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Abstract. We study 2� 2 matrices A such that the corresponding thermodynamic Bethe ansatz
(TBA) equations yield c�A� in the formof the effective central charge ofaminimal Virasoromodel.
Certain properties of such matrices and the corresponding solutions of the TBA equations are
established. Several continuous families and a discrete set of admissible matrices A are found.
The corresponding two-term dilogarithm identities (some of which appear to be new) are
obtained. Most of them are proven or shown to be equivalent to previously known identities.
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1. Introduction

The (normalized) Rogers dilogarithm is a transcendental function de¢ned for
x 2 �0; 1� as follows:

L�x� � 6
p2

�X1
n�1

xn

n2
� 1

2 ln x ln�1ÿ x�
�
: �1:1�

It is a strictly increasing continuous function satisfying the functional equations

L�x� � L�1ÿ x� � 1 ; �1:2�
L�x� � L�y� � L�xy� � L

�x�1ÿ y�
1ÿ xy

�
� L

�y�1ÿ x�
1ÿ xy

�
: �1:3�

Dilogarithm identities of the formXr
k�1

L�xk� � c ; �1:4�

where cX 0 is a rational number and xk 2 �0; 1� are algebraic numbers (i.e. they are
real roots of polynomial equations with integer coef¢cients) arise in different con-
texts in mathematics and theoretical physics (see, e.g., [1] and references therein).
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In particular, they appear in the description of the asymptotic behaviour of in¢nite
series w�q� of the form

w�q� � qconst
X1
m�0

qm
tAm�m�B

�q�m1
. . . �q�mr

; �1:5�

where �q�n �
Qn

k�1�1ÿ qk� and �q�0 � 1. Suppose that A and B are such that the sum
in (1.5) involves only nonnegative powers of q (hence, w�q� is convergent for
0 < jqj < 1). Let q � e2pit, Im�t� > 0 and q̂ � eÿ2pi=t. The saddle point analysis (see,
e.g., [2,3]) shows that the asymptotics of w�q� in the t! 0 limit is w�q� � q̂ÿ

c
24 with

c given by (1.4) and the numbers 0W xi W 1 satisfying

xi �
Yr
j�1
�1ÿ xj��Aij�Aji� ; i � 1; . . . ; r : �1:6�

Let A be an r� r matrix with rational entries such that all xi in (1.6) belong to the
interval �0; 1�. Introduce c�A� �Pr

i�1 L�xi�. We will call the matrix A admissible
if c�A� is rational. As seen from (1.6), it is suf¢cient to consider only symmetric A.

The principal aim of this Letter is to search for admissible 2� 2 matrices A such
that c�A� has the form of the effective central charge cst of a minimal Virasoro model
M�s; t�, i.e.

cst � 1ÿ 6
s t
; �1:7�

where s and t are co-prime numbers.
The physical motivation for the formulated mathematical task is twofold. First,

Equations (1.4) and (1.6) arise within the context of the thermodynamic Bethe ansatz
(TBA) approach to the ultra-violet limit of certain (1+1)-dimensional integrable sys-
tems [4]. In this case, the matrixA is related to the corresponding S-matrix, S�y�, and
c gives the value of the effective central charge of the ultra-violet limit of the model in
question. Below we will refer to a system of equations of the type (1.6) as the TBA
equations.

Second, Equations (1.4) and (1.6) appear in the conformal ¢eld theory. Namely,
the series (1.5) can be identi¢ed for certain A (upon choosing speci¢c B and possibly
imposing some restriction on the summation over m) as characters (or linear com-
binations of characters) of irreducible representations of the Virasoro algebra (see
[5] for characters of the minimal models). In this case, c is the value of the effective
central charge of the conformal model to which the character w�q� belongs.

In addition, the search for admissible matrices A has a pure mathematical
outcome. It allows us to ¢nd many dilogarithm identities and to make a step towards
classi¢cation of the identities (1.4) for r � 2 (the complete classi¢cation is an open
problem that appears to be quite involved).
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In the r � 1 case, there are only ¢ve algebraic numbers on the interval �0; 1� such
that c in (1.4) is rational,

L�0� � 0 ; L�1ÿ r� � 2
5 ; L�12� � 1

2 ; L�r� � 3
5 ; L�1� � 1 : �1:8�

Here r � 1
2 �

���
5
p ÿ 1� is the positive root of the equation x2 � x � 1. Notice that all the

values of c � L�x� listed in (1.8) have the form (1.7) (with �s; t� � �2; 3�, �2; 5�, �3; 4�,
�3; 5�, and st � 1 for c � 1). They correspond, respectively, to

A � 1 ; 1 ; 1
2 ;

