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Abstract
We develop the Baxterization approach to (an extension of) the quantum
group GLq(2). We introduce two matrices which play the role of spectral
parameter-dependent L-matrices and observe that they are naturally related to
two different comultiplications. Using these comultiplication structures, we
find the related fundamental R-operators in terms of powers of coproducts
and also give their equivalent forms in terms of quantum dilogarithms. The
corresponding quantum local Hamiltonians are given in terms of logarithms of
positive operators. An analogous construction is developed for the q-oscillator
and Weyl algebras using the fact that their algebraic and coalgebraic structures
can be obtained as reductions of those for the quantum group. As an application,
the lattice Liouville model, the q-DST model, the Volterra model, a lattice
regularization of the free field and the relativistic Toda model are considered.

PACS numbers: 02.20.Uw, 02.30.Ik, 11.10.Kk

1. Introduction: motivation and outline of main results

A quantum model is a system (H,A, H), with a Hilbert space H, an algebra of observables A
and a Hamiltonian H. The model is integrable if there exists a complete set of quantum integrals
of motion, i.e. a set of self-adjoint elements of A which commute with each other and with the
Hamiltonian. For homogeneous one-dimensional lattice models one has H = K⊗N,A = B⊗N,
with one copy of Hilbert space K and algebra of local observables B being associated with
each of the N sites of a one-dimensional lattice. K is usually characterized as a representation
of an algebra U of ‘symmetries’, and B is generated from the operators which represent the
elements of U on K.

A key step in constructing an integrable lattice model is to find an L-matrix L(λ) ∈
Mat(n) ⊗ B and an auxiliary R-matrix R(λ) ∈ Mat(n)⊗2 such that the following matrix
commutation relation

R12(λ)L13(λµ)L23(µ) = L23(µ)L13(λµ)R12(λ), (1)
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where λ,µ ∈ C, is equivalent to the defining relations of U. Here and below, we use
the standard notation: subscripts indicate non-trivial components in tensor product, e.g.,
R12 ≡ R ⊗ 1, etc. For further details on the R-matrix approach to quantum integrability, we
refer the reader to the review [F1].

For a model on a closed one-dimensional lattice, i.e. with periodic boundary conditions,
a set of quantum integrals of motion is generated by the auxiliary transfer-matrix T (λ) =
tra(La,N(λ) . . . La,1(λ)). However, these integrals are in general non-local, i.e. they are not
representable as a sum of terms each containing only non-trivial contributions from several
nearest sites. The recipe [FT2] for constructing local integrals of motion for a model with a
given L-matrix is to find first the corresponding fundamental R-operator R(λ) ∈ B⊗2, which
satisfies the following intertwining relation (here and below we will use it in the braid form):

R23(λ)L12(λµ)L13(µ) = L12(µ)L13(λµ)R23(λ). (2)

The corresponding transfer-matrix is constructed as T(λ) = tra(RaN(λ)PaN . . . Ra1(λ)Pa1),
where the subscript a now stands for an auxiliary copy of B, and P is the unitary operator
permuting tensor factors in B⊗2. The fundamental R-operator is usually regular, that is, after
appropriate normalization, it satisfies the relation

R(1) = 1 ⊗ 1. (3)

If the regularity condition holds, then first and higher order logarithmic derivatives of T(λ)

at λ = 1 are local integrals of motion for the periodic homogeneous model in question. In
particular, the Hamiltonian is often chosen as the most local integral which involves only
nearest-neighbor interaction:

H = i
∂

∂λ
[log T(λ)]λ=1 =

N∑
n=1

Hn,n+1 =
N∑

n=1

i
∂

∂λ
[Rn+1,n(λ)]λ=1, (4)

where the summation assumes that N+1 ≡ 1.
Thus, finding the fundamental R-operator for a given L-matrix is an important part of

the R-matrix approach to quantum integrable models. Furthermore, this problem is closely
related to the problem of constructing the corresponding evolution operators and Q-operators.
However, there is no general method for solving equation (2). The particular difficulty here is
that it is not clear a priori on which operator argument(s) the function R(λ) depends.

Among the few known examples of constructing a fundamental R-operator, the most
algebraically transparent are those related to the case where the symmetry U admits the
structure of a bialgebra. Such examples include the XXX spin chain [KRS] and closely
related nonlinear Schrödinger model [FT2], where U = U(sl2), and the XXZ spin chain [J1]
and closely related sine-Gordon model [FT2, T1], where U = Uq(sl2). A crucial observation
for solving (2) in these cases is that the operator argument of R(λ) is �(Cq), where Cq is the
Casimir element of U and � is the comultiplication that defines the bialgebra structure of U.
The corresponding solutions to (2) are expressed, respectively, in terms of the gamma function
or its q-analogue (see [J1, T1, F1, B2] for more details in the latter case).

The aim of the present paper is to develop a similar algebraic construction of fundamental
R-operators for models whose underlying symmetry corresponds, in the sense of equation (1),
to the quantum group GLq(2). More precisely, we introduce the quantum group G̃Lq(2) with
generators a, b, c, d, θ , where θ may be chosen to be the inverse to b or c. It will be important
to consider special positive representations of G̃Lq(2) which ensures that the operators that
we use are positive self-adjoint. These properties are crucial for constructing fundamental
R-operators since we will need non-polynomial functions of generators and their coproducts.

The paper is organized as follows. First, we discuss Baxterization of GLq(2) and
G̃Lq(2), presenting their defining relations in the form (1). The two matrices, g(λ) and ĝ(λ),
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which play the role of an L-matrix for G̃Lq(2), will be our main objects of consideration.
Next, we show that, besides the standard comultiplication �, there is another algebra
homomorphism δ : G̃Lq(2) → G̃Lq(2)⊗2. Further, we solve equation (2) for g(λ) and
ĝ(λ). The corresponding fundamental R-operators are given (up to some twists) by powers
of, respectively, �(bc) and δ(ad−qbc). Next, we show that the L-matrices of the lattice
Liouville model and the q-DST model are nothing but g(λ) and ĝ(λ) with appropriately
chosen representations of generators. Using this observation, we construct the corresponding
local lattice Hamiltonians. Finally, we consider some reductions of G̃Lq(2), including the
q-oscillator algebra Aq and the Weyl algebra Wq . Following the same scheme, we introduce
reductions of g(λ) and ĝ(λ), and of � and δ, and then construct the corresponding fundamental
R-operators by solving equation (2). We discuss the relation of these R-operators and of the
corresponding local lattice Hamiltonians to the Volterra model, the relativistic Toda model and
a lattice regularization of the free field.

Let us remark that, although our construction based on the use of the comultiplication
structure yields expressions for fundamental R-operators mainly as powers of coproducts
of some elements, it is often useful to rewrite these expressions in terms of the quantum
dilogarithm function or, more precisely, its self-dual form [F2, F3] which is suitable for
dealing with the |q| = 1 case. A brief account on this function along with several related
statements which we use in the main text are given in the appendix.

2. GLq(2) and its Baxterization

Let q = eiγ , where γ ∈ (0, π). We will use the abbreviated notation GLq(2) for the algebra
of regular functions on the quantum group, Fun(GLq(2)) (see [V1, CP, KS]).

Definition 1. GLq(2) is a unital associative algebra with generators a, b, c, d, and defining
relations

[a, d] = (q−q−1)bc, [b, c] = 0,

ab = qba, ac = qca, bd = qdb, cd = qdc.
(5)

SLq(2) is the factor algebra of GLq(2) over the ideal generated by the relation ad −qbc = 1.

Following the R-matrix approach to quantum groups [FRT], the generators of GLq(2) can be
assembled into a matrix, g = (

a b

c d

)
. Then, by direct inspection of 16 quadratic exchange

relations, one can verify the following assertion (see, e.g. [CP, KS]).

Lemma 1. The defining relations (5) are equivalent to the following relation:

R12g13g23 = g23g13R12, (6)

where the auxiliary R-matrix is given by either of the following matrices:

R+ =

⎛⎜⎜⎜⎜⎝
q

1

q−q−1 1

q

⎞⎟⎟⎟⎟⎠ , R− = (R+
21)

−1 =

⎛⎜⎜⎜⎜⎝
q−1

1 q−1−q

1

q−1

⎞⎟⎟⎟⎟⎠ . (7)
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In what follows, we will also need the following spectral parameter-dependent R-matrices:

R̂(λ) = λR+ − λ−1R− =

⎛⎜⎜⎜⎜⎝
�(qλ)

�(λ) λ−1�(q)

λ�(q) �(λ)

�(qλ)

⎞⎟⎟⎟⎟⎠ , (8)

R(λ) = λ
1
2 σ3⊗1R̂(λ)λ− 1

2 σ3⊗1 =

⎛⎜⎜⎜⎜⎝
�(qλ)

�(λ) �(q)

�(q) �(λ)

�(qλ)

⎞⎟⎟⎟⎟⎠ , (9)

where �(λ) ≡ λ − λ−1 and σ3 = (
1 0
0 −1

)
.

In the theory of quantum groups, the notion of Baxterization was originally introduced
by Jones [J2] in the context of knot theory. It refers to the procedure of constructing spectral
parameter-dependent solutions to the Yang–Baxter equation out of solutions to the constant
(spectral parameter-independent) Yang–Baxter equation. An example is provided by the
expression for R̂(λ) in terms of R± in formula (8). Analogously, an L-matrix satisfying the
RLL relation (1) can be regarded as Baxterized if it is constructed from L-matrices that satisfy
the constant RLL relation. For instance, the L-matrix of the XXZ model (see, e.g., [F1]) has
the form

LXXZ(λ) = λL+ + λ−1L−, (10)

where L± satisfy the constant RLL relation with constant R-matrices given by (7).
In the theory of quantum integrable models it is crucial that an R-matrix is spectral

dependent (see section 1), and so the Baxterization procedure serves as quite a common
technique for constructing new solutions to the Yang–Baxter equation and hence new integrable
models. However, what concerns the Baxterization of L-matrices, the vast majority of
examples occur in the cases where the symmetry U is a quantum algebra, typically the
universal enveloping of a quantum Lie algebra, like U = Uq(sl2) for the XXZ model.

Quantum groups, in particular GLq(2), are usually not considered from the point of view
of Baxterization of L-matrices. In the present paper, we will try to fill this gap a bit. Let
us commence with the observation that equation (6) can be Baxterized, albeit in a somewhat
weaker sense than it is usually meant. For this purpose, we assemble the generators of GLq(2)

into two matrices:

g(λ) =
(

a λb

λ−1c d

)
, ĝ(λ) =

(
λ−1c λ−1d

λa λb

)
. (11)

Proposition 1. Each of the following matrix relations

R12(λ)g13(λµ)g23(µ) = g23(µ)g13(λµ)R12(λ), (12)

R̂12(λ)ĝ13(λµ)ĝ23(µ) = ĝ23(µ)ĝ13(λµ)R̂12(λ) (13)

holds if and only if the elements a, b, c, d satisfy the defining relations (5).

