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Planar Ising model at criticality: outline

• Combinatorics

Definition, phase transition
Dimers and fermionic observables
Spin correlations and fermions on double-covers
Kadanoff–Ceva’s disorders and propagation equation

Diagonal correlations and orthogonal polynomials

• Conformal invariance at criticality

S-holomorphic functions and Smirnov’s s-harmonicity
Spin correlations: convergence to tau-functions
More fields and CFT on the lattice
Convergence of interfaces and loop ensembles

Tightness of interfaces and ‘strong’ RSW

• Beyond regular lattices: s-embeddings [2017+]

• Perspectives and open questions

[ two disorders inserted ]

(c) Clément Hongler (EPFL)



Planar Ising model: definition [ Lenz, 1920 ] [ Centenary soon! ]

• Lenz-Ising model on a planar graph G ∗ (dual
to G ) is a random assignment of +/− spins
to vertices of G ∗ (=faces of G ) according to

P
[
conf. σ ∈ {±1}V (G∗)

]
∝ exp

[
β
∑

e=〈uv〉 Juvσuσv
]

= Z−1 ·
∏

e=〈uv〉:σu 6=σv
xuv ,

where Juv > 0 are interaction constants preassigned
to edges 〈uv〉, β = 1/kT , and xuv = exp[−2βJuv ].

• Remark: w/o magnetic field⇒ ‘free fermion’.

• Example: homogeneous model (xuv = x) on Z2.

◦ Ising’25: no phase transition in 1D  doubts;
◦ Peierls’36: existence of the phase transition in 2(+)D;
◦ Kramers-Wannier’41: xself-dual =

√
2− 1;

◦ Onsager’44: sharp phase transition at xcrit = xself-dual.

◦

 

Ensemble of domain walls
between ‘+’ and ‘−’ spins.

• ‘+’ boundary conditions
⇒ collection of loops.

bullet



Planar Ising model: phase transition [ Kramers–Wannier’41: xcrit =
√

2− 1 on Z2 ]

• Spin-spin correlations:
• e.g., two spins at distance
• 2n→∞ along a diagonal.

x < xcrit : does not vanish;
x = xcrit: power-law decay;
x > xcrit : exponential decay.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

δ = 1 2δ 
2n 

Theorem [“diagonal correlations”, Kaufman–Onsager’49, Yang’52, McCoy–Wu’66+]:

(i) For x = tan 1
2θ < xcrit, one has limn→∞ ExC�[σ0σ2n] = (1−tan 4θ)1/4 > 0.

(ii) At criticality, Ex=xcrit

C� [σ0σ2n] =
(

2
π

)n ·∏n−1
k=1

(
1− 1

4k2

)k−n ∼ C2
σ · (2n)−

1
4 .

Remark: Many highly nontrivial results on the spin correlations in the infinite volume
are known. Reference: B.M.McCoy – T.T.Wu “The two-dimensional Ising model”.



Planar Ising model: phase transition [ Kramers–Wannier’41: xcrit =
√

2− 1 on Z2 ]

• Spin-spin correlations:
• e.g., two spins at distance
• 2n→∞ along a diagonal.

x < xcrit : does not vanish;
x = xcrit: power-law decay;
x > xcrit : exponential decay.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

δ = 1 2δ 
2n 

• Domain walls structure:

x < xcrit : “straight”;

x = xcrit: SLE(3), CLE(3);

x > xcrit: SLE(6), CLE(6).
[ this is not proved ] x < xcrit x = xcrit x > xcrit



Combinatorics: planar Ising model via dimers (’60s) and fermionic observables
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Fisher’s graph GF: vertices are
corners and oriented edges of G .

