2D Ising model: s-holomorphicity and correlation functions

Dmitry Chelkak (Université de Genève & Steklov Institute, St.Petersburg)

[Sample of a critical 2D Ising configuration (with two disorders), © Clément Hongler (EPFL)]

Charles River Lectures
Boston, October 2, 2015
2D Ising model: s-holomorphicity and correlation functions

Outline:

• Nearest-neighbor Ising model in 2D:
 o definition, phase transition
 o fermionic observables
 o local relations: s-holomorphicity
 o dimers and Kac–Ward matrices

• Conformal invariance at criticality:
 o s-holomorphic observables
 o spin correlations and other fields
 o interfaces and loop ensembles

• Research routes

© Clément Hongler (EPFL)
Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: *Lenz-Ising model* on a planar graph G^* (dual to G) is a random assignment of $+/-$ spins to vertices of G^* (faces of G)

Q: I heard this is called a (site) percolation?
Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: *Lenz-Ising model* on a planar graph G^* (dual to G) is a random assignment of $+/-$ spins to vertices of G^* (faces of G).

Q: I heard this is called a (site) percolation?

[sample of a honeycomb percolation]
Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: Lenz-Ising model on a planar graph G^* (dual to G) is a random assignment of $+/-$ spins to vertices of G^* (faces of G).

Q: I heard this is called a (site) percolation?
A: .. according to the following probabilities:

\[
\mathbb{P}[\text{conf. } \sigma \in \{\pm 1\}^V(G^*)] \propto \exp \left[\beta \sum_{e=\langle uv \rangle} J_{uv} \sigma_u \sigma_v \right] \\
\propto \prod_{e=\langle uv \rangle: \sigma_u \neq \sigma_v} x_{uv} ,
\]

where $J_{uv} > 0$ are interaction constants assigned to edges $\langle uv \rangle$, $\beta = 1/kT$ is the inverse temperature, and $x_{uv} = \exp[-2\beta J_{uv}]$.

Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: *Lenz-Ising model* on a planar graph G^* (dual to G) is a random assignment of $+/−$ spins to vertices of G^* (faces of G)

Q: I heard this is called a (site) percolation?
A: .. according to the following probabilities:

$$
\mathbb{P} \left[\text{conf. } \sigma \in \{\pm 1\}^{V(G^*)} \right] \propto \exp \left[\beta \sum_{e=\langle uv \rangle} J_{uv} \sigma_u \sigma_v \right]
\propto \prod_{e=\langle uv \rangle: \sigma_u \neq \sigma_v} x_{uv} ,
$$

where $J_{uv} > 0$ are interaction constants assigned to edges $\langle uv \rangle$, $\beta = 1/kT$ is the inverse temperature, and $x_{uv} = \exp[-2\beta J_{uv}]$.

- It is also convenient to use the parametrization $x_{uv} = \tan(\frac{1}{2}\theta_{uv})$.
- Working with subgraphs of *regular lattices*, one can consider the *homogeneous model* in which all x_{uv} are equal to each other.
Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: *Lenz-Ising model* on a planar graph G^* (dual to G) is a random assignment of +/− spins to vertices of G^* (faces of G)

Disclaimer:
no external magnetic field.

\[
\mathbb{P} \left[\text{conf. } \sigma \in \{\pm1\}^{V(G^*)} \right] \propto \exp \left[\frac{\beta}{2} \sum_{\langle uv \rangle} J_{uv} \sigma_u \sigma_v \right] \\
\propto \prod_{\langle uv \rangle : \sigma_u \neq \sigma_v} x_{uv},
\]

where $J_{uv} > 0$ are interaction constants assigned to edges $\langle uv \rangle$, $\beta = 1/kT$ is the inverse temperature, and $x_{uv} = \exp[-2\beta J_{uv}]$.

- It is also convenient to use the parametrization $x_{uv} = \tan(\frac{1}{2} \theta_{uv})$.
- Working with subgraphs of *regular lattices*, one can consider the *homogeneous model* in which all x_{uv} are equal to each other.
Phase transition (e.g., on \mathbb{Z}^2)

- Dobrushin boundary conditions: $+1$ on (ab) and -1 on (ba)

\[x < x_{\text{crit}} \quad x = x_{\text{crit}} \quad x > x_{\text{crit}} \]

- Ising (1925): no phase transition in 1D \rightarrow doubts about 2+D;
- Peierls (1936): existence of the phase transition in 2D;
- Kramers-Wannier (1941): $x_{\text{self-dual}} = \sqrt{2} - 1 = \tan\left(\frac{1}{2} \cdot \frac{\pi}{4}\right)$;
- Onsager (1944): sharp phase transition at $x = \sqrt{2} - 1$.
At criticality (e.g., on \mathbb{Z}^2):

- Kaufman-Onsager (1948-49), Yang (1952): scaling exponent $\frac{1}{8}$ for the magnetization (some spin correlations in \mathbb{Z}^2 at $x \uparrow x_{\text{crit}}$).
- In particular, for $\Omega_\delta \rightarrow \Omega$ and $u_\delta \rightarrow u \in \Omega$, it should be $E_{\Omega_\delta}[\sigma_{u_\delta}] \lesssim \delta^{\frac{1}{8}}$ as $\delta \rightarrow 0$.

\[x = x_{\text{crit}} \]
At criticality (e.g., on \mathbb{Z}^2):

- Kaufman-Onsager (1948-49), Yang (1952): scaling exponent $\frac{1}{8}$ for the magnetization (some spin correlations in \mathbb{Z}^2 at $x \uparrow x_{\text{crit}}$).
- In particular, for $\Omega_\delta \to \Omega$ and $u_\delta \to u \in \Omega$, it should be $\mathbb{E}_{\Omega_\delta}[\sigma_{u_\delta}] \asymp \delta^{\frac{1}{8}}$ as $\delta \to 0$.

Questions for the part #2:

- Convergence of correlations, e.g.
 \[\delta^{-\frac{n}{8}} \mathbb{E}_{\Omega_\delta}[\sigma_{u_1,\delta} \ldots \sigma_{u_n,\delta}] \xrightarrow{\delta \to 0} \langle \sigma_{u_1} \ldots \sigma_{u_n} \rangle_{\Omega} \]
- Convergence of curves: interfaces (e.g. generated by Dobrushin boundary conditions) to SLE_3's, loop ensembles to CLE_3's?
At criticality (e.g., on \mathbb{Z}^2):

- Kaufman-Onsager (1948-49), Yang (1952): scaling exponent $\frac{1}{8}$ for the magnetization (some spin correlations in \mathbb{Z}^2 at $x \uparrow x_{\text{crit}}$).
- In particular, for $\Omega_\delta \to \Omega$ and $u_\delta \to u \in \Omega$, it should be $E_{\Omega_\delta}[\sigma_{u_\delta}] \asymp \delta^{\frac{1}{8}}$ as $\delta \to 0$.