Proof. Matrices (11) are related to each other and to the matrix g as follows:

g(λ) = λ
1
2 σ3gλ− 1

2 σ3, ĝ(λ) = λ− 1
2 σ3σ1g(λ)λ

1
2 σ3, (14)
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where σ1 = (
0 1
1 0

)
. Note also that

[R(λ), σ3 ⊗ 1 + 1 ⊗ σ3] = 0, [R(λ), σ1 ⊗ σ1] = 0. (15)

Substituting the first of relations (14) into (13), using the first of relations (15), and taking
into account relation (9) between R̂(λ) and R(λ), it is easy to see that (12) is equivalent
to the relation R̂12(λ)g13g23 = g23g13R̂12(λ), which is nothing but a linear combination
of the R=R+ and R=R− versions of equation (6). Since λ is arbitrary here, we conclude
that (12) is equivalent to (6) and hence, by lemma 1, to (5). Similarly, substituting the second
relation in (14) into (13), using (9) to replace R̂(λ) with R(λ) and then taking into account
both relations (15), it is easy to see that (13) is equivalent to (12), and hence to (5). �

The proof shows that the Baxterization in (11) is not a true one in the sense that it can
be removed by the twist transformations (14). Furthermore, for g(λ), the transfer-matrix
Tg(λ) = tra

(
ga,N(λ) . . . ga,1(λ)) does not actually depend on λ and thus it is not a generating

function for integrals of motion. However, the corresponding transfer-matrix Tĝ(λ) for ĝ(λ)

depends on λ non-trivially, and the operator coefficients Tn in its expansion, Tĝ(λ) = ∑
n λnTn,

form a set of mutually commuting elements of GLq(2)⊗N.

3. G̃Lq(2) and related lattice models

3.1. Definition of G̃Lq(2) and its Baxterization

Let us introduce the following extension of the quantum group GLq(2).

Definition 2. G̃Lq(2) is a unital associative algebra with generators a, b, c, d, θ , and defining
relations (5) and

aθ = q−1θa, θd = q−1dθ, [b, θ ] = 0, [θ, c] = 0. (16)

Lemma 2. For a generic q, the center of G̃Lq(2) is generated by the following elements:

Dq ≡ ad − qbc, η′
q ≡ θb, η′′

q ≡ θc. (17)

Proof. First, it is straightforward to check that Dq, η
′
q and η′′

q commute with the generators of
G̃Lq(2). Next, any central element C of G̃Lq(2) can be represented as a linear combination
of monomials anadnd bnbcncθnθ , where all n’s are non-negative integers. Commutativity of C
with b, c and θ implies that na = nd . Therefore, C is equivalently represented as a linear
combination of monomials Dn

qb
mckθ l . Commutativity of C with a and d implies that m+k = l.

Hence, using (17), we conclude that C is represented as a linear combination of monomials
Dn

q(η
′
q)

m(η′′
q)

k . �

Lemma 3. The defining relations (5) and (16) are equivalent to the following set of equations:

R12g
±
13g

±
23 = g±

23g
±
13R12, R+

12g
+
13g

−
23 = g−

23g
+
13R

+
12, (18)

where g+ = (
θ 0
a b

)
and g− = (

c d

0 0

)
, the auxiliary matrices R± are given by (7), and R in the

first relation is either of them.

Proof. Direct inspection. �

Let us assemble the generators of G̃Lq(2) into two matrices

g(λ) =
(

a λb

λθ+λ−1c d

)
, ĝ(λ) =

(
λθ+λ−1c λ−1d

λa λb

)
. (19)
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Proposition 2. Each of the following matrix relations

R12(λ)g13(λµ)g23(µ) = g23(µ)g13(λµ)R12(λ), (20)

R̂12(λ)ĝ13(λµ)ĝ23(µ) = ĝ23(µ)ĝ13(λµ)R̂12(λ) (21)

holds if and only if the elements a, b, c, d, θ satisfy the defining relations (5) and (16).

Proof. Note that the second relation in (14) remains true for g(λ) and ĝ(λ) given by (19).
Therefore, the same line of arguments as in the proof of proposition 1 establishes equivalence
of relations (20) and (21). Thus, it suffices to prove only (21). For this aim, we observe that

ĝ(λ) = λg+ + λ−1g−, (22)

where g± were defined in lemma 3. Substitute now (8) and (22) into (21) and match coefficients
at different powers of λ and µ. It is not difficult to check that resulting matrix relations are
exactly those contained in (18). (For the coefficient at λ0µ0, we have to take into account the
relation R+ = P(R−)−1P along with the Hecke identity R+ − R− = (q−q−1)P , where P is
the permutation in Mat(2)⊗2, i.e. Pg±

13P = g±
23.) Thus, relations (20) and (21) are equivalent

to (18), and hence, by lemma 3, to the defining relations of G̃Lq(2). �

Unlike their GLq(2) prototypes (11), matrices (19) are true Baxterizations of g+ and g−.
Indeed, their q-determinants (see, e.g., [BT2], appendix C) are

qdet g(λ) = −qdet ĝ(λ) = Dq − q−1λ2η′
q, (23)

which implies that the dependence of g(λ) and ĝ(λ) on λ cannot be removed by transformations
of the type (14).

Let us emphasize a close similarity between our L-matrices for G̃Lq(2) and those for
Uq(sl2). Indeed, ĝ(λ) in (22) and LXXZ in (10) are constructed in the same way from their
constant counterparts and they satisfy the RLL relations with the same auxiliary R-matrices.
Such a similarity seems quite natural in view of a duality between SLq(2) and Uq(sl2) (see
[CP, KS]). However, this similarity is not absolute because the constant matrices L± in (10)
are nondegenerate and generate the Borel subalgebras of Uq(sl2), whereas g− is degenerate
and division of G̃Lq(2) into the subgroups generated by g± looks somewhat asymmetric.

3.2. Standard and non-standard comultiplications for G̃Lq(2)

Recall that the linear homomorphism �: GLq(2) → GLq(2)⊗2 defined on generators as
follows

�(a) = a ⊗ a + b ⊗ c, �(b) = a ⊗ b + b ⊗ d,

�(c) = c ⊗ a + d ⊗ c, �(d) = c ⊗ b + d ⊗ d
(24)

is a coassociative algebra homomorphism, i.e. its homomorphism property �(xy) =
�(x)�(y) is compatible with the defining relations (5), and it satisfies the coassociativity
property

(id ⊗ �)�(x) = (� ⊗ id)�(x). (25)

The proof of these assertions is very simple in the R-matrix approach due to an observation
that (24) can be rewritten in the matrix form as follows:

(id ⊗ �)g = g12g13. (26)

The fact that the Casimir element of GLq(2) is a group-like element w.r.t. the map �, that is

�(Dq) = Dq ⊗ Dq, (27)
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implies that the same map (24) also defines a coassociative algebra homomorphism for SLq(2).
GLq(2) can be equipped with a bialgebra structure if, in addition to the map �, the linear

homomorphism ε: GLq(2) → C is defined on generators as follows: ε(g) = (
1 0
0 1

)
. Then �

and ε become comultiplication and counit maps, respectively.
A natural question about the algebra G̃Lq(2) is whether we can introduce for it a

comultiplication map and, in particular, whether we can extend the definition (24) to G̃Lq(2).
It appears that to define �(θ) compatible with (5) and (24) in a purely algebraic manner is
not straightforward. However, for our purposes it will be sufficient to define �(θ) for (special
positive representations of) real forms of certain factor algebras of G̃Lq(2).

Definition 3. G̃Lq(2, R) is a real form of G̃Lq(2) equipped with an anti-involution * defined
on generators by

a∗ = a, b∗ = b, c∗ = c, d∗ = d, θ∗ = θ. (28)

G̃L′
q(2, R) and G̃L′′

q(2, R) are the factor algebras of G̃Lq(2, R) over the ideals generated,
respectively, by the relations η′

q = 1 and η′′
q = 1.

Apparently, the algebras G̃L′
q(2, R) and G̃L′′

q(2, R) are isomorphic; the corresponding
isomorphism map ι is defined on generators as follows: ι(a) = a, ι(d) = d, ι(b) = c,

ι(c) = b, ι(θ) = θ .

Definition 4. Let B be an algebra of linear operators acting on a Hilbert space K. Let U stand
for G̃L′

q(2, R) or G̃L′′
q(2, R). An irreducible representation π : U → B is called positive if

the following operators are self-adjoint and strictly positive on K:

(i) π(x) for x = a, b, c, d, θ,Dq ;
(ii) q

1
2 π(a)(π(x))−1 and q

1
2 (π(x))−1π(d) for x = b, c.

Remark 1. In definition 4, elements of U are realized by unbounded operators. Following
[W1, W2], we will understand the Weyl-type relations xy = eiγ yx in the defining relations
(5) and (16) in the sense that, for a given pair of positive self-adjoint operators π(x)

and π(y), the following unitary equivalence relations π(x)itπ(y)π(x)−it = e−γ tπ(y) and
π(y)itπ(x)π(y)−it = eγ tπ(x) hold for all t ∈ R and admit analytic continuation to complex
values of t.

Remark 2. Condition (ii) in definition 4 ensures that, for a pair of generators x and y which
satisfy the Weyl-type relation, the sum π(x) + π(y) is a positive self-adjoint operator. Indeed,
let u and v be positive self-adjoint operators satisfying relation uv = q2vu. Then, in general,
the sum u+v is a symmetric but not necessarily self-adjoint operator [S1]. If, following
[W1, W2], we require that the operator qu−1v is positive self-adjoint, then property (A.4) of
the quantum dilogarithm function Sω(t) (see appendix A.1) implies that Sω(qu−1v) is a unitary
operator. In this case, equation (A.6) shows that u+v is unitarily equivalent to both u and v

and hence is a positive self-adjoint operator. Let us also remark that understanding relation
uv = q2vu, q = iγ in the sense of remark 1 is equivalent to saying that [log u, log v] = 2iγ .
Then, restricting our consideration to the case γ ∈ (0, π) again ensures self-adjointness of
u+v, by proposition A.2 in [S1].

An example of a positive representation of U is given in section 3.5. Note that π(η′
q)

and π(η′′
q) are also represented by positive self-adjoint operators. Moreover, we have

π(θ) = (π(b))−1 for U = G̃L′
q(2, R) and π(θ) = (π(c))−1 for U = G̃L′′

q(2, R).

Proposition 3. Let B,K and U be as in definition 4 and let π be a positive representation of
U. Define the map �π : U → B⊗2 as a linear homomorphism such that

7
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(i) �π(x) = (π ⊗ π)(�(x)) for x = a, b, c, d with �(x) given by (24);
(ii) �π(θ) = (�π(b))−1 for U = G̃L′

q(2, R) and �π(θ) = (�π(c))−1 for U = G̃L′′
q(2, R).

Then �π is an algebra homomorphism and a *-homomorphism w.r.t. the anti-
involution (28).