2#V(G)-to-1
←−−−−−−−−−→

• Kasteleyn’s theory: F = F = −F>, Z ∼= Pf[ F ]

• Fermions: 〈φcφd 〉 := F−1(c,d) = −〈φdφc〉

• Pfaffian (or Grassmann variables) formalism:

〈φc1 . . . φc2k
〉 = Pf[ 〈φcpφcq〉 ]2kp,q=1
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Combinatorics: planar Ising model via dimers (’60s) and fermionic observables
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There are other
combinatorial
correspondences
of the same kind:

Z ∼= Pf[ F ]
∼= Pf[ K ]
∼= Pf[ C ]

• Kasteleyn’s theory: F = F = −F>

• Fermions: 〈φcφd 〉 := F−1(c,d) = −〈φdφc〉

• Pfaffian (or Grassmann variables) formalism:

〈φc1 . . . φc2k
〉 = Pf[ 〈φcpφcq〉 ]2kp,q=1
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Kasteleyn’s terminal graph GK,
vertices = oriented edges of G .
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Combinatorics: planar Ising model via dimers (’60s) and fermionic observables
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Fisher’s graph GF: vertices are
corners and oriented edges of G .

There are other
combinatorial
correspondences
of the same kind:

Z ∼= Pf[ F ]
∼= Pf[ K ]
∼= Pf[ C ]

• Two other useful techniques:

•• Kac–Ward matrix is equivalent to K;

•• Smirnov’s fermionic observables (2000s) are
•• combinatorial expansions of Pf[ FV(GF)\{c,d} ].
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Kasteleyn’s terminal graph GK,
vertices = oriented edges of G .

Reference: arXiv:1507.08242
(w/ D. Cimasoni and A. Kassel)

“Revisiting the combinatorics
of the 2D Ising model”



Combinatorics: spin correlations and fermions on double-covers
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Observation:

E[σu1...σun ]

=
Pf [ F[u1,..,un] ]

Pf [ F ]
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One changes xe 7→ −xe along
γ[u1,u2] to compute E[σu1σu2].
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One changes xe 7→ −xe along
γ[u1,u2] to compute E[σu1σu2].

Corollary: Let w1 ∼ u1. The ratio
E[σw1σu2...σun ]

E[σu1σu2...σun ]
can be expressed via F−1

[u1,..,un].

Remark: Instead of fixing cuts one can view F
−1
[u1,..,un](c

[,d) = −F−1
[u1,..,un](c

],d) as

a spinor on the double-cover GF
[u1,..,un] of the graph GF ramified over faces u1, .., un.



Combinatorics: Kadanoff–Ceva(’71) disorders and propagation equation

• Given (an even number of) vertices v1, ..., vm,
• consider the Ising model on (the faces of) the
• double-cover G [v1,..,vm] ramified over v1, ..., vm
• with the spin-flip symmetry constraint σu[ = −σu]
• provided that u[, u] lie over the same face u of G .

• Define 〈µv1...µvmσu1...σun〉

:= E[v1,..,vm][σu1...σun ] · Z [v1,..,vm]/Z .

• [!] By definition, this (formal) correlator changes
• the sign when one of uk goes around of one of vs .

[ two disorders inserted ]

(c) Clément Hongler (EPFL)



Combinatorics: Kadanoff–Ceva(’71) disorders and propagation equation

• Given (an even number of) vertices v1, ..., vm,
• consider the Ising model on (the faces of) the
• double-cover G [v1,..,vm] ramified over v1, ..., vm
• with the spin-flip symmetry constraint σu[ = −σu]
• provided that u[, u] lie over the same face u of G .

• Define 〈µv1...µvmσu1...σun〉

:= E[v1,..,vm][σu1...σun ] · Z [v1,..,vm]/Z .

• For a corner c of G , define χc := µv(c)σu(c).

• Proposition: If all vertices v(ck) are distinct, then

±〈χc1...χc2k 〉 = ±〈φc1...φc2k 〉.

• Proof: expand both sides combinatorially on G .
[ two disorders inserted ]

(c) Clément Hongler (EPFL)



Combinatorics: Kadanoff–Ceva(’71) disorders and propagation equation

 

z 
v0 

c01 

u0 

v1 c00 c10 

u1 
Parameterization:

xe = tan 1
2θe

• Propagation equation: Let X (c) := 〈χcO[µ, σ]〉.
• Then X(c00) = X(c01) cosθe + X(c10) sinθe .

