Crossing probabilities in the critical 2D Ising model

Dmitry Chelkak (PDMI Steklov, St.Petersburg)
joint work with Stanislav Smirnov (Geneva)

arXiv:0910.2045: "Universality in the 2D Ising model and conformal invariance of fermionic observables", 50pp.

Conformal Structures and Dynamics (CODY)

Seillac, France, May 2-8, 2010

2D Ising model:
(square grid)

Spins $\sigma_{i}=+1$ or -1 .
Hamiltonian:

$$
H=-\sum_{\langle i j\rangle} \sigma_{i} \sigma_{j} .
$$

Partition function:
$\mathbb{P}($ conf $) \sim e^{-\beta H} \sim x^{\#\langle+-\rangle}$,
where

$$
x=e^{-2 \beta} \in[0,1] .
$$

2D Ising model:
(square grid)

Spins $\sigma_{i}=+1$ or -1 .
Hamiltonian:

$$
H=-\sum_{\langle i j\rangle} \sigma_{i} \sigma_{j} .
$$

Partition function:

$$
\begin{aligned}
& \mathbb{P}(\text { conf. }) \sim e^{-\beta H} \sim x^{\#\langle+-\rangle}, \\
& \text { where } \\
& \qquad x=e^{-2 \beta} \in[0,1]
\end{aligned}
$$

Other "lattices" (planar graphs): $\quad H=-\sum_{\langle i j\rangle} J_{i j} \sigma_{i} \sigma_{j}$.

$$
\mathbb{P}(\text { conf } .) \sim \prod_{\langle i j\rangle: \sigma_{i} \neq \sigma_{j}} x_{i j}, \quad x_{i j} \in[0,1] .
$$

Phase transition, criticality:

$$
x>x_{\text {crit }} \quad x=x_{\text {crit }} \quad x<x_{\text {crit }}
$$

(Dobrushin boundary values: two marked points a, b on the boundary; +1 on the arc ($a b$), -1 on the opposite arc (ba))
[Peierls '36; Kramers-Wannier '41]: $x_{\text {crit }}=\frac{1}{\sqrt{2}+1}$

Conformal invariance:
Quantities (spin correlations, crossing probabilities, etc.)
[Cardy's formula for percolation, etc.]
\uparrow
Geometry (interfaces, loop ensembles, etc.)
[Schramm's SLEs, CLEs, etc.]

Conformal invariance:

Quantities (spin correlations, crossing probabilities, etc.)
[Cardy's formula for percolation, etc.]
\uparrow
Geometry (interfaces, loop ensembles, etc.)
[Schramm's SLEs, CLEs, etc.]
" \Uparrow ": SLE computations

Conformal invariance:

Quantities (spin correlations, crossing probabilities, etc.) [Cardy's formula for percolation, etc.]
\square
Geometry (interfaces, loop ensembles, etc.) [Schramm's SLEs, CLEs, etc.]
" \Uparrow ": SLE computations
" \downarrow ": Conformal martingale principle
Ref: s. Smirnov. Towards conformal invariance of $2 D$ lattice models. [Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, August 22-30, 2006]

Spin- and FK-Ising models (random cluster representation):

$$
\begin{aligned}
& \mathbb{P}(\text { spins conf. }) \sim x^{\#\langle+-\rangle} \\
= & \prod_{<i j\rangle}\left[x+(1-x) \cdot \chi_{s(i)=s(j)}\right]
\end{aligned}
$$

Spin- and FK-Ising models (random cluster representation):

Spin- and FK-Ising models (random cluster representation):

Spin- and FK-Ising models (random cluster representation):

\mathbb{P} (spins\&edges conf.)
$\sim(1-x)^{\# \text { open }} x$ \#closed
Open edges connect
equal spins (but not all)
Erase spins:
\mathbb{P} (edges conf.)
$\sim 2^{\# \text { clusters }}(1-x)^{\# \text { open }}{ }_{x} \#$ closed

Spin- and FK-Ising models (random cluster representation):

Spin- and FK-Ising models (random cluster representation):
(edges conf.)

