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• Very short introduction: Conformally invariant random curves
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– Basic definitions
– Convergence theorems (harmonic measure, Green function, Poisson kernel)

D. Chelkak, S. Smirnov: Discrete complex analysis on isoradial graphs. arXiv:0810.2188

– Key ideas of the proofs
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Very short introduction: Conformally invariant random curves

S. Smirnov. Towards conformal invariance of 2D lattice models. Proceedings of

the international congress of mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Vol. II:

Invited lectures, 1421-1451. Zürich: European Mathematical Society (EMS), 2006.

Example 1: Loop-erased Random Walk.

G. F. Lawler, O. Schramm, W. Werner, Conformal invariance of planar loop-erased random walks

and uniform spanning trees, Ann. Probab. 32 (2004), 939–995.

I. Sample the random walk (say, on (δZ)2) starting from 0 till the first time it hits
the boundary of the unit disc D. II. Erase all loops starting from the beginning.

The result: simple curve going from 0 to ∂D.

Question: How to describe its scaling limit as δ → 0?
(should be conformally invariant since the Brownian motion (scaling limit of random walks) is

conformally invariant and the loop-erasure procedure is pure topological)



Example 2: Percolation interfaces (site percolation on the triangular lattice).

S. Smirnov, Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits,

C. R. Acad. Sci. Paris 333, 239–244 (2001).

Take some simple-connected discrete domain Ωδ. For each site toss the (fair) coin
and paint the site black or white.

Boundary conditions: black on the
boundary arc ab; white on the
complementary arc ba, a, b ∈ ∂Ωδ.

Question: What is the scaling limit
of the interface (random curve) going
from a to b as δ → 0? (conformal

invariance was predicted by physicists)



Oded Schramm’s principle:

(A) Conformal invariance. For a conformal map of the domain Ω one has

φ(µ(Ω, a, b)) = µ(φ(Ω), φ(a), φ(b)).



Oded Schramm’s principle:

(B) Domain Markov Property. The law conditioned on the interface already
drawn is the same as the law in the slit domain:

µ(Ω, a, b)|γ′ = µ(Ωγ′, a′, b).



Oded Schramm’s principle:

O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J.

Math. 118, 221–288 (2000).

(A) Conformal invariance & (B) Domain Markov Property ⇒ µ is SLE(κ):
Schramm’s Stochastic-Lowner Evolution for some real parameter κ > 0.

Remark: SLE is constructed dynamically via the Lowner equation in C+

Remark: Nowadays a lot is known about the SLE. For instance, the Hausdorff
dimension of SLE(κ) is min(1+κ

8 , 2) almost surely (V. Beffara).

Universality: The conformally invariant scaling limit should not depend on
the structure of the underlying graph.



How to prove the convergence to SLE?

(in an appropriate weak-∗ topology)

Martingale principle: If a random curve γ admits a (non-trivial) conformal
martingale Ft(z) = F (z; Ω \ γ[0, t], γ(t), b), then γ is given by SLE (with the
parameter κ derived from F ).

Discrete example (combinatorial statement for the time-reversed LERW in D):

the discrete martingale is

P δ(z) := Poisson kernel in Dδ \ γδ[0, t]
(mass at the single point γδ(t))
normalized by P δ(0) = 1.



Convergence results are important:

One needs to know that the solutions of various discrete boundary value problems
converge to their continuous counterparts as the mesh of the lattice goes to 0.

Remark: (i) Without any regularity assumptions about the boundary;

(ii) Universally on different lattices (planar graphs).



Isoradial graphs An isoradial graph
Γ (black vertices,
solid lines), its dual
isoradial graph Γ∗

(gray vertices, dashed
lines), the corresponding
rhombic lattice (or
quad-graph) (vertices
Λ = Γ ∪ Γ∗, thin lines)
and the set ♦ = Λ∗

(white diamond-shaped
vertices).

The rhombi angles are
uniformly bounded from
0 and π (i.e., belong to
[η, π−η] for some η > 0).