Proof. The crucial property of �π(x) for x = a, b, c, d is that each of these operators is of
the form ux + vx , where ux and vx are positive self-adjoint operators satisfying the relation
uxvx = q2vxux , e.g. ub = π(a) ⊗ π(b) and vb = π(b) ⊗ π(d) for x = b. Furthermore, it
is easy to check that qu−1

x vx for x = a, b, c, d are positive self-adjoint operators, thanks to
condition (ii) in definition 4. According to remark 2, these facts together imply that �π(x) for
x = a, b, c, d are also positive self-adjoint and hence invertible operators. This, in particular,
means that the inverse operators in part (ii) in the definition of �π are well defined.

Since �π is a homomorphism, it suffices to verify its properties for the generators. In
particular, the *-homomorphism property, which is (�π(x))∗ ≡ (∗ ⊗ ∗)�π(x) = �(x∗), is
obvious. The algebra homomorphism property of �π for x = a, b, c, d is inherited from that
of � for GLq(2). Finally, applying �π ⊗ �π to (16) and multiplying the resulting relations
with �π(b) (or �π(c)), we see that they are equivalent to correct relations between �π(b)

(respectively �π(c)) and �π(x) for x = a, b, c, d. �

Remark 3. Using the ux + vx form of �π(x) along with equation (A.6), we can write an
explicit expression for �π(θ). For instance, in the case of U = G̃L′

q(2, R) we have

�π(θ) = Sω(w)(π(a) ⊗ π(b))−1(Sω(w))−1, w = π(b)(π(a))−1 ⊗ (π(b))−1π(d). (29)

We introduced the map �π by extending the standard comultiplication (24) to G̃Lq(2).
Now we will show that G̃Lq(2) admits another ‘comultiplication’ δ which is not related to �.

Proposition 4. The linear homomorphism δ: G̃Lq(2) → G̃Lq(2)⊗2 defined on generators as
follows

δ(a) = a ⊗ θ + b ⊗ a, δ(θ) = θ ⊗ θ,

δ(c) = c ⊗ c, δ(b) = b ⊗ b, δ(d) = c ⊗ d
(30)

is a coassociative algebra homomorphism and a *-homomorphism w.r.t. the anti-
involution (28).

Proof. First, for the *-homomorphism property, it suffices to note that it obviously holds on
generators. Next, we note that

(id ⊗ δ)g± = g±
12g

±
13, (31)

where g± were defined in lemma 3. This allows us to use the same approach as in the
case of GLq(2). Namely, the coassociativity property (25) follows immediately if we apply
δ2 ≡ (id ⊗ δ ⊗ id) and δ3 ≡ (id ⊗ id ⊗ δ) to (31). In order to prove compatibility of
the homomorphism property of δ with the defining relations (5) and (16), we recall that, by
lemma 3, these relations are equivalent to relations (18). Therefore, it suffices to apply δ3

to (18), use (31) and then to verify the resulting R-matrix relations. The latter task
simply amounts to using (18) twice, for instance δ3

(
R+

12g
+
13g

−
23

) = R+
12g

+
13g

+
14g

−
23g

−
24 =

R+
12g

+
13g

−
23g

+
14g

−
24 = g−

23g
+
13g

−
24g

+
14R

+
12 = g−

23g
−
24g

+
13g

+
14R

+
12 = δ3

(
g−

23g
+
13R

+
12

)
. �

Note that for δ there exists no counit ε because the bialgebra axiom (id ⊗ ε) ◦ δ = id
cannot be fulfilled as seen from the action of δ on d. Nevertheless, proposition 4 justifies
referring to δ as a (non-standard) ‘comultiplication’ for the sake of brevity.

8
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An important difference of the non-standard ‘comultiplication’ from � is that the
generators b, c and θ are group-like w.r.t. δ. Therefore, so are the central elements (17):

δ(η′
q) = η′

q ⊗ η′
q, δ(η′′

q) = η′′
q ⊗ η′′

q . (32)

On the other hand, the Casimir element Dq is now not group-like. Instead, we have

δ(Dq) = ac ⊗ θd + bc ⊗ Dq. (33)

Therefore, the relation Dq = 1 cannot be imposed as a representation-independent condition
on generators.

Although both matrices g(λ) and ĝ(λ) define, according to proposition 2, the same
algebra G̃Lq(2), the map δ is in a sense more related to ĝ(λ). Indeed, formulae (22)
and (31) have strong similarity with (10) and the formula (id⊗�)L± = (L±)12(L±)13, which
holds for the standard comultiplication of Uq(sl2). We will see below that the construction
of the fundamental R-operator for ĝ(λ) indeed requires invoking the map δ, whereas the
corresponding construction for g(λ) uses the map �π .

3.3. The fundamental R-operator for g(λ)

According to proposition 2, both matrices g(λ) and ĝ(λ) can serve as an L-matrix for the
algebra U = G̃Lq(2). Following the general scheme outlined in section 1, we now have to
find their corresponding fundamental R-operators, i.e. to solve equation (2). In this context,
the following preliminary remark is in order. In the case of U = Uq(sl2), the L-matrices for
the XXZ model and for the sinh-Gordon model are related in essentially the same way as g(λ)

and ĝ(λ) (cf the second relation in equation (14) and, as a consequence, their fundamental
R-operators are also closely related [FT2, T1, BT2]. But, in our case, there will be no such
relationship between the fundamental R-operators for g(λ) and ĝ(λ). To explain this difference
between our case and the Uq(sl2) case, let us formulate the following statement.

Lemma 4. Let s be a constant invertible matrix. Suppose that matrices L(λ) and
L̂(λ) = s · L(λ) satisfy equation (1) and define the same algebra U. If there exists an
automorphism ι of U such that

s · L(λ) · s = (id ⊗ ι)L(λ), (34)

then the fundamental R-operators corresponding to L(λ) and L̂(λ) are related as follows:

R(λ) = (ι−1 ⊗ id)R̂(λ). (35)

Proof. Consider equation (2) for L̂(λ), substitute all L̂(λ) with s · L(λ) and use (34). �

The structure of the L-matrices for the XXZ model and the sinh-Gordon model is such
that the automorphism ι does exist (for the generators of Uq(sl2), it reads ι(E) = F, ι(F ) =
E, ι(K) = K−1). But for g(λ) given by (19) and s = σ1, matrix entries of the lhs and the rhs
in (34) have different functional dependences on λ. This means that there is no automorphism
ι that would resolve (34) in our case and so we have to solve equation (2) separately for g(λ)

and ĝ(λ).
Now we will solve equation (2) for g(λ). For brevity of notations, we will write x ⊗ y

instead of π(x) ⊗ π(y).

Theorem 1. Let B,K and U be as in definition 4 and let π be a positive representation of U.
Let g(λ) ∈ Mat(2) ⊗ B be as in (19). Then the operator R(λ) ∈ B⊗2 acting on K ⊗ K and

9
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defined by the formula

R(λ) = (c ⊗ b)−
α
2 log λ((a ⊗ b + b ⊗ d)(c ⊗ a + d ⊗ c))α log λ(c ⊗ b)−

α
2 log λ, (36)

where α ≡ 1
log q

= 1
iγ , satisfies the equation

R23(λ)g12(λµ)g13(µ) = g12(µ)g13(λµ)R23(λ). (37)

If the tensor product π ⊗ π is multiplicity free, then (36) is the unique solution of (37) up to
multiplication by a scalar factor.

Proof. Matching coefficients at different powers of µ, it is easy to see that (37) is equivalent
to the following set of equations:

[R(λ), (θ ⊗ b)] = 0, [R(λ), (b ⊗ θ)] = 0, (38)

R(λ)(c ⊗ a + λd ⊗ c) = (λc ⊗ a + d ⊗ c)R(λ), (39)

R(λ)(a ⊗ b + λb ⊗ d) = (λa ⊗ b + b ⊗ d)R(λ), (40)

R(λ)(a ⊗ a + λb ⊗ c) = (a ⊗ a + λ−1b ⊗ c)R(λ), (41)

R(λ)(d ⊗ d + λ−1c ⊗ b) = (d ⊗ d + λc ⊗ b)R(λ), (42)

R(λ)(λθ ⊗ a + d ⊗ θ) = (θ ⊗ a + λd ⊗ θ)R(λ). (43)

It is now easy to recognize in (39)–(42) a structure related to the comultiplication � (cf (24)).
To make this structure more transparent, we introduce R̃(λ) = (c ⊗ b)

α
2 log λR(λ)(c ⊗ b)

α
2 log λ.

Then equations (38)–(43) acquire the following form:

[R̃(λ), b ⊗ θ ] = [R̃(λ), θ ⊗ b] = 0, (44)

R̃(λ)�π(b) = �π(b)R̃(λ), R̃(λ)�π(c) = �π(c)R̃(λ), (45)

R̃(λ)�π(a) = λ−2�π(a)R̃(λ), R̃(λ)�π(d) = λ2�π(d)R̃(λ), (46)

R̃(λ)(λθ ⊗ a + λ−1d ⊗ θ) = (λ−1θ ⊗ a + λd ⊗ θ)R̃(λ), (47)

where �π is the algebra homomorphism introduced in proposition 3. Next, observing that

[�π(a), b ⊗ θ ] = 0, �π(b)(b ⊗ θ) = q(b ⊗ θ)�π(b), (48)

[�π(d), b ⊗ θ ] = 0, �π(c)(b ⊗ θ) = q−1(b ⊗ θ)�π(c), (49)

are consequences of (5), (16) and (24), we infer that equations (44) and (45) are satisfied if
R̃(λ) is taken to be a function of �π(ad) and �π(bc). Furthermore, due to equation (27) we
have �π(ad) = q�π(bc)+Dq ⊗ Dq , where the last term is a multiple of the unit operator.
This implies that we can take R̃(λ) to be a function of �π(bc) only. Then equations (44)–(46)
are solved easily:

R̃(λ) = (�π(bc))α log λ, α = 1

log q
. (50)

It remains to verify (47). For this aim we note that, since �π(b) is invertible, equation (47) is
equivalent to the relation

R̃(λ)X(λ) = X(λ−1)R̃(λ), (51)

where we denoted X(λ) ≡ �π(b)(λθ ⊗ a + λ−1d ⊗ θ). Now, using (24), we find

X(λ) = q−1λ(θ ⊗ b)�π(a) + qλ−1(b ⊗ θ)�π(d) + λη′
q ⊗ Dq + λ−1Dq ⊗ η′

q . (52)

10
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The sum of the last two terms here obviously satisfies (51). The first two terms satisfy (51) as
a consequence of relations (44) and (46). Thus, equation (47) is proven and we have shown
that (36) indeed solves equation (37).

Let us prove the uniqueness of R(λ). Note that R̃(λ) is an invertible operator due to the
properties of π . Suppose that there exists another solution, R̃′(λ), to equations (44)–(46).
Then it follows from (45) and (46) that F(λ) ≡ (R̃(λ))−1R̃′(λ) commutes with �π(x) for all
x ∈ U. Under the assumption that π ⊗π is multiplicity free, we invoke lemma 2 and infer that
F(λ) can be a function only of �π(η′′

q). But it follows from (48) and (49) that �π(η′′
q) does

not commute with b ⊗ θ . Thus, F(λ) satisfying (44) cannot depend non-trivially on �π(η′′
q)

and therefore it must be just a scalar function. �

Remark 4. The positivity property of the representation π is crucial for the assertion that (50)
solves equations (45) and (46). Indeed, it ensures that x = �π(bc) and y = �π(z) for
z = a, b, c, d are positive self-adjoint operators (cf remark 2), and therefore (50) solves
equations (45) and (46) in the sense clarified in remark 1. Also note that on the same ground,
we have (�π(b)�π(c))t = (�π(bc))t .

