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Motivation:

» by-product: (uniform wrt all discrete domains) analogues of
classical estimates available in geometric complex analysis.

Example: (harmonic measure wq(z; (ab)) of a “far” boundary arc)

o

Xo X1

Theorem: (Ahlfors, Beurling, (Carleman))
wa(z; (ab)) < exp[—7mLq(z; (ab))], La(z; (ab)) = f;;l (ﬁ(x))_ldx.

Remark: 1{} conformal invariance of wq(z; (ab)) and Lq(z; (ab)).
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Discrete domains:

Let (V% ER,) be a bounded connected subgraph of (I'; E).

Denote by Ef the set of all (oriented) edges (aimta) & EX
such that aine € V2 and a & V2. We set Q := Int Q U 99,

It Q:= V2 90 :={(a;(ama)) : (aima) € E4}.

Formally, the boundary 0%2 of a discrete domain €2 should be
treated as the set of oriented edges (ainta), but we usually identify
it with the set of corresponding vertices a, and think about Int Q
and OX2 as subsets of I', if no confusion arises.



Notation:

Let (I; EM) be an inifinite planar graph embedded into C so that all
its edges (uv) € E" are straight segments, w,, = w,, > 0 be some
fixed edge weights (conductances), and 11, :==> ", , Wy, for u €T.

Discrete domains:

(VS E2) - bounded and

int

connected,

{ El?d = {(amta) ¢ Eifrzlt :
dint € VQ7a € VQ}'

Q:=IntQUIN, IntQ:= V2
P 0Q:={(a; (ainta)) : (ainta)EEk%}.

dashed — polygonal representation
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Further, for A, B C Q, let Zo(A; B) := 3, ca e Za(x:y).



Notation:

Let (I; EM) be an inifinite planar graph embedded into C so that all
its edges (uv) € E" are straight segments, w,, = w,, > 0 be some
fixed edge weights (conductances), and p, :==> _ wy, foruerl.

v~u

Partition function of the random walk:

For a bounded discrete domain Q C I and x,y € Q,

n(”/)—lw
Za(xiy) = Y w(y), w(v):= i Tt

vESa(x:y) Hk 0 Hu

where Sq(x;y) ={y=(x=uo ~ ur ~--- ~ up) = y)} is the
set of all nearest-neighbor paths connecting x and y inside Q
(i.e., u1,. .., Up(y)—1 € Int Q while we admit x, y € 9Q).

Examples: x,y € Int Q: Gq(x;y) Green’s function in Q;
x € Int Q, B C 9Q: wq(x; B) hitting prob. (= harmonic measure).
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» uniformly bounded degrees: there exists a constant vg > 0 such

that, forall w €T, u, = Z(uv)eEr wuy <1 and w,, > 1/0_1;

» no ‘“flat” angles: there exists a constant 79 > 0 such that all
angles between neighboring edges do not exceed m — g
(NB: = all degrees of faces of I' are bounded by 27 /n0);

> edge lengths are locally comparable: there exists a constant
po = 1 such that, for any vertex u € I, one has

max |v —u| < pory, where r,:= min |v—ul;
(uv)eE" (uv)eET

» [ is “quantitatively locally finite”: for any p > 1 there exists
some constant v(p) > 0 such that, uniformly over all u € T,

#v el |v—ul <prs} <v(p).
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» Assumption S (“space”): There exist two positive constants
N0, co > 0 such that, uniformly over all discrete discs B! (u),
u€el, r>r,and 6 € [0,27], one has
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In other words, there are no exceptional directions: the random
walk started at the center of any discrete disc B (1) can exit
this disc through any given boundary arc of the angle m—mg
with probability uniformly bounded away from 0.
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In other words, if one considers some time parametrization
such that the (expected) time spent by the walk at a vertex v
before it jumps is of order r2, then the expected time spent in
a discrete disc B! (u) by the random walk started at u before it
hits B! (u) should be of order r?, uniformly over all discs.
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» Assumption S (“space”): There exist two positive constants
N0, co > 0 such that, uniformly over all discrete discs B! (u),
u€el, r>r,and 6 € [0,27], one has

wB[(u)( u;{ae 8B[(v) rarg(a—uw) € [0,0+(m—mo)]}) = .

