2.3) for the matrigesand
Ay allow us to compute the corresponding matri¢eand;

(Ik)ij = i j+1 + 841, + %Si,k—lfsj,k—l (4.15)
(I)ij = 8i ja1 + 8istj + 8 k81 + i k18 k — 28; 48 1. (4.16)

These generalized incidence matrices differ from those of the Lie alggboaly by a few
entries in the lower-right corner. This hints of a possibility to solve the corresponding sets
of equations (4.6) in a uniform manner, similar to that known forA€2, r) models [9, 16].
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Indeed, we find the following solutions of (4.6) (they can be verified by a straightforward

substitution):

i+
sin sm—
Mi_—k’fl 1<i<k-1 Mk_l _k‘fl

SNz sin 37

for I, given by (4.15) (that is in the case 81 (3, 3k + 1) model) and

i+ (k+1)m
sin sin
. 3k+2 1 <i K k _ 1 2 3k+2
M= sin S M= "gin

3k+2 3k+2

(4.17)

(4.18)

for I given by (4.16) (M (3, 3k + 2) model). Combining these results with (4.1), we derive

the following identities:

-1 b1d H
kX:L Sin? 2% oL sin g2 _ 7?3 -1
sir? & sin =% + sin &% 6 3k+1

=1 3k+1 3k+1 3k+1
1

= . Sinf 5% oL Singfe \ _ 7% 3k
—  \si? &2 sin & r 6 3k+2

[ 3k+2 3k+2

(4.19)

(4.20)

Let us remark that although these identities were derived here exploiting the modular properties
of characters and the saddle point analysis, they resemble the ‘gdnéesade’ dilogarithm
identities [15] and probably can be proved in more direct way based on the functional
relations for the dilogarithm. For instance, equation (4.20)kfoe 2 yields the equality

(L1 - %) +L(V2-1) = %f It can be proved with the help of the Abel duplication
formula [14, 15]. It should be mentioned that equation (4.19)kfadd was encountered

in [17] in the context of the thermodynamic Bethe ansatz.

Next we consider the differences of characters in (2.4), (2.5). First, we compute the
matrices/; and/;. It turns out that forM (3, 3k + 1) det(A ) = 0, i.e.]] does not exist and
we have to solve the equations (4.12). Rd(3, 3k + 2) the matrlxl’ exists and is given by

(I)ij = 8i j+1 + 8wt +8ix8j 41— 38i4-18,4 + 28 418, 41 — 26148 1.

(4.21)

We obtain the following solution of (4.12) fo¥1(3, 3k + 1) (written in terms ofy; = 1/.,/y;

for the sake of uniformness):

(2i+2)

sin‘ 2 2% SII’]—
vi—.—3’2‘;1 1<i<k-1 v,f—.—3’2‘ﬂ+1
SIN 53— e SIN 53— ]
and of (4.13) forM (3, 3k + 2):
(2i+2)1 (2k+2)m
sm sm
sin =2 sin =%

3k+2 3k+2

(4.22)

(4.23)

Combining these results with (4.2), we obtain the following dilogarithm identities:

kX%L sirf . sin% _m?3% -7
sin? @27 sin & 6 3k+1

=1 3k+1 3k+l
-1

»

i=1 3k+2 3k+2 3k+2

. sir? sir’ &5 . sin 2% _ 723k —6
Sin? <ir? @+ | T sin2 +sin@27 | 7 6 3k +2°

(4.24)

(4.25)
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M(4,5). Equation (4.5) forA given by (2.12) can be reduced to a bi-quadratic equation.

Solving it we obtainy = 1 — /p, x = 1 — 32—, wherep := @ According to (4.1) and

: . . e
(4.4) this leads to the identity

V5-1 V2 7 72
L 1—,/T +L<1—ﬁ>=—0€. (4.26)

Although the summation in the fermionic representation (2.13) is not alternated, we can
nevertheless introduce matri according to (4.10) and solve equations (4.11), (4.12). The
solutionisy; = 1— p, y» = p and thus we get = %(L(l—p) —L(p)) = —%. This identity

is rather trivial mathematically (since it is well known thiatp) = q—; andL(1—p) = q—;)

but it is remarkable that the value &fs in agreement with (4.2).

