
BROWNIAN MOTION AND STOCHASTIC CALCULUS

Master class 2015-2016

1. Gaussian vectors

(a) Let ξ be a (real-valued) Gaussian variable with mean µ and variance σ2. Compute
the characteristic function φ(z) = E[exp(izξ)], z ∈ R.

(b) Let ξ = (ξ1, . . . , ξd) be a Gaussian vector with mean µ = (µ1, . . . , µd) ∈ Rd and
covariance matrix G = (Gjk)

d
j,k=1 ∈ Rd×d. Prove that the matrix G is positive

de�nite, i.e. λ⊤Gλ =
∑d

j,k=1 λjGjkλk > 0 for all λ = (λ1, . . . , λd) ∈ Rd except λ = 0.

(c) Let ξ = (ξ1, . . . , ξd) be a Gaussian vector with mean µ ∈ Rd and covariance ma-
trix G ∈ Rd×d. Compute the characteristic function φ(z) = E[exp(iz⊤ξ)], z ∈ Rd.
Hint: write G = U⊤ΛU , where U is an orthogonal matrix and Λ is diagonal.

(d) Check that if ξ1, . . . , ξd are independent Gaussian variables, then ξ = (ξ1, . . . , ξd) is a
Gaussian vector. For any matrix U ∈ Rd×d check that Uξ is also a Gaussian vector.
What can be said about their covariance matrices?

(e) Let ξ = (ξ1, . . . , ξd) be a Gaussian vector. Prove that its components ξ1, . . . , ξd are
independent if and only if the covariance matrix G is diagonal. Is it true that two
Gaussian variables are independent if and only if their covariance is zero?

2. Fourier series

(a) Prove that both families (
√
2 cos(πnt))n≥0 and (

√
2 sin(πnt))n≥1 are orthonormal

bases in L2[0, 1]. Hint: Use the fact that (eiπnt)n∈Z is an orthogonal basis in L2[−1, 1].

(b) For all s, t ∈ [0, 1], prove the following identity:
+∞∑
n=1

2 sin(πns) sin(πnt)

π2n2
= min{s, t} − st.

(c) (*) Note that the identity given above can be also derived from the identity
+∞∑
n=1

cos(πnt)

π2n2
=

t2

4
− |t|

2
+

1

6
, |t| ≤ 1,

which follows (by integration) from the Poisson summation formula
+∞∑

n=−∞

eiπnt = 2
+∞∑

m=−∞

δ2m(t)

(this should be understood in terms of Schwartz distributions).
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3. Green's function of the Laplacian on [0, 1].

(a) Prove that the eigenfunctions and eigenvalues of the Dirichlet boundary value problem

−f ′′ = λf, f(0) = f(1) = 0.

are given by fn(t) =
√
2 sin(πnt) and λn = π2n2 with n ≥ 1. Find eigenfunctions of

the similar problem with Neumann boundary conditions f ′(0) = f ′(1) = 0.

(b) Green's function G(s, t) of the Laplacian f 7→ −f ′′ with Dirichlet boundary conditions
is de�ned to be the kernel of the inverse operator, i.e. the unique function G such
that −f ′′ = g and f(0) = f(1) = 0 imply f(t) =

∫ 1

0
G(s, t)g(s)ds. Prove that

G(s, t) = min{s, t} − st, s, t ∈ [0, 1].

(c) Prove that

G(s, t) =
+∞∑
n=1

2 sin(πns) sin(πnt)

π2n2
, s, t ∈ [0, 1].

4. Poisson process

Recall that we de�ned the Poisson process (Nt)t∈[0,+∞) of intensity λ > 0 by

Nt := min{n : ξ0 + · · ·+ ξn ≥ t},
where ξ0, ξ1, . . . is a sequence of i.i.d. exponential variables with density λe−λx, x ∈ [0,+∞).
(Also recall that (Nt)t∈[0,+∞) is a process with independent increments due to the memoryless
property of the exponential variable.)

(a) Prove that the increments Nt+s − Nt are stationary and have Poisson distribution
with parameter λs, i.e. P[Nt+s −Nt = n] = e−λs · (λs)n/n!, n ≥ 0.

