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Abstract. Characters and linear combinations of characters that admit a fermionic sum
representation as well as a factorized form are considered for some minimal Virasoro models. As
a consequence, various Rogers–Ramanujan-type identities are obtained. Dilogarithm identities
producing corresponding effective central charges and secondary effective central charges are
derived. Several ways of constructing more general fermionic representations are discussed.

1. Introduction

A minimal Virasoro model [1]M(s, t) is parametrized by two positive integerss andt such
that〈s, t〉 = 1 (i.e. they are co-prime numbers). It has the central chargec(s, t) = 1− 6(s−t)2

st
.

The characters of its irreducible representations with highest weightshs,tn,m = (nt−ms)2−(s−t)2
4st

are given by [2]

χs,tn,m(q) =
qη

s,t
n,m

(q)∞

∞∑
k=−∞

qstk
2
(qk(nt−ms) − qk(nt+ms)+nm) (1.1)

where 16 n 6 s − 1, 16 m 6 t − 1, ηs,tn,m := hs,tn,m − c(s,t)

24 and(q)m :=∏m
k=1(1− qk). The

characters possess the following symmetries:

χs,tn,m(q) = χt,sm,n(q) = χs,ts−n,t−m(q) = χt,st−m,s−n(q). (1.2)

In addition, (1.1) allows us to relate some characters of different models

χαs,tαn,m(q) = χs,αtn,αm(q) (1.3)

whereα is a positive number such that〈s, αt〉 = 〈t, αs〉 = 1. For instance,χ5,6
m,2(q) = χ3,10

1,2m(q),
m = 1, 2. Below we will also use the identity proven in [3]:

χ
3n,2t
n,t−2m(q)− χ3n,2t

n,t+2m(q) = χ6n,t
n,m (q)− χ6n,t

n,t−m(q) (1.4)

wherem < t/2 and〈t, 6〉 = 〈n, 2〉 = 〈t, n〉 = 1.
In some cases characters (1.1) admit the form named ‘fermionic representation’

χ(q) = qconst
∞∑
Em=E0

q Em
tA Em+ Em· EB

(q)m1 . . . (q)mr
. (1.5)

∗ Dedicated to Professor L D Faddeev on his 65th birthday.

0305-4470/99/468045+14$30.00 © 1999 IOP Publishing Ltd 8045



8046 A G Bytsko

Hitherto examples of such representation were obtained for two large classes of characters.
ForA being related to the inverse Cartan matrix for some Lie algebra they were studied in [4].
In this case certain restrictions are often imposed on the summation overEm. Examples of (1.5)
for A = 0 or, at most, being a diagonal matrix (and(q)mi being replaced with(qb)mi , b > 0)
were obtained in [3,5] as consequences of representation of characters in the ‘factorized form’

χ(q) = qconst
M∏
m=1

({xm}+y)γ
+
m

N∏
n=1

({xn}−y )γ
−
n (1.6)

where the multiplicitiesγ±i are integer. Here and below we use the notation of [3]:

{x}±y :=
∞∏
k=0

(1± qx+ky) 0< x < y

{x1; . . . ; xn}±y :=
n∏
a=1

{xa}±y .
(1.7)

The equivalence of fermionic and factorized forms for characters which admit both types of
representation gives rise to nontrivial identities. We will refer to them as to Rogers–Ramanujan-
type identities.

The paper is organized as follows. Section 2 contains fermionic sum representations
for certain families of characters and linear combinations of characters forM(3, t). These
results are extensions of some previously known examples. Here, several fermionic sum
representations forM(4, 5), M(5, 6) andM(6, 7) that seem to be new are also given. In
section 3 we observe that all the considered (combinations of) characters also admit the
factorized form (1.6) and present the corresponding Rogers–Ramanujan-type identities. In
section 4 we apply the saddle point analysis to the fermionic representations given in section 2
and derive Bethe-ansatz-type equations that yield the corresponding effective central charge
or (for the differences of characters) the secondary effective central charge as a sum of
dilogarithms. For the latter case we show how to modify the saddle point analysis if we
are dealing with a fermionic sum with alternated signs in summation. We solve the Bethe-
ansatz-type equations explicitly and obtain four infinite dilogarithm sum rules corresponding
toM(3, t) and one nontrivial identity forM(4, 5). In section 5 we employ certain identities
for Virasoro characters and expand the list of fermionic representations forM(4, 5),M(5, 6)
andM(6, 7). Section 6 contains a brief discussion and conclusion.

2. Fermionic representations forM(3, t),M(4, 5),M(5, 6) andM(6, 7)

It was observed in [4] that the charactersχ3,3k+1
1,k (q) andχ3,3k+2

1,k (q) as well as all the four

characters ofM(3, 5) admit the fermionic form (1.5) withAk andÃk given by

(Ak)ij = (Ak)ji = min(i, j) for 16 i, j 6 k − 1 (2.1)

(Ak)kj = (Ak)jk = j

2
+

1− k
4

δjk (2.2)

(Ãk)ij = (Ak)ij − 1
4δikδjk. (2.3)

It turns out that these results can be extended as follows:

χ
3,3k+1
1,n (q)± χ3,3k+1

1,3k+1−n(q) = qη
3,3k+1
1,n

∞∑
Em=E0

(±1)mkq Em
tAk Em+ Em· EB3k+1

n

(q)m1 . . . (q)mk
(2.4)

χ
3,3k+2
1,n (q)± χ3,3k+2

1,3k+2−n(q) = qη
3,3k+2
1,n

∞∑
Em=E0

(±1)mkq Em
t Ãk Em+ Em· EB3k+2

n

(q)m1 . . . (q)mk
(2.5)
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where 16 n 6 (k+1), the matricesAk andÃk are defined by (2.1)–(2.3) and the corresponding
k-component vectorsEB3k+1

n and EB3k+2
n are such that

( EB3k+1
n )j = max(j − n + 1, 0) +

n− k − 2

2
δjk (2.6)

( EB3k+2
n )j = ( EB3k+1

n )j + 1
2δjk. (2.7)

For example,EB3k+1
1 = (1, 2, 3, . . . , k − 1, k−1

2 ),
EB3k+1
k = E0 and EB3k+1

k+1 = (0, . . . ,0,− 1
2).

