BIPARTITE DIMER MODEL
AND MINIMAL SURFACES
IN THE MINKOWSKI SPACE

DwmiTry CHELKAK (ENS)

E@S | PSL% )‘MITSUBISHg

HEAVY INDUSTRIE!

[joint works w/ Benoit Laslier,
Sanjay Ramassamy,

Marianna Russkikh ]

UM —-MSU MATHEMATICS COLLOQUIUM, SEPTEMBER 1ST, 2020 @Q ZOOM



QOutline:

e Basics of the bipartite dimer model:
> definition, Kasteleyn's theorem;
> Thurston’s height functions;
> Temperleyan domains: h° — GFF.

e Conjectural picture on periodic grids:

> Cohn—Kenyon—Propp’s theorem;
> Kenyon—Okounkov's prediction:

o New viewpoint: t-embeddings 7°

B> basic concepts, origami maps O?;
> Assumptions: perfect t-embeddings,

(T°,0°%) — Lorenz-minimal surface;

> Theorem [ Ch. —Laslier — Russkikh '20].

e (Some) open questions/perspectives.

lllustration:

Aztec diamonds
[ Ch.—Ramassamy |
[arXiv:2002.07540]




Bipartite dimer model: basics (Very) particular example:
[ Temperleyan domains Gr C Z?]

SR

e (G,vpy) — finite weighted bipartite
planar graph (w/ marked outer face);

e Dimer configuration = perfect match-
ing D C E(G): subset of edges such
that each vertex is covered exactly once;

e Probability P(D) x v(D) = [[eep Ve:
e Partition function Z,(G)=>_p v(D).

Example: if all weights v, = 1, then Z is the number of perfect matchings in G.
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e Theorem (Kasteleyn, 1961): for each planar

(not necessarily bipartite) graph (G, v), one can

find a signed adjacency matrix A, = —A/ of G:

[such an orientation of edges of a planar graph G is called a Pfaffian orientation |

Z,(G) = |PfA,| = |det A,|'/?



Bipartite dimer model: basics Q: Could you remind us what Pf A is?

e (G,vpy) — finite weighted bipartite A: If A=—A"Tis a 2nx2n matrix, then

planar graph (w/ marked outer face);

. , . PfA:= 553 (-1)*Da,,,..a a
e Dimer configuration = perfect match- 7nar 2 (1) 71021001 502

ing D C E(G): subset of edges such

] Example
that each vertex is covered exactly once;
N 0 a b ¢
e Probability P(D) x v(D) = [[eep Ve: pf :Z _Od ((:)l 1er  af—betcd
e Partition function Z,(G)=>_p v(D). e —e —f 0
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e (G,vpy) — finite weighted bipartite
planar graph (w/ marked outer face);

e Dimer configuration = perfect match-
ing D C E(G): subset of edges such
that each vertex is covered exactly once;
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e Partition function Z,(G)=>_p v(D).
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e Corollary: If b~ w in G, then
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process with the kernel K, 1: CB —CW.
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Bipartite dimer model: basics

e [ Kenyon, 2000 ]: it is often conve-
nient to introduce complex signs in IC,,.
E.g., on Z?, the following choice works:

K-K1=1d
U
K=Y(w,):B—C
are discrete holo-
morphic functions.

e G — bipartite = A, = [ 0 K ]

-K] 0
and [PfA,| = |det K, |.

e Corollary: If b~ w in G, then
P[(bw) € D] = |} (w, b)].
Moreover, the edges of a random dimer

configuration D form a determinantal
process with the kernel K, 1: CB —CW.

e Theorem (Kasteleyn, 1961): for each planar

(not necessarily bipartite) graph (G, v), one can

Z,(G) = |PfA,| =|det A,/

find a signed adjacency matrix A, = —A! of G:

[such an orientation of edges of a planar graph G is called a Pfaffian orientation |



GFF and random height fluctuations
e D — random dimer configuration

e Random height function h on G*: fix
Do, view DUDy as a topographic map.

e Height fluctuations h := h — E[h]
do not depend on the choice of Dj.

(Very) particular example:
[ Temperleyan domains Gr C Z?]
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GFF and random height fluctuations
e D — random dimer configuration

e Random height function h on G*: fix
Do, view DUDy as a topographic map.

e Height fluctuations h := h — E[h]
do not depend on the choice of Dj.

e Theorem (Kenyon, 2000): Let

gs‘r C 672 be Temperleyan approxima-

tions to a given domain Q C C. Then,
B — 7 3GFFq as § — 0,

where GFFq is the Gaussian Free Field
in Q with Dirichlet boundary conditions.

(Very) particular example:
[ Temperleyan domains Gr C Z?]
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Q: What is GFFq?
A:E[i(z)] =0,z € Q;
E[h(z)h(w)]
= —Aél(z, w).




GFF and random height fluctuations
e D — random dimer configuration

e Random height function h on G*: fix
Do, view DUDy as a topographic map.

e Height fluctuations h := h — E[h]
do not depend on the choice of Dj.

Q: why are Temperleyan Gt so special?