• For a corner c of G , define χc := µv(c)σu(c).

• Proposition: If all vertices v(ck) are distinct, then

±〈χc1...χc2k 〉 = ±〈φc1...φc2k 〉.

• Proof: expand both sides combinatorially on G .
[ two disorders inserted ]

(c) Clément Hongler (EPFL)



Combinatorics: Kadanoff–Ceva(’71) disorders and propagation equation
 

cos(ϑe) 

sin(ϑe) 

Parameterization:

xe = tan 1
2θe

• Propagation equation: Let X (c) := 〈χcO[µ, σ]〉.
• Then X(c00) = X(c01) cosθe + X(c10) sinθe .

• [ Perk’80, Dotsenko–Dotsenko’83, . . . , Mercat’01 ]

• Bosonization: To obtain a combinatorial
• representation of the model via dimers on GD

• one should start with two Ising configurations
• [ e.g., see Dubédat’11, Boutillier–de Tilière’14 ]

 

1 

sin(ϑe) 
cos(ϑe) 

sin(ϑe) 
cos(ϑe) 

GD : bipartite (Wu–Lin’75).

Fact: D−1 = C−1 + local .
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GC : vertices = corners of G .



Infinite-volume limit on Z2: diagonal correlations and orthogonal polynomials

• The propagation equation im-
plies the (massive) harmonicity of
spinors on each type of the corners.

• Fourier transform allows to con-
struct such a spinor explicitly.

• Its values on R must be coeffi-

cients of an orthogonal polynomial

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

orthogonal polynomial  source point  

δ = 1 (massive) harmonicity 

Theorem [“diagonal correlations”, Kaufman–Onsager’49, Yang’52, McCoy–Wu’66+]:

(i) For x = tan 1
2θ < xcrit, one has limn→∞ ExC�[σ0σ2n] = (1−tan 4θ)1/4 > 0.

(ii) At criticality, Ex=xcrit

C� [σ0σ2n] =
(

2
π

)n ·∏n−1
k=1

(
1− 1

4k2

)k−n ∼ C2
σ · (2n)−

1
4 .

Remark: Originally considered as a very involved derivation, nowadays it can be done in two

pages (see arXiv:1605:09035), based on the strong Szegö theorem for simple real weights on T.



Conformal invariance at xcrit: s-holomorphicity

 

z 
v0 

c01 

u0 

v1 c00 c10 

u1 Assume that
each (v0u0v1u1)
is drawn as a
rhombus with an
angle 2θv0v1 and

xe = tan 1
2θe

• Propagation equation: Let X (c) := 〈χcO[µ, σ]〉.
• Then X(c00) = X(c01) cosθe +X(c10) sinθe .

Remark: In particular, this setup includes
− square (xcrit =

√
2− 1 = tan π

8 ),

− honeycomb (xcrit = 1/
√

3 = tan π
6 ),

− triangular (xcrit = 2−
√

3 = tan π
12 ) and

− rectangular (2xh/(1−x2
h) · 2xv/(1−x2

v) = 1) grids.

• Critical Z-invariant model
[ Baxter’86 ] on isoradial graphs:

[...,Boutillier–deTilière–Raschel’16]
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2θe

• Propagation equation: Let X (c) := 〈χcO[µ, σ]〉.
• Then X(c00) = X(c01) cosθe +X(c10) sinθe .

• S-holomorphicity: Let F(c) := ηcδ
−1/2X(c),

where ηc := e i
π
4 exp[− i

2 arg(v(c)−u(c))].

• Then F(c) = Pr[F(z);ηc ] = 1
2 [F (z)+η2

cF (z) ]
for some F (z) ∈ C and all corners c ∼ z .