It turns out that besides the infinite families (2.4) and (2.5) of fermionic sums for the
combinations of characters there exist similar ones for ‘single’ characters:

χ
3,6t−2
1,3t−1 (q) = qη

3,6t−2
1,3t−1

∞∑
Em=E0

q Em
tA2t−1 Em+ Em· EC2t−1

(q)m1 . . . (q)m2t−1

(2.8)

χ
3,6t+2
1,3t+1(q) = qη

3,6t+2
1,3t+1

∞∑
Em=E0

q Em
t Ã2t Em+ Em· EC2t

(q)m1 . . . (q)m2t

(2.9)

wheret = 1, 2, 3 . . . , A andÃ are defined in (2.1)–(2.3), and

( EC2t−1)j = max(j − t + 1, 0)− t

2
δj,2t−1 ( EC2t )j = max(j − t + 1, 0)− t + 2

2
δj,2t .

(2.10)

For example,EC1 = ( 1
2),
EC2 = (1, 1

2),
EC2 = (0, 1, 1), EC3 = (0, 1, 2, 1).

Although formal derivation of (2.4), (2.5) and (2.8), (2.9) is beyond the scope of this paper,
I have verified these identities using Mathematica fork 6 7, t 6 5 expanding them typically
up toq100. A rigorous proof can presumably be achieved with the help of the machinery of
Bailey pairs (see, e.g., [6]). In contrast to a generic fermionic representation, equations (2.4)
and (2.5) do not have restrictions on the summation. However, if we combine them to obtain
an expression for a single character, the summation overmk will be restricted to either odd or
even numbers. In particular, equation (2.4) in the case ofk = 1, n = 2 gives two expressions
for χ3,4

1,2 (q) (as also noted in [4]). Moreover, equation (2.8) yields one more expression for the
same character and hence we get

q−η
3,4
1,2χ

3,4
1,2 (q) =

∑
m>1
m−odd

q
1
2m

2− 1
2m

(q)m
=

∑
m>0
m−even

q
1
2m

2− 1
2m

(q)m
=
∞∑
m=0

q
1
2m

2+ 1
2m

(q)m
. (2.11)

While (2.4) and (2.5) extend previously known examples, the following fermionic
representations forM(4, 5),M(5, 6) andM(6, 7) to my knowledge have not been discussed
in the literature so far.

M(4, 5). Two characters are representable in the form (1.5) with

A = 1

2

(
4 1
1 1

)
(2.12)

namely, forn = 1, 2 the following equality holds:

χ
4,5
2,n (q) = qη

4,5
1,n

∞∑
Em=E0

q2m2
1+ 1

2m
2
2+m1m2+(4−2n)m1+ 1

2m2

(q)m1(q)m2

. (2.13)
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M(5, 6). Certain linear combinations of characters admit the form (1.5) with

A = 1

2

(
1 1
1 1

)
. (2.14)

Namely, forn = 1, 2, we have

χ
5,6
n,2(q)± χ5,6

n,4(q) = qη
5,6
n,2

∞∑
Em=E0

(±1)m2q
1
2 (m

2
1+m2

2)+m1m2+ 1
2m1+(2−n)m2

(q)m1(q)m2

(2.15)

χ
5,6
n,1(q)− χ5,6

n,5(q) = qη
5,6
n,1

∞∑
Em=E0

(−1)m2q
1
2 (m

2
1+m2

2)+m1m2+(n−1)(m1+m2)

(q)m1(q)m2

. (2.16)

M(5, 6). Another fermionic representation for the characters of theM(5, 6) model can be
obtained if we notice that equations (1.3) and (1.4) allow us to relate these characters to those
of theM(3, 10)model:χ5,6

n,2(q)±χ5,6
n,4(q) = χ3,10

1,2n (q)±χ3,10
1,10−2n(q) andχ5,6

n,1(q)−χ5,6
n,5(q) =

χ
3,10
1,5−2n(q) − χ3,10

1,5+2n(q), n = 1, 2. Combining these relations with formulae (2.4) fork = 3,
we find

χ
5,6
n,2(q)± χ5,6

n,4(q) = qη
5,6
n,2

∞∑
Em=E0

(±1)m3q Em
tA Em+(2−n)m2+( 3

2−n)m3

(q)m1(q)m2(q)m3

(2.17)

χ
5,6
n,1(q)− χ5,6

n,5(q) = qη
5,6
n,1

∞∑
Em=E0

(−1)m3q Em
tA Em+(n−1)(m1+2m2+m3)

(q)m1(q)m2(q)m3

(2.18)

wheren = 1, 2 and

A =
( 1 1 1

2
1 2 1
1
2 1 1

)
. (2.19)

Furthermore, equation (1.3) also implies thatχ5,6
n,3(q) = χ

2,15
1,3n (q), n = 1, 2. For the

M(2, 2k + 1) model a fermionic representation is well known [7–9]:

χ
2,2k+1
1,n (q) = qη2,2k+1

1,n

∞∑
Em=E0

q Em
t Āk Em+ Em· EFkn

(q)m1 . . . (q)mk−1

(2.20)

where 16 n 6 k, ( EFkn )j = max(j − n + 1, 0), andĀk coincides with the(k − 1) × (k − 1)
minor (2.1) which is the inverse Cartan matrix of the tadpole graph with(k − 1) nodes. This
gives us yet another fermionic representation forM(5, 6) with A as the 6× 6 matrixĀ7.