Al: ‘nice’ boundary conditions for dis-
crete holomorphic functions K~1(w, ).
A2: Wilson'’s algorithm for UST =

random walks with ‘nice’(=absorbed)
boundary conditions naturally appear.

(Very) particular example:
[ Temperleyan domains Gr C Z?]

Temperley bijection: dimers on Gy
<> spanning trees on a related graph.
This procedure is highly sensitive to the
microscopic structure of the boundary.




Conjectural picture on periodic grids

e [Cohn—Kenyon—Propp, 2000]:
random profiles 6h° concentrate near
a surface (with given boundary) that
maximizes certain entropy functional.

> Example: flat height profile at 092
~ flat surface in the bulk of Q.

> Remark: the entropy functional is
non-trivial and /attice-dependent.

Examples on Hex™ [(c) Kenyon]:

[''1] Though the law of ° is indepen-
dent of the choice of Dg, the limit of A9
as 0 — 0 heavily depends on the limit of
deterministic boundary profiles of §h°:

e frozen/liquid/(gaseous) zones in ;
e ‘arctic curves' ~» algebraic geometry;

e ‘polygonal’ examples are well-studied.
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Conjectural picture on periodic grids

e [Cohn—Kenyon—Propp, 2000]:
random profiles 6h° concentrate near
a surface (with given boundary) that
maximizes certain entropy functional.
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where GFF (q ) denotes the Gaussian
Free Field in a certain profile-dependent
metric/conformal structure p on Q.

[i.e., E[A(z)(w)] = —A(*Qlyu)(z, w) |

[!] This is not proven even for Q% C 672
composed of 2x2 blocks [ = ‘flat’ p].

e Classical example studied in detail:

Aztec diamonds

[ Elkies—Kuperberg—
Larsen—Propp'92,...]

Tl
B88888s
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-y [(c) A.& M. Borodin, S. Chhita]
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Q: How can holomorphic/harmonic
functions on 672 lead to a non-trivial
complex structure in the limit 6 — 07

“A”: Think about functions h(n, m) =
sin(an) sinh(bm) with cos a+cosh b = 2.



Conjectural picture on periodic grids

e [Cohn—Kenyon—Propp, 2000]:
random profiles 6h° concentrate near
a surface (with given boundary) that
maximizes certain entropy functional.

e Prediction [Kenyon—Okounkov,'06] :
R — GFF(Q,”) s

where GFF (q ) denotes the Gaussian
Free Field in a certain profile-dependent
metric/conformal structure p on Q.

[i.e., E[A(z)(w)] = —A(*Qlyu)(z, w) |

[!] This is not proven even for Q% C 672
composed of 2x2 blocks [ = ‘flat’ p].

e Known tools: problematic to apply
$[???] to irregular graphs (G,v)
e Long[!!!]-term motivation:

random maps carrying bipartite dimers
[or the Ising model, via bosonization ]
and their scaling limits (Liouville CFT).

(c) N. Curien
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e Wanted: special embeddings of ab-
stract weighted bipartite planar graphs
+ ‘discrete complex analysis’ techniques

~~ complex structure in the limit.



Theorem: [ Ch. —Laslier —Russkikh | lllustration:
[arXiv:2001.11871 + 20%% . %* ] Aztec diamonds
[ Ch.—Ramassamy ]

Assume that, for finite weighted bipar-
[arXiv:2002.07540]

tite planar graphs G° = (G%,19),
e 7 are perfect t-embeddings of (G°)*
[ satisfying assumption Exp-FAT(6) |;

e as § — 0, the images of T° converge
to a domain D¢ [£ € Lipy(T), [£[< 5 ];

e origami maps (T°,0°) converge to a
Lorentz-minimal surface S¢ C D¢ x R.

Then, the height fluctuations /% in the
dimer models on 7? converge to the
standard Gaussian Free Field in the

intrinsic metric of S¢ C R2+l  R2+2




Theorem: [ Ch. — Laslier — Russkikh |
[arXiv:2001.11871 + 20%x* . ** ]

Assume that, for finite weighted bipar-

tite planar graphs G0 = (95, 1/5),

e 7 are perfect t-embeddings of (G°)*
[ satisfying assumption Exp-FAT(0) |;

e as § — 0, the images of 7° converge
to a domain D¢ [§ € Lip, (T), €[ <5 ;

e origami maps (T°,0°) converge to a
Lorentz-minimal surface S¢ C D¢ x R.

Then, the height fluctuations /? in the
dimer models on 7? converge to the
standard Gaussian Free Field in the

intrinsic metric of S¢ C R*™! C R?*2,

e Domains D¢, surfaces Sg:
o {:T — (—%,%) — L-Lipschitz function;
e D¢ : bounded by z(¢)=e'?-(cos £(¢)) %

o S¢ spans Le := (2(¢), tan(&(¢)))per
Le C {xeR¥ L |Ix|2= ¢ +5¢ = = 1},

e Aztec case
surface S;:
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Embeddings of weighted bipartite planar graphs carrying the dimer model
[and admitting reasonable notions of discrete complex analysis |

e t-embeddings = Coulomb gauges: given (G,v),
find 7 : G* — C [G* — augmented dual] s.t.