• Critical Z-invariant model
[ Baxter’86 ] on isoradial graphs:

[...,Boutillier–deTilière–Raschel’16]
 



Conformal invariance at xcrit: s-holomorphicity
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each (v0u0v1u1)
is drawn as a
rhombus with an
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• Propagation equation: Let X (c) := 〈χcO[µ, σ]〉.
• Then X(c00) = X(c01) cosθe +X(c10) sinθe .

• S-holomorphicity: Let F(c) := ηcδ
−1/2X(c),

where ηc := e i
π
4 exp[− i

2 arg(v(c)−u(c))].

• Then F(c) = Pr[F(z);ηc ] = 1
2 [F (z)+η2

cF (z) ]
for some F (z) ∈ C and all corners c ∼ z .

• A priori regularity theory
• for s-holomorphic functions
• [Ch.–Smirnov’09] is based on
• the following miraculous fact:

• Smirnov’s s-harmonicity:

• Let F be s-holomorphic. Then

∆•HF >>> 0, ∆◦HF 666 0,

• where

• the function HF is defined by

• HF (v)−HF (u) := (X(c))2

• and can/should be viewed as
• HF =

∫∫∫
Im[F(z)2dz].



Conformal invariance at xcrit: spin correlations [’12, w/ C. Hongler & K. Izyurov ]

• Theorem: Let Ω ⊂ C be a (bounded) simply
• connected domain and Ωδ→Ω as δ → 0. Then

δ−
n
8 · E+

Ωδ
[σu1 ...σun ] →

δ→0
Cn
σ · 〈σu1...σun〉

+
Ω ,

where 〈σu1 ...σun〉+Ω = 〈σϕ(u1)...σϕ(un)〉+Ω′ ·
∏n

s=1 |ϕ′(us)|
1
8

for conformal mappings ϕ : Ω→ Ω′ and[
〈σu1...σun〉

+
H

]2
=
∏

16s6n

(2 Im us)−
1
4 ·
∑

β∈{±1}n

∏
s<m

∣∣∣∣us−umus−um

∣∣∣∣βsβm2

.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

u1 

u2 

u3 

un 

Ω 

• Techniques: Analysis of the kernel D−1
[u1,..,un] viewed as the s-holomorphic solution to

• a discrete Riemann-type boundary value problem. Applying Smirnov’s trick, boundary
• conditions Im[F(ζ)τ (ζ)1/2] = 0 become

∫ ζ
Im[F (z)2dz ] = HF (ζ) = 0, ζ ∈ ∂Ω.



Conformal invariance at xcrit: spin correlations [’12, w/ C. Hongler & K. Izyurov ]

As δ→0, one gets the isomonodromic τ -function

: detD[Ω;u1,...,un] : , where D[Ω;u1,...,un]f := ∂f

is an anti-Hermitian operator acting in (originally)
the real Hilbert space of spinors f : Ω[u1,...,un] → C
satisfying Riemann-type b.c. f = τ f on ∂Ω.

[ Kyoto school (Jimbo, Miwa, Sato, Ueno)’70s ; . . . ;
Palmer’07 “Planar Ising correlations”; Dubédat’11 ]
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• Techniques: Analysis of the kernel D−1
[u1,..,un] viewed as the s-holomorphic solution to

• a discrete Riemann-type boundary value problem. Applying Smirnov’s trick, boundary
• conditions Im[F(ζ)τ (ζ)1/2] = 0 become

∫ ζ
Im[F (z)2dz ] = HF (ζ) = 0, ζ ∈ ∂Ω.



Conformal invariance at xcrit: spin correlations [’12, w/ C. Hongler & K. Izyurov ]

As δ→0, one gets the isomonodromic τ -function

: detD[Ω;u1,...,un] : , where D[Ω;u1,...,un]f := ∂f

is an anti-Hermitian operator acting in (originally)
the real Hilbert space of spinors f : Ω[u1,...,un] → C
satisfying Riemann-type b.c. f = τ f on ∂Ω.[
〈σu1...σun〉

+
H

]2
=
∏

16s6n

(2 Im us)−
1
4 ·
∑

β∈{±1}n

∏
s<m

∣∣∣∣us−umus−um

∣∣∣∣βsβm2

.