M(6, 7). Employing again equations (1.3) and (1.4), we observe thatχ
6,7
2,n (q) ± χ6,7

4,n (q) =
χ

3,14
1,2n (q) ± χ3,14

1,14−2n(q) andχ6,7
1,n (q) − χ6,7

5,n (q) = χ3,14
1,7−2n(q) − χ3,14

1,7+2n(q), wheren = 1, 2, 3.
Combining these relations with formulae (2.5) fork = 4, we find

χ
6,7
2,n (q)± χ6,7

4,n (q) = qη
6,7
2,n

∞∑
Em=E0

(±1)m4q Em
tA Em+(2−n)(m2+2m3)+( 5

2−n)m4

(q)m1(q)m2(q)m3(q)m4

n = 1, 2 (2.21)

χ
6,7
1,n (q)− χ6,7

5,n (q) = qη
6,7
1,n

∞∑
Em=E0

(−1)m4q Em
tA Em+ Em· EDn

(q)m1(q)m2(q)m3(q)m4

n = 1, 2, 3 (2.22)
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where ED1 = (0, 0, 0, 0), ED2 = (0, 0, 1, 1), ED3 = (1, 2, 3, 2) and

A =


1 1 1 1

2
1 2 2 1
1 2 3 3

2
1
2 1 3

2 1

 . (2.23)

Furthermore, due to equation (1.3) we can identifyχ
6,7
3,n (q) = χ2,21

1,3n (q), n = 1, 2, 3. Therefore,
these three characters ofM(6, 7) admit a fermionic form of the type (2.20) withA as the 9×9
matrix Ā10.

3. Rogers–Ramanujan-type identities

In the previous section we considered some characters and combinations of characters which
possess fermionic representations. It turns out that all of them have another common feature—
they are factorizable, that is they also admit the form (1.6). For the characters of theM(2, 2k+1)
models this is the well known representation

χ
2,2k+1
1,n (q) = qη2,2k+1

1,n

k∏
j=1
j 6=n

1

{j ; 2k + 1− j}−2k+1

(3.1)

where we use the notation of (1.7). Equality of the rhs of equations (3.1) and (2.20) yields
a family of identities known as the Andrews–Gordon identities [7]. Fork = 2, these are the
famous Rogers–Ramanujan identities [10]

∞∑
m=0

qm
2+m

(q)m
= 1

{2; 3}−5

∞∑
m=0

qm
2

(q)m
= 1

{1; 4}−5
. (3.2)

Actually, (3.1) is only a particular case of a more general formula

χ2n,t
n,m (q) =

qη
2n,t
n,m

{1}−1
{nm; nt − nm; nt}−nt (3.3)

which together with

χ3n,t
n,m (q) =

qη
3n,t
n,m

{1}−1
{nm; 2nt − nm; 2nt}−2nt {2nt − 2nm; 2nt + 2nm}−4nt (3.4)

exhausts the possibility for single characters to be factorizable on the basis of theA
(1)
1 andA(2)2

Macdonald identities [3, 11, 12]. Furthermore, it was shown in [3] that in certain cases the
following combinations:

χs,tn,m(q)± χs,tn,t−m(q) (3.5)

also are factorizable on the basis of the same Macdonald identities. The explicit formulae
found in [3] read

χ3n,t
n,m (q)± χ3n,t

2n,m(q) =
qη

3n,t
n,m

{1}−1
{nm; nt − nm}−nt

{
nt

2

}−
nt
2

{
nt − 2nm

4
; nt + 2nm

4

}±
nt
2

(3.6)

χ4n,t
n,m (q)± χ4n,t

3n,m(q) =
qη

4n,t
n,m

{1}−1
{nm; nt − nm; nt}−nt

{
nt

2
− nm; nt

2
+ nm; nt

2

}±
nt

(3.7)

χ6n,t
n,m (q)− χ6n,t

5n,m(q) =
qη

6n,t
n,m

{1}−1
{nm; nt − nm; nt}−nt {nt − 2nm; nt + 2nm}−2nt . (3.8)
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Combining the fermionic representations given in the previous section with these factorized
representations, we obtain various identities of the ‘sum–product’ type. They can be regarded as
generalizations of the Rogers–Ramanujan identities and it seems that many of them (especially
those with a multivariable summation) have not previously appeared in the literature.

