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2D Ising model:
(square grid) Spins σi = +1 or −1.

Hamiltonian:

H = −∑
〈ij〉 σiσj .

Partition function:

P(conf .) ∼ e−βH ∼ x# 〈+−〉,

where

x = e−2β∈ [0, 1] .



2D Ising model:
(square grid) Spins σi = +1 or −1.

Hamiltonian:

H = −∑
〈ij〉 σiσj .

Partition function:

P(conf .) ∼ e−βH ∼ x# 〈+−〉,

where

x = e−2β∈ [0, 1] .

Other �lattices� (planar graphs): H = −∑
〈ij〉 Jijσiσj .

P(conf .) ∼ ∏
〈ij〉:σi 6=σj

xij , xij ∈ [0, 1].



Phase transition, criticality:

x > xcrit x = xcrit x < xcrit

(Dobrushin boundary values: two marked points a, b on the
boundary; +1 on the arc (ab), −1 on the opposite arc (ba))
[Peierls `36; Kramers-Wannier '41]: xcrit = 1√

2+1



Conformal invariance:

Quantities (spin correlations, crossing probabilities, etc.)
[Cardy's formula for percolation, etc.]

l
Geometry (interfaces, loop ensembles, etc.)

[Schramm's SLEs, CLEs, etc.]
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Conformal invariance:

Quantities (spin correlations, crossing probabilities, etc.)
[Cardy's formula for percolation, etc.]

l
Geometry (interfaces, loop ensembles, etc.)

[Schramm's SLEs, CLEs, etc.]

�⇑�: SLE computations

�⇓�: Conformal martingale principle

Ref: S. Smirnov. Towards conformal invariance of 2D lattice models. [ Proceedings of the

international congress of mathematicians (ICM), Madrid, Spain, August 22�30, 2006 ]



Spin- and FK-Ising models (random cluster representation):

P(spins conf.) ∼ x# 〈+−〉

=
∏

<ij>

[
x + (1−x) · χs(i)=s(j)

]
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Spin- and FK-Ising models (random cluster representation):

P(edges conf.)
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Spin- and FK-Ising models (random cluster representation):

P(edges conf.)

∼ 2#clusters(1−x)#openx#closed

∼ 2#clusters [(1−x)/x ]#open ∼
√

2
#loops

[(1−x)/(x
√

2)]#open

since
#loops −#open edges

= 2#clusters + const



Spin- and FK-Ising models (random cluster representation):

Self-dual case (x = xcrit):

P(loops conf.) ∼
√

2
#loops



Spin- and FK-Ising models (random cluster representation):

Self-dual case (x = xcrit):

P(loops conf.) ∼
√

2
#loops

Then

Pspin(s(i)=s(j))

=
1

2
(1 + PFK(i ↔ j))



Convergence to SLE. Square lattice (Smirnov):

Spin-Ising Theorem:
Interface → SLE(3)

FK-Ising Theorem:
Interface → SLE(16/3)



Universality. Isoradial graphs/rhombic lattices:

Spin-Ising Theorem:
Interface → SLE(3)

Z =
∑

config.

∏
z:⊕↔ª

tan
θ(z)

2

FK-Ising Theorem:
Interface → SLE(16/3)

Z =
∑

config.

√
2

#loops ∏
z

sin
θ(z)

2
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=
sin θ

2

sin(π
4 − θ

2)
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Universality. Isoradial graphs/rhombic lattices:

FK-Ising local weights: =
sin θ

2

sin(π
4 − θ

2)
=: r(θ)

satis�es r(0) = 0 and Y −∆ invariance: if α + β + γ = π
2 , then

1 = r(α)r(β) + r(α)r(γ) + r(β)r(γ) +
√

2 · r(α)r(β)r(γ).

↔
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Y-∆ invariance:
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Universality. Isoradial graphs/rhombic lattices:

Y-∆ invariance:
↔

↔

1 = r(α)r(β) + r(α)r(γ) + r(β)r(γ) +
√

2 · r(α)r(β)r(γ)



Conformal martingale (discrete fermionic observable):

FK-Ising Theorem:
Interface → SLE(16/3)

Z =
∑

config.

√
2

#loops ∏
z
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θ(z)

2



Conformal martingale (discrete fermionic observable):

Discrete holomorphic
observable having the
martingale property:

F δ = Eχ[z ∈ γ]·e− i
2
·wind(γ,b→z),

where z ∈ ♦.

FK-Ising Theorem:
Interface → SLE(16/3)

Z =
∑

config.

√
2

#loops ∏
z

sin
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2



Conformal martingale (discrete fermionic observable):

Discrete holomorphic
observable having the
martingale property:

F δ = Eχ[z ∈ γ]·e− i
2
·wind(γ,b→z),

where z ∈ ♦.

Boundary Value Problem:
I F (z) is holomorphic in Ω;
I Im[F (ζ)(τ(ζ))

1
2 ] = 0

for ζ ∈ ∂Ω \ {a, b},
where τ(ζ) goes from a
to b;

I (mult.) normalization.



Conformal martingale (discrete fermionic observable):

Discrete holomorphic
observable having the
martingale property:

F δ = Eχ[z ∈ γ]·e− i
2
·wind(γ,b→z),

where z ∈ ♦.

