BROWNIAN MOTION AND STOCHASTIC CALCULUS
Master class 2015-2016

1. GAUSSIAN VECTORS

(a) Let & be a (real-valued) Gaussian variable with mean p and variance o?. Compute
the characteristic function ¢(z) = Elexp(iz§)], z € R.

(b) Let & = (&,...,&1) be a Gaussian vector with mean g = (p1,...,04) € R? and
covariance matrix G = (Gj)%,—; € R™?  Prove that the matrix G is positive
definite, i.e. A\TG\ = Z?,k:l NG > 0 for all A = (Aq,..., \;) € R? except A = 0.

(c) Let & = (&,...,&) be a Gaussian vector with mean pu € R? and covariance ma-
trix G € R™? Compute the characteristic function ¢(z) = Elexp(iz"¢)], z € R<
Hint: write G = UTAU, where U is an orthogonal matrix and A is diagonal.

(d) Check that if &, ..., &, are independent Gaussian variables, then £ = (£,...,&y) is a
Gaussian vector. For any matrix U € R%? check that U¢ is also a Gaussian vector.
What can be said about their covariance matrices?

(e) Let & = (&,...,&) be a Gaussian vector. Prove that its components &,...,&; are
independent if and only if the covariance matrix G is diagonal. Is it true that two
Gaussian variables are independent if and only if their covariance is zero?

2. FOURIER SERIES

(a) Prove that both families (v/2cos(mnt)),>o and (v/2sin(mnt)),>1 are orthonormal
bases in L?[0,1]. Hint: Use the fact that (¢"™),cz is an orthogonal basis in L?[—1, 1].

(b) For all s,t € [0,1], prove the following identity:

i’i 251I1(7Tn52) S;n(””t) = min{s, t} — st.
TN
n=1

(c) (*) Note that the identity given above can be also derived from the identity

+00 2
cos(mnt) =t 1
e 2 M <
; m2n? 4 2—i_fi7 [H <1,

which follows (by integration) from the Poisson summation formula

+o0o +oo
D=2 )" ba(t)

(this should be understood in terms of Schwartz distributions).
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3. GREEN’S FUNCTION OF THE LAPLACIAN ON [0, 1].

(a) Prove that the eigenfunctions and eigenvalues of the Dirichlet boundary value problem
=f"=Af,  f(0)=f(1)=0.
are given by f,(t) = V2sin(nnt) and A, = 7?n? with n > 1. Find eigenfunctions of
the similar problem with Neumann boundary conditions f'(0) = f/(1) =

(b) Green’s function G(s,t) of the Laplacian f +— — f” with Dirichlet boundary conditions
is defined to be the kernel of the inverse operator ie. the unlque function G such
that —f” = g and f(0) = f(1) = 0 imply f(t) fo s)ds. Prove that

G(s,t) = min{s, t} — st, s, t € [O, 1].
(c) Prove that

+00 . .
G(s.t) = Z 2sin(7ns) sin(mnt) ste 0]

m2n2 ’
n=1

4. POISSON PROCESS

Recall that we defined the Poisson process (Ni)ico,+00) Of intensity A > 0 by
Ny:=min{n: § + -+ &, > t},

where &, &1, ... is a sequence of i.i.d. exponential variables with density Ae™*%, z € [0, +00).
(Also recall that (NV¢)ie(o,00) is @ process with independent increments due to the memoryless
property of the exponential variable.)

(a) Prove that the increments Ny, — N; are stationary and have Poisson distribution
with parameter As, i.e. P[Ny s — Ny =n] = e’As : ()\s)”/n' n > 0.

(b) Assume that A(M A?) >0 and A = AV + A2 Let NP and N® be two mdependent

Poisson processes of intensities A" and /\(2). Prove that the process NV := Nt +Nt2)
is a Poisson processes of intensity .

(c) Let (NVi)e>0 be a Poisson processes of intensity A > 0, and let p € (0,1). Let us color
every jump point of N; white or blue independently with probabilities p and 1 — p,
respectively. Prove that the collections of white and blue points define jumps of two
Poisson processes of intensities Ap and A(1 — p), respectively.