Remark 5. For lattice integrable models, the function that most commonly appears in
solutions for fundamental R-operators is the quantum dilogarithm (see appendix A.1).
Lemma 12 (see the same appendix) allows us to rewrite our solution (36) in a form involving
quantum dilogarithms:

R(λ) = Sω(λ−1w)

Sω(λw)
(a ⊗ a)α log λ Sω(λ−1w̃)

Sω(λw̃)
= Sω(λ−1w−1)

Sω(λw−1)
(d ⊗ d)α log λ Sω(λ−1w̃−1)

Sω(λw̃−1)
, (53)

where w = ba−1 ⊗ b−1d and w̃ = dc−1 ⊗ a−1c.

The fundamental R-operator (36) is regular in the sense of equation (3) and has the
following properties:

(R(λ̄))∗ = R(λ−1) = R−1(λ). (54)

Application of formula (4) to (36) yields the following lattice Hamiltonian density:

γHn,n+1 = log((an+1bn + bn+1dn)(cn+1an + dn+1cn)) − log(bnbn+1). (55)

Definition 4 along with remark 2 ensure that the arguments of the logarithms here are products
of commuting positive self-adjoint operators.

3.4. The fundamental R-operator for ĝ(λ)

Now we will solve equation (2) for ĝ(λ). For brevity of notations, we will write x ⊗ y instead
of π(x) ⊗ π(y) and δ instead of (π ⊗ π) ◦ δ.

Theorem 2. Let B,K and U be as in definition 4 and let π be a positive representation of U.
Let ĝ(λ) ∈ Mat(2) ⊗ B be as in (19). Then the operator R̂(λ) ∈ B⊗2 acting on K ⊗ K and
defined by the formula

R̂(λ) = (ac ⊗ θd + bc ⊗ ad − qbc ⊗ bc)α log λ, (56)

where α ≡ 1
log q

= 1
iγ , satisfies the equation

R̂23(λ)ĝ12(λµ)ĝ13(µ) = ĝ12(µ)ĝ13(λµ)R̂23(λ). (57)

If the tensor product π ⊗ π is multiplicity free, then (56) is the unique solution of (57) up to
multiplication by a scalar factor.

11
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Proof. Substituting the Baxterized form (22) of ĝ(λ) into (57) and matching coefficients at
different powers of µ, we see that (57) is equivalent to the following set of matrix equations:

R̂23(λ)ĝ±
12ĝ

±
13 = ĝ±

12ĝ
±
13R̂23(λ), (58)

R̂23(λ)
(
λĝ+

12ĝ
−
13 + λ−1ĝ−

12ĝ
+
13

) = (
λ−1ĝ+

12ĝ
−
13 + λĝ−

12ĝ
+
13

)
R̂23(λ). (59)

Comparing (58) with (31), we conclude that

[R̂(λ), δ(x)] = 0 (60)

for all generators and hence for all x ∈ U. This suggests to seek R̂(λ) as a function of δ(Dq).
Matrix equation (59) is equivalent to the following set of equations:

R̂(λ)(a ⊗ d) = λ−2(a ⊗ d)R̂(λ), R̂(λ)(a ⊗ c) = λ−2(a ⊗ c)R̂(λ), (61)

R̂(λ)(λθ ⊗ d + λ−1d ⊗ b) = (λ−1θ ⊗ d + λd ⊗ b)R̂(λ), (62)

R̂(λ)(λ−1d ⊗ a + λ−1c ⊗ θ + λθ ⊗ c) = (λd ⊗ a + λc ⊗ θ + λ−1θ ⊗ c)R̂(λ). (63)

Noting that

δ(Dq)(a ⊗ d) = q−2(a ⊗ d)δ(Dq), δ(Dq)(a ⊗ c) = q−2(a ⊗ c)δ(Dq), (64)

we infer that a solution to (61) is given by

R̂(λ) = (δ(Dq))
α log λ, α ≡ 1

log q
. (65)

Lemma 5. R̂(λ) given by (65) satisfies relation (62).

The proof is given in appendix B. It remains to prove that R̂(λ) satisfies equation (63). For this
aim, we note that since δ(b) is represented by an invertible element, equation (63) is equivalent
to the relation

R̂(λ)X(λ) = X(λ−1)R̂(λ), (66)

where we denoted X(λ) ≡ q−1δ(b)(λ−1d ⊗ a + λ−1c ⊗ θ + λθ ⊗ c). Now we observe that

X(λ) = (λθ ⊗ d + λ−1d ⊗ b)δ(a) − qλδ(θ)(a ⊗ d) − λDq ⊗ η′
q − λ−1η′

q ⊗ Dq. (67)

The sum of the last two terms here obviously satisfies (66). The first two terms satisfy (66) as
a consequence of relations (61) and (62). Thus, (63) is proven and we have shown that (65)
indeed solves equation (57).

Equation (60) implies that R̂(λ) is essentially unique. Indeed, under the assumption that
π ⊗ π is multiplicity free, we invoke lemma 2 and infer that R̂(λ) can be a function only of
δ(Dq) and �π(η′′

q). Furthermore, equation (32) implies that (π ⊗ π)δ(η′′
q) is just a multiple

of unity, so R̂(λ) must be a function of δ(Dq) only. Finally, it is clear that such a function
satisfying (64) is given by (65) uniquely up to a scalar factor.

Remark 6. Lemma 12 allows us to rewrite our solution (56) in terms of quantum dilogarithms:

R̂(λ) = (bc ⊗ Dq)
α log λ Sω(r)

Sω(λ2r)
, r = (Dq)

−1b−1a ⊗ θd. (68)

The fundamental R-operator (56) is regular and has the properties (54). Application of
formula (4) yields the following lattice Hamiltonian density:

γ Ĥn,n+1 = log(an+1cn+1θndn + bn+1cn+1(Dq)n). (69)

Definition 4 along with remark 2 ensure that the argument of the logarithm here is a positive
self-adjoint operator.

12
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3.5. Lattice Liouville model

A one-parameter family πκ of positive representations of U = G̃L′
q(2, R) or U = G̃L′′

q(2, R)

on the Hilbert space K = L2(R) can be constructed as follows (it is closely related to one of
the representations of SLq(2, R) listed in [S1]):

πκ(a) = e
β

8 �(κ−1 + κe−β�)e
β

8 �, πκ(d) = κ−1e− β

4 �,

πκ(b) = πκ(c) = e− β

2 �, πκ(θ) = e
β

2 �.
(70)

Here κ > 0, β ≡ √
8γ = 2ω

√
2π > 0, and � and � are self-adjoint operators on L2(R)

which satisfy [�,�] = −i. Since elements of U are realized by unbounded operators on
L2(R), it is necessary to consider suitable subspaces Tκ ⊂ L2(R) of test functions on which
all operators πκ(x), x ∈ U, are well defined. Similar consideration was done for Uq(sl(2, R))

in [PT, BT1]. We will provide analogous analytic details for πκ elsewhere.
Let us now introduce the following L-matrix: LL(λ) = κπκ(g(λ)). In order to construct

the corresponding lattice model, we assign a copy of this matrix to each site of the lattice, i.e.
for n = 1, . . . , N we have

LL
n(λ) =

(
e

β

8 �n(1 + κ2 e−β�n) e
β

8 �n κλ e− β

2 �n

κ(λ e
β

2 �n + λ−1 e− β

2 �n) e− β

4 �n

)
, (71)

where �n and �n act non-trivially only on the nth tensor factor in the Hilbert space
H = (L2(R))⊗N and therefore satisfy the relation [�n,�m] = −iδnm.

In the pioneering work [FT3], a close analogue of (71) was constructed as a special limit
of the L-matrix for the sine-Gordon model and put forward as an L-matrix describing a lattice
version of the Liouville model with �n and �n being discrete counterparts of the field and its
conjugate momentum variables. In its present form, the L-matrix (71) was obtained in [BT2]
by an analogous limit applied to the sinh-Gordon model.

The continuum limit of a classical lattice integrable model is usually constructed as the
limit of vanishing lattice spacing (N → ∞, κ → 0 with κN kept fixed) combined with
the standard recipe [FST] of replacement of lattice canonical variables by their continuum
counterparts:

�n → κ�(x), �n → �(x), x = nκ, (72)

which leads to the canonical Poisson brackets, {�(x),�(y)} = δ(x − y). In this classical
continuum limit we have LL

n(λ) = (
1 0
0 1

)
+ κ(U+(λ) + U−(λ)) + O(κ2), where (∂± ≡ ∂t ± ∂x)

U+(λ) =
(

β

8 ∂+� λ e− β

2 �

λ e
β

2 � − β

8 ∂+�

)
, U−(λ) =

(
β

8 ∂−� 0

λ−1 e− β

2 � − β

8 ∂−�

)
. (73)

These matrices satisfy the zero curvature equation, ∂−U+(λ) + ∂+U−(λ) = 2[U+(λ), U−(λ)],
provided that � satisfies the equation of motion of the Liouville field: �� = 8

β
e−β�. On this

ground, it was suggested in [FT3] that (71) corresponds to a lattice version of the Liouville
model. However, a direct verification of this claim, i.e. construction of a lattice Hamiltonian
that (i) commutes with the transfer matrix for (71) and (ii) turns in the continuum limit into
the Hamiltonian of the continuum Liouville model, has been missing until now although some
partial results have been obtained. In particular, it was shown in [BT2] that applying to the
Hamiltonian of the lattice sinh-Gordon model first the special limit procedure described in
[FT3] and then taking the continuum limit, we indeed obtain the Hamiltonian of the continuum
Liouville model. Another computation [S3] demonstrated that, unlike for the sinh-Gordon
model, the factorization method [IK] of constructing integrals of motion applied to (71) yields

13
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a lattice analogue only of the chiral combination (H + P) of the Liouville Hamiltonian and
momentum operator.

Results of section 3.3 imply that

H L
n,n+1 = (πκ ⊗ πκ)Hn,n+1, (74)

where Hn,n+1 is given by (55), is a quantum nearest-neighbor lattice Hamiltonian corresponding
to the L-matrix (71). In order to show that (74) is a lattice analogue of the Hamiltonian for
the continuous Liouville model, we first consider its classical limit where �n and �n become
canonical variables on the phase space equipped with the Poisson bracket {�n,�m} = δnm.
A direct computation using (70) yields (up to an additive constant)

H L,cl
n,n+1 = 1

γ
log

(
1

2
cosh

β

4
(�n + �n+1) +

1

2
cosh

β

2
(�n − �n+1)

+
κ2

2
e− β

2 (�n+�n+1)

(
1 + e

β

4 (�n+�n+1) cosh
β

2
(�n − �n+1)

)
+

κ4

4
e

β

4 (�n+�n+1)e−β(�n+�n+1)

)
. (75)

Let us remark that the difference between (75) and the analogous expression obtained by
a ‘naive’ limit in [BT2] is only in the last term. Taking now the continuum limit of (75)
according to (72), we obtain (again up to an additive constant)

lim
κ→0

∑
n

1

κ
H L,cl

n,n+1 =
∫

dx

(
1

2
�2 +

1

2
(∂x�)2 +

1

γ
e−β�

)
, (76)

which is the Hamiltonian of the classical continuum Liouville model.