• Remark: Passing to the
complex Hilbert space one gets
the (massless) Dirac operator(

0 ∂

∂ 0

)(
f

f̃

)
=

(
∂ f̃
∂f

)
with b.c. f̃ = τ f . For Ω = H
this operator boils down to

f 7→ ∂f on C[u1,...,un,u1,...,un].

• Convergence of random distributions: Basing on the convergence of multi-point

• spin correlations, one can study the convergence of random fields (δ−
1
8σu)u∈Ωδ to

• a (non-Gaussian!) random Schwartz distribution on Ω [ Camia–Garban–Newman ’13,

• Furlan–Mourrat ’16 ] (see also [ Caravenna–Sun–Zygouras ’15 ] for disorder relevance results).



Conformal invariance at xcrit: more fields and CFT on the lattice

From the CFT perspective, the 2D critical Ising model is

• FFF (= Fermionic Free Field): Z = Pf[ D ].

• Minimal model with central charge c = 1
2 and three

• primary fields 1, σ, ε with scaling exponents 0, 1
8 , 1.

• Convergence results:

• Fermions: [ Smirnov’06 (Z2), Ch.–Smirnov’09 (isoradial) ];

• Energy densities: ε :=
√

2 · σe−σe+ − 1 = i
2ψeψ

?
e

• [ Hongler–Smirnov’10, Hongler’10 ];

• Spins: [ Ch.–Hongler–Izyurov’12 ];

• Mixed correlations: [ Ch.–Hongler–Izyurov, ’16 -’18 ]

• spins (σ), disorders (µ), fermions (ψ,ψ?), energy densities (ε) in multiply connected
• domains Ω, with mixed fixed/free boundary conditions. The limits of correlations are
• defined via solutions to appropriate Riemann-type boundary value problems in Ω.



Conformal invariance at xcrit: more fields and CFT on the lattice

From the CFT perspective, the 2D critical Ising model is

• FFF (= Fermionic Free Field): Z = Pf[ D ].

• Minimal model with central charge c = 1
2 and three

• primary fields 1, σ, ε with scaling exponents 0, 1
8 , 1.

• Convergence results:

• Fermions: [ Smirnov’06 (Z2), Ch.–Smirnov’09 (isoradial) ];

• Energy densities: ε :=
√

2 · σe−σe+ − 1 = i
2ψeψ

?
e

• [ Hongler–Smirnov’10, Hongler’10 ];

• Spins: [ Ch.–Hongler–Izyurov’12 ];

• Mixed correlations: [ Ch.–Hongler–Izyurov, ’16 -’18 ]

• And more [ Hongler–

• Kytölä–Viklund’17, ... ]:

• E.g., one can define an
action of the Virasoro
algebra on local lattice
fields via the Sugawara
construction applied to
lattice fermions.

• spins (σ), disorders (µ), fermions (ψ,ψ?), energy densities (ε) in multiply connected
• domains Ω, with mixed fixed/free boundary conditions. The limits of correlations are
• defined via solutions to appropriate Riemann-type boundary value problems in Ω.



Conformal invariance at xcrit: interfaces and loop ensembles

− Dobrushin b.c., weak topology:
[ Smirnov’06 ], [ Ch.–Smirnov’09 ]

− Dipolar SLE(3) (+/free/− b.c.):
[ Hongler–Kytölä’11 ], [ Izyurov’14 ]

− Strong topology (tightness of curves):
[ Kemppainen–Smirnov’12 ]

− Brief summary up to that date:
[ Ch–DC–H–K–S, arXiv:1312.0533 ]

• Theorem [ Smirnov’06 ]:

Ising interfaces→ SLE(3) FK-Ising ones→ SLE(16/3)