Spin- and FK-Ising models (random cluster representation):

Spin- and FK-Ising models (random cluster representation):
Self-dual case $\left(x=x_{\text {crit }}\right)$:

Convergence to SLE. Square lattice (Smirnov):

$$
\begin{aligned}
& \text { Spin-ISING } \underline{\text { THEOREM: }}: \\
& \quad \text { Interface } \rightarrow \text { SLE(3) }
\end{aligned}
$$

FK-Ising Theorem:
Interface \rightarrow SLE(16/3)

Universality. Isoradial graphs/rhombic lattices:

Spin-Ising Theorem: Interface \rightarrow SLE (3)

$$
Z=\sum_{\text {config. } z: \oplus \leftrightarrow \ominus} \prod_{\tan } \frac{\theta(z)}{2}
$$

FK-Ising Theorem:
Interface $\rightarrow \operatorname{SLE}(16 / 3)$

$Z=\sum_{\text {config. }} \sqrt{2}^{\# \text { loops }} \prod_{z} \sin \frac{\theta(z)}{2}$

Universality. Isoradial graphs/rhombic lattices:

FK-Ising local weights:

FK-Ising Theorem:
Interface \rightarrow SLE (16/3)

$$
Z=\sum_{\text {config. }} \sqrt{2}^{\# \text { loops }} \prod_{z} \sin \frac{\theta(z)}{2}
$$

Universality. Isoradial graphs/rhombic lattices:

FK-Ising Local weights:

satisfies $r(0)=0$ and $Y-\Delta$ invariance: if $\alpha+\beta+\gamma=\frac{\pi}{2}$, then

$$
1=r(\alpha) r(\beta)+r(\alpha) r(\gamma)+r(\beta) r(\gamma)+\sqrt{2} \cdot r(\alpha) r(\beta) r(\gamma)
$$

Universality. Isoradial graphs/rhombic lattices:

Universality. Isoradial graphs/rhombic lattices:

$$
1=r(\alpha) r(\beta)+r(\alpha) r(\gamma)+r(\beta) r(\gamma)+\sqrt{2} \cdot r(\alpha) r(\beta) r(\gamma)
$$

Conformal martingale (discrete fermionic observable):
FK-Ising Theorem:
Interface $\rightarrow \operatorname{SLE}(16 / 3)$

$Z=\sum_{\text {config. }} \sqrt{2}^{\# \text { loops }} \prod_{z} \sin \frac{\theta(z)}{2}$

Conformal martingale (discrete fermionic observable):
$\begin{aligned} & \text { Discrete holomorphic } \\ & \text { observable having the }\end{aligned}$
martingale property:
$F^{\delta}=\mathbb{E} \chi[z \in \gamma] \cdot e^{-\frac{i}{2} \cdot \operatorname{wind}(\gamma, b \rightarrow z)}$, where $z \in \diamond$.

$Z=\sum_{\text {config. }} \sqrt{2} \#$ loops $\prod_{z} \sin \frac{\theta(z)}{2}$

Conformal martingale (discrete fermionic observable):

Conformal martingale (discrete fermionic observable):
Discrete holomorphic Boundary Value Problem: observable having the martingale property:
$F^{\delta}=\mathbb{E} \chi[z \in \gamma] \cdot e^{-\frac{i}{2} \cdot \operatorname{wind}(\gamma, b \rightarrow z)}$,
where $z \in \diamond$.

- $F(z)$ is holomorphic in Ω;
- $\operatorname{Im}\left[F(\zeta)(\tau(\zeta))^{\frac{1}{2}}\right]=0$
for $\zeta \in \partial \Omega \backslash\{a, b\}$, where $\tau(\zeta)$ goes from a to b;
- (mult.) normalization.

Solution: $\quad F(z)=\sqrt{\Phi^{\prime}(z)}$,
$\Phi:(\Omega ; a, b) \rightarrow(S,-\infty,+\infty)$,
$S=\mathbb{R} \times(0,1)$.

Universality. Convergence to SLE (FK-Ising):

F^{δ} is a discrete holomorphic martingale. Then:

- Take a "discrete integral" $H^{\delta}:=\operatorname{Im} \int\left(F^{\delta}\right)^{2}(z) d^{\delta} z$ (miraculously, it is well defined);
- H^{δ} is NOT discrete harmonic, so prove that it is "approximately" harmonic;

Universality. Convergence to SLE (FK-Ising):

F^{δ} is a discrete holomorphic martingale. Then:

- Take a "discrete integral" $H^{\delta}:=\operatorname{Im} \int\left(F^{\delta}\right)^{2}(z) d^{\delta} z$ (miraculously, it is well defined);
- H^{δ} is NOT discrete harmonic, so prove that it is "approximately" harmonic;
- Prove that H^{δ} is uniformly (w.r.t. Ω) close to its eventual limit $\operatorname{Im} \Phi=\omega(\cdot, b a, \Omega)$ inside Ω;
- Prove that F^{δ} is uniformly close to $\sqrt{\Phi^{\prime}}$ inside Ω;

This needs some work (see arXiv:0910.2045,0810.2188).