4. Reductions of G̃Lq(2) and related lattice models

Defining relations of G̃Lq‘(2) admit the following reductions: (i) θ = 0, (ii) b = c, (iii)
b = 0 and (iv) c = 0. Below we will consider the problem of constructing the fundamental
R-matrices for the corresponding reductions of matrices g(λ) and ĝ(λ) in each of these cases.

4.1. θ = 0

For θ = 0, matrix g(λ) reduces back to g(λ) given by (11). In this case we take π to
be a positive representation of GLq(2) (modification of definition 4 is obvious). As we
discussed at the end of section 2, dependence on the spectral parameter of the auxiliary transfer
matrix for g(λ) can be removed with the help of the twist transformation (14). However,
equation (37) for the corresponding fundamental R-matrix cannot be transformed by a similar
means to a spectral parameter-independent form.

Let R0(λ) denote a solution to (37) where g(λ) is replaced with g(λ). Introduce
R̃0(λ) = (c ⊗ c)

α
2 log λR0(λ)(c ⊗ c)

α
2 log λ. Evidently, R0(λ) must satisfy only equations

(39)–(42) and R̃0(λ) must satisfy only equations (45) and (46). For the latter, we have a
one-parameter family of solutions:

R̃0(λ;β) = (�π(b))(α−β) log λ(�π(c))(α+β) log λ, α = 1

log q
. (77)

Remark 7. The reason why the proof of essential uniqueness given for R̃(λ) in
section 3.3 does not apply to the case of R̃0(λ) despite that, by lemma 2, the center of
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GLq(2) is generated only by the quadratic Casimir element Dq is that the ratio of two
solutions, F(λ) = (R̃0(λ;β1))

−1R̃0(λ;β2) = (�π(bc−1))(β1−β2) log λ, depends non-trivially
on the non-polynomial Casimir element, bc−1, which can formally be written as limθ→0 η′/η′′.

Next we consider the θ = 0 counterpart of matrix ĝ(λ) which is ĝ(λ) given by (11). We
again take π to be a positive representation of GLq(2).

Let R̂0(λ) denote a solution to (57), where ĝ(λ) is replaced with ĝ(λ). Apparently, R̂0(λ)

must satisfy (58) and as a consequence it is a function of δ(Dq) only (the Casimir element
bc−1 is group-like w.r.t. δ and hence is represented by a multiple of the unity). Further,
R̂0(λ) must satisfy equation (61) and the relations that replace equations (62) and (63), namely
R̂0(λ)(d ⊗ x) = λ2(d ⊗ x)R̂0(λ) for x = a, b. It is easy to see that the unique (up to a
scalar factor) solution to these equations is given by the same formula (65). But for θ = 0
we have δ(Dq) = bc ⊗ Dq , which has non-trivial operator dependence only in its first tensor
component. This makes R̂0(λ) rather useless for constructing integrals of motion since it
produces only those that have no interaction between different sites of the lattice (cf (69) for
θ = 0).

Thus, we see a kind of dual pictures for matrices g(λ) and ĝ(λ): it is the fundamental
transfer matrix for the former and the auxiliary transfer matrix for the latter that generate a set
of mutually commuting elements of BN.

4.2. q-Oscillator algebra Aq

Interrelations between deformed oscillator algebras and quantum Lie algebras are well known
(see, e.g., [CP, KS]). Relation of the former to quantum groups is also known, see e.g.
[S1, DK], but has been employed in the context of integrable models less extensively. Here,
we will show that a reduction of G̃Lq(2) yields a q-oscillator algebra. This will allow us
to adapt the results of the previous sections, in particular the constructions of fundamental
R-operators, to the case of the q-oscillator algebra. Recall that, as above, we deal with the
case q = eiγ , γ ∈ (0, π).

Definition 5. The q-oscillator algebra Aq is a unital associative algebra with generators
e, f, k, k−1 and defining relations kk−1 = k−1k = 1, and

ek = qke, f k = q−1kf, [e, f ] = (q−q−1)k2, (78)

and equipped with an anti-involution * defined on generators by

e∗ = e, f ∗ = f, k∗ = k, (k−1)∗ = k−1. (79)

Lemma 6. For a generic q, the center of Aq is generated by the Casimir element

Cq ≡ ef − qk2. (80)

The lemma is standard [CP, KS]. Now we need the following simple but useful statements
which are straightforward to verify.

Lemma 7. Let U be G̃L′
q(2, R) or G̃L′′

q(2, R). The linear homomorphism Q : U → Aq

defined on generators as follows

Q(a) = e, Q(c) = k, Q(b) = k, Q(θ) = k−1, Q(d) = f (81)

is an algebra homomorphism.
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Lemma 8. The defining relations (78) are equivalent to the following relation:

R12Q(g)13Q(g)23 = Q(g)23Q(g)13R12, (82)

where Q(g) = (
e k

k f

)
, and the auxiliary R-matrix is given by either of the matrices in (7).

For Q-images of the Casimir elements, we have Q(Dq) = Cq and Q(η′
q) = Q(η′′

q) = 1. The
latter equalities mean that we identified θ as the inverse to both b and c.

Let us introduce the following Q-images of g(λ) and ĝ(λ):

LA(λ) =
(

e λk

λk−1 + λ−1k f

)
, L̂A(λ) =

(
λk−1 + λ−1k λ−1f

λe λk

)
. (83)

Proposition 5. Each of the following matrix relations:

R12(λ)LA
13(λµ)LA

23(µ) = LA
23(µ)LA

13(λµ)R12(λ), (84)

R̂12(λ)L̂A
13(λµ)L̂A

23(µ) = L̂A
23(µ)L̂A

13(λµ)R̂12(λ), (85)

where the auxiliary R-matrices are given by (9) and (8), respectively, holds if and only if the
elements e, f, k satisfy relations (78) and k−1 satisfies the following relations:

ek−1 = q−1k−1e, f k−1 = qk−1f, [k, k−1] = 0. (86)

Proof. First, applying lemma 7 to equations (20) and (21), we conclude that relations (84)
and (85) do hold. Next, it is easy to see that all the steps in the proof of proposition 2 remain
valid. Therefore, each of relations (84) and (85) is equivalent to (86) together with (82). The
latter matrix relation is equivalent to (78) by lemma 8. �

Note that the comultiplication � has no consistent reduction to Aq since (Q⊗Q)�(b) �=
(Q ⊗ Q)�(c). Nevertheless, it is useful to observe the following.

Proposition 6. The linear homomorphism �A: GLq(2, R) → A⊗2
q defined on generators

as follows: �A(x) = (Q ⊗ Q)�(x) for x = a, b, c, d is an algebra homomorphism and a
*-homomorphism w.r.t. the anti-involution (79).

Proof. The assertion follows by combining lemma 7 with the properties of the standard
comultiplication � for GLq(2). �

For the non-standard ‘comultiplication’, we have the following reduction of δ to Aq .

Proposition 7. The linear homomorphism δA:Aq → A⊗2
q defined on generators as follows

δA(e) = e ⊗ k−1 + k ⊗ e, δA(f ) = k ⊗ f, δA(k
±1) = k±1 ⊗ k±1 (87)

is a coassociative algebra homomorphism and a *-homomorphism w.r.t. the anti-
involution (79).

Proof. Note that δA ◦ Q = (Q ⊗ Q) ◦ δ is a linear homomorphism from U to A⊗2
q , where U is

G̃L′
q(2, R) or G̃L′′

q(2, R). Therefore, applying Q ⊗ Q to (31), we infer that

(id ⊗ δA)Q(g±) = Q(g±)12Q(g±)13, (88)

where Q(g+) = (
k−1 0
e k

)
and Q(g−) = (

k f

0 0

)
. Further, we can proceed exactly as in the proof

of proposition 4. �

Definition 6. Let B be an algebra of linear operators acting on a Hilbert space K. An
irreducible representation πA:Aq → B is called positive if the following operators are self-
adjoint and strictly positive on K:
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(i) πA(x) for x = e, f, k, Cq ;

(ii) q
1
2 πA(e)(πA(k))−1 and q

1
2 (πA(k))−1πA(f ).

Proposition 8. Let B and K be as in definition 6 and let πA be a positive representation of Aq .
Let LA(λ), L̂A(λ) ∈ Mat(2) ⊗ B be as in (83). Then the operators RA(λ), R̂A(λ) ∈ B⊗2 acting
on K ⊗ K and defined by the formulae

RA(λ) = (k ⊗ k)−
α
2 log λ((e ⊗ k + k ⊗ f )(k ⊗ e + f ⊗ k))α log λ(k ⊗ k)−

α
2 log λ, (89)

R̂A(λ) = (ek ⊗ k−1f + k2 ⊗ ef − qk2 ⊗ k2)α log λ, (90)

where α ≡ 1
log q

, satisfy the equations

RA
23(λ)LA

12(λµ)LA
13(µ) = LA

12(µ)LA
13(λµ)RA

23(λ), (91)

R̂A
23(λ)L̂A

12(λµ)L̂A
13(µ) = L̂A

12(µ)L̂A
13(λµ)R̂A

23(λ). (92)

If the tensor product πA ⊗ πA is multiplicity free, then (90) is the unique solution of (92) up to
multiplication by a scalar factor.

Proof. First, π0 ≡ πA ⊗ Q: U → B is clearly a positive representation for U = G̃L′
q(2, R)

(as well as for U = G̃L′′
q(2, R)). Next, it is obvious that RA(λ) solving (91) is a solution of

equations (38) and (43) or, equivalently, R̃A(λ) = (k ⊗ k)
α
2 log λRA(λ)(k ⊗ k)

α
2 log λ is a solution

of equations (44)–(47), where each term x ⊗ y is understood as π0(x) ⊗ π0(y) and �π is
replaced with �π0

≡ (πA ⊗ πA) ◦ �A. Note that the definition of �A given in proposition 6
is sufficient because �π(θ) does not enter equations (44)–(47). Now, it is easy to see that
the π0 counterparts of equations (48) and (49) hold. This, along with proposition 6, implies
that the π0 counterpart of formula (50) holds as well, whence we obtain formula (89) as the
π0 counterpart of formula (36). Finally, it is easy to see that the remaining verification of
equation (51) in theorem 1 is valid for the π0 counterpart of X(λ).