1
4 ; 0 : �1:9�

These A allow us to construct Virasoro characters of the form (1.5). In particular,
A � 1 gives w�q� � 1, which is the only character of the trivial M�2; 3� model,
and A � 0 gives (for B � 0) the eta-function Z�q�. For the other A we have, for
instance, (see [3] and references therein)

w2;51;1 � q
11
60

X1
m�0

qm
2�m

�q�m
; w3;41;2 � q

1
16

X1
m�0

q
1
2m

2�1
2m

�q�m
; �1:10�

w3;51;2 � w3;51;3 � q
1
40

X1
m�0

q
1
4m

2

�q�m
: �1:11�

The observation that all values of c obtained from the r � 1 TBA equations are of
the form (1.7) motivates our choice of c for the r � 2 case. Notice, however, that in
the latter case, 0W c�A�W 2. Therefore, we allow st in (1.7) to acquire negative values
(which makes sense in the light of Proposition 2 below), keeping the requirement that
jsj and jtj are co-prime. It should be remarked here that another natural candidate for
c�A�W 2 is the central charge of the Zn-parafermionic model [6],

cn � 2�nÿ 1�
n� 2

; n � 2; 3; 4; . . . �1:12�

As we will see below, this form of c appears in the connection to the r � 2 TBA also
quite often.

The paper is organized as follows. In Section 2, certain properties of the solution to
the r � 2 TBA equations are described (e.g., we ¢nd what classes of A correspond to
c � 1, c < 1 and c > 1), and some continuous families of admissible matrices A are
found. In Section 3, various admissible matrices A (not belonging to continuous
families) with c�A� of the form (1.7) are presented. The corresponding dilogarithm
identities are obtained and in most cases proven or shown to be equivalent to pre-
viously known identities. In Section 4, we brie£y discuss possible applications
and remaining questions.
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2. Properties of r � 2 TBA Equations

Our aim is to search for such admissible matrices A � ÿab b
d

�
that the value of

c�A� � L�x� � L�y� has the form (1.7) (jsj and jtj are co-prime numbers and st
may be negative). Recall that 0W x; yW 1 satisfy the equations

x � �1ÿ x�2a�1ÿ y�2b; y � �1ÿ x�2b�1ÿ y�2d : �2:1�

Let us denote D :� ad ÿ b2 � detA and introduce the functions k�t� and d�t� de¢ned
for tX 0 as follows:

k�t� � x ; d�t� � L�x� ; where x � �1ÿ x�2t ; 0W xW 1 : �2:2�

Since the summation in (1.5) is taken over nonnegative numbers, it is too
restrictive to require A to be positive de¢nite. Instead, we impose weaker conditions
ensuring that the sum in (1.5) involves only nonnegative powers of q:

a; dX 0 ; bX ÿmin�a; d� : �2:3�

Notice that these are suf¢cient conditions for (2.1) to have a solution on the interval
�0; 1�.

For b � 0, Equations (2.1) decouple and c�A� � d�a� � d�d�. Then, taking the
(¢nite) values of a and d from the list (1.9), we obtain

c � 4
5;

9
10; 1; 11

10 ;
6
5;

7
5;

3
2;

8
5; 2 : �2:4�

The ¢rst two values are the effective central charges of the M�5; 6� and M�5; 12�
minimal models, whereas the last four values correspond to the Z8, Z10, Z13 and
Z1 parafermionic models.

Another possibility for the b � 0 case is to take a to be any positive (rational)
number and put d � �4a�ÿ1. As seen from (2.1), this leads to y � 1ÿ x and, hence,
c�A� � 1 due to (1.2). In fact, it appears that the set (2.4) exhausts possible rational
values of c�A� for b � 0 (a rigorous proof of this statement would be desirable). Thus,
the b � 0 case does not lead to nontrivial r � 2 dilogarithm identities. For the rest of
the Letter we will assume that b 6� 0.

Notice that the system (2.1) may, in general, have several solutions on the interval
�0; 1�. For example, if a > 0, 12 > b > 0, d � 0 (notice that k�0� � 1), the system (2.1)
possesses the extra solution x � 0, y � 1. Such a situation is undesirable from
the physical point of view (xi in the TBA equations (1.6) are physical entities which
should be de¢ned uniquely). Therefore, in this Letter we will deal mainly with such
matrices A that the solution of (2.1) is unique.
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PROPOSITION 1. Suppose that A satis¢es (2.3) and

D X ÿ 1
2

max

�
d
� 1
k�a� ÿ 1

�
; a
� 1
k�d� ÿ 1

��
: �2:5�

Then the system (2.1) possesses a unique solution on the interval �0; 1�.