M(3, t). According to (3.6) the fermionic sums on the rhs of (2.4), (2.5) are equal,
respectively, to

qη
3,3k+1
1,n

{1}−1
{n; 3k + 1− n}−3k+1

{
3k + 1

2

}−
3k+1

2

{
3k + 1− 2n

4
; 3k + 1 + 2n

4

}±
3k+1

2

(3.9)

qη
3,3k+2
1,n

{1}−1
{n; 3k + 2− n}−3k+2

{
3k + 2

2

}−
3k+2

2

{
3k + 2− 2n

4
; 3k + 2 + 2n

4

}±
3k+2

2

. (3.10)

For instance, fork = 1, 2 we get the following identities:
∞∑
m=0

(±1)mq
1
2m

2

(q)m
=
{

1

2

}±
1

∞∑
m=0

(±1)mq
1
2m

2− 1
2m

(q)m
= (1± 1){1}+1 (3.11)

∞∑
m=0

(±1)mq
1
4m

2+(1− n
2 )m

(q)m
=

{ 5−2n
4 ; 5+2n

4 }±5
2

{ 52}+5
2
{3− n; 2 +n}−5

n = 1, 2 (3.12)

∞∑
Em=E0

(±1)m2qm
2
1+ 3

4m2+m1m2+δ1nm1+(1− n
2 )m2

(q)m1(q)m2

=
{ 7−2n

4 ; 7+2n
4 }±7

2

{ 72}+7
2

∏3
j=1
j 6=n
{j ; 7− j}−7

16 n 6 3 (3.13)

∞∑
Em=E0

(±1)m2qm
2
1+ 1

2m2+m1m2+δ1nm1+( 3
2− n

2 )m2

(q)m1(q)m2

= {2−
n
2; 2 + n

2}±4∏3
j=1
j 6=n
{j ; 8− j}−8

16 n 6 3. (3.14)

Here we simplified the product sides exploiting the Euler identity{x}+x{x}−2x = 1 and other
transformations (see [3]). Equations (3.11) are well known (see, e.g., [13]) and equations (3.12)
were presented in [3]. It should be remarked that in some cases the combinations on the lhs of
(2.4), (2.5) belong both to (3.6) and (3.7). In this case the product side acquires a more compact
form [3]:

χ3m,4n
m,n (q)± χ3m,4n

m,3n (q) =
q
nm−2

48

{1}−1
{nm}−nm

{nm
2

}±
nm
. (3.15)

Therefore, we obtain
∞∑
Em=E0

(±1)m4t+1q Em
tA4t+1 Em+ Em· EB12t+4

3t+1

(q)m1 . . . (q)m4t+1

= {3t + 1}−3t+1{ 3t+1
2 }±3t+1

{1}−1
(3.16)

∞∑
Em=E0

(±1)m4t+2q Em
t Ã4t+2 Em+ Em· EB12t+8

3t+2

(q)m1 . . . (q)m4t+2

= {3t + 2}−3t+2{ 3t+2
2 }±3t+2

{1}−1
(3.17)

wheret = 0, 1, 2, . . . , andA, Ã and EB are defined in (2.1)–(2.3) and (2.6), (2.7). For instance,
(3.17) yields fort = 0,
∞∑
Em=E0

qm
2
1+ 1

2m
2
2+m1m2+ 1

2m2

(q)m1(q)m2

= {1}+1{1}+2
∞∑
Em=E0

(−1)m2qm
2
1+ 1

2m
2
2+m1m2+ 1

2m2

(q)m1(q)m2

= 1. (3.18)

The last equality is due to the fact thatχ3,8
1,2(q)− χ3,8

1,6(q) = 1 (see [3,12]).
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For the fermionic sums (2.8), (2.9) the product side also simplifies since these characters
belong both to (3.3) and (3.4). Namely, we obtain fort = 1, 2, 3 . . .

∞∑
Em=E0

q Em
tA2t−1 Em+ Em· EC2t−1

(q)m1 . . . (q)m2t−1

= {3t − 1}−3t−1

{1}−1

∞∑
Em=E0

q Em
t Ã2t Em+ Em· EC2t

(q)m1 . . . (q)m2t

= {3t + 1}−3t+1

{1}−1
(3.19)

whereA, Ã and EC are defined in (2.1)–(2.3) and (2.10). For instance, fort = 1, we get
∞∑
m=0

q
1
2m

2+ 1
2m

(q)m
= {1}+1

∞∑
Em=E0

qm
2
1+ 1

2m
2
2+m1m2+m1+ 1

2m2

(q)m1(q)m2

= {1}+1{2}+2. (3.20)

To complete the discussion of theM(3, t) case, we recall that since each of
equations (2.4), (2.5) comprises two equalities, we can express the involved characters as
sums without alternation of the sign, but with the summation overmk restricted to odd or even
numbers. Then, according to (3.4), each character obtained in this way also admits the product
representation. Thus, we get fort = 3k + 1, 16 n 6 k + 1

∞∑
Em=E0

mk−even

q Em
tAk Em+ Em· EBtn

(q)m1 . . . (q)mk
= 1

{1}−1
{n; 2t − n; 2t}−2t {2t − 2n; 2t + 2n}−4t (3.21)

∞∑
Em=E0

mk−odd

q Em
tAk Em+ Em· EBtn

(q)m1 . . . (q)mk
= 1

{1}−1
{t − n; t + n; 2t}−2t {2n; 4t − 2n}−4t (3.22)

and analogous formulae fort = 3k + 2 if Ak is replaced byÃk.