(b) Assume that λ(1), λ(2) > 0 and λ = λ(1)+λ(2). Let N
(1)
t and N

(2)
t be two independent

Poisson processes of intensities λ(1) and λ(2). Prove that the process Nt := N
(1)
t +N

(2)
t

is a Poisson processes of intensity λ.

(c) Let (Nt)t≥0 be a Poisson processes of intensity λ > 0, and let p ∈ (0, 1). Let us color
every jump point of Nt white or blue independently with probabilities p and 1 − p,
respectively. Prove that the collections of white and blue points de�ne jumps of two
Poisson processes of intensities λp and λ(1− p), respectively.

(d) (*) Prove that a counting process (Nt)t∈[0,+∞) (i.e., a non-decreasing integer-valued
right-continuous process with N0 = 0) is a Poisson process of intensity λ > 0 if and
only if for all 0 < t1 < . . . < tk and 0 ≤ n1 ≤ . . . ≤ nk, one has

Pλ(Ntk+δ −Ntk = 0 |Ntj = nj, 1 ≤ j ≤ k) = 1− λδ + o(δ),

Pλ(Ntk+δ −Ntk = 1 |Ntj = nj, 1 ≤ j ≤ k) = λδ + o(δ),

Pλ(Ntk+δ −Ntk ≥ 2 |Ntj = nj, 1 ≤ j ≤ k) = o(δ), as δ → 0.
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5. Miscellaneous

(a) Let Bt be the standard Brownian motion on [0,∞). Check that the process (1−t)B t
1−t

is a Brownian bridge on [0, 1].

(b) Let B̃t be the standard Brownian bridge on [0, 1]. Check that the process (1+ t)B̃ t
1+t

is a standard Brownian motion on [0,∞).

(c) Prove that

(a+ 1
a
)−1 · e−

a2

2 <

∫ +∞

a

e−
x2

2 dx < a−1 · e−
a2

2 .

(d) Prove that for any dyadic rationals s = p2−m and t = q2−s one has

+∞∑
n=1

2n−1∑
k=1, k odd

gk,n(s)gk,n(t) = min{s, t} − st,

where the functions gk,n(x) =
∫ x

0
fk,n(y)dy are the primitives of the Haar functions

fk,n = 2−
n+1
2 · (χ[(k−1)2−n,k2−n) − χ[k2−n,(k+1)2−n)).

(e) (*) Prove that the Haar functions fk,n(t) form a complete family in L2([0, 1]).

6. Measurability

Let A be a σ-algebra on a space Ω and (Xt)t∈[0,T ] be a family of mappings Xt : Ω → R.
Let X : Ω× [0, T ] → R denote the mapping (ω, t) 7→ Xt . By B(M) we will denote the Borel
σ-algebra on a metric space M. Prove that the following statements are equivalent:

(a1) for each t ∈ [0, T ] the mapping Xt : (Ω,A) → (R,B(R)) is measurable;
(a2) the mapping X : (Ω,A) → (R[0,T ],B(R)⊗[0,T ]) is measurable.

Assume that for all ω ∈ Ω the function X = X (ω) : t 7→ Xt is continuous on [0, T ] and
let C([0, T ]) denote the (Banach) space of real-valued continuous functions on [0, T ]. Prove
that the following statements are equivalent:

(a) the mapping X : (Ω,A) → (R[0,T ],B(R)⊗[0,T ]) is measurable;

(b) the mapping X : (Ω × [0, T ],A ⊗ B([0, T ])) → (R,B(R)) is measurable;

(c) the mapping X : (Ω,A) → (C([0, T ]) , B(C([0, T ])) is measurable.

Without the continuity assumption, check that (b) implies (a) but not vice versa.
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7. Maximum process

Theorem (Bachelier). Let (Bt)t≥0 be a standard Brownian motion and Mt := maxs∈[0,t] Bs .
Then for each (�xed) t ≥ 0 one has

Mt
(d)
= Mt −Bt

(d)
= |Bt| .

(a) Could it be true that, say, (Mt)t∈[0,1]
(d)
= (|Bt|)t∈[0,1]?

(b) Let x ≥ 0, y ≤ x and τ = inf{t : Bt = x}. Using re�ection principle show that

P[M1 ≥ x,B1 ≤ y ] = P[Bmin{1,τ} − (B1 −Bmin{1,τ}) ≥ 2x− y ] .