The proof of this and of the other propositions in this section is given in the
Appendix. Equation (2.5) involves the function k�t� which cannot be expressed
in terms of elementary functions. It can be reduced to more explicit (although
weaker) estimates. For instance, employing the Bernoulli and a Jensen-type
inequalities to estimate k�t�, we derive that (2.5) holds if DX ÿ ad for dW 1

2,
b > 0, and if DX ÿ �2ad�=�2d�1� for d > 1

2, b > 0.

PROPOSITION 2. Suppose that A is a symmetric invertible r� rmatrix such that the
corresponding solution of (1.6) on the interval �0; 1� is unique. Then

c �A� � c � 14Aÿ1� � r : �2:6�

This proposition explains why it makes sense to allow st in (1.7) to be negative. If
c�A� � 1ÿ 6=st > 1, then c� 14Aÿ1� � 1� 6=st < 1. Furthermore, Proposition 2 shows
also that it is suf¢cient to consider only such A that b > 0. Indeed, if b < 0, then (2.3)
implies that D > 0. Therefore, the off-diagonal entries of the `dual' matrix 1

4A
ÿ1 are

positive.

PROPOSITION 3. Suppose that A satis¢es (2.3), then

c�A� > 1 if and only if b < 1
2 and ad < �12ÿ b�2; �2:7�

c�A� � 1 if and only if bW 1
2 and ad � �12ÿ b�2; �2:8�

c�A� < 1 otherwise: �2:9�

Equation (2.8) implies that the solution of (2.1) satis¢es the relation x� y � 1 if
and only if the matrix A has the form

A �
�

a 1
2ÿ

������
ad
p

1
2ÿ

������
ad
p

d

�
; a; dX 0 : �2:10�

Notice that here D � ������
ad
p ÿ 1

4 and Proposition 1 cannot guarantee uniqueness of the
solution of (2.1) for suf¢ciently small values of ad. However, as seen from the proof,
even if (2.1) has several solutions all they satisfy the relation x� y � 1.

PROPOSITION 4. Suppose that A is such that the corresponding solution of (2.1) on
the interval �0; 1� is unique. Then this solution satis¢es the relation x � y if and only
if a � d.
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This proposition implies that the value of c�A� for a matrix of the form

A �
�
a b
b a

�
�2:11�

depends only on �a� b�. Indeed, for x � y and a � d, the system (2.1) turns into the
pair of coinciding equations for one variable. Therefore, x � y � k�a� b� and
c�A� � 2d�a� b�.

Thus, the r � 2 dilogarithm identity for a matrix A of the form (2.11) reduces to an
r � 1 identity. Therefore, the only values of �a� b� in (2.11) that correspond to
rational values of c�A� are given by the set (1.9). Namely, for �a� b� � 1;
1
2 ;

1
4 ; 0 we obtain, respectively,

c � 4
5 ; 1; 6

5 ; 2 : �2:12�

The value c � 1 here corresponds to a particular case (d � a, b � 1
2ÿ a) of the family

(2.10). The value c � 4
5 is the effective central charge of theM�5; 6�,M�3; 10� and

M�2; 15� minimal models. The existence of the family of matrices (2.11) yielding
this value of c�A�was observed in [7]. The following realizations of (1.5) (with certain
restriction on the summation) as Virasoro characters are known for this family:
a � 2

3, b � 1
3 gives w5;61;3 and w5;61;1 � w5;61;5 [3]; a � b � 1

2 gives w
5;6
1;2, w

5;6
1;4, w

5;6
2;2 and w5;62;4 [7];

a � 1, b � 0 gives w3;101;5 [7]. Let us remark that, according to Proposition 1, the sol-
ution of (2.1) for the a� b � 1 case of (2.11) is unique at least for a > 0:25. Numeri-
cal computations show that it becomes nonunique for a < a0 � 0:1.

To complete the general discussion of the properties of solutions to the system
(2.1), let us ¢nd some estimates for c�A�.

PROPOSITION 5. Suppose that A satis¢es (2.3) and aX d > 0, then the following
lower and upper bounds on c�A� hold:

d�b� d� � L
�ÿ
k�d��a�bd � W c�A� W d�a� b� � d�d� ; for dW b ; �2:13�

d�b� d� � L k
D

aÿ b

� �� �a2ÿb2
D

0@ 1A W c�A� W d�a� b� � d
D

aÿ b

� �
;

for dX b > 0 ; �2:14�

d�a� b� � d
D

aÿ b

� �
W c�A� W 2d�b� d� ; for b < 0 : �2:15�

As an application of this proposition, we notice that if A is such that
aX bX d > x0 � 3:75, then c�A� cannot be the effective central charge of a minimal
model. Indeed, the smallest non-zero value of cst is 2