− Spin-Ising boundary arc ensemble for free b.c.: [ Benoist–Duminil-Copin–Hongler’14 ]

− Convergence of the full spin-Ising loop ensemble to CLE(3): [ Benoist–Hongler’16 ]

− Exploration of FK boundary loops: [ Kemppainen–Smirnov’15 ], see also [ Garban–Wu’18 ]

− Convergence of the FK loop ensemble to CLE(16/3): [ Kemppainen–Smirnov’16 ]

− “CLE percolations” [ Miller–Sheffield–Werner’16 ]: FK-Ising  CLE(16/3)  CLE(3)



Conformal invariance at xcrit: interfaces and loop ensembles

− Dobrushin b.c., weak topology:
[ Smirnov’06 ], [ Ch.–Smirnov’09 ]

− Dipolar SLE(3) (+/free/− b.c.):
[ Hongler–Kytölä’11 ], [ Izyurov’14 ]

− Strong topology (tightness of curves):
[ Kemppainen–Smirnov’12 ]

− Brief summary up to that date:
[ Ch–DC–H–K–S, arXiv:1312.0533 ]

• Theorem [ Smirnov’06 ]:

Ising interfaces→ SLE(3) FK-Ising ones→ SLE(16/3)

• Fortuin–Kasteleyn (=random cluster) expansion
of the spin-Ising model [ Edwards–Sokol coupling ]:

spins  FK: pe := 1− xe percolation on spin clusters;

FK spins: toss a fair coin for each of the FK clusters.

 



Conformal invariance at xcrit: CLE(3) = ? [ Sheffield–Werner, arXiv:1006.2374 ]

• Question: What could be a good candidate for
• the scaling limit of the outermost domain walls
• surrounding ‘−’ clusters in Ωδ (with ‘+’ b.c.)?

• Intuition: This random loop ensemble should
(a) be conformally invariant;

(b) satisfy the domain Markov property: given the loops intersecting D1 \ D2,
the remaining ones form the same CLEs in the complement.

• Theorem: Provided that its loops do not touch each other,
• a CLE must have the following law for some intensity c ∈ (0, 1]:

(i)i sample a (countable) set of Brownian loops using the
(ii) natural conformally-friendly Poisson process of intensity c ;
(ii) fill the outermost clusters.

• Nesting: Iterate the construction inside all the first-level loops.



Conformal invariance at xcrit: convergence of loop ensembles

Sample with free b.c.

(c) C. Hongler (EPFL)

• Subtlety in the passage from SLEs to CLEs:
To prove the convergence to a CLE, one uses an it-
erative exploration procedure (e.g., [B–H’16] alternate
between exploring boundary arc ensembles for free b.c.
and FK-Ising clusters touching the boundary).

To ensure that discrete and continuous exploration
processes do not deviate from each other (e.g., to
control relevant stopping times), one needs uniform
crossing estimates in rough domains [ ‘strong’ RSW ]

− Spin-Ising boundary arc ensemble for free b.c.: [ Benoist–Duminil-Copin–Hongler’14 ]

− Convergence of the full spin-Ising loop ensemble to CLE(3): [ Benoist–Hongler’16 ]

− Exploration of FK boundary loops: [ Kemppainen–Smirnov’15 ], see also [ Garban–Wu’18 ]

− Convergence of the FK loop ensemble to CLE(16/3): [ Kemppainen–Smirnov’16 ]

− “CLE percolations” [ Miller–Sheffield–Werner’16 ]: FK-Ising  CLE(16/3)  CLE(3)



Conformal invariance at xcrit: tightness of interfaces

• Crossing estimates (RSW): due to the
FKG inequality it is enough to prove that

P
[

 

]
> η(k) > 0

for rectangles of a given aspect ratio
k >
√

3+1, uniformly over all scales.