M(5, 6). Itis easy to see that for this model any matrix of the form
l-«o o
A= < a 1- Dl) o<

yieldsx; = xo = 1— p and gives the correct central charge; = ;622L(1—,o) = :—.)‘. Besides

our example (2.14) correspondingdo= 1, the case of = 1 is known [4]. However, matrix

A’ constructed from (4.27) according to (4.10) leads to the correct valeiemnly for o« = %
Namely, in this case we get = p, y» = 1 — p andé = S(L(p) — L(1—p)) = £. It

would be interesting to see if there are fermionic representations for charact&t$506)
corresponding to other values @f Below we will show thatx = 0 appears not iV (5, 6)
but in the closely related(3, 10) model.

NI

(4.27)

5. Further fermionic representations and identities

So far, we have considered only ‘irreducible’ fermionic representations of characters, i.e. those
that are not decomposable into a product of other fermionic sums. However, there are many
ways to construct ‘reducible’ fermionic representations. One of them was discussed in [3, 5]
and was based on the fact that any factorizable character can be brought to the form (4.3)
(typically with b; # 1) with the help of the following formulae:

00 m 5 (m2—m)+mx 0 m o mx
e = 3 D" L _ G
m=0 (61 )m {x}y m=0 (q) )m

Another possibility is to use relations expressing a character as a product of other characters
for which fermionic representation is known. To derive and prove such relations it is often
convenient to exploit the factorized forms of characters. For instance, with the help of (3.3),
(3.4) and (3.6) it is straightforward to check the following identities (see [3] for a similar
derivation):

3n,10m 2n,5
X3 X e (@) = X252 (@D X s (@) (5.2)

7 3n,10m 3n,10m 2n,5i 2n,5i
X3 Om2h—1) (@) * Xm2120 (@) = Xt @ Xt (@) k=12 (5.3)

Choosing herea = m = 1 (recall thatxlzjf(q) = 1) and using the sum side of the Rogers—
Ramanujan identities (3.2), we obtain the following formulae:

(5.1)

3.10 25, | 25 L S gt
X35 (@) = X1r @) X35(q) =q° Y  —— (5.4)
= @D (D,
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310 3,10 2.5 2.5 B
Xl,YZk_l(CI) + X1:11_2k(CI) = X1k (‘Z)Xl:k (g)=¢q Z S N (5.5)
= @D,
wherek = 1, 2. These reducible fermionic representations correspond to the chcic@®
for the matrixA given by (4.27).
Using in a similar way the following identities fér= 1, 2 (they were found in [18] and
generalized to the form similar to (5.2), (5.3) in [3]):

Xao @) = X35 @ (XS 3@ — X1 2ty (@) (5.6)
X @ £ x30@) = 051@ £ 3@V e @ F 12 ow@)  (B.7)
and employing any of the fermionic representations¥6(3, 4) and M (5, 6) discussed above,

we get different reducible fermionic representationsfac4, 5). For instance, substituting
(2.11) and (2.16) into (5.6) we obtain

X4,5(q) _ qngf i (_1)m3q%(m%+m%+m%)+mgms+%m1+(27k)(mg+m3)
2k — @y @Dy (@D
m=0
One more possibility to extend the list of fermionic representations is to consider relations
between characters with rescaled argungerfor instance, we have [3]

1
Xes @+ Xoe@) = X047 xer@ — Xoe@) = x15,(¢>)  n=12  (59)
Together with (3.2) this gives yet another fermionic representatioN @5, 6)

k=12 (5.8)

5,6 5,6 X, gantta-gm 5,6 5,6 N
SO+ =Y T xR @-xe =) (5.10)
= (G —  (G@n

On the other hand, reading equations (5.9) from right to left and using (2.15), (2.16), we obtain
alternative sum sides for the Rogers—Ramanujan identities (3.2):

0 m*+(2—n)m 00 (my+ma)2+my+(4—2n)my 00 (_1ymzg g (mitma)’+(1—4) (my+mz)
D e (51)
m=0 (q m m=0 4 ml(q )m2 m=0 (qz)ml(qz)mz

wheren = 1,2. This sequence of identities can be continued further by employing the
fermionic representations (2.17), (2.18) and also those found in [4] (corresponding to (4.27)
with o = %).