Analogous consideration for the π0 counterparts of equations (60)–(67), where δ (which
actually stands for δπ ) is replaced with δπ0

≡ (π0 ⊗ π0) ◦ δ, is straightforward because, by
proposition 7, δπ0

has the same algebra homomorphism properties as δπ . For the same reason,
the π0 analogue of the uniqueness part of theorem 2 is valid if we invoke lemma 6 instead of
lemma 2. �

Fundamental R-operators (89) and (90) are regular and have the properties given in (54).
The corresponding local Hamiltonian densities constructed via (4) are Q-images of those
in (55) and (69), namely

H A
n,n+1 = log((en+1kn + kn+1fn)(kn+1en + fn+1kn)) − log(knkn+1), (93)

Ĥ A
n,n+1 = log(en+1kn+1k

−1
n fn + k2

n+1(Cq)n). (94)

As before, the arguments of the logarithms here are positive self-adjoint operators.

4.3. q-DST model

The discrete self-trapping model, which describes a chain of N coupled anharmonic oscillators,
is know to be integrable [E1, KSS]. The corresponding L-matrix satisfies a counterpart of
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equation (1) with an additive spectral parameter and the rational auxiliary R-matrix, which
is obtained from (9) in the limit q → 1. It was suggested in [PS, KP] that the following
L-matrix

LqDST
n (λ) =

(
λk−1

n + λ−1kn fn

en λkn

)
, (95)

where each triple (en, fn, kn) satisfies relations (78) and operators assigned to different sites
commute, can be regarded as an L-matrix associated with a q-deformed discrete self-trapping
(q-DST) model. The expansion of the corresponding auxiliary transfer-matrix about the point
λ = 0 yields

T (λ) = λ−NQ + λ2−NQ · HqDST + · · · , (96)

Q =
N∏

n=1

kn, HqDST =
N∑

n=1

k−2
n + k−1

n enk
−1
n+1fn+1. (97)

Here Q = eγ h with h being the number of particles operator and HqDST is a nearest-neighbor
Hamiltonian for the q-DST model.

Let us remark that (95) is related to L̂A(λ) in (83) via a twist in either the auxiliary or in
the quantum space:

LqDST(λ) = λ
1
2 σ3L̂A(λ)λ− 1

2 σ3 = kα log λL̂A(λ)k−α log λ, α = 1

log q
. (98)

The first equality here implies that LqDST(λ) satisfies equation (1) with the same auxiliary
R-matrix (8). The second equality implies that the fundamental R-operator for LqDST(λ) is
related to that for L̂A(λ) as follows (note that (90) commutes with k ⊗ k):

RqDST(λ) = (1 ⊗ k)α log λR̂A(λ)(k ⊗ 1)−α log λ. (99)

Using (90) and applying formula (4) to (99), we find a nearest-neighbor Hamiltonian different
from (97) which corresponds to the L-matrix (95):

H̃ qDST = 1

γ

∑
n

(
log

(
Cqk

2
n+1 + en+1kn+1k

−1
n fn

)
+ log

(
knk

−1
n+1

))
. (100)

Note that the term log(knk
−1
n+1) does not contribute to the total Hamiltonian in the case of a

periodic chain.

Remark 8. Substituting (68) into (99), we obtain (omitting a scalar factor)

RqDST(λ) = (k ⊗ k)α log λ Sω(λ−1r)

Sω(λr)
, r = (Cq)

−1k−1e ⊗ k−1f. (101)

An analogous formula was proposed in [KP] in the case of |q| < 1 in terms of the compact
quantum dilogarithm S(x).

4.4. Weyl algebra

For the factor algebras of G̃L′
q(2, R) and G̃L′′

q(2, R) over the ideals generated by the relations
c = 0 and b = 0, respectively, the only non-trivial defining relations are of the Weyl type.
These factor algebras are isomorphic to the following algebra.
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Definition 7. The Weyl algebra Wq is a unital associative algebra with generators u, ũ, v, v−1

and defining relations vv−1 = v−1v = 1 and

uũ = ũu, uv = qvu, ũv = q−1vũ (102)

and equipped with an anti-involution * defined on generators by

u∗ = u, ũ∗ = ũ, v∗ = v, (v−1)∗ = v∗. (103)

The following statements are straightforward to verify.

Lemma 9. For a generic q, the center of Wq is generated by the element Zq = uũ.

Lemma 10. The linear homomorphisms Q′ : G̃L′
q(2, R) → Wq and Q′′ : G̃L′′

q(2, R) → Wq

defined on generators as follows

Q′(a) = u, Q′(b) = v, Q′(c) = 0, Q′(θ) = v−1, Q′(d) = ũ, (104)

Q′′(a) = u, Q′′(b) = 0, Q′′(c) = v, Q′′(θ) = v−1, Q′′(d) = ũ (105)

are algebra homomorphisms.

Now we will introduce contractions of the maps � and δ suitable for Wq .

Definition 8. Let B be an algebra of linear operators acting on a Hilbert space K. An
irreducible representation πW :Wq → B is called positive if the following operators are
self-adjoint and strictly positive on K:

(i) πW(x) for x = u, ũ, v;
(ii) q

1
2 πW(u)(πW(v))−1 and q

1
2 (πW(v))−1πW(ũ).

Proposition 9. Let B and K be as in definition 8 and let πW be a positive representation of
Wq . The linear homomorphism �W : Wq → B⊗2 defined on generators as follows:

�W(u) = πW(u) ⊗ πW(u), �W(ũ) = πW(ũ) ⊗ πW(ũ),

�W(v) = πW(u) ⊗ πW(v) + πW(v) ⊗ πW(ũ), �W(v−1) = (�W(v))−1 (106)

is an algebra homomorphism and a *-homomorphism w.r.t. the anti-involution (103).

Proof. Note that �W ◦ Q′ = ((πW ◦ Q′) ⊗ (πW ◦ Q′)) ◦ � is, by lemma 10, a linear
homomorphism from G̃L′

q(2, R) toB. Therefore, for x = u, ũ, v, the claimed properties of �W

are inherited from those of �. For �W(v−1), a consideration analogous to that in the proof of
proposition 3 applies since, by remark 2, �W(v) is a positive self-adjoint and hence an invertible
operator. �

Remark 9. We used in this proof that �W is related to � via Q′. The opposite comultiplication
�′

W (obtained by exchanging the tensor factors in �W(x)) is similarly related to � via Q′′,
namely �′

W ◦ Q′′ = ((πW ◦ Q′′) ⊗ (πW ◦ Q′′)) ◦ �.

Remark 10. Using the relation between � and �W , we can write an explicit expression for
�W(v−1). Namely, applying Q′ to (29), we obtain

�W(v−1) = (πW ⊗ πW)(Sω(w)(u−1 ⊗ v−1)(Sω(w))−1), (107)

where w = vu−1 ⊗ v−1ũ and πW(u−1) = πW(ũ)(πW(Zq))
−1.
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Proposition 10. The linear homomorphism δW :Wq → W⊗2
q defined on generators as follows

δW(u) = u ⊗ v−1, δW(ũ) = v ⊗ ũ, δW(v±1) = v±1 ⊗ v±1 (108)

is a coassociative algebra homomorphism and a *-homomorphism w.r.t. the anti-
involution (103).

Proof. Straightforward. However, it is instructive to note that δW ◦ Q′′ = (Q′′ ⊗ Q′′) ◦ δ is
a linear homomorphism from G̃L′′

q(2, R) to W⊗2
q . Therefore, applying Q′′ ⊗ Q′′ to (31), we

infer that

(id ⊗ δW)Q′′(g±) = Q′′(g±)12Q′′(g±)13, (109)

where Q′′(g+) = (
v−1 0
u 0

)
and Q′′(g−) = (

v ũ

0 0

)
. �

It is easy to check that any monomial in W⊗2
q which commutes with δW(x), x = u, ũ, v is

a power of δW(Zq). But the centralizer of �W(Wq) contains not only functions of �W(Zq).

Lemma 11. Denote z = uv ⊗ uv−1. Then for all x ∈ Wq we have

[(πW ⊗ πW)(z),�W(x)] = 0. (110)

Proof. It suffices to verify (110) for the generators u, ũ, v, which is straightforward. �

4.5. Fundamental R-operators for g′(λ) and ǧ′(λ), Volterra and lattice free-field models

Let us introduce the following Q′-images of g(λ) and ǧ(λ) = σ1g(λ):

g′(λ) =
(

u λv

λv−1 ũ

)
, ǧ′(λ) =

(
λv−1 ũ

u λv

)
. (111)

The matrix g′(λ) is the L-matrix for the Volterra model [V2] and is also related to the lattice
sine-Gordon model [V2, F1, F2]. We will see below that ǧ′(λ) is the L-matrix for the Volterra
model for a dual dynamical variable (we use ǧ′(λ) rather than Q′(ĝ(λ)) to make the duality
most transparent; the corresponding fundamental R-operators differ only by a twist). In the
compact case, a fundamental R-operator for g′(λ) was found in [V2]. Here we will give an
alternative derivation, which exhibits transparently the underlying comultiplication structure.
For brevity of notations, we will write x ⊗ y instead of πW(x) ⊗ πW(y).

Theorem 3. Let B and K be as in definition 8 and let πW be a positive representation of Wq .
Let g′(λ), ǧ′(λ) ∈ Mat(2) ⊗ B be as in (111). Then the operators R′(λ), Ř′(λ) ∈ B⊗2 acting
on K ⊗ K and defined by the formulae

R′(λ) = r(z, λ)z̃
α
4 log λ(u ⊗ v + v ⊗ ũ)α log λz̃

α
4 log λ, (112)

Ř′(λ) = r(z̃, λ)z
α
4 log λ(ũ ⊗ v + v−1 ⊗ ũ)α log λz

α
4 log λ, (113)

where z = uv ⊗ uv−1, z̃ = ũv−1 ⊗ uv−1, α ≡ 1
log q

, satisfy the equations

R′
23(λ)g′

12(λµ)g′
13(µ) = g′

12(µ)g′
13(λµ)R′

23(λ), (114)

Ř′
23(λ)ǧ′

12(λµ)ǧ′
13(µ) = ǧ′

12(µ)ǧ′
13(λµ)Ř′

23(λ), (115)

for any choice of the function r(t, λ).
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Proof. Equation (114) can be regarded as a Q′ ⊗ Q′-image of (37). It is easy to see, that
equations (38)–(43) turn into the following relations:

[R′(λ), v ⊗ v−1] = [R′(λ), v−1 ⊗ v] = [R′(λ), u ⊗ u] = [R′(λ), ũ ⊗ ũ] = 0, (116)

R′(λ)(u ⊗ v + λv ⊗ ũ) = (λu ⊗ v + v ⊗ ũ)R′(λ), (117)

R′(λ)(λv−1 ⊗ u + ũ ⊗ v−1) = (v−1 ⊗ u + λũ ⊗ v−1)R′(λ). (118)

To exhibit maximally the structure of these equations related to the comultiplication �W , we
introduce R̃′(λ) = z̃− α

4 log λR′(λ)z̃− α
4 log λ. Then equations (116)–(118) acquire the following

form:

R̃′(λ)(v ⊗ v−1) = λ(v ⊗ v−1)R̃′(λ), R̃′(λ)�W(v) = �W(v)R̃′(λ), (119)

R̃′(λ)�W(u) = λ−1�W(u)R̃′(λ), R̃′(λ)�W(ũ) = λ�W(ũ)R̃′(λ). (120)