(c) Show that the joint distribution of the pair (M1, B1) is given by the measure

−2p′(2x−y)dxdy, x ≥ 0, y ≤ x,

where p(t) = (2π)−1/2 exp(−t2/2) is the standard normal density.

(d) Deduce the theorem for t = 1 and use the scaling invariance to treat the general case.

8. Law of the iterated logarithm

Theorem (Khinchin). Let (Bt)t≥0 be a Brownian motion. Then we have a.s.

lim sup
t→0

Bt√
2t log log(1/t)

= 1.

(a) Show that lim supt→0 (2t log log(1/t))
−1/2Bt

(d)
= lim supt→∞ (2t log log t)−1/2Bt .

(b) Let Mt = sups∈[0,t]Bs . Use Bachelier's theorem to show that

P[Mt > ut1/2] ∼ (2/π)1/2u−1e−u2/2 as u → ∞.

(c) Show that lim supt→∞ (2t log log t)−1/2Bt ≤ 1 almost surely.

(d) Show that for r > 1

lim sup
t→∞

Bt −Bt/r√
2t log log t

≥ (1− r−1)1/2 a.s.

(e) Show that for r > 1

lim sup
t→∞

Bt√
2t log log t

≥ (1− r−1)1/2 − r−1/2 a.s.

(f) Show that lim supt→∞ (2t log log t)−1/2Bt ≥ 1 almost surely.
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9. Identities for random walks. Last return to 0 and running maximum.

Theorem (last return to 0, Feller). Let (Sm)m≥0 be a simple symmetric random walk in Z
and σn := max{k ≤ n : S2k = 0}. Then

P(σn=k) = ukun−k, k = 0, . . . , n,

where uk = P(S2k=0) = 2−2k
(
2k
k

)
.

(a) Formulate a discrete version of the re�ection principle for the Brownian motion.

(b) Show that P(σn=k) = uk · P(M2(n−k)−1=0), where Mm = maxk≤m Sk .

(c) Note that 1−P(M2m−1=0) = P(M2m−1≥1, S2m−1≥1)+P(M2m−1≥1, S2m−1≤−1).

(d) Using the re�ection principle for the simple random walk, prove that

P(M2m−1=0) = P(S2m−1 = 1) = um.

Theorem (running maximum times, Sparre-Andersen). Let (Sm)m≥0 be a random walk in R
based on a symmetric di�use (i.e. absolutely continuous w.r.t. Lebesgue measure) distribu-
tion, put Mn := maxk≤n Sk, and write τn := min{k ≥ 0 : Sk = Mn}. Then

P(τn=k) = ukun−k, k = 0, . . . , n,

where uk are the same as in the previous theorem.

(a) Show that P[τk = 0] = P[τk = k] for all k ≥ 0.

(b) Show that P[τn = k] = vkvn−k for all 0 ≤ k ≤ n, where vk = P[τk = k].

(c) By induction show that vk = uk.

(d) (*) Is it true that the processes (τn)n≥0 and (σn)n≥0 are identically distributed?

10. Identities for random walks. Sojourns and maxima.

Theorem (sojourns and maxima, Sparre-Andersen). Let ξ1, . . . , ξn be i.i.d. (more generally,
exchangeable) random variables and Sm =

∑m
k=1 ξk for 0 ≤ m ≤ n. Then,

#{1 ≤ m ≤ n : Sm > 0} (d)
= min{k : Sk = max0≤m≤n Sm} .

(a) This is a deterministic statement. Given some values ξ1, . . . , ξn ∈ R, let us con-
struct a permutation β : {1, . . . , n} → {1, . . . , n} by the following algorithm applied
consecutively to k = n, k = n− 1, . . . , k = 1:

• if Sk ≤ 0, denote by β(k) the maximal available index in {1, . . . , n};
• if Sk > 0, denote by β(k) the minimal available index in {1, . . . , n}.

Let S
(β)
m =

∑m
k=1 ξβ(k) for 0 ≤ m ≤ n. Prove that

#{1 ≤ m ≤ n : Sm > 0} = min{k : S
(β)
k = max0≤m≤n S

(β)
m } .

(b) Prove that (ξβ(1), . . . , ξβ(n))
(d)
= (ξ1, . . . , ξn) and deduce the theorem.