5 (recall that s and t in (1.7)
are co-prime), whereas c�A�W d�2x0� � d�x0� < 2

5 .
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3. Solutions of r � 2 TBA Equations and Corresponding Dilogarithm
Identities

Equations (2.11) (for a�b�0; 14 ; 12 ; 1) and (2.10) are examples of continuous families
of admissible matrices A. Now we will present several other admissible matrices
A having c�A� in the form (1.7). For completeness, the previously known examples
are also listed. Let us recall that, according to Proposition 2, the list of the matrices
A below can be doubled by including their duals 1

4A
ÿ1, but this does not lead to

new dilogarithm identities.
There exists a well-known representation of the type (1.5) for the characters of
M�2; 2k�1� model with rankA � kÿ1 (it provides the sum side of the
Andrews^Gordon identities [8]). In the k � 3 case, the corresponding matrix A is

A � 2 1
1 1

� �
; c�A� � 4=7 : �3:1�

The corresponding dilogarithm identity is (l � 2 cos p=7)

L
1
l2

� �
� L

1
�l2 ÿ 1�2
� �

� 4
7: �3:2�

The other known example is the following matrix that allows us to construct all
characters of the M�3; 7� (see [7], the case of w3;71;2 was found earlier in [3])

A � 1
4

4 2
2 3

� �
; c�A� � 5=7 : �3:3�

For instance,

w3;71;3�Q � q
1

168

X1
m�0

m2�Qmod 2

qm
2
1�34m2

2�m1m2ÿ 1
2m2

�q�m1
�q�m2

; Q � 0; 1 : �3:4�

The corresponding dilogarithm identity is (l � 2 cos p=7)

L
1
l2

� �
� L

1
1� l

� �
� 5

7 : �3:5�

Let us mention that both (3.2) and (3.5) can be derived from the Watson identities
[9]

L�a� ÿ L�a2� � 1
7 ; L�b� � 1

2L�b2� � 5
7 ; L�g� � 1

2L�g2� � 4
7 ; �3:6�

where a, ÿb and ÿgÿ1 are roots of the cubic

t3 � 2t2 ÿ tÿ 1 � 0 �3:7�
such that l � 1� a � bÿ1 � �1ÿ g�ÿ1. The equivalence of (3.2) to the second
equation in (3.6) was shown in [1]. Exploiting Abel's duplication formula (which
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follows from (1.3))

1
2L�x2� � L�x� ÿ L

x
1� x

� �
; �3:8�

we establish the equivalence of (3.5) to the second equation in (3.6):

L
1
l2

� �
� L

1
1� l

� �
� L�b2� � L

b
1� b

� �
� L�b2� � L�b� ÿ 1

2L�b2� � L�b� � 1
2L�b2� :

Next we describe admissible matrices A obeying a speci¢c pattern. Let us mention
that the a � 1 case was found in [3] and the a � 1

2, a � 2 cases in [7].

PROPOSITION 6. Among the matrices of the form

A � 1
2

2a 1
1 1

� �
; aX 0 �3:9�

only those with a � 0; 1
2 ; 1; 2;1 have rational value of c�A�. These values are,

respectively, c � 1; 4
5 ;

3
4 ;

7
10 ;

1
2.

Proof. Denote u � 1ÿ x, v � 1ÿ y. In these variables, Equations (2.1) corre-
sponding to (3.9) look as follows:

v � 1ÿ uv ; 1ÿ u2 � �u2�a : �3:10�
Using the ¢rst of these relations and employing the formulae (1.2)^(1.3), we obtain

L�x� � L�y� � 2ÿ L�u� ÿ L�v�
� 2ÿ L�1ÿ v� ÿ L�u2� ÿ L�1ÿ u� � 2ÿ L�x� ÿ L� y� ÿ L�u2�

and, hence,

c�A� � L�x� � L�y� � 1ÿ 1
2L�u2� : �3:11�

Thus, c�A� is rational only if L�u2� belongs to the list (1.8), i.e. u2 � 0; 1ÿ r; 1
2 ; r; 1.

Noticing that for w � u2, the second equation in (3.10) takes the form w � �1ÿ w�1=a,
we obtain the possible values of 2a as inverse to these in (1.9) (cf. Proposition 2).

For a � 0, the matrix (3.9) is a particular case of (2.10). For a � 1 the corre-
sponding series (1.5) contains no summation over the ¢rst variable and thus reduces
to the r � 1 case, giving the characters of theM�3; 4� minimal model (for instance,
the second character in (1.10)). For a � 1

2 , the matrix (3.9) is a particular case
of (2.11). It allows us to construct several characters of theM�5; 6� minimal model
[7]. For instance,

w5;62;2�2Q � q
ÿ1
120

X1
m�0

m2�Qmod 2

q
1
2�m2

1�m2
2��m1m2�1

2m1

�q�m1
�q�m2

; Q � 0; 1 : �3:12�

The corresponding dilogarithm identity is 2L�1ÿ r� � 4
5 .