Discrete
Laplacian:

Let Ωδ
Γ be some connected discrete

domain and H : Ωδ
Γ → R. The discrete

Laplacian of H at u ∈ IntΩδ
Γ is

[∆δH](u) :=

1
µδ

Γ(u)

∑
us∼u

tan θs · [H(us)−H(u)],

where µδ
Γ(u) = δ2

2

∑
us∼u sin 2θs.

H is discrete harmonic in Ωδ
Γ iff

[∆δH](u) = 0 at all u ∈ IntΩδ
Γ.



Discrete domain:

The interior vertices are gray, the boundary
vertices are black and the outer vertices are
white. b(1) = (b; b(1)

int) and b(2) = (b; b(2)
int) are

different elements of ∂Ωδ
Γ.

Maximum principle: For harmonic H,

max
u∈Ωδ

Γ

H(u) = max
a∈∂Ωδ

Γ

H(a).

Discrete Green formula:

∑

u∈Int Ωδ
Γ

[G∆δH −H∆δG](u)µδ
Γ(u) =

∑

a∈∂Ωδ
Γ

tan θaaint
·[H(a)G(aint)−H(aint)G(a)]



Two features of the Laplacian on isoradial graphs:

• Approximation property: Let φδ = φ
∣∣
Γ
. Then

(i) ∆δφδ ≡ ∆φ ≡ 2(a + c), if φ(x + iy) ≡ ax2 + bxy + cy2 + dx + ey + f .

(ii)
∣∣ [∆δφδ](u)− [∆φ](u)

∣∣ 6 const ·δ ·maxW (u) |D3φ|.

• Asymptotics of the (free) Green function H = G(·; u0):

(i) [∆δH](u) = 0 for all u 6= u0 and µδ
Γ(u0) · [∆δH](u0) = 1;

(ii) H(u) = o(|u−u0|) as |u− u0| → ∞;
(iii) H(u0) = 1

2π(log δ−γEuler−log 2), where γEuler is the Euler constant.

(Improved) Kenyon’s theorem (see also Bobenko, Mercat, Suris):
There exists unique Green’s function

GΓ(u; u0) =
1
2π

log |u−u0|+ O

(
δ2

|u−u0|2
)

.



Discrete harmonic measure:

For each f : ∂Ωδ
Γ → R there exists unique discrete harmonic in Ωδ

Γ function H such
that H|∂Ωδ

Γ
= f (e.g., H minimizes the corresponding Dirichlet energy). Clearly,

H depends on f linearly, so

H(u) =
∑

a∈∂Ωδ
Γ

ωδ(u; {a}; Ωδ
Γ) · f(a)

for all u ∈ Ωδ
Γ, where ωδ(u; ·; Ωδ

Γ) is some probabilistic measure on ∂Ωδ
Γ which is

called harmonic measure at u.

It is harmonic as a function of u and has the standard interpretation as the exit
probability for the underlying random walk on Γ (i.e. the measure of a set A ⊂ ∂Ωδ

Γ

is the probability that the random walk started from u exits Ωδ
Γ through A).



D. Chelkak, S. Smirnov: Discrete complex analysis on isoradial graphs. arXiv:0810.2188

We prove uniform (with respect to the shape Ωδ
Γ and the structure of the underlying

isoradial graph) convergence of the basic objects of the discrete potential theory
to their continuous counterparts. Namely, we consider

(i) harmonic measure ωδ(·; aδbδ; Ωδ
Γ) of arcs aδbδ ⊂ ∂Ωδ

Γ;

(ii) Green function Gδ
Ωδ

Γ

(·; vδ), vδ ∈ IntΩδ
Γ;

(iii) Poisson kernel P δ(·; vδ; aδ; Ωδ
Γ) =

ωδ( · ; {aδ}; Ωδ
Γ)

ωδ(vδ; {aδ}; Ωδ
Γ)

, aδ ∈ ∂Ωδ
Γ, vδ ∈ IntΩδ

Γ;

(iv) Poisson kernel P δ
oδ(·; aδ; Ωδ

Γ), aδ ∈ ∂Ωδ
Γ, normalized at the boundary by the

discrete analogue of the condition ∂
∂nP |oδ = −1.