Questions for the part #2:

- Convergence of correlations, e.g.

$$\delta^{-\frac{n}{8}} E_{\Omega_\delta}[\sigma_{u_1,\delta} \cdots \sigma_{u_n,\delta}] \xrightarrow{\delta \to 0} \langle \sigma_{u_1} \cdots \sigma_{u_n} \rangle_{\Omega}$$

- Convergence of curves: interfaces (e.g. generated by Dobrushin boundary conditions) to SLE$_3$’s, loop ensembles to CLE$_3$’s?

Q: Why these limits are conformally invariant (covariant)?
Fermionic observables: combinatorial definition [Smirnov '00s]

For an oriented edge a of G and a midpoint z_e of another edge e,

$$F_G(a, z_e) := \bar{\eta}_a \sum_{\omega \in \text{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \text{wind}(a \rightsquigarrow z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right],$$

where η_a denotes the (once and forever fixed) square root of the direction of a.

- The factor $e^{-\frac{i}{2} \text{wind}(a \rightsquigarrow z_e)}$ does not depend on the way how ω is split into non-intersecting loops and a path $a \rightsquigarrow z_e$.

Fermionic observables: combinatorial definition [Smirnov ’00s]

For an oriented edge a of G and a midpoint z_e of another edge e,

$$F_G(a, z_e) := \overline{\eta}_a \sum_{\omega \in \text{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \text{wind}(a \leadsto z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right],$$

where η_a denotes the (once and forever fixed) square root of the direction of a.

- The factor $e^{-\frac{i}{2} \text{wind}(a \leadsto z_e)}$ does not depend on the way how ω is split into non-intersecting loops and a path $a \leadsto z_e$.

- When both a and e are “boundary” edges, the factor $\overline{\eta}_a e^{-\frac{i}{2} \text{wind}(a \leadsto z_e)} = \pm \overline{\eta}_e$ is fixed and $F_G(a, z_e)$ becomes the partition function of the Ising model (on G^*) with Dobrushin boundary conditions.
Fermionic observables: combinatorial definition [Smirnov ’00s]

For an oriented edge a of G and a midpoint z_e of another edge e,

$$F_G(a, z_e) := \eta_a \sum_{\omega \in \text{Conf}_G(a, z_e)} e^{-\frac{i}{2} \text{wind}(a \leadsto z_e)} \prod_{\langle uv \rangle \in \omega} X_{uv},$$

where η_a denotes the (once and forever fixed) square root of the direction of a.

- The factor $e^{-\frac{i}{2} \text{wind}(a \leadsto z_e)}$ does not depend on the way how ω is split into non-intersecting loops and a path $a \leadsto z_e$.

- Local relations: if we similarly define $F_G(a, \cdot)$ on “corners” of G, then for any $c \sim z_e \neq z_a$ one has

$$F_G(a, c) = e^{\pm \frac{i}{2} (\theta_e - \alpha(c, e))} \text{Proj}[F_G(a, z_e); e^{\mp \frac{i}{2} \theta_e} \eta_e].$$
Fermionic observables: local relations

- **Definition:**

\[
F_G(a, z_e) := \bar{\eta}_a \sum_{\omega \in \text{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \text{wind}(a \to z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right].
\]

- **Claim:** \(F_G(a, c) = e^{\pm \frac{i}{2} (\theta_e - \alpha(c, e))} \cdot \text{Proj}[F_G(a, z_e); e^{\mp \frac{i}{2} \theta_e \bar{\eta}_e}] \).

- **Proof:** a bijection between \(\text{Conf}_G(a, c) \) and \(\text{Conf}(a, z_e) \).

 Case A:

 Case B:
Fermionic observables: local relations

Definition:

\[F_G(a, z_e) := \bar{\eta}_a \sum_{\omega \in \text{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \text{wind}(a \leadsto z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right]. \]

Claim: \(F_G(a, c) = e^{\pm \frac{i}{2} (\theta_e - \alpha(c, e))} \cdot \text{Proj} [F_G(a, z_e) ; e^{\mp \frac{i}{2} \theta_e} \bar{\eta}_e] \).

Proof: a bijection between \(\text{Conf}_G(a, c) \) and \(\text{Conf}(a, z_e) \). **Case B:**

Case A:

\[a \]

\[z_e \]

\[a \]

\[z_e \]
Fermionic observables: local relations

- **Definition:**
 \[
 F_G(a, z_e) := \bar{\eta}_a \sum_{\omega \in \text{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \text{wind}(a \leftrightarrow z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right].
 \]

- **Claim:**
 \[
 F_G(a, c) = e^{\pm \frac{i}{2} (\theta_e - \alpha(c, e))} \cdot \text{Proj}[F_G(a, z_e); e^{\mp \frac{i}{2} \theta_e \bar{\eta}_e}].
 \]

- **S-holomorphicity** (special self-dual weights on isoradial graphs):
Fermionic observables: local relations

• Definition:

\[F_G(a, z_e) := \overline{\eta}_a \sum_{\omega \in \text{Conf}_G(a,z_e)} \left[e^{-\frac{i}{2} \text{wind}(a \rightarrow z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right]. \]

• Claim: \(F_G(a, c) = e^{\pm \frac{i}{2}(\theta_e - \alpha(c,e))} \cdot \text{Proj}[F_G(a, z_e); e^{\mp \frac{i}{2} \theta_e} \overline{\eta}_e]. \)

• \textbf{S-holomorphcity} (special self-dual weights on isoradial graphs):

\[F_G(a, c) = \text{Proj}[F_G(a, z_e); \overline{\eta}_c] \]

provided each edge \(e \) of \(G \) is a diagonal of a rhombic tile with half-angle \(\theta_e \) and the Ising model weights are given by \(x_e = \tan(\frac{1}{2} \theta_e). \)
Fermionic observables: local relations

- **Definition:**

 \[F_G(a, z_e) := \eta_a \sum_{\omega \in \text{Conf}_G(a, z_e)} \left[e^{-i \text{wind}(a \rightarrow z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right]. \]

- **Claim:** \(F_G(a, c) = e^{\pm \frac{i}{2}(\theta_e - \alpha(c, e))} \cdot \text{Proj}[F_G(a, z_e); e^{\mp \frac{i}{2} \theta_e \eta_e}]. \)

- **S-holomorphismy** (special self-dual weights on isoradial graphs):

 \[F_G(a, c) = \text{Proj}[F_G(a, z_e); \eta_c] \]

 provided each edge \(e \) of \(G \) is a diagonal of a rhombic tile with half-angle \(\theta_e \) and the Ising model weights are given by \(x_e = \tan(\frac{1}{2} \theta_e) \).