(d) (*) Prove that a counting process (N;)icjo,+00) (i-€., a non-decreasing integer-valued
right-continuous process with Ny = 0) is a Poisson process of intensity A > 0 if and
only if forall 0 <t; < ... <ty and 0 < ny <...< ng, one has

PA<Ntk+5_Ntk :O‘th :n]’, 1 S] S k) = 1—)\5+0(5>,
]P))\<Ntk+5—Ntk :1|th an, 1 S] Sk) —/\5+0( )
) =

]P))\(Ntk+5—Ntk22‘th:nj,1§j§k () as o — 0.
2
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5. MISCELLANEOUS

(a) Let By be the standard Brownian motion on [0, 00). Check that the process (1—¢)B_+_
is a Brownian bridge on [0, 1].

(b) Let By be the standard Brownian bridge on [0,1]. Check that the process (1 +t)Blit
is a standard Brownian motion on [0, 00).

(c) Prove that
2 too o 2
(a+1)te7 < / e"zdr<al-e 7.
a

(d) Prove that for any dyadic rationals s = p2~™ and ¢ = ¢27° one has

+o0o 2" —1

Z Z Gkn(S)gkn(t) = min{s,t} — st

n=1 k=1, kodd

where the functions gy, ( fo frn(y)dy are the primitives of the Haar functions

n+1

f =277 . (X[(k—1)2fn,szn) - X[kZ*",(k-&-l)Q*"))-
(e) (*) Prove that the Haar functions f,(t) form a complete family in L*([0, 1]).

6. MEASURABILITY

Let A be a o-algebra on a space 2 and (X¢)co,r) be a family of mappings X; : @ — R.
Let X : Q x [0,7] — R denote the mapping (w,t) — X;. By B(M) we will denote the Borel
o-algebra on a metric space M. Prove that the following statements are equivalent:

(al) for each t € [0,T] the mapping X; : (22, 4) — (R, B(R)) is measurable;

(a2) the mapping X : (Q,A) — (RO B(R)®0T1) is measurable.

Assume that for all w € § the function X = X(w) : t — X, is continuous on [0,T] and
let C([0,77]) denote the (Banach) space of real-valued continuous functions on [0,7]. Prove
that the following statements are equivalent:

(a) the mapping X : (2, A) — (ROT! B(R)®]) is measurable;
(b) the mapping X : (2 x [0,7], A ® B([0,7])) — (R, B(R)) is measurable;
(¢) the mapping X : (©2,.4) — (C([0,T]), B(C([0,T7])) is measurable.

(

Without the continuity assumption, check that (b) implies (a) but not vice versa.
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7. MAXIMUM PROCESS

Theorem (Bachelier). Let (B;)i>o be a standard Brownian motion and M; := maxscjo,q Bs .
Then for each (fized) t > 0 one has

d d
VARG VAN RO A

(a) Could it be true that, say, (M;)cp] @ (1 Be])tefo,n?
(b) Let x > 0, y < x and 7 = inf{¢ : B; = x}. Using reflection principle show that

]P)[Ml Z Z, Bl S y] - ]P)[Bmin{l,f} - (Bl - Bmin{l,‘r}) Z 2r — y] .
(c) Show that the joint distribution of the pair (M, By) is given by the measure
=2p' 2z —y)dady, x>0, y<u,

where p(t) = (27)""/? exp(—t2/2) is the standard normal density.
(d) Deduce the theorem for t = 1 and use the scaling invariance to treat the general case.

8. LAW OF THE ITERATED LOGARITHM

Theorem (Khinchin). Let (B;)t>0 be a Brownian motion. Then we have a.s.

B
lim sup i =1

t—0 /2tloglog(1/t)

(a) Show that limsup,_,, (2t loglog(1/t))~/2B, 9 km sup;_., (2tloglogt)~Y/2B, .
(b) Let M; = supyejy Bs. Use Bachelier’s theorem to show that

P[M, > ut'/?] ~ (2/7)*u" e " /? as u — oco.

(c) Show that limsup,_, (2tloglogt)~*/2B, < 1 almost surely.
(d) Show that for r > 1

By — By,
lim sup —— > (1—rH? as.

tsoo  V/2tloglogt —

(e) Show that for r > 1

B
limsup ———— > (1 — Y2 =712 a5

twoo  V2tloglogt —

(f) Show that limsup,_,. (2tloglogt)~/2B; > 1 almost surely.
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9. IDENTITIES FOR RANDOM WALKS. LAST RETURN TO 0 AND RUNNING MAXIMUM.
Theorem (last return to 0, Feller). Let (Sy,)m>0 be a simple symmetric random walk in Z
and o, = max{k <n: Sey =0}. Then

Plo,=k) = uptp_x, k=0,... n,
where uy, = P(So, =0) = 272k (2:)

a) Formulate a discrete version of the reflection principle for the Brownian motion.