Remark: We also prove uniform convergence for the discrete gradients of these
functions (which are discrete holomorphic functions defined on subsets of ♦ = Λ∗).



Setup for the convergence theorems:

Let Ω = (Ω; v, ..; a, b, ..) be a simply connected bounded domain with several
marked interior points v, .. ∈ IntΩ and boundary points (prime ends) a, b, .. ∈ ∂Ω.

Let for each Ω = (Ω; v, ..; a, b, ..) some harmonic function

h( · ; Ω) = h( · , v, ..; a, b, ..; Ω) : Ω → R

be defined.

Let Ωδ
Γ = (Ωδ

Γ; vδ, ..; aδ, bδ, ..) denote simply connected bounded discrete domain
with several marked vertices vδ, .. ∈ IntΩδ

Γ and aδ, bδ, .. ∈ ∂Ωδ
Γ and

Hδ( · ; Ωδ
Γ) = Hδ( · , vδ, ..; aδ, bδ, ..; Ωδ

Γ) : Ωδ
Γ → R

be some discrete harmonic in Ωδ
Γ function.



Definition: Let Ω be a simply connected bounded domain, u, v, .. ∈ Ω. We say
that u, v, .. are jointly r-inside Ω iff B(u, r), B(v, r), .. ⊂ Ω and there are paths
Luv, .. connecting these points r-inside Ω (i.e., dist(Luv, ∂Ω), .. > r). In other
words, u, v, .. belong to the same connected component of the r-interior of Ω.

Definition: We say that Hδ are uniformly C1–close to h inside Ωδ, iff for all
0 < r < R there exists ε(δ) = ε(δ, r,R) → 0 as δ → 0 such that If Ωδ ⊂ B(0, R)
and uδ, vδ, .. are jointly r-inside Ωδ, then

∣∣Hδ(uδ, vδ, ..; aδ, bδ, ..; Ωδ
Γ) − h(uδ, vδ, ..; aδ, bδ, ..; Ωδ)

∣∣ 6 ε(δ)

and, for all uδ ∼ uδ
1 ∈ Ωδ

Γ,

∣∣∣∣
Hδ(uδ

1; Ω
δ
Γ)−Hδ(uδ; Ωδ

Γ)
|uδ

1 − uδ| − Re
[
2∂h(uδ; Ωδ) · uδ

1 − uδ

|uδ
1 − uδ|

]∣∣∣∣ 6 ε(δ),

where 2∂h = h′x − ih′y. Here Ωδ denotes the corresponding polygonal domain.



Key Ideas. Compactness argument – I:

Proposition: Let Hδj : Ωδj

Γ → R be discrete harmonic in Ωδj

Γ with δj → 0.

Let Ω ⊂ ⋃+∞
n=1

⋂+∞
j=n Ωδj ⊂ C be some continuous domain.

If Hδj are uniformly bounded on Ω, then there exists a subsequence δjk
→ 0 (which

we denote δk for short) and two functions h : Ω → R, f : Ω → C such that

Hδk ⇒ h uniformly on compact subsets K ⊂ Ω

and
Hδk(uk

2)−Hδk(uk
1)

|uk
2 − uk

1|
⇒ Re

[
f(u) · uk

2 − uk
1

|uk
2 − uk

1|

]
,

if uk
1, u

k
2 ∈ Γδk, uk

2 ∼ uk
1 and uk

1, u
k
2 → u ∈ K ⊂ Ω.

The limit function h is harmonic in Ω and f = h′x − ih′y = 2∂h is analytic in Ω.

Remark: Looking at the edge (u1u2) one (immediately) sees only the discrete
derivative of Hδ along τ = (u2−u1)/|u2−u1| which converge to 〈∇h(u), τ〉.