It is now easy to see that (119) and (120) are solved by

R̃′(λ) = r(z, λ)(�W(v))α log λ, (121)

where r(t, λ) can be an arbitrary function, thanks to lemma 11 and the fact that [z, v⊗v−1] = 0.
Thus, we established that (112) satisfies (116) and (117). Taking into account that
[z, v−1⊗u] = [z, ũ⊗v−1] = 0, it remains to prove that R′

0(w, λ) = z̃
α
4 log λ(�W(v))α log λz̃

α
4 log λ

satisfies (118). For this purpose, we apply lemma 12 and rewrite it as follows:

R′
0(w, λ) = (Zq)

α log λ Sω(λ−1w)

Sω(λw)
w− α

2 log λ, w = vu−1 ⊗ v−1ũ, (122)

where we used that wz̃ = q4z̃w. Multiplying (118) with v ⊗ ũ from the right, we obtain the
following functional equation on function R′

0(w, λ):

R′
0(w, λ)(λ + q−1w) = (1 + λq−1w)R′

0(q
−2w, λ), (123)

which is easy to verify using equation (A.1).
To prove that (113) satisfies (115), we observe that g′(λ) and ǧ′(λ) are related in a way

which fits the hypotheses of lemma 4 (namely, s = (
0 1
1 0

)
and the automorphism ι is defined

by ι(u) = ũ, ι(ũ) = u, ι(v±1) = v∓1). Therefore, according to equation (35), the fundamental
R-operator for ǧ′(λ) is Ř′(λ) = (ι ⊗ id)R′(λ). Noting that ι(z̃) = z and ι(z) = z̃, we obtain
formula (113). �

Remark 11. In [V2, F2, FV2], another solution to equation (123) was given, namely

R̃′
0(w, λ) = Sω(w)Sω(w−1)

Sω(λw)Sω(λw−1)
. (124)

Equation (A.8) in appendix A.1 shows that (122) and (124) coincide up to a factor independent
of w.

Fundamental R-operators (112) and (113) are regular in the sense of equation (3) if
r(t, 1) = 1. Furthermore, they have the properties given in (54) provided that r̄(t, λ) =
r(t, λ−1) = 1/r(t, λ) for t, λ>0 (note that z∗ = z, z̃∗ = z̃ and [z, z̃] = 0). The corresponding
local Hamiltonian densities constructed via (4) are given by (r ′(t) stands for the derivative of
r(t, λ) w.r.t. λ at λ=0)

γH ′
n,n+1 = log(vnun+1 + ũnvn+1) − 1

2 log(vnvn+1) + r ′(zn+1,n) + 1
2 log(unũn+1), (125)

γ Ȟ ′
n,n+1 = log(vnũn+1 + ũnv

−1
n+1) + 1

2 log(unun+1) + r ′(z̃n+1,n) + 1
2 log(v−1

n vn+1). (126)
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The arguments of the logarithms here are positive self-adjoint operators. Note that the last
terms in (125) and (126) add only a constant to the total Hamiltonian in the case of a periodic
chain.

Consider the following positive representations of Wq on the Hilbert space K = L2(R)

π+(u) = ep, π+(ũ) = e−p, π+(v) = e−2φ, (127)

π−(u) = e−2φ, π−(ũ) = e2φ, π−(v) = e−p, (128)

were p and φ are self-adjoint operators which satisfy [p, φ] = γ

2i , γ ∈ (0, π). For these
representations, the classical limit of (125) and (126) acquires the following form (up to
additive constants):

γπ+(H
′
n,n+1) = log cosh s+ + r ′(e2s−), (129)

γπ−(Ȟ ′
n,n+1) = log cosh s− + r ′(e2s+). (130)

where s± ≡ 1
2pn+ 1

2pn+1±φn+1∓φn. It was shown in [V2] that s± are related (in a non-
ultralocal way via a discretized Miura transformation) to the dual dynamical variables of the
Volterra model, and that (129) for r(t, λ) = 0 coincides with the Hamiltonian of the Volterra
model for s+. The obvious symmetry between (129) and (130) makes it clear that the matrix
ǧ′(λ) can as well be taken as an L-matrix for the Volterra model and that the corresponding
Hamiltonian (130) for r(t, λ) = 0 is the Hamiltonian of the Volterra model for the dual
dynamical variable s−.

Let us demonstrate that g′(λ) can also be regarded as an L-matrix for a lattice
regularization of the free field. For this goal we have to choose such r(t, λ) in (112) that
r ′(e2t ) = log cosh t+const in the classical limit. For instance, we can take (cf (122) and note
that [z, w] = 0 and zn,n+1wn+1,n = Zq)

R′(λ) = Sω(λ−1Zqz−1)

Sω(λZqz−1)
(zw−1)

α
2 log λ Sω(λ−1w)

Sω(λw)
. (131)

Then (129) acquires the following form:

γπ+(H
′
n,n+1) = log cosh s+ + log cosh s−. (132)

In the continuum limit (72), we have s± = κ(p(x) ± ∂xφ(x)) + o(κ) (κ stands for the
lattice spacing) and (132) turns into H ′

n,n+1 = const + κ2

γ
(p2 + (∂xφ)2) + o(κ2), i.e. it

becomes the Hamiltonian density of the free field. Furthermore, assigning a copy of
Lf(λ) = π+(g

′(κλ)) to each site of the lattice, we get the following continuum limit of
this L-matrix: Lf

n(λ) = (
1 0
0 1

)
+ κ(U+(λ) + U−(λ)) + O(κ2), where

U+(λ) =
(

1
2∂+φ λ e−2φ

λ e2φ − 1
2∂+φ

)
, U−(λ) =

(
1
2∂−φ 0

0 − 1
2∂−φ

)
. (133)

These matrices satisfy the zero curvature equation, ∂−U+(λ) + ∂+U−(λ) = 2[U+(λ), U−(λ)],
provided that φ satisfies the equation of motion of the free field: �φ = 0.

4.6. The fundamental R-operator for g′′(λ), lattice free-field model

Let us introduce the following Q′′-image of g(λ):

g′′(λ) =
(

u 0

λv−1 + λ−1v ũ

)
. (134)
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Theorem 4. Let B and K be as in definition 8 and let πW be a positive representation of Wq .
Let g′′(λ) ∈ Mat(2) ⊗ B be as in (134). Then the operator R′′(λ) ∈ B⊗2 acting on K ⊗K and
defined by the formula

R′′(λ) = ẑ
α
2 log λ((v ⊗ u + ũ ⊗ v)(u ⊗ v + v ⊗ ũ))2α log λẑ

α
2 log λ, (135)

where ẑ = ũv−2 ⊗ uv−2 and α ≡ 1
log q

, satisfies the equation

R′′
23(λ)g′′

12(λµ)g′′
13(µ) = g′′

12(µ)g′′
13(λµ)R′′

23(λ). (136)

Proof. As always, for brevity of notations, we write x ⊗ y instead of πW(x) ⊗ πW(y).
Equation (136) can be regarded as a Q′′ ⊗ Q′′-image of (37). It is easy to see, that
equations (38)–(43) turn into the following relations:

R′′(λ)(v ⊗ u + λũ ⊗ v) = (λv ⊗ u + ũ ⊗ v)R′′(λ), (137)

[R′′(λ), u ⊗ u] = 0, [R′′(λ), ũ ⊗ ũ] = 0, (138)

R′′(λ)(λv−1 ⊗ u + ũ ⊗ v−1) = (v−1 ⊗ u + λũ ⊗ v−1)R′′(λ). (139)

It is easy to recognize in (137) and (138) a structure related to the opposite comultiplication
�′

W in accordance with remark 9. To make this structure more transparent, we introduce

R̃′′(λ) = (v ⊗ v)
α
2 log λR′′(λ)(v ⊗ v)

α
2 log λ. (140)

Then equations (137)–(139) acquire the following form:

R̃′′(λ)�′
W(v) = �′

W(v)R̃′′(λ), (141)

R̃′′(λ)�′
W(u) = λ−2�′

W(u)R̃′′(λ), R̃′′(λ)�′
W(ũ) = λ2�′

W(ũ)R̃′′(λ), (142)

R̃′′(λ)(λv−1 ⊗ u + λ−1ũ ⊗ v−1) = (λ−1v−1 ⊗ u + λũ ⊗ v−1)R̃′′(λ). (143)

According to lemma 11, a solution to equations (141) and (142) may contain as a factor
an arbitrary function of ž = uv−1 ⊗ uv. Actually, it is more convenient to introduce
w ≡ Zq ž−1 = vu−1 ⊗ v−1ũ. Then (141) and (142) are solved by

R̃′′(λ) = (�′
W(v))2α log λŘ′′(w, λ), (144)

where Ř′′(t, λ) is yet undetermined function. Noting that [�′
W(v), v−1 ⊗ u] = [�′

W(v), ũ ⊗
v−1] = 0, we infer that Ř′′(w, λ) must solve (143). Multiplying (143) with u ⊗ v from the
right, we obtain the following functional equation on function Ř′′(w, λ):

Ř′′(w, λ)(λqw−1 + λ−1) = (λ−1qw−1 + λ)Ř′′(q−2w, λ). (145)

Comparing this equation with (121)–(123), we conclude that

Ř′′(w, λ) = (Zq)
2α log λ Sω(λ−2w)

Sω(λ2w)
w−α log λ = z̃

α
2 log λ(�W(v))2α log λz̃

α
2 log λ, (146)

where z̃ = ũv−1 ⊗ uv−1. Note that �′
W(v) commutes with �W(v) and z̃. Combining (140),

(144) and (146), we obtain formula (135). �

The fundamental R-operator (135) is regular and has the properties given in (54). The
corresponding local Hamiltonian density constructed via (4) is given by

γH ′′
n,n+1 = 2 log((vn+1un + ũn+1vn)(un+1vn + vn+1ũn)) + log

(
ũn+1v

−2
n+1unv

−2
n

)
. (147)
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Definition 8 along with remark 2 ensure that the argument of the first logarithm here is a
product of commuting positive self-adjoint operators. In the classical limit, (147) can be
written as follows:

γH ′′,cl
n,n+1 = 2 log

(
unun+1 + ũnũn+1 + Zq

(
v−1

n vn+1 + vnv
−1
n+1

))
+ log(ũn+1un). (148)

Consider the following one-parameter family πκ of positive representations of Wq :

πκ(u) = 1

κ
e

β

4 � πκ(ũ) = 1

κ
e− β

4 �, πκ(v) = e− β

2 �, (149)

where κ , β, � and � are as in (70). Let us introduce the following L-matrix: LF(λ) =
κπκ(g

′′(λ)) and assign a copy of this matrix to each site of the lattice,

LF
n(λ) =

(
e

β

4 �n 0

κ(λ e
β

2 �n + λ−1 e− β

2 �n) e− β

4 �n

)
, (150)

where [�n,�m] = −iδnm. The L-matrix (150) can be obtained from the Liouville L-matrix
if in equation (71) we shift the zero mode of the field: �n → �n + ξ , rescale the spectral
parameter: λ → λe−ξ

β

2 , and take the limit ξ → +∞.
One may expect that in such a limit, the Liouville model turns into the free field. Indeed,

for the representation (149), equation (148) acquires the following form:

γH ′′,F,cl
n,n+1 = 2 log

(
2 cosh

β

4
(�n+�n+1) + 2 cosh

β

2
(�n+1−�n)

)
+ const, (151)

where we omitted the last term in (148) since it does not contribute to the total Hamiltonian
in the case of a periodic chain. In the continuum limit (72), we recover from (151) the
Hamiltonian density of the free field: H ′′,F,cl

n,n+1 = const+κ2(�2 + (∂x�)2)+o(κ2). Furthermore,
in the continuum limit we have LF

n(λ) = (
1 0
0 1

)
+ κ(U+(λ) + U−(λ)) + O(κ2), where

U+(λ) =
(

β

8 ∂+� 0

λ e
β

2 �n − β

8 ∂+�

)
, U−(λ) =

(
β

8 ∂−� 0

λ−1 e− β

2 �n − β

8 ∂−�

)
. (152)

These matrices satisfy the zero curvature equation, ∂−U+(λ) + ∂+U−(λ) = 2[U+(λ), U−(λ)],
provided that � satisfies the equation of motion of the free field: �� = 0.