) Show that P(o,=k) = uy - P(Myy—r)—1=0), where M,, = max<,, Sk .

(C) Note that 1 — ]P(Mgmfl :0) = ]P)(Mszl > 1, ng,1 > 1) + ]P(Mmel > 1, ng,1 < —1)
(d) Using the reflection principle for the simple random walk, prove that

]P)(Mgmflz()) = ]P)(ngfl = 1) = U,

Theorem (running maximum times, Sparre-Andersen). Let (Sy,)m>0 be a random walk in R
based on a symmetric diffuse (i.e. absolutely continuous w.r.t. Lebesque measure) distribu-
tion, put M, := maxg<, Sk, and write 7, := min{k > 0: S, = M, }. Then

P(r,=k) = wptp—, k=0,...,n,
where ug are the same as in the previous theorem.
(a) Show that P[r, = 0] = P[r;, = k| for all k£ > 0.
(b) Show that P[r,, = k] = vgv,,_ for all 0 < k < n, where vy = P[1}, = k].
(c) By induction show that v, = wy.
(d) (*) Is it true that the processes (7,)n>0 and (0,),>0 are identically distributed?

10. IDENTITIES FOR RANDOM WALKS. SOJOURNS AND MAXIMA.

Theorem (sojourns and maxima, Sparre-Andersen). Let &y, ..., &, be i.i.d. (more generally,
exchangeable) random variables and Sy, =Y ;- & for 0 <m < n. Then,

#H1<m<n:S, >0} @ min{k : Sy = maxXo<m<n Sm} -

(a) This is a deterministic statement. Given some values &i,...,&, € R, let us con-
struct a permutation 5 : {1,...,n} — {1,...,n} by the following algorithm applied
consecutively to k=n, k=n—1,..., k=1:

e if S <0, denote by (k) the maximal available index in {1,...,n};
e if S; > 0, denote by (k) the minimal available index in {1,...,n}.

Let S\9) — Y oreq &y for 0 < m < n. Prove that
#{1<m<n:S, >0} = min{k: S,gﬁ) = maxo<m<n SU}.
(b) Prove that ({s1),---,&sm)) @ (&1,...,&,) and deduce the theorem.

Hint: re-write the condition Sy <0as &1+ +& >S5, = sP.
5
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11. REFLECTED BROWNIAN MOTION. THE PROCESSES (M; — Bi)i>0 AND (|By|)t>o0-

(a) Let (Sm)m>0, (S,)m>0 be two independent simple symmetric random walks in Z
started at the origin and S] =S/ + % for m > 0. Let M, :== maxg<,, Sy and

:#{1§k§m:§,;:—§,;_1 E{:I:%}}
denote the number of steps before time m when the trajectory (§ Jm>0 crosses the
horizontal line. Prove that the processes
(M, = Sy Mip)mzo and (]S, | — % s Ly )m>0

are identically distributed. Hint: note that both processes can be described as the
(identically distributed) random walks in Z; x Z, .

(b) Let (B;)¢>0 be a standard Brownian motion and M; := max,cjoq B, . Using Donsker’s
theorem, prove that
(M, — By, ..., My, — Btp)
forall 0 <t; <...<t,.

(c) Conclude that the processes (M; — By)i>o and (| Bt|)i>0 are identically distributed.
Hint: The mapping f(t) — max,cpq f(s) is continuous in C([0,T]) for each T" > 0.

(|Bt1| | By, l)

(d) (*) Denote by (.Ft(l))tzo and (]:t(2))t20 the filtrations generated by these two processes.
[s it true that ]-"t(l) = F;, where the filtration (F;);>0 is generated by (Bi)i>o itself?
(In other words, can one reconstruct B; from M; — B,7) Is it true that ]:t(Q) =F7?

12. UNIFORM LAWS FOR THE BROWNIAN BRIDGE

Theorem. Let (By)icjo1) be a Brownian bridge on [0,1] and M := max,cp1 Bs. Then the
following random variables are both U(0, 1), i.e. uniformly distributed on [0, 1]:

nn=Mte[0,1]: B, >0}, m=inf{t: B, = M}.