- \(\Rightarrow \) critical weights on regular grids:

 - square: \(x_{\text{crit}} = \tan \frac{\pi}{8} = \sqrt{2} - 1 \),
 - honeycomb: \(x_{\text{crit}} = \tan \frac{\pi}{6} = 1/\sqrt{3}, \ldots \)
2D Ising model as a dimer model on a non-bipartite graph (..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ...)

- There exist several representations of the 2D Ising model via dimers on an auxiliary graph
2D Ising model as a dimer model on a non-bipartite graph
(..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ...)

- There exist several representations of the 2D Ising model via
dimers on an auxiliary graph G_F.
There exist several representations of the 2D Ising model via dimers on an auxiliary graph G_F. [e.g., 1-to-2$|V(G)|$ correspondence of spin configurations on G^* (= domain walls on G) and dimers on this G_F; note that $V(G_F) \cong \{\text{oriented edges and corners of } G\}$]
2D Ising model as a dimer model on a non-bipartite graph (..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ...)

- There exist several representations of the 2D Ising model via dimers on an auxiliary graph G_F.

[e.g., 1-to-$2^{|V(G)|}$ correspondence of spin configurations on $G^* (=\text{domain walls on } G)$ and dimers on this G_F; note that $V(G_F) \cong \{\text{oriented edges and corners of } G\}$]
2D Ising model as a dimer model on a non-bipartite graph (..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ...)

- There exist several representations of the 2D Ising model via dimers on an auxiliary graph G_F.
 [e.g., 1-to-$2^{|V(G)|}$ correspondence of spin configurations on G^* (= domain walls on G) and dimers on this G_F; note that $V(G_F) \cong \{\text{oriented edges and corners of } G\}]$

- **Kasteleyn’s theory**: $Z = \text{Pf}[K]$ [\(K = -K^T\) is a weighted adjacency matrix of G_F]
2D Ising model as a dimer model on a non-bipartite graph
(..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ...)

• There exist several representations of the 2D Ising model via
dimers on an auxiliary graph G_F.

[e.g., 1-to-$|V(G)|$ correspondence of spin configurations
on G^* (= domain walls on G) and dimers on this G_F;
note that $V(G_F) \cong \{\text{oriented edges and corners of } G\}$]

• Kasteleyn’s theory: $\mathcal{Z} = \text{Pf}[K]$ [$K = -K^T$ is a weighted adjacency matrix of G_F]

• Definition of fermionic observables via dimers on G_F:

\[F_G(a, c) = \bar{\eta}_c K_{c,a}^{-1} \quad \text{and} \quad F_G(a, z_e) = \bar{\eta}_e K_{e,a}^{-1} + \bar{\eta}_{\bar{e}} K_{\bar{e},a}^{-1}. \]

• Local relations: an equivalent form of the identity $K \cdot K^{-1} = \text{Id}$
2D Ising model as a dimer model on a non-bipartite graph
(..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ...
)

- There exist several representations of the 2D Ising model via
dimers on an auxiliary graph G_F.
 [e.g., 1-to-$2^{\left|V(G)\right|}$ correspondence of spin configurations on G^* (= domain walls on G) and dimers on this G_F; note that $V(G_F) \cong \{\text{oriented edges and corners of } G\}$]

- **Kasteleyn’s theory:** $\mathcal{Z} = \text{Pf}[K]$ [$K = -K^T$ is a weighted adjacency matrix of G_F]

- **Kac–Ward formula (1952–..., 1999–...):** $\mathcal{Z}^2 = \det[\text{Id} - T],$

 \[
 T_{e,e'} = \begin{cases}
 \exp\left[i\frac{\alpha(e,e')}{2}\right] \cdot (x_ex_{e'})^{1/2} & \text{if } e \neq e' \\
 0 & \text{if } e = e'
 \end{cases}
 \]
2D Ising model as a dimer model on a non-bipartite graph (..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ...)

- There exist several representations of the 2D Ising model via dimers on an auxiliary graph G_F.
 [e.g., 1-to-2 $|V(G)|$ correspondence of spin configurations on G^* (= domain walls on G) and dimers on this G_F; note that $V(G_F) \cong \{\text{oriented edges and corners of } G\}]

- Kasteleyn’s theory: $Z = \text{Pf} [K]$ [$K = -K^T$ is a weighted adjacency matrix of G_F]

- Kac–Ward formula (1952–..., 1999–...): $Z^2 = \det [\text{Id} - T]$,
 $$T_{e,e'} = \begin{cases}
 \exp \left[\frac{i}{2} \alpha(e, e') \right] \cdot (x_e x_{e'})^{1/2} & \text{if } e' \text{ prolongs } e \text{ but } e' \neq \bar{e}; \\
 0 & \text{otherwise.}
 \end{cases}$$
 [is equivalent to the Kasteleyn theorem for dimers on G_F]
2D Ising model as a dimer model on a non-bipartite graph (..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ...)

- There exist **several representations** of the 2D Ising model via dimers on an auxiliary graph G_F.

 [e.g., 1-to-2 $|V(G)|$ correspondence of spin configurations on G^* (= domain walls on G) and dimers on this G_F; note that $V(G_F) \cong \{\text{oriented edges and corners of } G\}]

- **Kasteleyn’s theory:** $\mathcal{Z} = \text{Pf}[K]$
 $[K = -K^T$ is a weighted adjacency matrix of G_F]

- **Kac–Ward formula (1952–..., 1999–...):** $\mathcal{Z}^2 = \det[\text{Id} - T]$,

 \[
 T_{e,e'} = \begin{cases}
 \exp\left[\frac{i}{2}\alpha(e,e')\right] \cdot (x_e x_{e'})^{1/2} & \text{if } e' \text{ prolongs } e \text{ but } e' \neq \bar{e}; \\
 0 & \text{otherwise.}
 \end{cases}
 \]

- **More information:** arXiv:1507.08242 [Ch., Cimasoni, Kassel]
Part II: conformal invariance at criticality [Smirnov '06]
[Ch., Duminil-Copin, Hongler, Izyurov, Kemppainen, Kytölä,... '09 – ...]