Remark 12. Let us remark that the two fundamental R-operators that we have found for the
lattice free field are quite similar. Namely, it is straightfoward to check that

R′′(λ) = (u−1 ⊗ u)
α
2 log λR′(λ2)(u−1 ⊗ u)

α
2 log λ, (153)

where R′′(λ) is given by (135) and R′(λ) is given by (131). Note that, for a periodic chain, the
factors (u−1 ⊗ u)

α
2 log λ do not contribute to the total Hamiltonian.

4.7. Fundamental R-operator for ĝ′′(λ), relativistic Toda model

Let us introduce the following Q′′-image of ĝ(λ):

ĝ′′(λ) =
(

λv−1 + λ−1v λ−1ũ

λu 0

)
. (154)

This matrix is related via a twist (cf (98)) to the L-matrix of the relativistic Toda model
[KT, PS]:

LrT(λ) = (π− ⊗ π−)

(
1

i
vα log λĝ′′(iλ)v−α log λ

)
=

(
λ ep − λ−1 e−p −e2φ

e−2φ 0

)
, (155)
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where π− is the positive representation (128) of Wq . A suitable limit of (155) for q → 1
yields the L-matrix of the ordinary Toda chain model, which satisfies a counterpart of
equation (1) with an additive spectral parameter and a rational auxiliary R-matrix.

Integrals of motion for both the ordinary and relativistic Toda models are constructed by
means of expanding the auxiliary transfer matrix T (λ) (cf section 4.3). Results of the present
paper explain why the corresponding fundamental R-operators cannot be employed for this
purpose.

Theorem 5. Let B and K be as in definition 8 and let πW be a positive representation of Wq .
Let ĝ′′(λ) ∈ Mat(2) ⊗ B be as in (154). Then the operator R̂′′(λ) ∈ B⊗2 acting on K ⊗K and
defined by the formula

R̂′′(λ) = (δW(Zq))
α log λ = (uv ⊗ v−1ũ)α log λ, (156)

where α ≡ 1
log q

, satisfies the equations

R̂′′
23(λ)ĝ′′

12(λµ)ĝ′′
13(µ) = ĝ′′

12(µ)ĝ′′
13(λµ)R̂′′

23(λ). (157)

Proof. Reexamining the proof of theorem 2 in the case of b = 0, we see that an analogue
of equation (60) holds in the form [R̂′′(λ), δW(x)], x = u, ũ, v. Unlike �W , the centralizer of
δW(x), x ∈ Wq , is generated only by δW(Zq). Therefore, R̂′′(λ) must be a function of δW(Zq).
It is easy to see that that the b = 0 counterparts of equations (61)–(63) determine this function
uniquely (up to a scalar factor) and lead to formula (156). �

The fundamental R-operator (156) is regular and has the properties given in (54). However,
the corresponding local Hamiltonian density constructed via (4),

γH ′′
n,n+1 = log

(
v−1

n ũnun+1vn+1

)
, (158)

leads to a trivial total Hamiltonian in the case of a periodic chain.

5. Conclusion

We have developed the Baxterization approach to the quantum group GLq(2) and emphasized
the role of the standard and non-standard comultiplications for constructing the corresponding
fundamental R-operators. Our results imply that the quantum symmetry algebra for a number
of integrable lattice models is the quantum group GLq(2) or its reductions for which the
comultiplication structure is a reduction of those for GLq(2). This is especially remarkable in
the case of the lattice Liouville model because the quantum group GLq(2) itself emerged for
the first time exactly in the study of relations for the monodromy matrix of the lattice Liouville
model [FT1]. For the Volterra model, we have shown that the two dual L-matrices lead to the
same Hamiltonian but for the dual dynamical variables. We have also emphasized the role of
the ambiguity in the solution for the corresponding fundamental R-operators: fixing it in a
trivial way yields the Hamiltonian of the Volterra model, whereas fixing it in a self-dual way
yields the Hamiltonian of a lattice regularization of the free field. For the latter model we have
also found another L-matrix which can be regarded as a limit of that for the lattice Liouville
model. It is interesting that, although the free field in continuum is a very simple model,
the fundamental R-operators related to its lattice regularization have quite a non-trivial
structure.
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Appendix

A.1. Quantum dilogarithm

Consider the functional equation

S(q−1x) = (1 + x)S(qx). (A.1)

Its solution is given by the product S(x) = ∏∞
n=1(1 + xq2n−1), which is convergent for

|q| < 1. This function appears in various related forms in lattice integrable models
[T1, V2, FV1] and was coined ‘quantum dilogarithm’ in [FK1]. It was observed in [F2,
F3] that, for q = eiπω2

, ω ∈ (0, 1), a well-defined solution to (A.1) is given by

Sω(x) =
∞∏

n=1

(1 + xq2n−1)

(1 + xω−2
q̂2n−1)

= exp

{∫
�

dt

4t

e
t

iπω
log x

sinh ωt sinh t
ω

}
, (A.2)

where q̂ ≡ e−iπω−2
and � = R + i0. Among the important properties of Sω(x) are

self − duality: Sω(xω) = Sω−1(xω−1
), (A.3)

unitarity: Sω(x)Sω(x) = 1 for x ∈ R+. (A.4)

This function is closely related to the Barnes double gamma function [B1] and plays an
important role in studies of non-compact quantum groups [F4, PT, W1, S2, BT1, W2, V3]
and related integrable models [KLS, FK2, T2, BT2].

The following lemma proves to be useful for converting powers of coproducts in formulae
for fundamental R-operators into expressions involving quantum dilogarithms.

Lemma 12. Let u and v be a pair of positive self-adjoint operators satisfying, in the sense
of remark 1, the Weyl relation: uv = q2vu, where q = eiπω2

, ω ∈ (0, 1). Suppose that
w ≡ qu−1v is positive self-adjoint. Then the following identity holds:

(u + v)t = u
t
2
Sω(q−tw)

Sω(qtw)
u

t
2 = v

t
2
Sω(q−tw−1)

Sω(qtw−1)
v

t
2 . (A.5)

Proof. Using relations uf (w) = f (q2w)u and vf (w−1) = f (q−2w−1)v, it is easy to verify
the following identities:

u + v = Sω(w)u(Sω(w))−1 = (Sω(w−1))−1vSω(w−1). (A.6)

These are relations of unitary equivalence thanks to the property (A.4), whence we infer that

(u + v)t = Sω(w)u
t
2 u

t
2 (Sω(w))−1 = u

t
2
Sω(q−tw)

Sω(qtw)
u

t
2 (A.7)

holds in the sense of remark 1. The second equality in (A.5) can be derived analogously. �
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Remark 12. Equality of the two expressions involving quantum dilogarithms in (A.5) allows
us to obtain the following functional identities:

wt = Sω(q−tw)Sω(qtw−1)

Sω(qtw)Sω(q−tw−1)
= qt2 Sω(q−2tw)Sω(q2tw−1)

Sω(w)Sω(w−1)
. (A.8)

For the proof of theorem 2, we will need the following lemma (for the sake of brevity, we
will write x instead of πA(x)).

Lemma 13. Let e, f and k generate a positive representation πA of the q-oscillator algebra
Aq (cf definition 6). Then the following relation holds:

Sω(λ−1f )

Sω(λf )
(λk2 + e) = (λ−1k2 + e)

Sω(λ−1f )

Sω(λf )
. (A.9)

For a positive representation, we can write e = ue + ve, where ue = f −1Cq and
ve = q−1f −1k2 are positive self-adjoint operators satisfying relation ueve = q2veue (hence, by
remark 2, e is positive self-adjoint; a rigorous operator-theoretic consideration of the formula
e = f −1(Cq + q−1k2) is given in [S1]). Therefore, if G(t) is a sufficiently nice function (i.e.
G(f ) has a suitable domain; cf the discussion in [S1]), then we have k2G(f ) = G(q2f )k2

and eG(f ) = G(f )Cqf
−1 + q−1G(q2f )f −1k2. Taking these relations into account, we infer

that the operator equation

G(f, λ)(λk2 + e) = (λ−1k2 + e)G(f, λ) (A.10)

is equivalent to the following functional one:

G(f, λ)(λ + q−1f −1) = (λ−1 + q−1f −1)G(q2f, λ). (A.11)

Using (A.1), it is straightforward to check that G(f, λ) = Sω(λ−1f )

Sω(λf )
solves (A.11).

A.2. Proof of lemma 5

Formula (68) can be rewritten as follows:

R̂(λ) = (Dq)
α log λ(b ⊗ 1)α log λŘ(r; λ)(c ⊗ 1)α log λ, (A.12)

where

Ř(r; λ) = Sω(λ−1r)

Sω(λr)
, r = (Dq)

−1(q− 1
2 b−1a) ⊗ (q

1
2 θd). (A.13)

Substituting (A.12) in (62), it is easy to check that lemma 5 is equivalent to the assertion that
Ř(r; λ) satisfies the following relation:

Ř(r; λ)(λθ ⊗ d + d ⊗ b) = (λ−1θ ⊗ d + d ⊗ b)Ř(r; λ). (A.14)

Note that d⊗b, θ ⊗d and r are positive self-adjoint operators. Now, a simple computation
(using, in particular, the identity qda−q−1ad = (q−q−1)Dq) yields

(d ⊗ b)r − r(d ⊗ b) = (q − q−1)θ ⊗ d, (A.15)

(d ⊗ b)(θ ⊗ d) = q2(θ ⊗ d)(d ⊗ b), r(θ ⊗ d) = q−2(θ ⊗ d)r. (A.16)

Comparing these relations with (78), we see that ê = d ⊗ b, f̂ = r and k̂2 = θ ⊗ d generate a
positive representation of the algebra Aq (k̂ can be defined as the unique positive self-adjoint
square root of θ ⊗ d). Invoking lemma 13, we establish validity of equation (A.14) and hence
of lemma 5.
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