> weights v, are gauge equivalent to x(,,y- = |T (V') =T (V)|
(i-e., Vbw = gbXbw&w for some g : BUW — R ) and

> at each inner vertex 7 (v), the sum of black angles = .




Embeddings of weighted bipartite planar graphs carrying the dimer model
[and admitting reasonable notions of discrete complex analysis |

e t-embeddings = Coulomb gauges: given (G,v),
find 7 : G* — C [G* — augmented dual] s.t.

> weights v, are gauge equivalent to x(,,y- = |T (V') =T (V)|
(i.e., Vpw = 8pXbw8w for some g : BUW — R, ) and

> at each inner vertex 7 (v), the sum of black angles = .

e p-embeddings = perfect t-embeddings:
> outer face is a tangential (possibly, non-convex) polygon,
> edges adjacent to outer vertices are bisectors.

e Warning: for general (G,v), the existence of perfect
t-embeddings is not known though they do exist in particular
cases + the count of #(degrees of freedom) matches.




Embeddings of weighted bipartite planar graphs carrying the dimer model
[and admitting reasonable notions of discrete complex analysis |

e t-embeddings = Coulomb gauges: given (G,v),
find 7 : G* — C [G* — augmented dual] s.t.

> weights v, are gauge equivalent to x(,,y- = |T (V') =T (V)|
(i-e., Vbw = gbXbw&w for some g : BUW — R ) and

> at each inner vertex 7 (v), the sum of black angles = .

e origami maps O: G* - C ~ jmommmmmmemoo !
“fold C along segments of 7"
e the mapping (7, O) can be

viewed as a ‘piece-wise linear
embedding’ of G* into R2t2,  Eemmemmmmmmoee
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Theorem: [ Ch. — Laslier — Russkikh |
[arXiv:2001.11871 + 20%x* . ** ]

Assume that, for finite weighted bipar-

tite planar graphs G0 = (95, 1/5),

e 7 are perfect t-embeddings of (G°)*
[ satisfying assumption Exp-FAT(0) |;

e as § — 0, the images of 7° converge
to a domain D¢ [£ € Lipy(T), [£| <5 ];

e origami maps (T°,0°) converge to a
Lorentz-minimal surface S¢ C D¢ x R.

Then, the height fluctuations A? in the
dimer models on 7? converge to the
standard Gaussian Free Field in the

intrinsic metric of S¢ C R2t1l - R2H2

e Exp-Fa1(6) for triangulations 77°:

for each g > 0, if one removes all
‘exp(—B6~1)-fat’ triangles from T7?, then
the size of remaining (in the bulk of D)
vertex-connected components —5_0 0.

[ non-triangulations: split either black or white faces into triangles]

e Aztec case
p-embeddings:




Embeddings of weighted bipartite planar graphs carrying the dimer model
[and admitting reasonable notions of discrete complex analysis |

Coulomb gauges [ Kenyon—Lam —Ramassamy — Russkikh, arXiv:1810.05616 ]
{§  (circle patterns, cluster algebras) [+ Affolter arXiv:1808.04227 |
t-embeddings [ Ch.— Laslier — Russkikh, arXiv:2001.11871, arXiv:20%*. %]
(discrete complex analysis framework & a priori regularity estimates)

Particular cases: harmonic/ Tutte's embeddings [via the Temperley bijection |
Ising model s-embeddings [ Ch., arXiv:1712.04192, 2006.14559]

Very particular case: Baxter's Z-invariant
Ising model: rhombic lattices/isoradial graphs
[ Ch.=Smirnov, arXiv:0808.2547,0910.2045
“Universality in the 2D Ising model and con-
formal invariance of fermionic observables’ |




Open questions, perspectives [general (G,v)]
. . > degfout = 4:
[?] Existence of perfect t-embeddings OK [KLRR]
p-embeddings = perfect t-embeddings:

> outer face is a tangential (non-convex) polygon,

> edges adjacent to outer vertices are bisectors.

> #(degrees of
freedom): OK
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[?] Existence of perfect t-embeddings

p-embeddings = perfect t-embeddings:
> outer face is a tangential (non-convex) polygon,
> edges adjacent to outer vertices are bisectors.

[?] Why does Lorentz geometry appear?

Another simple example: annulus-type graphs
~~ Lorentz-minimal cusp (z, arcsinh |z|).

[?] P-embeddings and more algebraic viewpoints:
«~» embeddings to the Klein/Pliicker quadric [?]
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[??] Eventually, what about embeddings of random
maps weighted by dimers/Ising? Liouville CFT [?7]

(c) N. Curien
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[?] Existence of perfect t-embeddings

p-embeddings = perfect t-embeddings:
> outer face is a tangential (non-convex) polygon,
> edges adjacent to outer vertices are bisectors.

[?] Why does Lorentz geometry appear?
Another simple example: annulus-type graphs
~~ Lorentz-minimal cusp (z, arcsinh |z|).

[?] P-embeddings and more algebraic viewpoints:
«~» embeddings to the Klein/Pliicker quadric [?]

[??] Eventually, what about embeddings of random
maps weighted by dimers/Ising? Liouville CFT [?7]

THANK YOU!

(c) N. Curien