(a) Given u € [0,1], define By := By14) — By, where (z) := x — [z]. Show that the
process (B}')cjo,1) is distributed as a Brownian bridge.

(b) Let 7 := inf{t : B = M — B, } and let u be unlformly distributed over [0, 1]. Apply
Fubini’s theorem to show that P(m <t) fo (13 < t)du is also U(0, 1).

(c) Using Donsker’s theorem and Exercise 10, show that 7 and 7 have the same law.

(d) (*) Let (B¢):>0 be a standard Brownian motion, (E)te[o,l} be a Brownian bridge. For

each T < 1 prove that the distributions of the processes (B;)scjo,r] and (Et)te[O,T] are
mutually absolutely continuous. Hint: prove that the processes (B; — tT~By)sco.r]

and (Et — tT’lgT)te[o,T] are identically distributed (as a re-scaled Brownian bridge).
6
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13. EXIT TIME FROM [—a,a] AND TIME SPENT IN [0, —a] DURING A DOWNCROSSING

(a) Let @ > 0 and 74, := inf{t > 0 : |B;| = a}, where (B;)¢>o is a standard Brownian
motion (started from 0). Show that

Elexp(—puteq)] = 1/ cosh(ar/2p), w > 0.
Compute the expectations E[r,] and E[r2]. Is is true that E[exp(07+,)] < +oo for
some 0 > 07 What is the optimal upper bound for such 6’s?

Proposition (removing of negative excursions). Let (B;):>o be a standard Brownian motion,
s(t) == A{s €[0,t] : By > 0}) and t(s) :=inf{t > 0: s(t) > s}. Then

(4
(Bis))s>0 = (|Bs])s>0-
(b) Check a similar statement for simple random walks (this is trivial).
(c) Prove that for each T" > 0 one has lim.jo A(t € [0,T] : |B;| < ¢) = 0 almost surely.

(d) Let ss(t) and ts(s) be defined as in the proposition via a continuous function f = f(¢)
instead of B;. Check that the mapping (f(t))icjo,r) = (f(t(sAS(T))))sefo,r) is contin-
uous (in the C([0,T) metric) at almost every Brownian motion trajectory (By)¢cjo,r-

(e) Prove the proposition using (b) and Donsker’s invariance principle.
et 7o :=1inf{t > 0: B, = —a}. Prove that A(s € [0,7_,] : 0 > By > —a) = Ti,.
f) L inf{t >0: B Prove that A(s € [0 0> B, >—a) 2

14. RECURRENCE/TRANSIENCE OF THE D-DIMENSIONAL BROWNIAN MOTION

Let d > 2 and A(r,R) := {z € R : r < ||z|| < R}. Let (BF)>o denote a standard
d-dimensional Brownian motion started from z and 7,.p = 7' 1= inf{t > 0: Bf ¢ A(r, R)}.

(a) For x € A(r, R), prove that

P =y = | GoeR/lal) - logR/r) ifd =2,
TR - (Hx”2_d— RQ—d) X (HTHQ_d_ R2—d)—1 if d > 3.

(b) Prove that P[3t > 0: Bf=0] = 0 for all z € R,
(c) Let d =2 and ||z||>r>0. Prove that P[3¢t > 0 : |Bf|=r] = 1 and deduce that

P30 <ti <ty <...:tpg »ocand |B]|=7r] = 1

for any z € R? and r > 0 (in other words, the Brownian motion in 2D is recurrent).

(d) Let d > 3. Prove that B, — oo as t — oo almost surely (in other words, the Brownian
motion in 3+D is transient). Hint: consider events A, := {Is < ¢ : B, > n3 B, < n}.

(e) (*) Let d > 2, U € R?is a bounded open set, z € OU and there exist an open cone C
(with the vertex at ) such that B(x,r) N C C R%\ U for some r > 0. Prove that =
is a regular boundary point of U, i.e. inf{t > 0: B¥ ¢ U} = 0 almost surely.

7
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15. N-DIMENSIONAL BROWNIAN MOTION: ITO’S CALCULUS,
LOCAL MARTINGALES AND BESSEL PROCESSES

(a) Let o € R and B; be a N-dimensional Brownian motion started at x # 0. Consider
(local) semi-martingale X; := |B;|*. Compute d.X; using Itd’s calculus.

(b) Note that X; is a local martingale if @« = 2— N, which agrees with the fact that the
function H(x) = |z|>~" is harmonic in R" (one should consider log |B;| for N = 2).