Key Ideas. Compactness argument – II:

The set of all simply-connected domains Ω : B(u, r) ⊂ Ω ⊂ B(0, R) is compact
in the Carathéodory topology (see the next slide).

Proposition: Let (a) h be Carathéodory-stable, i.e.,

h(uk; Ωk) → h(u; Ω), if (Ωk; uk)
Cara−→ (Ω;u) as k →∞;

and (b) Hδ → h pointwise as δ → 0, i.e.,

Hδ(uδ; Ωδ
Γ) → h(u; Ω), if (Ωδ; uδ) Cara−→ (Ω;u) as δ → 0.

Then Hδ are uniformly C1–close to h inside Ωδ.



The Carathéodory
convergence is the uniform
convergence of the Riemann
uniformization maps φδ on
the compact subsets of D.

It is equivalent to say that
(i) some neighborhood of
each u ∈ Ω lies in Ωδ, if δ is
small enough;
(ii) for every a ∈ ∂Ω there
exist aδ ∈ ∂Ωδ such that
aδ → a as δ → 0.



Scheme of the proofs:

• It is sufficient to prove the pointwise convergence Hδ(uδ) → h(u)
(compactness argument – II).

• Prove the uniform boundedness of the discrete functions. Then there is a
subsequence that converges (uniformly on compact subsets) to some harmonic
function H (compactness argument – I).

• Identify the boundary values of H with those of h. Then H = h for each
subsequential limit, and so for the whole sequence.



Critical spin-Ising model

Z =
∑

config.

∏
z:⊕↔ª

tan
θ(z)
2

Critical FK-Ising model

Z =
∑

config.

√
2

#loops ∏
z

sin
θ(z)
2



Critical FK-Ising model

Z =
∑

config.

√
2

#loops ∏
z

sin
θ(z)
2

The discrete holomorphic observable
having the martingale property:

E χ[z ∈ γ] · exp[− i
2 · wind(γ, b → z)],

where z ∈ ♦.

More information (from physicists):
V. Riva and J. Cardy. Holomorphic

parafermions in the Potts model and stochastic

Loewner evolution. J. Stat. Mech. Theory

Exp., (12): P12001, 19 pp. (electronic), 2006.



Convergence of the observable:

Square lattice case: S. Smirnov. Conformal invariance in random cluster models. I.

Holomorphic fermions in the Ising model. arXiv:0708.0039 Annals Math., to appear.

Remark: The convergence of the observable provides the conformal invariance of
interfaces for the scaling limit of the critical Ising model on the square lattice via
the Martingale Principle.

General isoradial graphs: D. Chelkak, S. Smirnov. In preparation.

Remark: The convergence of the observable provides the proof of the universality
for the scaling limit of the critical Ising model on isoradial graphs.



Special discrete holomorphic functions: Discrete analyticity follows from
the local rearrangements. Moreover, the stronger property holds:

For any two neighboring rhombi zs, zs+1

F (zs)−F (zs+1) is proportional to ±[i(ws+1−u)]−
1
2.

This is equivalent to

F (zs)−F (zs+1) = −iδ−1(ws+1−u)(F (zs)−F (zs+1))

Remark: The standard definition of discrete
holomorphic functions on ♦ is

∑n
s=1 F (zs) · (ws+1 − ws) = 0.

(more details concerning discrete holomorphic
functions/forms in the Christian Mercat talk)



Some speculations: (result of discussions at Obergurgl)

special holomorphic functions and the 4D-consistency

Star-triangle transform (flip)

does not change the values of F outside
this “cube”. The values F (z1), F (z2),
F (z3) and F (y1), F (y2), F (y3) are
related in an elementary (real-linear) way:



Special holomorphic functions and the 4D-consistency



Special holomorphic functions and the 4D-consistency
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Special holomorphic functions and the 4D-consistency



Special holomorphic functions and the 4D-consistency