M(4, 5). From (2.13) and (3.3) we obtain forn = 1, 2
∞∑
Em=E0

q2m2
1+ 1

2m
2
2+m1m2+(4−2n)m1+ 1

2m2

(q)m1(q)m2

= {5}+5
{n; 5− n}−5 {5− 2n; 5 + 2n}−10

. (3.23)

M(5, 6). Combining (2.15)–(2.18) with (3.6) and (3.8), we obtain forn = 1, 2
∞∑
Em=E0

(±1)m2q
1
2 (m

2
1+m2

2)+m1m2+ 1
2m1+(2−n)m2

(q)m1(q)m2

= 1

{n; 5− n}−5 { 52 − n; 5
2 + n}∓5

=
∞∑
Em=E0

(±1)m3qm
2
1+2m2

2+m2
3+2m1m2+m1m3+2m2m3+(2−n)m2+( 3

2−n)m3

(q)m1(q)m2(q)m3

(3.24)

∞∑
Em=E0

(−1)m2q
1
2 (m

2
1+m2

2)+m1m2+(n−1)(m1+m2)

(q)m1(q)m2

= 1

{2n; 10− 2n}−10

=
∞∑
Em=E0

(−1)m3qm
2
1+2m2

2+m2
3+2m1m2+m1m3+2m2m3+(n−1)(m1+2m2+m3)

(q)m1(q)m2(q)m3

. (3.25)

M(6, 7). The fermionic sums on the rhs of (2.21) and (2.22) are equal, respectively, to

qη
6,7
2,n

{1; 4− n; 3 +n; 6}−7 { 72 − n; 7
2 + n}∓7

qη
6,7
1,n

{dn; 7− dn}−7 {2n; 14− 2n}−14

(3.26)

whered1 = 3, d2 = 1, d3 = 2.
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4. Dilogarithm identities

If a q-seriesχ(q) (not necessarily identified in terms of characters) admits both fermionic
representation (1.5) and product representation (1.6), it implies not only the existence of a
Rogers–Ramanujan-type identity but also leads to a certain identity involving the dilogarithm
function,L(x) =∑∞n=1

xn

n2 + 1
2 ln x ln(1− x). Indeed, the product side allows us to find easily

the numberceff that governs the asymptotics ofχ(q) in the q → 1 limit (see, e.g., [3, 5]).
On the other hand, the same number can be obtained from the fermionic sum by saddle point
analysis (see, e.g., [4,9]). Equivalence of the two expressions forceff is typically a nontrivial
identity. Of course, if it is knowna priori thatχ(q) is a character, then its fermionic form alone
leads to a dilogarithm identity sinceceff (effective central charge) is fixed by the properties of
χ(q) with respect to the modular transformations. Namely, letq = e2π iτ and q̂ = e−2π i/τ ,

then for the minimal Virasoro modelM(s, t) we haveχs,tn,m(q) ∼ q̂−
ceff (s,t)

24 asq → 1, where

ceff(s, t) = c(s, t)− 24h′ = 1− 6

st
. (4.1)

Hereh′ denotes the lowest conformal weight in the model. Furthermore, as it was shown
in [3], a difference of characters of the type (3.5) for all minimal models butM(2, t) has the
asymptoticŝq−

c̃(s,t)

24 whenq → 1. Herec̃ (secondary effective central charge) is given by

c̃(s, t) = c(s, t)− 24h′′ = 1− 24

st
(4.2)

whereh′′ stands for the second lowest conformal weight in the model.
For our purposes we need to consider a slightly generalized version of (1.5):

χ(q) = qconst
∑
Em

q Em
tA Em+ Em· EB

(qb1)m1 . . . (q
br )mr

(4.3)

wherebi are some positive numbers. Modifying properly the standard saddle point analysis
of a fermionic sum (see [4, 9] for the casebi = 1 and [5] forbi = b 6= 1), we find that (4.3)
has the asymptoticŝq−

ceff
24 asq → 1 with

ceff = 6

π2

r∑
i=1

1

bi
L(xi). (4.4)

Here the set of numbers 0< xi < 1 satisfies the following equations:

xi =
r∏
j=1

(1− xj )
1
bj
(Aij+Aji )

i = 1, . . . , r. (4.5)

Let us define(Â)ij = 1
2bj
(Aij +Aji). If matrix Â is invertible, it is convenient to introduce

I = 2− (Â)−1 (generalized incidence matrix) and make the substitutionxi = 1/µ2
i . Then

(4.4) and (4.5) turn into

ceff = 6

π2

r∑
i=1

1

bi
L

(
1

µ2
i

)
µ2
i = 1 +

r∏
j=1

(µj )
Iij . (4.6)

As we have seen above, certain differences of characters of the type (3.5) admit the
fermionic form with alternated summation over the last variable,

χ(q) = qconst
∑
Em

(−1)mr q Em
tA Em+ Em· EB

(q)m1 . . . (q)mr
. (4.7)
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Let us find equations describing theq → 1 limit of such series. To this end we notice that

1

(q)m
= (−1)mq−

1
2m(m+1) 1

(q−1)m
. (4.8)

Therefore, we can rewrite (4.7) as follows:

χ(q) = qconst
∑
Em

q Em
tA′ Em+ Em· EB ′

(q)m1 . . . (q)mr−1(q
−1)mr

(4.9)

where

(A′)ij = Aij − 1
2δirδjr ( EB ′)j = ( EB)j − 1

2δjr . (4.10)

Equation (4.9) is a particular case of (4.3) withb1 = · · · = br−1 = −br = 1 and thus we can
apply equations (4.4), (4.5). We conclude that (4.7) has the asymptoticsq̂−

c̃
24 asq → 1 with

c̃ = 6

π2

( r−1∑
i=1

L(yi)− L(yr)
)

(4.11)

where the set of numbers 0< yi < 1 satisfies the following equations:

yi =
r∏
j=1

(1− yj )(−1)δjr (A′ij+A
′
ji ) i = 1, . . . , r. (4.12)

It is again convenient to introduceI ′ = 2− (Â′)−1, where(Â′)ij = 1
2(−1)δjr (A′ij +A′ji).