Hint: re-write the condition Sk ≤ 0 as ξk+1 + · · ·+ ξn ≥ Sn = S
(β)
n .
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11. Reflected Brownian motion. The processes (Mt −Bt)t≥0 and (|Bt|)t≥0.

(a) Let (Sm)m≥0, (S
′
m)m≥0 be two independent simple symmetric random walks in Z

started at the origin and S̃ ′
m := S ′

m + 1
2
for m ≥ 0. Let Mm := maxk≤m Sk and

L′
m := #

{
1 ≤ k ≤ m : S̃ ′

k = −S̃ ′
k−1 ∈ {±1

2
}
}

denote the number of steps before time m when the trajectory (S̃ ′
m)m≥0 crosses the

horizontal line. Prove that the processes

(Mm − Sm ,Mm)m≥0 and (|S ′
m| − 1

2
, L′

m)m≥0

are identically distributed. Hint: note that both processes can be described as the
(identically distributed) random walks in Z+ × Z+ .

(b) Let (Bt)t≥0 be a standard Brownian motion andMt := maxs∈[0,t] Bs . Using Donsker's
theorem, prove that

(Mt1−Bt1 , . . . ,Mtp−Btp)
(d)
= (|Bt1 |, . . . , |Btp |)

for all 0 ≤ t1 ≤ . . . ≤ tp.

(c) Conclude that the processes (Mt − Bt)t≥0 and (|Bt|)t≥0 are identically distributed.
Hint: The mapping f(t) 7→ maxs∈[0,t] f(s) is continuous in C([0, T ]) for each T > 0.

(d) (*) Denote by (F (1)
t )t≥0 and (F (2)

t )t≥0 the �ltrations generated by these two processes.

Is it true that F (1)
t = Ft, where the �ltration (Ft)t≥0 is generated by (Bt)t≥0 itself?

(In other words, can one reconstruct Bt from Mt −Bt?) Is it true that F (2)
t = Ft ?

12. Uniform laws for the Brownian bridge

Theorem. Let (Bt)t∈[0,1] be a Brownian bridge on [0, 1] and M := maxs∈[0,1] Bs. Then the
following random variables are both U(0, 1), i.e. uniformly distributed on [0, 1]:

τ1 = λ{t ∈ [0, 1] : Bt > 0}, τ2 = inf{t : Bt = M}.

(a) Given u ∈ [0, 1], de�ne Bu
t := B(u+t) − Bu, where (x) := x − ⌊x⌋. Show that the

process (Bu
t )t∈[0,1] is distributed as a Brownian bridge.

(b) Let τu2 := inf{t : Bu
t = M −Bu} and let u be uniformly distributed over [0, 1]. Apply

Fubini's theorem to show that P(τ2 ≤ t) =
∫ 1

0
P(τu2 ≤ t)du is also U(0, 1).

(c) Using Donsker's theorem and Exercise 10, show that τ1 and τ2 have the same law.

(d) (*) Let (Bt)t≥0 be a standard Brownian motion, (B̃t)t∈[0,1] be a Brownian bridge. For

each T < 1 prove that the distributions of the processes (Bt)t∈[0,T ] and (B̃t)t∈[0,T ] are
mutually absolutely continuous. Hint: prove that the processes (Bt − tT−1BT )t∈[0,T ]

and (B̃t − tT−1B̃T )t∈[0,T ] are identically distributed (as a re-scaled Brownian bridge).

6



BROWNIAN MOTION AND STOCHASTIC CALCULUS

Master class 2015-2016

13. Exit time from [−a, a] and time spent in [0,−a] during a downcrossing

(a) Let a > 0 and τ±a := inf{t ≥ 0 : |Bt|= a}, where (Bt)t≥0 is a standard Brownian
motion (started from 0). Show that

E[exp(−µτ±a)] = 1/ cosh(a
√

2µ), µ ≥ 0.

Compute the expectations E[τa] and E[τ 2a ]. Is is true that E[exp(θτ±a)] < +∞ for
some θ > 0? What is the optimal upper bound for such θ's?