Universality. Convergence to SLE (FK-Ising):

F^{δ} is a discrete holomorphic martingale. Then:

- Take a "discrete integral" $H^{\delta}:=\operatorname{Im} \int\left(F^{\delta}\right)^{2}(z) d^{\delta} z$ (miraculously, it is well defined);
- H^{δ} is NOT discrete harmonic, so prove that it is "approximately" harmonic;
- Prove that H^{δ} is uniformly (w.r.t. Ω) close to its eventual limit $\operatorname{Im} \Phi=\omega(\cdot$, ba, $\Omega)$ inside Ω;
- Prove that F^{δ} is uniformly close to $\sqrt{\Phi^{\prime}}$ inside Ω;

This needs some work (see arXiv:0910.2045, 0810.2188).

- Then deduce convergence of an interface to $\operatorname{SLE}(16 / 3)$ from the convergence of the martingale observable.

Universality. Convergence to SLE (FK-Ising):

- Then deduce convergence of an interface to $\operatorname{SLE}(16 / 3)$ from the convergence of the martingale observable.

Interfaces \rightarrow SLE(16/3). In which topology?

- Convergence of driving forces in the Loewner equation. Directly follows from the convergence of observable.
- Convergence of curves themselves. Needs some a priori information (estimates of some crossing probabilities).
(Aizenman, Burchard, '99; Kemppainen, Smirnov '09)

FK-Ising crossing probability:

$$
\mathrm{P}^{\delta} \quad \text { vs. } \quad \mathrm{Q}^{\delta}
$$

FK-Ising crossing probability:
P^{δ}

Q^{δ}

Theorem: For all $r, R, t>0$ there exists $\varepsilon(\delta) \rightarrow 0$ as $\delta \rightarrow 0$ such that if $B(0, r) \subset \Omega^{\delta} \subset B(0, R)$ and either both $\omega\left(0 ; \Omega^{\delta} ; a^{\delta} b^{\delta}\right), \omega\left(0 ; \Omega^{\delta} ; c^{\delta} d^{\delta}\right)$ or both $\omega\left(0 ; \Omega^{\delta} ; b^{\delta} c^{\delta}\right), \omega\left(0 ; \Omega^{\delta} ; d^{\delta} a^{\delta}\right)$ are $\geqslant t$ (i.e., quadrilateral Ω^{δ} has no neighboring small arcs), then

$$
\left|\mathrm{P}^{\delta}-\mathrm{P}\left(\Omega^{\delta} ; a^{\delta}, b^{\delta}, c^{\delta}, d^{\delta}\right)\right| \leqslant \varepsilon(\delta)
$$

(uniformly w.r.t. Ω^{δ} and \diamond^{δ}), where P depends only on the conformal modulus of $\left(\Omega^{\delta} ; a^{\delta}, b^{\delta}, c^{\delta}, d^{\delta}\right)$.

FK-Ising crossing probability:
P^{δ}

Q^{δ}

In the half-plane \mathbb{H} : for $u \in[0,1]$,

$$
\begin{aligned}
& \mathrm{P}(\mathbb{H} ;[1-u, 1] \leftrightarrow[\infty, 0]) \\
& \quad=\frac{\sqrt{1-\sqrt{1-u}}}{\sqrt{1-\sqrt{u}}+\sqrt{1-\sqrt{1-u}}} .
\end{aligned}
$$

This is a special case of a hypergeometric formula for crossings in a general FK model. In the Ising case it becomes algebraic and furthermore can be rewritten in several ways.