Then, making the substitutionyi = 1/ν2
i , we transform (4.11), (4.12) to

c̃ = 6

π2

( r−1∑
i=1

L

(
1

ν2
i

)
− L

(
1

ν2
r

))
ν2
i = 1 +

r∏
j=1

(νj )
I ′ij . (4.13)

Let us remark that performing the following change of variables in (4.11), (4.12):zi = yi ,
i < r andzr = yr

yr−1, we can transform these equations to the form almost coinciding with
(4.4), (4.5) (forbi = 1) and involving the initial matrixA:

c̃ = 6

π2

r∑
i=1

L(zi) (−1)δir zi =
r∏
j=1

(1− zj )Aij+Aji i = 1, . . . , r. (4.14)

In contrast to (4.5), nowzr < 0. Deriving (4.14) we used the definition [14, 15]:L(x) =
L( 1

1−x )− L(1) for x < 0, and the propertyL(x) = −L( x
x−1) for x < 1.

Generalization of (4.11)–(4.14) for the case of a fermionic sum involving alternated
summation over several variables is obvious. Now let us list dilogarithm identities that follow
from the formulae (4.6), (4.13) and (4.1), (4.2) for the (combinations of) characters considered
in the previous sections.

M(3, 3k + 1) andM(3, 3k + 2). The explicit expressions (2.1)–(2.3) for the matricesAk and
Ãk allow us to compute the corresponding matricesIk andĨk

(Ik)ij = δi,j+1 + δi+1,j + 1
2δi,k−1δj,k−1 (4.15)

(Ĩk)ij = δi,j+1 + δi+1,j + δi,kδj,k−1 + δi,k−1δj,k − 2δi,kδj,k. (4.16)

These generalized incidence matrices differ from those of the Lie algebraAk only by a few
entries in the lower-right corner. This hints of a possibility to solve the corresponding sets
of equations (4.6) in a uniform manner, similar to that known for theM(2, t) models [9,16].
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Indeed, we find the following solutions of (4.6) (they can be verified by a straightforward
substitution):

µi =
sin (i+1)π

3k+1

sin π
3k+1

16 i 6 k − 1 µ2
k = 1 +

sin kπ
3k+1

sin π
3k+1

(4.17)

for Ik given by (4.15) (that is in the case ofM(3, 3k + 1) model) and

µi =
sin (i+1)π

3k+2

sin π
3k+2

16 i 6 k − 1 µ2
k =

sin (k+1)π
3k+2

sin π
3k+2

(4.18)

for Ĩk given by (4.16) (M(3, 3k + 2) model). Combining these results with (4.1), we derive
the following identities:

k−1∑
i=1

L

(
sin2 π

3k+1

sin2 (i+1)π
3k+1

)
+L

(
sin π

3k+1

sin π
3k+1 + sin kπ

3k+1

)
= π2

6

3k − 1

3k + 1
(4.19)

k−1∑
i=1

L

(
sin2 π

3k+2

sin2 (i+1)π
3k+2

)
+L

(
sin π

3k+2

sin (k+1)π
3k+2

)
= π2

6

3k

3k + 2
. (4.20)

Let us remark that although these identities were derived here exploiting the modular properties
of characters and the saddle point analysis, they resemble the ‘generalA1-type’ dilogarithm
identities [15] and probably can be proved in more direct way based on the functional
relations for the dilogarithm. For instance, equation (4.20) fork = 2 yields the equality
(L(1 − 1√

2
) + L(

√
2 − 1)) = π2

8 . It can be proved with the help of the Abel duplication
formula [14, 15]. It should be mentioned that equation (4.19) fork odd was encountered
in [17] in the context of the thermodynamic Bethe ansatz.

Next we consider the differences of characters in (2.4), (2.5). First, we compute the
matricesI ′k andĨ ′k. It turns out that forM(3, 3k + 1) det(Â′k) = 0, i.e.I ′k does not exist and
we have to solve the equations (4.12). ForM(3, 3k + 2) the matrixĨ ′k exists and is given by

(Ĩ ′k)ij = δi,j+1 + δi+1,j + δi,kδj,k−1− 3δi,k−1δj,k + 2δi,k−1δj,k−1− 2δi,kδj,k. (4.21)

We obtain the following solution of (4.12) forM(3, 3k + 1) (written in terms ofνi = 1/
√
yi

for the sake of uniformness):

νi =
sin (2i+2)π

3k+1

sin 2π
3k+1

16 i 6 k − 1 ν2
k =

sin 2kπ
3k+1

sin 2π
3k+1

(4.22)

and of (4.13) forM(3, 3k + 2):

νi =
sin (2i+2)π

3k+2

sin 2π
3k+2

16 i 6 k − 1 ν2
k = 1 +

sin (2k+2)π
3k+2

sin 2π
3k+2

. (4.23)

Combining these results with (4.2), we obtain the following dilogarithm identities:

k−1∑
i=1

L

(
sin2 2π

3k+1

sin2 (2i+2)π
3k+1

)
− L

(
sin 2π

3k+1

sin 2kπ
3k+1

)
= π2

6

3k − 7

3k + 1
(4.24)

k−1∑
i=1

L

(
sin2 2π

3k+2

sin2 (2i+2)π
3k+2

)
− L

(
sin 2π

3k+2

sin 2π
3k+2 + sin (2k+2)π

3k+2

)
= π2

6

3k − 6

3k + 2
. (4.25)
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M(4, 5). Equation (4.5) forA given by (2.12) can be reduced to a bi-quadratic equation.
Solving it we obtainx1 = 1−√ρ, x2 = 1− 1