⇓ [ Aizenman–Burchard’99 ]
⇓ [ Kemppainen–Smirnov’12 ]

Arm exponents ∆n > εn ⇒ tightness of
curves and of the corresponding Loewner
driving forces ξδt : E[exp(ε|ξδt |/

√
t)] 6 C .

• >

 

• >

 

• >
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×

 

• ⇒

 



Conformal invariance at xcrit: tightness of interfaces and ‘strong’ RSW

• Crossing estimates (RSW): due to the
FKG inequality it is enough to prove that

P
[

 

]
> η(k) > 0

for rectangles of a given aspect ratio
k >
√

3+1, uniformly over all scales.

⇓ [ Aizenman–Burchard’99 ]
⇓ [ Kemppainen–Smirnov’12 ]

Arm exponents ∆n > εn ⇒ tightness of
curves and of the corresponding Loewner
driving forces ξδt : E[exp(ε|ξδt |/

√
t)] 6 C .
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d 

Theorem: [ Ch.–Duminil-Copin–Hongler’13 ]

Uniformly w.r.t. (Ωδ; a, b, c , d) and b.c.,

PFK[(ab)↔ (cd)] > η(LΩ;(ab),(cd)) > 0,

where LΩ;(ab),(cd) is the discrete extremal
length (= effective resistance) of the quad.

• Remark: Such a uniform lower bound is not

straightforward even for the random walk par-

tition functions [ ‘toolbox’: arXiv:1212.6205 ].



Beyond regular lattices or isoradial graphs: (periodic) s-embeddings

• Question: generalize convergence results
from the very particular isoradial case to
(as) general (as possible) weighted graphs.

• A model question: (reversible) random walks

in a periodic (or in your favorite) environment.

[ Smirnov’06 ]: Z2

[ Ch.–Smirnov’09]:
isoradial

• Theorem [ Ch., 2018 ]: The
convergence of critical FK-Ising
interfaces to SLE(16/3) holds
for all periodic weighted graphs.
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Beyond regular lattices or isoradial graphs: (periodic) s-embeddings

• Question: generalize convergence results
from the very particular isoradial case to
(as) general (as possible) weighted graphs.

• A model question: (reversible) random walks

in a periodic (or in your favorite) environment.

• But ... how should we draw a planar graph?

− Invariance under the star-triangle transform;

− Compatibility with the isoradial setup.

• Random walks: Tutte’s barycentric embeddings.

[!] For periodic graphs, we also need to fix the

conformal modulus of the fundamental domain.

• Planar Ising model: s-embeddings.

• Criticality: x(E0) = x(E1)
[ Cimasoni–Duminil-Copin’12 ]
1 + x3x4 = x3 + x4 + x1x2

+x1x2x3 + x2x3x4 + x1x2x3x4

• Theorem [ Ch., 2018 ]: The
convergence of critical FK-Ising
interfaces to SLE(16/3) holds
for all periodic weighted graphs.
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Beyond regular lattices or isoradial graphs: (periodic) s-embeddings

 

z 
v0 

c01 

u0 

v1 c00 c10 

u1 Assume that each

(v0u0v1u1) is a

rhombus with an

angle 2θv0v1 and

xe = tan 1
2θe .

• Propagation equation:
X(c00) = X(c01) cosθe + X(c10) sinθe .

• S-holomorphicity: Let F (c) := ηcδ
−1/2X (c),

• where ηc := e i
π
4 exp[− i

2 arg(v(c)− u(c))].

[!] In the isoradial setup, X (c) := (v(c)−u(c))1/2

satisfies the propagation equation.

• Criticality: x(E0) = x(E1)
[ Cimasoni–Duminil-Copin’12 ]
1 + x3x4 = x3 + x4 + x1x2

+x1x2x3 + x2x3x4 + x1x2x3x4

• Theorem [ Ch., 2018 ]: The
convergence of critical FK-Ising
interfaces to SLE(16/3) holds
for all periodic weighted graphs.
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How to draw graphs: (periodic) s-embeddings

 

z 
v0 

c01 

u0 

v1 c00 c10 

u1 
At criticality, the

propagation equa-

tion admits two

periodic solutions.