Proposition (removing of negative excursions). Let (Bt)t≥0 be a standard Brownian motion,
s(t) := λ({s′ ∈ [0, t] : Bs′ ≥ 0}) and t(s) := inf{t ≥ 0 : s(t) ≥ s}. Then

(Bt(s))s≥0
(d)
= (|Bs|)s≥0 .

(b) Check a similar statement for simple random walks (this is trivial).

(c) Prove that for each T > 0 one has limε↓0 λ(t ∈ [0, T ] : |Bt| ≤ ε) = 0 almost surely.

(d) Let sf (t) and tf (s) be de�ned as in the proposition via a continuous function f = f(t)
instead of Bt. Check that the mapping (f(t))t∈[0,T ] 7→ (f(t(s∧s(T ))))s∈[0,T ] is contin-
uous (in the C([0, T ]) metric) at almost every Brownian motion trajectory (Bt)t∈[0,T ].

(e) Prove the proposition using (b) and Donsker's invariance principle.

(f) Let τ−a := inf{t ≥ 0 : Bt = −a}. Prove that λ(s ∈ [0, τ−a] : 0 ≥ Bs ≥ −a)
(d)
= τ±a.

14. Recurrence/transience of the d-dimensional Brownian motion

Let d ≥ 2 and A(r,R) := {x ∈ Rd : r < ∥x∥ < R}. Let (Bx
t )t≥0 denote a standard

d-dimensional Brownian motion started from x and τr,R = τxr,R := inf{t > 0 : Bx
t ̸∈ A(r, R)}.

(a) For x ∈ A(r, R), prove that

Px[|Bx
τr,R

|=r] =

{
(logR/∥x∥) · (logR/r)−1 if d = 2,(
∥x∥2−d−R2−d

)
·
(
∥r∥2−d−R2−d

)−1
if d ≥ 3.

(b) Prove that P[ ∃t > 0 : Bx
t =0 ] = 0 for all x ∈ Rd.

(c) Let d = 2 and ∥x∥>r>0. Prove that P[ ∃t ≥ 0 : |Bx
t |=r ] = 1 and deduce that

P[ ∃0 < t1 < t2 < . . . : tk → ∞ and |Bx
tk
| = r ] = 1

for any x ∈ Rd and r > 0 (in other words, the Brownian motion in 2D is recurrent).

(d) Let d ≥ 3. Prove that Bt → ∞ as t → ∞ almost surely (in other words, the Brownian
motion in 3+D is transient). Hint: consider events An := {∃s < t : Bs ≥ n3, Bt ≤ n}.

(e) (*) Let d ≥ 2, U ∈ Rd is a bounded open set, x ∈ ∂U and there exist an open cone C
(with the vertex at x) such that B(x, r) ∩ C ⊂ Rd \ U for some r > 0. Prove that x
is a regular boundary point of U , i.e. inf{t > 0 : Bx

t ̸∈ U} = 0 almost surely.
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15. N-dimensional Brownian motion: It�o's calculus,
local martingales and Bessel processes

(a) Let α ∈ R and Bt be a N -dimensional Brownian motion started at x ̸= 0. Consider
(local) semi-martingale Xt := |Bt|α. Compute dXt using It�o's calculus.

(b) Note that Xt is a local martingale if α = 2−N , which agrees with the fact that the
function H(x) = |x|2−N is harmonic in RN (one should consider log |Bt| for N = 2).

Let N = 3, α = −1 and Xt = |Bt|−1 so that Xt is a local martingale. Note that,
almost surely, the process (Xt)t≥0 is well-de�ned for all t ≥ 0 and limt→∞ Xt = 0.

(c) Give an example of a sequence (τn)n∈N of localizing stopping times for (Xt)t≥0.

(d) Check that E[X2
t ] ≤ const < +∞ for some constant independent of t ≥ 0.

(e) What is the law of the random variable maxt∈[0,+∞)Xt ? Does it belong to L1(Ω)?

(f) Using the explicit formula for the Gaussian density, prove that E[XT ] < X0 = x−1.

Hint: Use the identity |Sr|−1
∫
Sr
|y+x|−1dλSr(x) = min{x−1, r−1}, where λSr denotes

the Lebesgue measure on the sphere Sr = {y ∈ R3 : |y|=r} and |Sr| is the area of Sr.

Remark. Thus, Xt is a local martingale but not a (true) martingale.