1+
√
ρ
, whereρ :=

√
5−1
2 . According to (4.1) and

(4.4) this leads to the identity

L

1−
√√

5− 1

2

 +L

(
1−

√
2√

2 +
√√

5− 1

)
= 7

10

π2

6
. (4.26)

Although the summation in the fermionic representation (2.13) is not alternated, we can
nevertheless introduce matrixA′ according to (4.10) and solve equations (4.11), (4.12). The
solution isy1 = 1−ρ, y2 = ρ and thus we get̃c = 6

π2 (L(1−ρ)−L(ρ)) = − 1
5. This identity

is rather trivial mathematically (since it is well known thatL(ρ) = π2

10 andL(1− ρ) = π2

15)
but it is remarkable that the value ofc̃ is in agreement with (4.2).

M(5, 6). It is easy to see that for this model any matrix of the form

A =
(

1− α α

α 1− α
)

α 6 1
2 (4.27)

yieldsx1 = x2 = 1−ρ and gives the correct central charge:ceff = 6
π2 2L(1−ρ) = 4

5. Besides
our example (2.14) corresponding toα = 1

2, the case ofα = 1
3 is known [4]. However, matrix

A′ constructed from (4.27) according to (4.10) leads to the correct value ofc̃ only for α = 1
2.

Namely, in this case we gety1 = ρ, y2 = 1− ρ and c̃ = 6
π2 (L(ρ) − L(1− ρ)) = 1

5. It
would be interesting to see if there are fermionic representations for characters ofM(5, 6)
corresponding to other values ofα. Below we will show thatα = 0 appears not inM(5, 6)
but in the closely relatedM(3, 10) model.

5. Further fermionic representations and identities

So far, we have considered only ‘irreducible’ fermionic representations of characters, i.e. those
that are not decomposable into a product of other fermionic sums. However, there are many
ways to construct ‘reducible’ fermionic representations. One of them was discussed in [3, 5]
and was based on the fact that any factorizable character can be brought to the form (4.3)
(typically with bi 6= 1) with the help of the following formulae:

{x}±y =
∞∑
m=0

(±1)mq
y

2 (m
2−m)+mx

(qy)m

1

{x}±y
=
∞∑
m=0

(∓1)mqmx

(qy)m
. (5.1)

Another possibility is to use relations expressing a character as a product of other characters
for which fermionic representation is known. To derive and prove such relations it is often
convenient to exploit the factorized forms of characters. For instance, with the help of (3.3),
(3.4) and (3.6) it is straightforward to check the following identities (see [3] for a similar
derivation):

χ2n,3m
n,m (q)χ

3n,10m
n,5m (q) = χ2n,5m

n,m (q)χ
2n,5m
n,2m (q) (5.2)

χ2n,3m
n,m (q)(χ

3n,10m
n,m(2k−1)(q) + χ3n,10m

n,m(11−2k)(q)) = χ2n,5m
n,mk (q)χ

2n,5m
n,mk (q) k = 1, 2. (5.3)

Choosing heren = m = 1 (recall thatχ2,3
1,1 (q) = 1) and using the sum side of the Rogers–

Ramanujan identities (3.2), we obtain the following formulae:

χ
3,10
1,5 (q) = χ2,5

1,1 (q)χ
2,5
1,2 (q) = q

1
6

∞∑
Em=E0

qm
2
1+m2

2+m1

(q)m1(q)m2

(5.4)
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χ
3,10
1,2k−1(q) + χ3,10

1,11−2k(q) = χ2,5
1,k (q)χ

2,5
1,k (q) = q

23−12k
30

∞∑
Em=E0

qm
2
1+m2

2+(4−2k)m1

(q)m1(q)m2

(5.5)

wherek = 1, 2. These reducible fermionic representations correspond to the choiceα = 0
for the matrixA given by (4.27).

Using in a similar way the following identities fork = 1, 2 (they were found in [18] and
generalized to the form similar to (5.2), (5.3) in [3]):

χ
4,5
2,k (q) = χ3,4

1,2 (q)(χ
6,5
1,(3−k)(q)− χ6,5

1,(2+k)(q)) (5.6)

χ
4,5
1,k (q)± χ4,5

3,k (q) = (χ3,4
1,1 (q)± χ3,4

1,3 (q))(χ
6,5
2,(3−k)(q)∓ χ6,5

2,(2+k)(q)) (5.7)

and employing any of the fermionic representations forM(3, 4) andM(5, 6) discussed above,
we get different reducible fermionic representations forM(4, 5). For instance, substituting
(2.11) and (2.16) into (5.6) we obtain

χ
4,5
2,k (q) = qη

4,5
2,k

∞∑
Em=E0

(−1)m3q
1
2 (m

2
1+m2

2+m2
3)+m2m3+ 1

2m1+(2−k)(m2+m3)

(q)m1(q)m2(q)m3

k = 1, 2. (5.8)

One more possibility to extend the list of fermionic representations is to consider relations
between characters with rescaled argumentq. For instance, we have [3]

χ
5,6
n,2(q) + χ5,6

n,4(q) = χ2,5
1,n (q

1
2 ) χ

5,6
n,1(q)− χ5,6

n,5(q) = χ2,5
1,3−n(q

2) n = 1, 2. (5.9)