220 ANDREI G. BYTSKO



For a � 1, the matrix (3.9) allows us to construct all characters of theM�3; 8� (see
[7], the case of w3;81;2 was found earlier in [3]). For instance,

w3;81;4 � q18
X1
m�0

qm
2
1�1

2m
2
2�m1m2�m1�1

2m2

�q�m1
�q�m2

: �3:13�

The corresponding dilogarithm identity is

L 1ÿ 1���
2
p

� �
� L�

���
2
p
ÿ 1� � 3

4
; �3:14�

or, equivalently, L� 1��
2
p � ÿ L� ���

2
p ÿ 1� � 1

4. The latter relation is just a particular case,
x � 1��

2
p , of Abel's duplication formula (3.8). Let us remark that the dual matrix gives

c�14Aÿ1� � 5
4 , which is the central charge of the Z6 parafermionic model.

For a � 2, the matrix (3.9) allows us to construct some characters of theM�4; 5�
[7]. For instance,

w4;52;2 � q
1

120

X1
m�0

q2m
2
1�1

2m
2
2�m1m2�1

2m2

�q�m1
�q�m2

: �3:15�

The corresponding dilogarithm identity is

L�1ÿ ���
r
p � � L 1ÿ 1

1� ���
r
p

� �
� 7

10
;

or, equivalently,

L� ���
r
p � � L

1
1� ���

r
p

� �
� 13

10
: �3:16�

This identity was found in [7] as a consequence of formula (3.15). The proof of Prop-
osition 6 provides an algebraic derivation for (3.16) based on the functional relation
(1.3).

Now we present a list of admissible matricesAwith c�A� in the form (1.7) that have
not appeared in the literature before. These are results of a computer-based search
performed bearing in the mind the general properties of r � 2 TBA equations dis-
cussed in the previous section. For some of the corresponding dilogarithm identities
we give an explicit algebraic proof or show that they are equivalent to certain known
identities. The cases where such a proof is lacking were checked numerically (with a
precision of order 10ÿ15).

The effective central charge of the M�3; 5� model is produced by

A � 1
4

5 4
4 4

� �
; c�A� � 3=5 : �3:17�

Notice that c� 14Aÿ1� � 7
5 is the central charge of the Z8 parafermionic model. Solving

(2.1) for (3.17), we ¢nd that x � 1ÿ d2 and y � �1� d�ÿ2, where d is the positive root
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of the quartic

d4 � 2d3 ÿ dÿ 1 � 0 : �3:18�
Applying Ferrari's method, we reduce this equation to

d2 � d � r� 1 : �3:19�
The solution is

d � 1
2�

������������������
3� 2

���
5
pq
ÿ 1� � 1

2�
��������������
4r� 5

p
ÿ 1�:

The corresponding dilogarithm identity reads

L�1ÿ d2� � L
1

�1� d�2
� �

� L
�
1
2

��������������
4r� 5

p
ÿ 1

2ÿ r
�
� L

�
1
2� 1

2rÿ 1
2

��������������
5rÿ 2

p �
� 3

5 : �3:20�

Gordon and McIntosh [10] proved, for the same d, the following identity

L�d� ÿ L�d3� � 1
5 : �3:21�

Let us show that (3.20) and (3.21) are equivalent. Using (1.2) and (3.8) several times,
we ¢nd

L�1ÿ d2� � L
1

�1� d�2
� �

� 1ÿ L�d2� � L
1

�1� d�2
� �

� 1ÿ 2L�d� � 2L
d

1� d

� �
� 2L

1
1� d

� �
ÿ 2L

1
2� d

� �
� 1ÿ 2L�d� � 2ÿ 2L

1
2� d

� �
� 3ÿ 2L�d� ÿ 2L�1ÿ d3� � 1ÿ 2

�
L�d� ÿ L�d3�

�
� 3

5 :

In the last line we used that �2� d�ÿ1 � 1ÿ d3 holds due to (3.19).
The central charge of the M�3; 4� model is produced by the following matrices

A � 1
2

4 3
3 3

� �
; c�A� � 1=2 ; �3:22�

A � 1
2

8 3
3 2

� �
; c�A� � 1=2 : �3:23�

Notice that c�14Aÿ1� � 3
2 is the central charge of the Z10 parafermionic model. Solving
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(2.1) for (3.22), we ¢nd:

x � 1
4�3ÿ

���
5
p
� � 1

2�1ÿ r�; y �
���
5
p
ÿ 2 � 2rÿ 1

and the corresponding dilogarithm identity reads

L�12ÿ 1
2 r� � L�2rÿ 1� � 1

2 : �3:24�
To prove it we introduce u � 1ÿ x, v � 1ÿ y and notice that

u � 1
2�1� r� � 1=�2r� and v � 2ÿ uÿ1 � 2�1ÿ r�:

Employing (1.2) and (1.3), we obtain

L�u� � L�v� � L�2uÿ 1� � L�12� � L�v2� � L�r� � 1
2� L�1ÿ r� � 3

2 ;

which is equivalent to (3.24) due to (1.2).
Equations (2.1) for (3.23) can be transformed to the form

x4 ÿ 6x3 � 13x2 ÿ 10x� 1 � 0 ; y4 � 6y3 ÿ 11y2 � 6yÿ 1 � 0 �3:25�
and y�3ÿ 2x� � �1ÿ x�. Applying Ferrari's method, we reduce these equations to

x2 � �
���
2
p
ÿ 3�x � 2

���
2
p
ÿ 3 ; y2 � 3�

���
2
p
� 1�y �

���
2
p
� 1 : �3:26�

The solution is

x � 1
2�3ÿ

���
2
p
� ÿ 1

2

������������������
2
���
2
p
ÿ 1

q
;

which leads to the following dilogarithm identity:

L
�
3
2ÿ 1

2

���
2
p ÿ 1

2

������������������
2
���
2
p ÿ 1

p �
� L

�
�32�

���
2
p �

������������������
2
���
2
p ÿ 1

p
ÿ 3

2ÿ 3
2

���
2
p �

� 1
2 : �3:27�

The effective central charge of the M�2; 5� model is produced by

A � 1
2

�
8 5
5 4

�
; c�A� � 2=5 : �3:28�

Notice that c� 14Aÿ1� � 8
5 is the central charge of theZ13 parafermionic model. Solving

(2.1) for (3.28), we ¢nd that x � 1ÿ u� and y � uÿ�uÿ ÿ 1�ÿ1, where u� > 0 and
uÿ < 0 are the real roots of the quartic

u4 � u3 � 3u2 ÿ 3uÿ 1 � 0 : �3:29�
Applying Ferrari's method, we reduce this equation to

u2 ÿ ru � 2rÿ 1 : �3:30�
The solution is u� � 1

2 r� 1
2

��������������
7rÿ 3

p
, which leads to the following dilogarithm
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identity:

L
�
1ÿ 1

2 rÿ 1
2

��������������
7rÿ 3

p �
� L

�
1
2

�������������������
28r� 45

p ÿ 2rÿ 5
2

�
� 2

5 : �3:31�

To prove it, we employ (1.2) and (1.3):

L�x� � L�y�

� L�1ÿ u�� � L 1ÿ 1
1ÿ uÿ

� �
� 2ÿ L�u�� ÿ L

1
1ÿ uÿ

� �
� 2ÿ L

u�
1ÿ uÿ

� �
ÿ L�r� ÿ L

1ÿ u�
1ÿ r

� �
� 7

5
ÿ L

u�
1ÿ uÿ

� �
ÿ L

1ÿ r� uÿ
1ÿ r

� �
� 2

5
ÿ L

u�
1ÿ uÿ

� �
� L

ÿuÿ
1ÿ r

� �
� 2

5
:

In the last line we used that the relations

u� � uÿ � r; u�uÿ � r3 and �1ÿ r�u� � ÿ�1ÿ uÿ�uÿ
hold due to (3.30).

The central charge of the M�6; 7� minimal model is produced by

A � 1
6

8 1
1 2

� �
; c�A� � 6=7 �3:32�

(this was noticed earlier by M. Terhoeven (unpublished)). Notice that c� 14Aÿ1� � 8
7 is

the central charge of the Z5 parafermionic model. Solving (2.1) for (3.32), we derive
that x � mÿ1 and y � 1ÿ n, where 0 < n < 1 and m > 1 are the real roots of the
following equation

t6 ÿ 7t5 � 19t4 ÿ 28t3 � 20t2 ÿ 7t� 1 � 0 : �3:33�
The corresponding dilogarithm identity reads L�mÿ1� � L�1ÿ n� � 6

7 or, equivalently,

L�n� ÿ L
1
m

� �
� 1

7
: �3:34�

It would be interesting to clarify whether this identity is related to the Watson
identities.

The list is completed with two matricesA such that d � 0. As was remarked above,
in such a case, Equations (2.1) have an extra solution x � 0, y � 1. We will, however,
focus on the `regular' solution, 0 < x; y < 1.