Let N =3, a = —1 and X; = |B;|™! so that X; is a local martingale. Note that,
almost surely, the process (X;);>o is well-defined for all ¢ > 0 and lim;_,,, X; = 0.
(c) Give an example of a sequence (7,)nen Of localizing stopping times for (X;):>o.
(d) Check that E[X?] < const < +oo for some constant independent of ¢ > 0.
(e) What is the law of the random variable max;ec(p +o0) X; 7 Does it belong to L'(£2)?
(f) Using the explicit formula for the Gaussian density, prove that E[X7] < Xy = 271
Hint: Use the identity |S,[~! [ |y+|~'dAs, (z) = min{z~!, 771}, where A, denotes
the Lebesgue measure on the sphere S, = {y € R® : |y|=r} and |S,| is the area of S,.
Remark. Thus, X; is a local martingale but not a (true) martingale.

Let (Bi)i>0 be a N-dimensional Brownian motion started at x # 0. Denote

N t Btk i
= E ——dB
ﬁt /0 |Bt| v
k=1

(we set BF/|B;| = 0 if | B;| = 0). Check that this stochastic integral is well-defined.
(g) Prove that the process (5;);>0 is a 1-dimensional Brownian motion started at 0.

Hint: Check that (3;);>0 and (32—t)¢>0 are local martingales, and use Lévy’s theorem.

(h) Using (a), show that No1 fods

.2 o |Bs|
|B,|> = |x|2+2/ | Bs|dBs + Nt.
0

|By| = |x|+ B+

Definition. Let (f;)i>0 be a standard 1-dimensional Brownian motion started at 0
and m > 0. A process (Xi)i>o satisfying the stochastic differential equation

dXt = 2\/ Xt dﬁt + mdt
is called a squared Bessel process of dimension m. The process Yy := /X (if m < 2,
there is an issue with signs of Y;) is called an m-dimensional Bessel process.
Remark. If m = N > 2 is integer, then (Y;)i>o0 @ (|Bt])t>0. Note that, almost
surely, |By| # 0 for all t > 0. Thus in this case there exists a unique continuous
choice of the square root of the squared process (Xi)i>o @ (|B¢]?) eo0-

8
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16. LOCAL TIME AT ZERO FOR 1D BROWNIAN MOTION

Let (B:)i>0 be a one-dimensional Brownian motion. For every € > 0, we define a function

g- :R—=R,, ge(x) == Va2 + 2.

Note that g.(z) — sign(z) as € — 0 uniformly on each of the sets {z € R: |z| > d}, 6 > 0.

()

(b)

Apply Itd’s formula to compute a decomposition g.(B;) = g-(Bo)+M;+A;, where M;
is a local martingale and Aj is a bounded variation process. Observe that M; is a
square integrable martingale and A is increasing.

Show that, for each T" > 0,

t
(M§)tefo,m e (Be)tejo,n  in L*(Q), where B, ::/sign(BS)st
€ 0

and the convergence is understood in the metric of C([0,T7).

Remark. Recall that Lévy’s theorem implies that the process (B;)i>o is another one-
dimensional Brownian motion defined on the same filtration as (Bi)i>o -

Infer that there exists an increasing process (L?)s> such that
t
|B,| = / sign(B,)dB, + LY for all t > 0.
0

Observing that (A$)iep,r — (LY)tepr) as € — 0 show that, for every choice of the
segment [u,v] C Ry and ¢ > 0, the following is true:

|B;| >0 forallteuv] = L)=1LY.
Infer that LY is constant on each of the intervals (u,v) CR, such that B; # 0 on (u,v).

Definition. The process LY is called a local time of the Brownian motion By at 0.

Given € > 0, define two sequences of stopping times (05),>1 and (77),>1 inductively
by setting o7 := 0,

7o =inf{t >0} : |By| =€} and o :=inf{t>7 : B, =0}.
Further, let Nf := max{n > 1: 75 <t} with the convention max({ := 0. Show that
€ 0o 2
eN; d L) in L*(9).
Hint: Observe that

t
L$+/ (X ns1lioz.7)(s)) sign(B,)dB, — eN;| < e.
; >

Remark. Note that LY can be reconstructed from the absolute value | By| of the Brow-
nian motion By. In particular, this means that the filtration generated by the Brow-
nian motion f; = |By| — LY is strictly smaller than the one generated by By itself.
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