Together with (3.2) this gives yet another fermionic representation forM(5, 6)

χ
5,6
n,2(q) + χ5,6

n,4(q) =
∞∑
m=0

q
1
2m

2+(1− n
2 )m

(q
1
2 )m

χ
5,6
n,1(q)− χ5,6

n,5(q) =
∞∑
m=0

q2m2+(2n−2)m

(q2)m
. (5.10)

On the other hand, reading equations (5.9) from right to left and using (2.15), (2.16), we obtain
alternative sum sides for the Rogers–Ramanujan identities (3.2):

∞∑
m=0

qm
2+(2−n)m

(q)m
=
∞∑
Em=E0

q(m1+m2)
2+m1+(4−2n)m2

(q2)m1(q
2)m2

=
∞∑
Em=E0

(−1)m2q
1
4 (m1+m2)

2+(1− n
2 )(m1+m2)

(q
1
2 )m1(q

1
2 )m2

(5.11)

wheren = 1, 2. This sequence of identities can be continued further by employing the
fermionic representations (2.17), (2.18) and also those found in [4] (corresponding to (4.27)
with α = 1

3).
Another set of relations observed in [3]

χ
6,7
2,n (q

2) + χ6,7
4,n (q

2) = χ6,7
1,dn
(q)− χ6,7

5,dn
(q) (5.12)

whered1 = 3, d2 = 1, d3 = 2, together with equations (2.21), (2.22) can be used to get
fermionic representations of the type (4.3) for theM(6, 7) model.

It is also possible to combine the rescaling ofq and the construction of reducible fermionic
sums. For example, letp be a prime number such that〈p, t〉 = 1. Then, using (1.1) and (3.3),
it is easy to derive the following relation:

χ
3,2p
1,p (q)χ

s,t
n,m(q

p) = χps,tpn,m(q). (5.13)

Here χ3,2p
1,p (q) should be replaced withχ2,9

1,3 (q) if p = 3. If p is not a prime number,
generalization of (5.13) can be achieved by decomposingp into proper factors. Now choosing
p = 2, t = 5 ands = 2 or s = 3 in (5.13), we get fork = 1, 2

χ
4,5
2,k (q) = χ2,5

1,k (q
2)χ

3,4
1,2 (q) χ

5,6
k,2(q)± χ5,6

k,4(q) = (χ3,5
1,k (q

2)± χ3,5
1,5−k(q

2))χ
3,4
1,2 (q). (5.14)
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Substituting here (2.20), (2.11) and (3.12), we obtain more fermionic representations of the
type (4.3) for theM(4, 5) andM(5, 6) models:

χ
4,5
2,k (q) =

∞∑
Em=0

q2m2
1+ 1

2m
2
2+(4−2k)m1+ 1

2m2

(q2)m1(q)m2

k = 1, 2 (5.15)

χ
5,6
k,2(q)± χ5,6

k,4(q) =
∞∑
Em=0

(±1)m1 q
1
2 (m

2
1+m2

2)+(2−k)m1+ 1
2m2

(q2)m1(q)m2

k = 1, 2. (5.16)

6. Discussion

Having a character (linear combination of characters) in the fermionic form (4.3), we can
rewrite it as a seriesχ(q) = ∑∞

k=0µkq
k, where the levelk admits partitioning,k =∑r

a=1

∑
ia
piaa , into parts of a specific form. The interpretation of thepiaa as momenta of

massless particles gives rise to the quasi-particle picture, where a character is regarded as a
partition function,χ(q) =∑k µke

−βEk . Hereq = e−2πβv/L, with v being the speed of sound,
andL the size of the system. This quasi-particle representation was developed originally
in [4] (for bi = 1) and has become a standard technique. It is also applicable to factorized
characters [3,5,19] (in this casebi 6= 1).

For the fermionic form (1.5) or (4.3) of a character the quasi-particle representation
involves r quasi-particles. They are naturally interpreted as a conformal limit of particles
presented in a massive theory related to the given conformal model. Moreover, it was suggested
in [20] that different non-equivalent fermionic representations of the same character correspond
to different integrable perturbations of the conformal model in question. It would be interesting
to understand if the representations forM(4, 5),M(5, 6) andM(6, 7) discussed in section 2
agree with this picture. Our results demonstrate that the number of non-equivalent fermionic
representations forM(s, t) increases ifst can be represented as a product of two other co-prime
numbers. For instance, we have encountered above three representations of the type (1.5) for
M(5, 6) besides the one considered in [4]. Furthermore, we can considerably expand the list
of non-equivalent fermionic representations, if we are looking for representations of the type
(4.3), including those that are reducible. For instance, in this way one obtains representations
with one (5.10) and two quasi-particles (5.16) forM(5, 6) (another two-particle representation
of the type (4.3) follows from the factorized characters [3,19]).

To summarize, we have extended the list of fermionic representations for some minimal
Virasoro models. The physical content of these representations, in particular, their connection
with massive integrable models remains to be investigated. For all considered fermionic
representations we have established Rogers–Ramanujan-type identities and the corresponding
dilogarithm identities. The Rogers–Ramanujan-type identities can possibly be employed to
construct various quasi-particle representations for certain physical entities arising in the lattice
models of statistical mechanics.

After submission of this manuscript I was informed by the referee that connection of the
matrix (2.12) to theM(4, 5) model was noticed earlier by M Terhoeven (unpublished).
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