• Propagation equation:
X(c00) = X(c01) cosθe + X(c10) sinθe .

• Definition: Given a (periodic) complex-valued
solution X to the PE, we define the s-embedding
SX of the graph by SX (v)−SX (u) := (X (c))2.

• The function LX (v)− LX (u) := |X (c)|2
is also well-defined⇒ tangential quads.

• Criticality: x(E0) = x(E1)
[ Cimasoni–Duminil-Copin’12 ]
1 + x3x4 = x3 + x4 + x1x2

+x1x2x3 + x2x3x4 + x1x2x3x4

• Theorem [ Ch., 2018 ]: The
convergence of critical FK-Ising
interfaces to SLE(16/3) holds
for all periodic weighted graphs.
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u1 
At criticality, the

propagation equa-

tion admits two

periodic solutions.

• Propagation equation:
X(c00) = X(c01) cosθe + X(c10) sinθe .

• Definition: Given a (periodic) complex-valued
solution X to the PE, we define the s-embedding
SX of the graph by SX (v)−SX (u) := (X (c))2.

• S-holomorphicity: e i
π
4 X (c)/X (c) = Pr[F(z);ηc ]

for all real-valued spinors X satisfying the PE.

SX (v)− SX (u) := (X (c))2

LX (v)− LX (u) := |X (c)|2

• Lemma: ∃!X : LX – periodic.

• Theorem [ Ch., 2018 ]: The
convergence of critical FK-Ising
interfaces to SLE(16/3) holds
for all periodic weighted graphs.

 



Beyond regular lattices or isoradial graphs: (periodic) s-embeddings

• Key ingredients:

◦ A priori Lipshitzness of projections Pr[F (z);α];

◦ Control of discrete contour integrals of F via LX ;

◦ Positivity lemma: ∆SHF > 0 for some ∆S = ∆>S
([!] ∆S is sign-indefinite no interpretation via RWs);

◦ A priori regularity of HF is nevertheless doable;

◦ Coarse-graining for HF : harmonicity in the limit;

◦ Boundedness of F near “straight” boundaries
⇒ convergence for (special) “straight” rectangles;

◦ ⇒ RSW ⇒ convergence for arbitrary shapes Ω.

• S-holomorphicity: e i
π
4 X (c)/X (c) = Pr[F(z);ηc ]

for all real-valued spinors X satisfying the PE.

SX (v)− SX (u) := (X (c))2

LX (v)− LX (u) := |X (c)|2

• Lemma: ∃!X : LX – periodic.

• Theorem [ Ch., 2018 ]: The
convergence of critical FK-Ising
interfaces to SLE(16/3) holds
for all periodic weighted graphs.

 



Some perspectives and open questions

periodic setup: other observables, ‘strong’ RSW,
loop ensembles, spin correlations;

your favorite object in your favorite setup:
invariance principle for the limit;

 

cos(ϑe) 

sin(ϑe) 

Ising model on random planar maps:
can one attack not only SLEs/CLEs but also LQG in this way?

• Topological correlators in the planar Ising model and CLE(3):
is it possible to understand the convergence of ‘topological
correlators’ for loop ensembles directly via a kind of τ -functions?

• Supercritical regime, renormalization: convergence to CLE(6) for x > xcrit.
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periodic setup: other observables, ‘strong’ RSW,
loop ensembles, spin correlations;

your favorite object in your favorite setup:
invariance principle for the limit;
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Ising model on random planar maps:
can one attack not only SLEs/CLEs but also LQG in this way?

• Topological correlators in the planar Ising model and CLE(3):
is it possible to understand the convergence of ‘topological
correlators’ for loop ensembles directly via a kind of τ -functions?

• Supercritical regime, renormalization: convergence to CLE(6) for x > xcrit.

THANK YOU FOR YOUR ATTENTION!