Main tool: discrete (s-)holomorphic functions

- (A fair amount of) work is needed to understand how to use them for the rigorous analysis when \(\Omega_\delta \to \Omega \), especially in rough domains formed by fractal interfaces.
Part II: conformal invariance at criticality [Smirnov ’06]
[Ch., Duminil-Copin, Hongler, Izyurov, Kemppainen, Kytölä,... ’09 – …]

Main tool: discrete (s-)holomorphic functions

- (A fair amount of) work is needed to understand how to use them for the rigorous analysis when \(\Omega_\delta \rightarrow \Omega \), especially in rough domains formed by fractal interfaces.

General strategy to prove the convergence of correlations:

- in discrete: encode quantities of interest as particular values of a discrete holomorphic function \(F^\delta \) that solves some discrete boundary value problem;
- discrete–continuum: prove convergence (as \(\delta \rightarrow 0 \)) of \(F^\delta \) to the solution \(f \) of the similar continuous b.v.p. [some work to be done];
- continuum–discrete: decipher the limit of discrete quantities from the convergence \(F^\delta \rightarrow f \) [e.g., coefficients at singularities].
Part II: conformal invariance at criticality [Smirnov ’06] [Ch., Duminil-Copin, Hongler, Izyurov, Kemppainen, Kytölä, … ’09 – …]

Main tool: discrete (s-)holomorphic functions

- (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_\delta \rightarrow \Omega$, especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov ’06], universality: [Ch., Smirnov ’09]
- energy density field: [Hongler, Smirnov ’10], [Hongler ’10]
 - spinor version, some ratios of spin correlations: [Ch., Izyurov ’11]
 - spin field: [Ch., Hongler, Izyurov ’12]
- mixed correlations in multiply-connected Ω’s [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]
Part II: conformal invariance at criticality [Smirnov ’06]
[Ch., Duminil-Copin, Hongler, Izyurov, Kemppainen, Kytölä, ... ’09 – …]

Main tool: discrete (s-)holomorphic functions

- (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_\delta \rightarrow \Omega$, especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov ’06], universality: [Ch., Smirnov ’09]
- energy density field: [Hongler, Smirnov ’10], [Hongler ’10]

- spinor version, some ratios of spin correlations: [Ch., Izyurov ’11]
- spin field: [Ch., Hongler, Izyurov ’12]

- mixed correlations in multiply-connected Ω’s [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]
Part II: conformal invariance at criticality [Smirnov ’06]
[Ch., Duminil-Copin, Hongler, Izyurov, Kemppainen, Kytölä, … ’09 – …]

Main tool: discrete (s-)holomorphic functions

- (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_\delta \rightarrow \Omega$, especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov ’06], universality: [Ch., Smirnov ’09]
- energy density field: [Hongler, Smirnov ’10], [Hongler ’10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov ’11]
- spin field: [Ch., Hongler, Izyurov ’12]

- mixed correlations in multiply-connected Ω’s [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]
Part II: conformal invariance at criticality [Smirnov ’06]
[Ch., Duminil-Copin, Hongler, Izyurov, Kemppainen, Kytölä, … ’09 – …]

Main tool: discrete (s-)holomorphic functions

General strategy to prove the convergence of correlations:
• in discrete: encode quantities of interest as particular values of a discrete holomorphic function F^δ that solves some discrete boundary value problem;
• discrete \rightarrow continuum: prove convergence (as $\delta \rightarrow 0$) of F^δ to the solution f of the similar continuous b.v.p. [some work to be done];
• continuum \rightarrow discrete: decipher the limit of discrete quantities from the convergence $F^\delta \rightarrow f$ [e.g., coefficients at singularities].

Typical strategy to prove the convergence of interfaces:
• choose a family of martingales w. r. t. the growing interface γ^δ
 [there are many, e.g., $E^{ab}_{\Omega^\delta}[\sigma_z]$ would do the job for $+1/−1$ b. c.];
Part II: conformal invariance at criticality [Smirnov ’06]
[Ch., Duminil-Copin, Hongler, Izyurov, Kemppainen, Kytölä,... ’09 – …]

Main tool: discrete (s-)holomorphic functions

General strategy to prove the convergence of correlations:

- in discrete: encode quantities of interest as particular values of a discrete holomorphic function F^δ that solves some discrete boundary value problem;
- discrete \rightarrow continuum: prove convergence (as $\delta \rightarrow 0$) of F^δ to the solution f of the similar continuous b.v.p. [some work to be done];
- continuum \rightarrow discrete: decipher the limit of discrete quantities from the convergence $F^\delta \rightarrow f$ [e.g., coefficients at singularities].

Typical strategy to prove the convergence of interfaces:

- choose a family of martingales w. r. t. the growing interface γ^δ [there are many, e.g., $\mathbb{E}^{ab}_{\Omega^\delta}[\sigma_z]$ would do the job for $+1/−1$ b. c.];
- prove uniform convergence of the (re-scaled) quantities as $\delta \rightarrow 0$ [the one above (done in 2012) is not an optimal choice, there are others that are easier to handle (first done in 2006–2009)];
- prove the convergence $\gamma^\delta \rightarrow \gamma$ and recover the law of γ using this family of martingales [some probabilistic techniques are needed].
Part II: conformal invariance at criticality [Smirnov ’06]
Ch., Duminil-Copin, Hongler, Izyurov, Kemppainen, Kytölä, ... ’09 – ...