Boundary Value Problem:
I F (z) is holomorphic in Ω;
I Im[F (ζ)(τ(ζ))

1
2 ] = 0

for ζ ∈ ∂Ω \ {a, b},
where τ(ζ) goes from a
to b;

I (mult.) normalization.

Solution: F (z) =
√

Φ′(z),

Φ : (Ω; a, b) → (S ,−∞, +∞),

S = R× (0, 1).



Universality. Convergence to SLE (FK-Ising):
F δ is a discrete holomorphic martingale. Then:

I Take a �discrete integral� Hδ := Im
∫

(F δ)2(z)dδz
(miraculously, it is well de�ned);

I Hδ is NOT discrete harmonic, so prove that it is
�approximately� harmonic;
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I Prove that F δ is uniformly close to
√

Φ′ inside Ω;

This needs some work (see arXiv:0910.2045,0810.2188).
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I Prove that F δ is uniformly close to
√

Φ′ inside Ω;

This needs some work (see arXiv:0910.2045,0810.2188).
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from the convergence of the martingale observable.



Universality. Convergence to SLE (FK-Ising):

I Then deduce convergence of an interface to SLE (16/3)
from the convergence of the martingale observable.

Interfaces → SLE(16/3). In which topology?

I Convergence of driving forces in the Loewner equation.
Directly follows from the convergence of observable.

I Convergence of curves themselves. Needs some a priori
information (estimates of some crossing probabilities).
(Aizenman, Burchard, '99; Kemppainen, Smirnov '09)



FK-Ising crossing probability:

Pδ vs. Qδ



FK-Ising crossing probability:

Pδ

Qδ

Theorem: For all r ,R, t > 0 there
exists ε(δ) → 0 as δ → 0 such that
if B(0, r) ⊂ Ωδ ⊂ B(0, R) and either
both ω(0; Ωδ; aδbδ), ω(0; Ωδ; cδdδ)
or both ω(0; Ωδ; bδcδ), ω(0; Ωδ; dδaδ)
are > t (i.e., quadrilateral Ωδ has no
neighboring small arcs), then

|Pδ − P(Ωδ; aδ, bδ, cδ, dδ)| 6 ε(δ)

(uniformly w.r.t. Ωδ and ♦δ), where
P depends only on the conformal
modulus of (Ωδ; aδ, bδ, cδ, dδ).



FK-Ising crossing probability:

Pδ

Qδ

In the half-plane H: for u ∈ [0, 1],

P(H; [1−u, 1] ↔ [∞, 0])

=

√
1−√1−u√

1−√u +
√

1−√1−u
.

This is a special case of a
hypergeometric formula for crossings
in a general FK model. In the
Ising case it becomes algebraic and
furthermore can be rewritten in
several ways.



FK-Ising crossing probability:

Pδ

Qδ

In the unit disc D: for θ ∈ [0, π
2 ],

P(D; [−e−iθ,−e iθ] ↔ [e−iθ, e iθ])

P(D; [e iθ,−e−iθ] ↔ [−e iθ, e−iθ])

=
sin θ

2

sin(π
4 − θ

2)
=: r(θ).

Remark: This macroscopic formula
formally coincides with the relative
weights corresponding to two
di�erent possibilities of crossings
inside microscopic rhombi in the
FK-Ising model on isoradial graphs.



FK-Ising crossing probability:

Pδ

Qδ

In the unit disc D: for θ ∈ [0, π
2 ],

P(D; [−e−iθ,−e iθ] ↔ [e−iθ, e iθ])

P(D; [e iθ,−e−iθ] ↔ [−e iθ, e−iθ])

=
sin θ

2

sin(π
4 − θ

2)
=: r(θ).

Remark: In particular, the Y − ∆
relation holds, i.e.,

r(α+β) =
r(α)+r(β)+

√
2 · r(α)r(β)

1− r(α)r(β)



FK-Ising crossing probability. External coupling.
√

2Pδ√
2Pδ+Qδ

Qδ√
2Pδ+Qδ



FK-Ising crossing probability. External coupling.
√
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Qδ√
2Pδ+Qδ

Construct a discrete
holomorphic observable F δ

CD .
Then for an (almost)
discrete harmonic function
HCD = Im

∫
(F δ

CD(z))2dδz :
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Construct a discrete
holomorphic observable F δ

CD .
Then for an (almost)
discrete harmonic function
HCD = Im

∫
(F δ

CD(z))2dδz :



FK-Ising crossing probability. Conformal mapping.

For some linear combination of observables F δ := αF δ
AD + βF δ

CD

and H = Im
∫

(F δ(z))2dδz one has:

where the value κδ is
determined by the ratio of
crossing probabilities Pδ/Qδ.
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and H = Im
∫

(F δ(z))2dδz one has:

where the value κδ is
determined by the ratio of
crossing probabilities Pδ/Qδ.

Uniformization:

κ is uniquely determined by
the conformal modulus of
(Ωδ, aδ, bδ, cδ, dδ)



FK-Ising crossing probability. Conformal mapping.

For some linear combination of observables F δ := αF δ
AD + βF δ

CD

and H = Im
∫

(F δ(z))2dδz one has:

where the value κδ is
determined by the ratio of
crossing probabilities Pδ/Qδ.

Uniformization:

Convergence Hδ → H for
rough domains needs some
work (see arXiv:0910.2045).



FK-Ising crossing probabilities: more points?

vs. vs.

vs. vs.
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THANK YOU!