» Assumption T (“time”): There exist two positive constants
co, Co > 0 such that, uniformly over all u € T and r > ry,

2 2 . 2
cr® < X vemni(u) v OBrwy(viu) < Gor®

(Open) question: Do assumptions (a)—(d) on the graph I' and the
edge weights w,, listed on the previous page imply (S) and (T)?

(Closed) answer: (A. Nachmias, private communication): YES.
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and (ab) C 02 be a (far from z) boundary arc. Let
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Corollary: Uniformly for all discrete domains (2, z, a, b), one has
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(hardly available by any coupling arguments, if w’s are exp. small)
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Extremal Length Lq(Cq(z2); (ab)):

» Can be defined via the unique solution of some boundary value
problem for discrete harmonic functions: Dirichlet (= 0) on
(ab), Dirichlet (= 1) on Cq(z), Neumann on 022\ (ab);

» Equivalently, can be defined via some optimization problem
for “discrete metrics” (or electric currents) g : E®? — R,

Lq(Cq(z); (ab)) := sup

g:EQ—)R+

where L ( ( ) (ab)) inf’y:CQ(z)<—>(ab) Zeefy 8e
and  Ag(Q) = Y paweg?

In particular, any function g : E®* — R,
gives a lower bound for Lq(Cq(z); (ab)).



Extremal Length Lo (Cq(z); (ab)):

La(Cal2)i(ab)) = swp —00@)

o

a

ko Ky

Corollary: For any Q C 7Z? and some absolute constants (3, C > 0,

wa(z: (ab)) < Cexp[—B Y 5L, U]

Proof: take g := 19;1 on horizontal edges.
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THANK YOU!
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and (ab) C 02 be a (far from z) boundary arc. Let
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If time permits ... some ideas of the proof on the next slides
_>
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connected domains with four marked boundary points

(then use some additional reduction to handle
wq(z; (ab)), RW partition functions in annuli,
and corresponding extremal lengths L(q ; 5 1))
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Some ideas of the proof:

» Work with discrete quadrilaterals (Q2; a, b, ¢, d): simply
connected domains with four marked boundary points;

» Discrete cross-ratios Yq;

» RW partition function Zg = Zq((ab); (cd));

» Extremal length Lo = Lq((ab); (cd)).

Theorem: Uniformly for all discrete quadrilaterals (; a, b, ¢, d),

=

[ _
log(1 + Yq) = Zg < Lot

log(1 —F?Q) = Zq < E&l,

where Yq, Zq and Lq denote the same objects for (2; b, c, d, a).

> YQ?Q =1, LQEQ = 1. Moreover, 29 = i§1 if > const.
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Theorem: Uniformly for all discrete quadrilaterals (Q; a, b, ¢, d),
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Za(a; (cd)) = [Za(a; ¢)Za(a; d) / Za(c; d)]*/?

» = if Yo < const, then Zg =< Ygq (... sum along (ab) ...);
> In particular, if Yq is of order 1, then Zgq is of order 1 too.
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splits the arc (ab) into smaller arcs (aga1) U - - U (ap—1an).



Some ideas of the proof:
Theorem: Uniformly for all discrete quadrilaterals (Q; a, b, ¢, d),

_ [Za(a; d)Za(b; c) 1/2

Za((ab): (cd)) = log(1 + Ya), Yo = |7 5t r

» (Factorization) Theorem: Uniformly for all (Q2; a, ¢, d),

Za(a; (cd)) = [Za(a; ¢)Za(a; d) / Za(c; d)]*/?

» = if Yo < const, then Zg =< Ygq (... sum along (ab) ...);

» = if Yq > const, then Zg = logYq: partition functions Zq
are additive while cross-ratios Yq are multiplicative as one
splits the arc (ab) into smaller arcs (aga1) U - - U (ap—1an).

THANK YOU ONCE MORE!