Main tool: discrete (s-)holomorphic functions

- (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_\delta \rightarrow \Omega$, especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):
- basic observables: [Smirnov ’06], universality: [Ch., Smirnov ’09]
- energy density field: [Hongler, Smirnov ’10], [Hongler ’10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov ’11]
- spin field: [Ch., Hongler, Izyurov ’12]
- mixed correlations in multiply-connected Ω’s [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):
- $+/-$ b.c. (conv. to SLE_3 in a weak topology): [Ch., Smirnov ’09]
- $+$/free/$-$ b.c. (dipolar SLE_3): [Hongler, Kytölä ’11]
- multiply-connected setups: [Izyurov ’13]
- strong topology (tightness of curves): [Kemppainen, Smirnov ’12], [Ch. ’12], [Ch., Duminil-Copin, Hongler ’13], [Ch., D.-C., H., K., S. ’13]
- free b.c. (exploration tree): [Benoist, Duminil-Copin, Hongler ’14]
- [on the way by smb]: full loop ensemble (convergence to CLE_3)
Part II: conformal invariance at criticality [Smirnov '06]
[Ch., Duminil-Copin, Hongler, Izyurov, Kemppainen, Kytölä, ... '09 – ...]

Main tool: discrete (s-)holomorphic functions

- (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_\delta \to \Omega$, especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch., Smirnov '09]
- energy density field: [Hongler, Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

- $+/-$ b.c. (conv. to SLE$_3$ in a weak topology): [Ch., Smirnov '09]
- $+/\text{free}/-$ b.c. (dipolar SLE$_3$): [Hongler, Kytölä '11]
- multiply-connected setups: [Izyurov '13]
- strong topology (tightness of curves): [Kemppainen, Smirnov '12], [Ch. '12], [Ch., Duminil-Copin, Hongler '13], [Ch., D.-C., H., K., S. '13]
- free b.c. (exploration tree): [Benoist, Duminil-Copin, Hongler '14]
- [on the way by smb]: full loop ensemble (convergence to CLE$_3$)
Part II: conformal invariance at criticality \cite{Smirnov06}
\cite{Ch,Duminil-Copin,Hongler,Izyurov,Kemppainen,Kytölä,...09–...}

Main tool: discrete (s-)holomorphic functions

- (A fair amount of) work is needed to understand how to use them for the rigorous analysis when \(\Omega_\delta \to \Omega \), especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):

- basic observables: \cite{Smirnov06}, universality: \cite{Ch,Smirnov09}
- energy density field: \cite{Hongler,Smirnov10}, \cite{Hongler10}
- spinor version, some ratios of spin correlations: \cite{Ch,Izyurov11}
- spin field: \cite{Ch,Hongler,Izyurov12}
- mixed correlations in multiply-connected \(\Omega \)'s [on the way]
- stress-energy tensor \cite{Ch,Glazman,Smirnov, on the way}

Some papers/preprints (convergence of interfaces):

- +/- b.c. (conv. to SLE\(_3 \) in a weak topology): \cite{Ch,Smirnov09}
- +/-free/- b.c. (dipolar SLE\(_3 \)): \cite{Hongler,Kytölä11}
- multiply-connected setups: \cite{Izyurov13}
- strong topology (tightness of curves): \cite{Kemppainen,Smirnov12},
 \cite{Ch12}, \cite{Ch,Duminil-Copin,Hongler13}, \cite{Ch,D.-C.,H.,K.,S.13}
- free b.c. (exploration tree): \cite{Benoist,Duminil-Copin,Hongler14}
- [on the way by smb]: full loop ensemble (convergence to \(\text{CLE}_3 \))
Part II: conformal invariance at criticality [Smirnov '06]
[Ch., Duminil-Copin, Hongler, Izyurov, Kemppainen, Kytölä, ... '09 – ...]

Main tool: discrete (s-)holomorphic functions

- (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_\delta \rightarrow \Omega$, especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch., Smirnov '09]
- energy density field: [Hongler, Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

- $+/ -$ b.c. (conv. to SLE$_3$ in a weak topology): [Ch., Smirnov '09]
- $+/free/-$ b.c. (dipolar SLE$_3$): [Hongler, Kytölä '11]
- multiply-connected setups: [Izyurov '13]
- strong topology (tightness of curves): [Kemppainen, Smirnov '12], [Ch. '12], [Ch., Duminil-Copin, Hongler '13], [Ch., D.-C., H., K., S. '13]

- free b.c. (exploration tree): [Benoist, Duminil-Copin, Hongler '14]
- [on the way by smb]: full loop ensemble (convergence to CLE$_3$)
Conformal covariance of correlation functions at criticality

- Three primary fields:
 - 1, σ (spin), ε (energy density);
 - Scaling exponents: 0, $\frac{1}{8}$, 1.

- **Energy density**: for an edge e of Ω, let

 $$
 \varepsilon_e := \sigma_{e^\#} \sigma_{e^\flat} - \varepsilon_{\text{inf.vol.}}
 = (1 - \varepsilon_{\text{inf.vol.}}) - 2 \cdot \chi[e \in \omega]
 $$

where $e^\#$ and e^\flat are two faces adjacent to e.

[$\varepsilon_{\text{inf.vol.}}$ is lattice-dependent: $= 2^{-\frac{1}{2}}$ (square), $= \frac{2}{3}$ (honeycomb), ...]
Conformal covariance of correlation functions at criticality

• Three primary fields:
 \(1, \sigma\) (spin), \(\varepsilon\) (energy density);
 Scaling exponents: 0, \(\frac{1}{8}\), 1.

• **CFT prediction:**
 If \(\Omega_\delta \to \Omega\) and \(e_{k,\delta} \to e_k\) as \(\delta \to 0\), then
 \[
 \delta^{-n} \cdot \mathbb{E}_{\Omega_\delta}^+ [\varepsilon_{u_1,\delta} \cdots \varepsilon_{u_n,\delta}] \to C_\varepsilon^n \cdot \langle \varepsilon_{e_1} \cdots \varepsilon_{e_n} \rangle_{\Omega}^+,
 \]
 where \(C_\varepsilon^n\) is a lattice-dependent constant,
 \[
 \langle \varepsilon_{u_1} \cdots \varepsilon_{u_n} \rangle_{\Omega}^+ = \langle \varepsilon_{\varphi(u_1)} \cdots \varepsilon_{\varphi(u_n)} \rangle_{\Omega'}^+ \cdot \prod_{s=1}^n |\varphi'(u_s)|
 \]
 for any conformal mapping \(\varphi : \Omega \to \Omega'\), and
 \[
 \langle \varepsilon_{z_1} \cdots \varepsilon_{z_n} \rangle_{\mathbb{H}}^+ = (\pi i)^{-n} \cdot \text{Pf} \left[(z_s - z_m)^{-1}\right]_{s,m=1}^{2n}, \quad z_s = \bar{z}_{2n+1-s}.
 \]
Conformal covariance of correlation functions at criticality

- Three primary fields: 1, σ (spin), ε (energy density);
 Scaling exponents: 0, $\frac{1}{8}$, 1.