Another set of relations observed in [3]

Xon @+ x50 (@D = x04 (@) — xea. (@) (5.12)
whered; = 3,d, = 1, d3 = 2, together with equations (2.21), (2.22) can be used to get
fermionic representations of the type (4.3) for th&6, 7) model.

Itis also possible to combine the rescaling @nd the construction of reducible fermionic

sums. For example, letbe a prime number such th@gt, t) = 1. Then, using (1.1) and (3.3),
it is easy to derive the following relation:

X 2P (@ (") = % L5t (@) (5.13)

Here Xf’ip(q) should be replaced Witbtf'g(q) if p = 3. If pis not a prime number,
generalization of (5.13) can be achieved by decompagsiimgo proper factors. Now choosing
p=2,r=5ands =2ors =3in(5.13), we getfok =1, 2

X0 (@) = x20@® x5 (@) Xe2(@) £ x08@) = @D £ xre 1 @) x5 (@) (5.14)
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Substituting here (2.20), (2.11) and (3.12), we obtain more fermionic representations of the
type (4.3) for theM (4, 5) and M (5, 6) models:

00 2m2+ 3 m2+(4—2k)ym1+Em,
45 q 1722 2
X2k (q) = k=12 (5.15)
D= ) o
00 my 3 (mP+m3)+(2—kymy+3my
56 56 FD™ gz ’
Xi2(@) £ X 4(q@) =
k.2 k.4 lﬁZ:(:) (612)m1(51)mz

k=12 (5.16)

6. Discussion

Having a character (linear combination of characters) in the fermionic form (4.3), we can
rewrite it as a seriex(q) = Y ;-omkq”, Where the levek admits partitioning,k =

D > ple, into parts of a specific form. The interpretation of the as momenta of
massless particles gives rise to the quasi-particle picture, where a character is regarded as a
partition function,x (¢) = >, e PE. Hereq = e=2"#/L with v being the speed of sound,

and L the size of the system. This quasi-particle representation was developed originally
in [4] (for b; = 1) and has become a standard technique. It is also applicable to factorized
characters [3,5,19] (in this cage+# 1).

For the fermionic form (1.5) or (4.3) of a character the quasi-particle representation
involvesr quasi-particles. They are naturally interpreted as a conformal limit of particles
presented in a massive theory related to the given conformal model. Moreover, it was suggested
in [20] that different non-equivalent fermionic representations of the same character correspond
to differentintegrable perturbations of the conformal model in question. It would be interesting
to understand if the representations fei(4, 5), M(5, 6) and M (6, 7) discussed in section 2
agree with this picture. Our results demonstrate that the number of non-equivalent fermionic
representations fo¥(s, ¢) increases ifr can be represented as a product of two other co-prime
numbers. For instance, we have encountered above three representations of the type (1.5) for
M(5, 6) besides the one considered in [4]. Furthermore, we can considerably expand the list
of non-equivalent fermionic representations, if we are looking for representations of the type
(4.3), including those that are reducible. For instance, in this way one obtains representations
with one (5.10) and two quasi-particles (5.16) fa5, 6) (another two-particle representation
of the type (4.3) follows from the factorized characters [3, 19]).

To summarize, we have extended the list of fermionic representations for some minimal
Virasoro models. The physical content of these representations, in particular, their connection
with massive integrable models remains to be investigated. For all considered fermionic
representations we have established Rogers—Ramanujan-type identities and the corresponding
dilogarithm identities. The Rogers—Ramanujan-type identities can possibly be employed to
construct various quasi-patrticle representations for certain physical entities arising in the lattice
models of statistical mechanics.

After submission of this manuscript | was informed by the referee that connection of the
matrix (2.12) to theM (4, 5) model was noticed earlier by M Terhoeven (unpublished).
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