A � 1
4

1 1
1 0

� �
; c�A� � 8=7: �3:35�

Solving the corresponding Equations (2.1), we ¢nd that y satis¢es the cubic (3.7) and
x � 1ÿ y2. Therefore, y � a, x � 1ÿ a2 and the dilogarithm identity yielding the
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value of c�A� in (3.35) is equivalent to the ¢rst identity in (3.6):

L�x� � L�y� � L�1ÿ a2� � L�a� � 1� L�a� ÿ L�a2� � 8
7 : �3:36�

Notice that this is the central charge of the Z5 parafermionic model. Let us remark
that the dual matrix would have c� 14Aÿ1� � 6

7 (which is the central charge of the
M�6; 7� minimal model) but it does not satisfy (2.3) and thus Proposition 2 is
not applicable.

A � 1
18

8 3
3 0 � ; c�A� � 6=5:

�
�3:37�

Solving the corresponding Equations (2.1), we ¢nd that y satis¢es the quartic (3.18)
and x � 1ÿ y3. Therefore, y � d, x � 1ÿ d3 and the dilogarithm identity yielding
the value of c�A� in (3.37) is equivalent to the Gordon^McIntosh identity (3.21):

L�x� � L�y� � L�1ÿ d3� � L�d� � 1� L�d3� ÿ L�d� � 6
5
: �3:38�

The dual matrix would have c� 14Aÿ1� � 4
5 (which is the central charge of theM�5; 6�

minimal model) but it does not satisfy (2.3) and thus Proposition 2 is not applicable.

4. Discussion

To summarize, we have studied admissible 2� 2 matrices A such that c�A� (or
c� 14Aÿ1� � 2ÿ c�A�) computed via the corresponding TBA equations (2.1) is the
effective central charge (1.7) of a minimal Virasoro model. Certain properties of
such matrices have been established. In particular, we have described classes of
A that have c�A� less, equal or bigger than 1. Some upper and lower bounds for
c�A� have been obtained. Several continuous families and a `discrete' set of admiss-
ible matrices A have been found. The corresponding two-term dilogarithm identities
have been obtained. Some of them ((3.16), (3.20), (3.27), (3.31), (3.34)) are quite
nontrivial and appear to be new. All the found identities, but (3.27) and (3.34), have
been proved directly by exploiting the functional dilogarithm relations or shown to
be equivalent to the Watson and Gordon^McIntosh identities. This serves as a proof
that the matrices presented in Section 3 (some of them were found by com-
puter-based search) are indeed admissible. What the two unproven identities con-
cern, the structure of (3.27) suggests that it presumably can be treated by the
standard technique, whereas the status of (3.34) is less clear.

The presented set of matrices A presumably exhausts admissible matrices with not
very fractional entries having c�A� of the form (1.7). This can be claimed thanks to
Proposition 5 and the fact that the spectrum of cst is separated from 0 and 2.
However, the question whether the set is complete remains open. If the set is com-
plete (or can be completed), it can be used for a classi¢cation of massive
�1�1�-dimensional integrable models with diagonal scattering by the admissible
values of the effective central charge ceff for the corresponding S-matrices. In par-
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ticular, our results imply that such a model with two massive particles may have in
the ultra-violet limit (if the standard TBA analysis applies) ceff of the form (1.7)
given by (2.4) or c � 2

5 ;
1
2 ;

4
7 ;

3
5 ;

7
10 ;

5
7 ;

3
4 ;

6
7 ;

8
7.

Let us remark that a search for r � 2 admissible matrices corresponding to other
forms of c�A� will be more involved. For instance, the spectrum of cn given by (1.12)
is `gapless' (i.e., not separated from 2). Therefore, according to Propositions 2
and 3, we will have to consider A with very small and very large entries.

It is interesting to understand whether the found admissible matrices can be
employed in (1.5) to construct Virasoro characters. This would allow us to apply
the quasi-particle representations [3] to the corresponding conformal models.

Appendix

Proof of Proposition 1. Eliminating x in (2.1), we obtain

y
1
2b�1ÿ y�ÿd

b � y
a
b�1ÿ y�ÿ2

bD � 1 : �A:1�

Let f �y� denote the left-hand side of (A.1). ForDX 0 the uniqueness of the solution is
obvious since f �y� is monotonic (strictly increasing for b > 0 and strictly decreasing
for b < 0) on the interval �0; 1�. Consider now the case of D < 0 (which implies
b > 0 because of (2.3)). We have f �0� � 0, f �1� � 1 and f �y� is a smooth (but
not necessarily monotonic) function for 0 < y < 1. Equation (A.1) can have several
solutions if f 0�y� � df �y�=dy has roots on this interval. The explicit form of f 0�y�
shows that this can occur only for y > ymin � a�aÿ 2D�ÿ1. Furthermore, if (A.1)
has several solutions, then among the roots of f 0�y� there must be at least one, denote
it y0, such that f �y0� < 1. As seen from (A.1), the necessary condition for this is
y0 < k�d�. If this relation is incompatible with the condition y0 > ymin,
i.e. 2DX ÿ a��1=k�d�� ÿ 1�, then the solution of (A.1) and, hence, of (2.1) is unique.
Considering in the same way the counterpart of (A.1) for x, we obtain the condition
2DX ÿ d��1=k�a�� ÿ 1�. Clearly, we can take the lowest of the two bounds.