- **Theorem**: [Hongler–Smirnov, Hongler]

 If $\Omega_{\delta} \to \Omega$ and $e_{k,\delta} \to e_k$ as $\delta \to 0$, then
 $$\delta^{-n} \cdot \mathbb{E}_{\Omega_{\delta}}^+ [\varepsilon_{u_1,\delta} \cdots \varepsilon_{u_n,\delta}] \to C_\varepsilon \cdot \langle \varepsilon_{e_1} \cdots \varepsilon_{e_n} \rangle^+_{\Omega},$$

 where C_ε is a lattice-dependent constant,
 $$\langle \varepsilon_{u_1} \cdots \varepsilon_{u_n} \rangle^+_{\Omega} = \langle \varepsilon_{\varphi(u_1)} \cdots \varepsilon_{\varphi(u_n)} \rangle^+_{\Omega'} \cdot \prod_{s=1}^n |\varphi'(u_s)|$$

 for any conformal mapping $\varphi : \Omega \to \Omega'$, and
 $$\langle \varepsilon_{z_1} \cdots \varepsilon_{z_n} \rangle^+_{\H} = (\pi i)^{-n} \cdot \text{Pf} \left[(z_s - z_m)^{-1} \right]^{2n}_{s,m=1}, \quad z_s = \overline{z}_{2n+1-s}.$$

- **Ingredients**: convergence of $K_{e,a}^{-1}$ and Pfaffian formalism
Conformal covariance of correlation functions at criticality

- Three primary fields:
 1. \(\sigma \) (spin), \(\varepsilon \) (energy density);
 Scaling exponents: 0, \(\frac{1}{8} \), 1.

- **CFT prediction:**
 If \(\Omega_\delta \to \Omega \) and \(u_{k,\delta} \to u_k \) as \(\delta \to 0 \), then
 \[
 \delta^{-\frac{n}{8}} \cdot \mathbb{E}_{\Omega_\delta}^+ [\sigma_{u_1,\delta} \cdots \sigma_{u_n,\delta}] \xrightarrow[\delta \to 0]{} C^n_{\sigma} \cdot \langle \sigma_{u_1} \cdots \sigma_{u_n} \rangle^+_{\Omega},
 \]
 where \(C_{\sigma} \) is a lattice-dependent constant,

 \[
 \langle \sigma_{u_1} \cdots \sigma_{u_n} \rangle^+_{\Omega} = \langle \sigma_{\varphi(u_1)} \cdots \sigma_{\varphi(u_n)} \rangle^+_{\Omega'} \cdot \prod_{s=1}^{n} |\varphi'(u_s)|^{\frac{1}{8}}
 \]
 for any conformal mapping \(\varphi : \Omega \to \Omega' \), and

 \[
 \left[\langle \sigma_{z_1} \cdots \sigma_{z_n} \rangle^+_{\mathbb{H}} \right]^2 = \prod_{1 \leq s \leq n} (2 \Im z_s)^{-\frac{1}{4}} \times \sum_{\mu \in \{\pm 1\}^n} \prod_{s < m} \frac{Z_s - Z_m}{Z_s - \overline{Z_m}} \left(\frac{\mu_s \mu_m}{2} \right)^{\mu_s \mu_m}
 \]
Conformal covariance of correlation functions at criticality

- Three primary fields:
 - 1, σ (spin), ε (energy density);
 - Scaling exponents: 0, $\frac{1}{8}$, 1.

- **Theorem**: [Ch.–Hongler–Izyurov]

 If $\Omega_{\delta} \to \Omega$ and $u_{k,\delta} \to u_k$ as $\delta \to 0$, then

 $$
 \delta^{-\frac{n}{8}} \cdot E_{\Omega_{\delta}}^+ \left[\sigma_{u_1,\delta} \cdots \sigma_{u_n,\delta} \right] \to \delta \to 0 C_{\sigma}^n \cdot \langle \sigma_{u_1} \cdots \sigma_{u_n} \rangle_{\Omega}^+,
 $$

 where C_{σ} is a lattice-dependent constant,

 $$
 \langle \sigma_{u_1} \cdots \sigma_{u_n} \rangle_{\Omega}^+ = \langle \sigma_{\varphi(u_1)} \cdots \sigma_{\varphi(u_n)} \rangle_{\Omega'}^+ \cdot \prod_{s=1}^n |\varphi'(u_s)|^{\frac{1}{8}}
 $$

 for any conformal mapping $\varphi : \Omega \to \Omega'$, and

 $$
 \left[\langle \sigma_{z_1} \cdots \sigma_{z_n} \rangle_{\mathbb{H}}^+ \right]^2 = \prod_{1 \leq s \leq n} \left(2 \text{Im } z_s \right)^{-\frac{1}{4}} \times \sum_{\mu \in \{\pm 1\}^n} \prod_{s \leq m} \left| \frac{Z_s - Z_m}{Z_s - \overline{Z}_m} \right|^{\frac{\mu_s \mu_m}{2}}
 $$
Conformal covariance of spin correlations at criticality

- spin configurations on G^*
 \iff domain walls on G
 \iff dimers on G_F

- Kasteleyn’s theory: $Z = \text{Pf}[K]$

$[K = -K^T$ is a weighted adjacency matrix of $G_F]$
Conformal covariance of spin correlations at criticality

- spin configurations on G^*
 \iff domain walls on G
 \iff dimers on G_F

- **Kasteleyn’s theory:** $\mathcal{Z} = \text{Pf}[K]$
 $[K = -K^\top$ is a weighted adjacency matrix of G_F]

- **Claim:**
 $$\mathbb{E}[\sigma_{u_1} \ldots \sigma_{u_n}] = \frac{\text{Pf}[K[u_1,\ldots,u_n]]}{\text{Pf}[K]},$$
 where $K[u_1,\ldots,u_n]$ is obtained from K by changing the sign of its entries on slits linking u_1,\ldots,u_n (and, possibly, u_{out}) pairwise.
Conformal covariance of spin correlations at criticality