FK-Ising crossing probability:
P^{δ}

Q^{δ}

In the unit disc \mathbb{D} : for $\theta \in\left[0, \frac{\pi}{2}\right]$,

$$
\begin{gathered}
\frac{\mathrm{P}\left(\mathbb{D} ;\left[-e^{-i \theta},-e^{i \theta}\right] \leftrightarrow\left[e^{-i \theta}, e^{i \theta}\right]\right)}{\mathrm{P}\left(\mathbb{D} ;\left[e^{i \theta},-e^{-i \theta}\right] \leftrightarrow\left[-e^{i \theta}, e^{-i \theta}\right]\right)} \\
=\frac{\sin \frac{\theta}{2}}{\sin \left(\frac{\pi}{4}-\frac{\theta}{2}\right)}=: r(\theta) .
\end{gathered}
$$

Remark: This macroscopic formula formally coincides with the relative weights corresponding to two different possibilities of crossings inside microscopic rhombi in the FK-Ising model on isoradial graphs.

FK-Ising crossing probability:
P^{δ}

Q^{δ}

In the unit disc \mathbb{D} : for $\theta \in\left[0, \frac{\pi}{2}\right]$,

$$
\begin{gathered}
\frac{\mathrm{P}\left(\mathbb{D} ;\left[-e^{-i \theta},-e^{i \theta}\right] \leftrightarrow\left[e^{-i \theta}, e^{i \theta}\right]\right)}{\mathrm{P}\left(\mathbb{D} ;\left[e^{i \theta},-e^{-i \theta}\right] \leftrightarrow\left[-e^{i \theta}, e^{-i \theta}\right]\right)} \\
=\frac{\sin \frac{\theta}{2}}{\sin \left(\frac{\pi}{4}-\frac{\theta}{2}\right)}=: r(\theta)
\end{gathered}
$$

Remark: In particular, the $Y-\Delta$ relation holds, i.e.,

$$
r(\alpha+\beta)=\frac{r(\alpha)+r(\beta)+\sqrt{2} \cdot r(\alpha) r(\beta)}{1-r(\alpha) r(\beta)}
$$

FK-Ising crossing probability. External coupling.

FK-Ising crossing probability. External coupling.

Construct
a
discrete holomorphic observable $F_{C D}^{\delta}$. Then for an (almost) discrete harmonic function $H_{C D}=\operatorname{Im} \int\left(F_{C D}^{\delta}(z)\right)^{2} d^{\delta} z:$

FK-Ising crossing probability. External coupling.
Construct a discrete holomorphic observable $F_{A D}^{\delta}$. Then for an (almost) discrete harmonic function $H_{A D}=\operatorname{Im} \int\left(F_{A D}^{\delta}(z)\right)^{2} d^{\delta} z:$

Construct a discrete holomorphic observable $F_{C D}^{\delta}$. Then for an (almost) discrete harmonic function $H_{C D}=\operatorname{Im} \int\left(F_{C D}^{\delta}(z)\right)^{2} d^{\delta} z:$

FK-Ising crossing probability. Conformal mapping.
For some linear combination of observables $F^{\delta}:=\alpha F_{A D}^{\delta}+\beta F_{C D}^{\delta}$ and $H=\operatorname{Im} \int\left(F^{\delta}(z)\right)^{2} d^{\delta} z$ one has:

where the value \varkappa^{δ} is determined by the ratio of crossing probabilities $\mathrm{P}^{\delta} / Q^{\delta}$.

FK-Ising crossing probability. Conformal mapping.
For some linear combination of observables $F^{\delta}:=\alpha F_{A D}^{\delta}+\beta F_{C D}^{\delta}$ and $H=\operatorname{Im} \int\left(F^{\delta}(z)\right)^{2} d^{\delta} z$ one has:

Uniformization:

where the value \varkappa^{δ} is determined by the ratio of crossing probabilities $\mathrm{P}^{\delta} / Q^{\delta}$.
\varkappa is uniquely determined by the conformal modulus of $\left(\Omega^{\delta}, a^{\delta}, b^{\delta}, c^{\delta}, d^{\delta}\right)$

FK-Ising crossing probability. Conformal mapping.
For some linear combination of observables $F^{\delta}:=\alpha F_{A D}^{\delta}+\beta F_{C D}^{\delta}$ and $H=\operatorname{Im} \int\left(F^{\delta}(z)\right)^{2} d^{\delta} z$ one has:

where the value \varkappa^{δ} is determined by the ratio of crossing probabilities $\mathrm{P}^{\delta} / Q^{\delta}$.

Uniformization:

Convergence $H^{\delta} \rightarrow H$ for rough domains needs some work (see arXiv:0910.2045).

FK-Ising crossing probabilities: more points?

FK-Ising crossing probabilities: more points?

THANK YOU!