Proof of Proposition 2. Taking logarithm of the equations in (1.6), multiplying the
resulting system with 1

2A
ÿ1 from the left, taking exponents of the new equations, and

replacing all xi by �1ÿ xi�, we obtain exactly equations (1.6) for 1
4A
ÿ1. Exploiting the

property (1.2), we infer that

c� 14Aÿ1� �
Xr
i�1

L�1ÿ xi� �
Xr
i�1
�1ÿ L�xi�� � rÿ c�A�:

Proof of Proposition 3. In the case of b > 1
2 we have x < �1ÿ x�2a�1ÿ y�W 1ÿ y.

Therefore

c�A� � L�x� � L�y� < L�1ÿ y� � L�y� � 1:
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The analogous consideration for b � 1
2 shows that x� y � 1 (and, hence, c�A� � 1)

only if a � 0 or d � 0. Otherwise x� y < 1 and, hence, c�A� < 1.
Consider now the b < 1

2 case. Let 4ad � �2bÿ 1�2. Divide the ¢rst equation in (2.1)
by �1ÿ y� and take its �2bÿ 1�th power. Divide the second equation in (2.1) by
�1ÿ x� and take its 2ath power. The right-hand side of the resulting equations
coincide. Thus, we obtain

1ÿ y
x

� �1ÿ2b
� y

1ÿ x

� �2a
; �A:2�

where the powers on both sides are positive. An assumption that 1 ÿ y > x leads to a
contradiction since then the left-hand side and the right-hand side of (A.2) are,
respectively, greater and smaller than 1. An assumption that 1 ÿ y < x leads to anal-
ogous contradiction. Thus, we conclude that 1ÿ y � x. Moreover, any matrix A
such that c�A� � 1 necessarily satis¢es (2.8). Indeed, c�A� � 1 implies the relation
x� y � 1. Substituting it into (2.1), we obtain the conditions 4ad � �1ÿ 2b�2
and bW 1

2 (the latter one guaranties existence of a solution on the interval �0; 1�).
The hyperbola 4ad � �1ÿ 2b�2 divides the quadrant aX 0, dX 0 into two disjoint

parts. Since c�A� is continuous function of a and d, we infer that c�A� < 1 for
4ad > �1ÿ 2b�2 (because x and y are small for large a and d) and c�A� > 1 for
4ad < �1ÿ 2b�2 (because x � 1 and y � 1 for small a and d).

Proof of Proposition 4. Equation (A.1) in the a � d case coincides with its x
counterpart, that is x and y obey the same equation. This implies x � y since we
required the uniqueness of the solution. The `only if' part of the proposition is
obvious, it suf¢ces to substitute the relation x � y into (2.1).

Proof of Proposition 5. Let b > 0. Notice that aX d implies xW y. Indeed, for d
and b ¢nite and a >> d, it follows from (2.1) that x � 0 whereas y is ¢nite. Together
with Proposition 4 this implies that x < y for all a > d since x and y are continuous
functions of a, b, d (cf. (A.1)). Thus, we have 1ÿ xX 1ÿ y. Substituting this
inequality into (2.1), we obtain

�1ÿ y�2�a�b�W xW k�a� b� ; k�b� d�W yW �1ÿ x�2�b�d� : �A:3�

This provides the upper bound for x and the lower bound for y. In order to ¢nd an
upper bound for y we can simply notice that the second equation in (2.1) implies
y < k�d�. Alternatively, we can ¢rst employ (2.1) to express y as follows:
y � �1ÿ y�2D=axb=a. Together with x < y this yields y < k�D=�aÿ b��. Comparing
the values of D=�aÿ b� and d, we infer that the ¢rst upper bound for y is better
if d < b. Now, if y < k�t�, then the de¢nition (2.2) implies also that
1ÿ y > k�t� 12t. Substituting this relation (with t � d or t � D=�aÿ b�) into the ¢rst
inequality in (A.3), we obtain the corresponding lower bounds for x. Having found
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the upper and lower bounds for x and y, we obtain the estimates (2.13) and (2.14)
simply exploiting that L�t� and hence d�t� are strictly monotonic.

The estimates in (2.15) are derived by similar considerations in the b < 0 case.
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