Let (Bt)t≥0 be a N -dimensional Brownian motion started at x ̸= 0. Denote

βt :=
N∑
k=1

∫ t

0

Bk
t

|Bt|
dBk

t ,

(we set Bk
t /|Bt| = 0 if |Bt| = 0). Check that this stochastic integral is well-de�ned.

(g) Prove that the process (βt)t≥0 is a 1-dimensional Brownian motion started at 0.

Hint: Check that (βt)t≥0 and (β2
t−t)t≥0 are local martingales, and use L�evy's theorem.

(h) Using (a), show that

|Bt| = |x|+ βt +
N−1

2

∫ t

0

ds

|Bs|
,

|Bt|2 = |x|2 + 2

∫ t

0

|Bs|dβs +Nt .

De�nition. Let (βt)t≥0 be a standard 1-dimensional Brownian motion started at 0
and m ≥ 0. A process (Xt)t≥0 satisfying the stochastic di�erential equation

dXt = 2
√

Xt dβt +mdt

is called a squared Bessel process of dimension m. The process Yt :=
√
Xt (if m < 2,

there is an issue with signs of Yt) is called an m-dimensional Bessel process.

Remark. If m = N ≥ 2 is integer, then (Yt)t≥0
(d)
= (|Bt|)t≥0. Note that, almost

surely, |Bt| ̸= 0 for all t ≥ 0. Thus in this case there exists a unique continuous

choice of the square root of the squared process (Xt)t≥0
(d)
= (|Bt|2)t≥0.
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16. Local time at zero for 1D Brownian motion

Let (Bt)t≥0 be a one-dimensional Brownian motion. For every ε > 0, we de�ne a function

gε : R → R+ , gε(x) :=
√
x2 + ε2.

Note that g′ε(x) → sign(x) as ε → 0 uniformly on each of the sets {x ∈ R : |x| ≥ δ}, δ > 0.

(a) Apply It�o's formula to compute a decomposition gε(Bt) = gε(B0)+M ε
t +Aε

t , whereM
ε
t

is a local martingale and Aε
t is a bounded variation process. Observe that M ε

t is a
square integrable martingale and Aε

t is increasing.

(b) Show that, for each T > 0,

(M ε
t )t∈[0,T ] →

ε→0
(βt)t∈[0,T ] in L2(Ω), where βt :=

∫ t

0

sign(Bs)dBs

and the convergence is understood in the metric of C([0, T ]).

Remark. Recall that L�evy's theorem implies that the process (βt)t≥0 is another one-
dimensional Brownian motion de�ned on the same �ltration as (Bt)t≥0 .

(c) Infer that there exists an increasing process (L0
t )t≥0 such that

|Bt| =

∫ t

0

sign(Bs)dBs + L0
t for all t ≥ 0.

Observing that (Aε
t)t∈[0,T ] → (L0

t )t∈[0,T ] as ε → 0 show that, for every choice of the
segment [u, v] ⊂ R+ and δ > 0, the following is true:

|Bt| ≥ δ for all t ∈ [u, v] ⇒ L0
u = L0

v .

Infer that L0
t is constant on each of the intervals (u, v)⊂R+ such that Bt ̸= 0 on (u, v).

De�nition. The process L0
t is called a local time of the Brownian motion Bt at 0.

(d) Given ε > 0, de�ne two sequences of stopping times (σε
n)n≥1 and (τ εn)n≥1 inductively

by setting σε
1 := 0,

τ εn := inf{t > σε
n : |Bt| = ε} and σε

n+1 := inf{t > τ εn : Bt = 0} .
Further, let N ε

t := max{n ≥ 1 : τ εn ≤ t} with the convention max ∅ := 0. Show that

εN ε
t →

ε→0
L0

t in L2(Ω).

Hint: Observe that∣∣∣∣L0
t +

∫ t

0

(∑
n≥11[σε

n,τ
ε
n](s)

)
sign(Bs)dBs − εN ε

t

∣∣∣∣ ≤ ε.

Remark. Note that L0
t can be reconstructed from the absolute value |Bt| of the Brow-

nian motion Bt. In particular, this means that the �ltration generated by the Brow-
nian motion βt = |Bt| − L0

t is strictly smaller than the one generated by Bt itself.
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