- spin configurations on G^*
 - \leftrightarrow domain walls on G
 - \leftrightarrow dimers on G_F
- Kasteleyn's theory: $\mathcal{Z} = \text{Pf}[K]$
 \[K = -K^\top \] is a weighted adjacency matrix of G_F
- Claim:
 \[\mathbb{E}[\sigma_{u_1} \ldots \sigma_{u_n}] = \frac{\text{Pf}[K_{[u_1,\ldots,u_n]]]}{\text{Pf}[K]}, \]
 where $K_{[u_1,\ldots,u_n]}$ is obtained from K by changing the sign of its entries on slits linking u_1, \ldots, u_n (and, possibly, u_{out}) pairwise.
- More invariant way to think about entries of $K_{[u_1,\ldots,u_n]}^{-1}$:
 double-covers of G branching over u_1, \ldots, u_n
Conformal covariance of spin correlations at criticality

Main tool: spinors on the double cover \([\Omega_\delta; u_1, \ldots, u_n]\).

\[
F_{\Omega_\delta} (z) := \left[\mathcal{Z}_{\Omega_\delta}^+ [\sigma_{u_1} \cdots \sigma_{u_n}] \right]^{-1} \cdot \sum_{\omega \in \text{Conf}_{\Omega_\delta} (u_1 \rightarrow, z)} \phi_{u_1,\ldots,u_n} (\omega, z) \cdot x^\text{#edges(\omega)},
\]

\[
\phi_{u_1,\ldots,u_n} (\omega, z) := e^{-i \frac{1}{2} \text{wind}(p(\omega))} \cdot (-1)^{\text{#loops}(\omega \setminus p(\omega))} \cdot \text{sheet}(p(\omega), z).
\]
Conformal covariance of spin correlations at criticality

Main tool: spinors on the double cover \([Ω_δ; u_1, \ldots, u_n]\).

\[
F_{Ω_δ}(z) := \left[Z^{+}_{Ω_δ} \left[\sigma_{u_1} \cdots \sigma_{u_n} \right] \right]^{-1} \cdot \sum_{\omega \in \text{Conf}_{Ω_δ}(u_1 \rightarrow, z)} \phi_{u_1,\ldots,u_n}(\omega, z) \cdot x_{\text{crit}}^{\#\text{edges}(\omega)},
\]

\[
\phi_{u_1,\ldots,u_n}(\omega, z) := e^{-\frac{i}{2} \text{wind}(p(\omega))} \cdot (-1)^{\#\text{loops}(\omega \setminus p(\omega))} \cdot \text{sheet}(p(\omega), z).
\]

- \(\text{wind}(p(\gamma))\) is the winding of the path \(p(\gamma) : u_1 \rightarrow = u_1 + \frac{\delta}{2} \sim z\);
- \(\#\text{loops}\) – those containing an odd number of \(u_1, \ldots, u_n\) inside;
- \(\text{sheet}(p(\gamma), z) = +1\), if \(p(\gamma)\) defines \(z\), and \(-1\) otherwise.
Conformal covariance of spin correlations at criticality

Main tool: spinors on the double cover \([\Omega_\delta; u_1, \ldots, u_n]\).

\[
F_{\Omega_\delta}(z) := \left[Z_{\Omega_\delta}^+ [\sigma_{u_1} \cdots \sigma_{u_n}] \right]^{-1} \cdot \sum_{\omega \in \text{Conf}_{\Omega_\delta}(u_1 \to, z)} \phi_{u_1,\ldots,u_n}(\omega, z) \cdot x_{\text{crit}}^\# \text{edges}(\omega),
\]

\[
\phi_{u_1,\ldots,u_n}(\omega, z) := e^{-i/2 \text{wind}(p(\omega))} \cdot (-1)^{\# \text{loops}(\omega \setminus p(\omega))} \cdot \text{sheet}(p(\omega), z).
\]

- \(\text{wind}(p(\gamma))\) is the winding of the path \(p(\gamma) : u_1 \to = u_1 + \frac{\delta}{2} \sim z\);
- \(\# \text{loops}\) – those containing an odd number of \(u_1, \ldots, u_n\) inside;
- \(\text{sheet}(p(\gamma), z) = +1\), if \(p(\gamma)\) defines \(z\), and \(-1\) otherwise.

\[\text{Claim: } F_{\Omega_\delta}(u_1 + \frac{3\delta}{2}) = \frac{E_{\Omega_\delta}^+ [\sigma_{u_1+2\delta} \cdots \sigma_{u_n}]}{E_{\Omega_\delta}^+ [\sigma_{u_1} \cdots \sigma_{u_n}]}\]
Conformal covariance of spin correlations at criticality

Example: to handle $\mathbb{E}^+_{\Omega_\delta}[\sigma_u]$, one should consider the following b.v.p.:

- $f(z^*) \equiv -f(z)$, branches around u;
- $\text{Im} \left[f(\zeta) \sqrt{n(\zeta)} \right] = 0$ for $\zeta \in \partial \Omega$;
- $f(z) = \frac{1}{\sqrt{z-u}} + \ldots$
Conformal covariance of spin correlations at criticality

Example: to handle $\mathbb{E}^{+}_{\Omega_\delta} [\sigma_u]$, one should consider the following b.v.p.:

- $f(z^*) \equiv -f(z)$, branches around u;
- $\text{Im} \left[f(\zeta) \sqrt{n(\zeta)} \right] = 0$ for $\zeta \in \partial \Omega$;
- $f(z) = \frac{1}{\sqrt{z-u}} + A_{\Omega}(u) \cdot 2\sqrt{z-u} + \ldots$

Claim: For $\Omega_\delta \to \Omega$ as $\delta \to 0$,

- $(2\delta)^{-1} \log \left[\mathbb{E}^{+}_{\Omega_\delta} [\sigma_{u_\delta+2\delta}] / \mathbb{E}^{+}_{\Omega_\delta} [\sigma_{u_\delta}] \right] \to \text{Re} [A_{\Omega}(u)]$;
- $(2\delta)^{-1} \log \left[\mathbb{E}^{+}_{\Omega_\delta} [\sigma_{u_\delta+2i\delta}] / \mathbb{E}^{+}_{\Omega_\delta} [\sigma_{u_\delta}] \right] \to -\text{Im} [A_{\Omega}(u)]$.
Conformal covariance of spin correlations at criticality

Example: to handle $\mathbb{E}^+_{\Omega_\delta} [\sigma_u]$, one should consider the following b.v.p.:

- $f(z^*) \equiv -f(z)$, branches around u;
- $\text{Im} \left[f(\zeta) \sqrt{n(\zeta)} \right] = 0$ for $\zeta \in \partial \Omega$;
- $f(z) = \frac{1}{\sqrt{z-u}} + A_{\Omega}(u) \cdot 2\sqrt{z-u} + \ldots$

Claim: For $\Omega_\delta \to \Omega$ as $\delta \to 0$,

- $(2\delta)^{-1} \log \left[\mathbb{E}^+_{\Omega_\delta} [\sigma_{u_\delta+2\delta}] / \mathbb{E}^+_{\Omega_\delta} [\sigma_{u_\delta}] \right] \to \text{Re} \left[A_{\Omega}(u) \right]$;
- $(2\delta)^{-1} \log \left[\mathbb{E}^+_{\Omega_\delta} [\sigma_{u_\delta+2i\delta}] / \mathbb{E}^+_{\Omega_\delta} [\sigma_{u_\delta}] \right] \to - \text{Im} \left[A_{\Omega}(u) \right]$.

Conformal covariance $\frac{1}{8}$: for any conformal map $\phi : \Omega \to \Omega'$,

- $f_{[\Omega,a]}(w) = f_{[\Omega',\phi(a)]}(\phi(w)) \cdot (\phi'(w))^{1/2}$;
- $A_{\Omega}(z) = A_{\Omega'}(\phi(z)) \cdot \phi'(z) + \frac{1}{8} \cdot \phi''(z)/\phi'(z)$.
Conformal covariance of spin correlations at criticality

Example: to handle $E_{\Omega_\delta}^+[\sigma_u]$, one should consider the following b.v.p.:

- $f(z^*) \equiv -f(z)$, branches around u;
- $\text{Im} \left[f(\zeta) \sqrt{n(\zeta)} \right] = 0$ for $\zeta \in \partial\Omega$;
- $f(z) = \frac{1}{\sqrt{z-u}} + A_{\Omega}(u) \cdot 2\sqrt{z-u} + \ldots$

Claim: For $\Omega_\delta \to \Omega$ as $\delta \to 0$,

- $(2\delta)^{-1} \log \left[\frac{E_{\Omega_\delta}^+[\sigma_u+2\delta]}{E_{\Omega_\delta}^+[\sigma_u]} \right] \to \text{Re} [A_{\Omega}(u)]$;
- $(2\delta)^{-1} \log \left[\frac{E_{\Omega_\delta}^+[\sigma_u+2i\delta]}{E_{\Omega_\delta}^+[\sigma_u]} \right] \to -\text{Im} [A_{\Omega}(u)]$.

Work to be done:

- to handle tricky boundary conditions (Dirichlet for $\int \text{Re}[f^2dz]$);
- to prove convergence, incl. near singularities [complex analysis];
- to recover the normalization of $E_{\Omega_\delta}^+[\sigma_u]$ [probabilistic techniques].
Some research routes

- Better understanding of the CFT description at criticality: more fields, Virasoro algebra at the lattice level, “geometric” observables, height functions, Riemann surfaces etc.
Some research routes

- Better understanding of the CFT description at criticality: more fields, Virasoro algebra at the lattice level, “geometric” observables, height functions, Riemann surfaces etc.
- Near-critical (massive) regime \(x - x_{\text{crit}} = m \cdot \delta \): convergence of correlations, massive \(\text{SLE}_3 \) curves and loop ensembles etc.
- Super-critical regime: e.g., convergence of interfaces to \(\text{SLE}_6 \) curves for any fixed \(x > x_{\text{crit}} \) [known only for \(x = 1 \) (percolation)]

\[x = x_{\text{crit}} \quad \text{and} \quad x = 1 \]
Some research routes

• Better understanding of the CFT description at criticality: more fields, Virasoro algebra at the lattice level, “geometric” observables, height functions, Riemann surfaces etc.

• Near-critical (massive) regime $x - x_{\text{crit}} = m \cdot \delta$: convergence of correlations, massive SLE_3 curves and loop ensembles etc.

• Super-critical regime: e.g., convergence of interfaces to SLE_6 curves for any fixed $x > x_{\text{crit}}$ [known only for $x = 1$ (percolation)]

\[x = x_{\text{crit}} \]

\[(x - x_{\text{crit}}) \cdot \delta^{-1} \to \infty \]

\[x = 1 \]
Some research routes

- Better understanding of the CFT description at criticality: more fields, Virasoro algebra at the lattice level, “geometric” observables, height functions, Riemann surfaces etc.

- Near-critical (massive) regime $x - x_{\text{crit}} = m \cdot \delta$: convergence of correlations, massive SLE_3 curves and loop ensembles etc.

- Super-critical regime: e.g., convergence of interfaces to SLE_6 curves for any fixed $x > x_{\text{crit}}$ [known only for $x = 1$ (percolation)]

- Irregular graphs, random interactions etc: many questions...

Tool: local relations and spinor observables are always there!
Some research routes

- Better understanding of the CFT description at criticality: more fields, Virasoro algebra at the lattice level, “geometric” observables, height functions, Riemann surfaces etc.
- Near-critical (massive) regime $x - x_{\text{crit}} = m \cdot \delta$: convergence of correlations, massive SLE_3 curves and loop ensembles etc.
- Super-critical regime: e.g., convergence of interfaces to SLE_6 curves for any fixed $x > x_{\text{crit}}$ [known only for $x = 1$ (percolation)]

- Irregular graphs, random interactions etc: many questions...

Tool: local relations and spinor observables are always there!

- Not only nearest-neighbor interactions
 [recent progress for the energy density field due to Giuliani, Greenblatt and Mastropietro, arXiv:1204.4040]
Some research routes

• Better understanding of the CFT description at criticality: more fields, Virasoro algebra at the lattice level, “geometric” observables, height functions, Riemann surfaces etc.

• Near-critical (massive) regime $x - x_{\text{crit}} = m \cdot \delta$: convergence of correlations, massive SLE$_3$ curves and loop ensembles etc.

• Super-critical regime: e.g., convergence of interfaces to SLE$_6$ curves for any fixed $x > x_{\text{crit}}$ [known only for $x = 1$ (percolation)]

• Irregular graphs, random interactions etc: many questions...

Tool: local relations and spinor observables are always there!

• Not only nearest-neighbor interactions

[recent progress for the energy density field due to Giuliani, Greenblatt and Mastropietro, arXiv:1204.4040]

Thank you!