ПОЛИНОМЫ АЛЕКСАНДРОВА-РЫЛЯ-ВОЙТАЩИКА И МЕРЫ БЛОХА-КАРЛЕСОНА

Е.С. Дубцов

По определению $\{P_j\}$ называется последовательностью Рыля—Войтащика, если P_j является голоморфным однородным многочленом степени j на комплексной сфере, а также L^{∞} - и L^2 -нормы многочленов P_j равномерно сравнимы для всех $j \geq 0$. А.Б. Александров использовал обобщенные многочлены Рыля—Войтащика для решения одной проблемы о собственных отображениях. Такие многочлены будут применены для изучения мер Карлесона в шаре.

Пусть $\mathcal{H}ol(B_n)$ обозначает пространство всех голоморфных функций в единичном шаре B_n из \mathbb{C}^n , $n \geq 1$. Классическая задача Карлесона заключается в том, чтобы описать положительные меры μ , заданные на шаре B_n , такие что $X \subset L^q(B_n,\mu)$ для данных $X \subset \mathcal{H}ol(B_n)$ и $0 < q < \infty$. Получено соответствующее описание, если X— пространство Блоха

$$\mathcal{B}(B_n) = \left\{ f \in \mathcal{H}ol(B_n) : \sup_{z \in B_n} |\nabla f(z)| (1 - |z|) < \infty \right\},\,$$

а мера μ является радиальной. Для n=1 такое решение недавно получили Хирела, Пелаес, Перес-Гонсалес и Раттюа. Также сформулированная задача решена, если X является пространством роста $\mathcal{A}^{-\log}(B_n)$ или X является пространством роста

$$\mathcal{A}^{-\beta}(B_n) = \left\{ f \in \mathcal{H}ol(B_n) : \sup_{z \in B_n} |f(z)| (1 - |z|)^{\beta} < \infty \right\}, \quad \beta > 0.$$