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Nearest-neighbor 2D Ising model
• Combinatorics:
◦ dimers and fermionic observables
◦ double-covers and spin correlations
◦ spin-disorder formalism

• Holomorphicity and phase transition:
some classical computations revisited

• CFT: correlation functions at criticality
◦ Riemann-type boundary value problems
◦ Convergence and conformal covariance
◦ Fusion rules (ψ, ε, µ, σ) etc

• Convergence to CLE [Benoist–Hongler’16]
◦ Convergence of curves via martingales
◦ Crossing estimates (precompactness)

• Open questions

[ Two disorders: sample of a
critical 2D Ising configuration

c© Clément Hongler (EPFL) ]



Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Q: I heard this is called a (site) percolation?

[sample of a honeycomb percolation]



Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Q: I heard this is called a (site) percolation?
A: .. according to the following probabilities:

P
[
conf. σ ∈ {±1}V (G∗)

]
∝ exp

[
β
∑

e=〈uv〉 Juvσuσv
]

∝ ∏
e=〈uv〉:σu 6=σv

xuv ,

where Juv > 0 are interaction constants assigned to edges 〈uv〉,
β = 1/kT is the inverse temperature, and xuv = exp[−2βJuv ].



Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Remark: w/o an external magnetic field
Remark:this is a “free fermion” model.

P
[
conf. σ ∈ {±1}V (G∗)

]
∝ exp

[
β
∑

e=〈uv〉 Juvσuσv
]

∝
∏

e=〈uv〉:σu 6=σv
xuv ,

where Juv > 0 are interaction constants assigned to edges 〈uv〉,
β = 1/kT is the inverse temperature, and xuv = exp[−2βJuv ].

• It is also convenient to use the parametrization xuv = tan(12θuv ).

• Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all xuv are equal to each other.



Lenz-Ising model: phase transition (e.g., on Z
2)

E.g., Dobrushin boundary conditions: +1 on (ab) and −1 on (ba):

x < xcrit x = xcrit x > xcrit

• Ising (1925): no phase transition in 1D  doubts about 2+D;

• Peierls (1936): existence of the phase transition in 2D;

• Kramers-Wannier (1941): xself-dual =
√
2− 1 = tan(12 · π

4 );

• Onsager (1944): sharp phase transition at xcrit =
√
2− 1.



At criticality (e.g., on Z
2):

• scaling exponent 1
8
for the magnetization

[ Kaufman–Onsager(1948), Yang(1952), via
“diagonal” spin-spin correlations at x ↑ xcrit]

◦ [ Wu (1966), correlations at x = xcrit ]

 as Ωδ → Ω, it should be EΩδ
[σu] ≍ δ

1
8 .

• Existence of the scaling limits as Ωδ → Ω:
x = xcrit

δ−
n
8 · EΩδ

[σu1 . . . σun ] → 〈σu1 . . . σun〉Ω
Conformal covariance: = 〈σϕ(u1) . . . σϕ(un)〉ϕ(Ω) ·

∏n
s=1 |ϕ′(us)|

1
8



At criticality (e.g., on Z
2):

• scaling exponent 1
8
for the magnetization

[ Kaufman–Onsager(1948), Yang(1952), via
“diagonal” spin-spin correlations at x ↑ xcrit]

◦ [ Wu (1966), correlations at x = xcrit ]

 as Ωδ → Ω, it should be EΩδ
[σu] ≍ δ

1
8 .
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n
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[σu1 . . . σun ] → 〈σu1 . . . σun〉Ω
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• Basing on this, one can also deduce the convergence of the

random fields (δ−
1
8σu)u∈Ω to a (non-Gaussian!) limit as δ → 0

[ Camia–Garban–Newman ’13, Furlan–Mourrat ’16; see also
Caravenna–Sun–Zygouras ’15 on disorder-relevance results ].



At criticality (e.g., on Z
2):

• scaling exponent 1
8
for the magnetization

[ Kaufman–Onsager(1948), Yang(1952), via
“diagonal” spin-spin correlations at x ↑ xcrit]

◦ [ Wu (1966), correlations at x = xcrit ]

 as Ωδ → Ω, it should be EΩδ
[σu] ≍ δ

1
8 .

• Existence of the scaling limits as Ωδ → Ω:
x = xcrit

δ−
n
8 · EΩδ

[σu1 . . . σun ] → 〈σu1 . . . σun〉Ω
Conformal covariance: = 〈σϕ(u1) . . . σϕ(un)〉ϕ(Ω) ·

∏n
s=1 |ϕ′(us)|

1
8

• Instead of studying correlation functions, one can describe the
limit geometrically: convergence of curves (e.g., domain walls
generated by Dobrushin boundary conditions) and loop ensembles
(either outermost or nested) to conformally invariant limits.



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn (’60s+),..., Kenyon, Dubédat (’00s+),...]

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏
e=〈uv〉:σu 6=σv

xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph
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∑
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2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn (’60s+),..., Kenyon, Dubédat (’00s+),...]

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏
e=〈uv〉:σu 6=σv

xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:
e.g. 1-to-2|V (G)| correspondence of
{±1}V (G∗) with dimers on this G

F

• Kasteleyn’s theory: Z=Pf[K ] [K=−K
⊤ is a weighted adjacency matrix of G

F

]

• Reminder: Let K = −K⊤ be a 2N × 2N antisymmetric matrix.

Pf[K ] :=
1

2NN!

∑

σ

(−1)sign(σ)Kσ(1)σ(2) ...Kσ(2N−1)σ(2N) = (det[K ])
1
2



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn (’60s+),..., Kenyon, Dubédat (’00s+),...]

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏
e=〈uv〉:σu 6=σv

xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:
e.g. 1-to-2|V (G)| correspondence of
{±1}V (G∗) with dimers on this G

F

• Kasteleyn’s theory: Z=Pf[K ] [K=−K
⊤ is a weighted adjacency matrix of G

F

]

⇔ Kac–Ward formula (1952–...,1999–...): Z2 = det[Id−T],

Te,e′ =

{
exp[ i2wind(e, e′)] · (xexe′)1/2
0

“Revisiting 2D Ising combinatorics” [ Ch.–Cimasoni–Kassel’15 ]



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn (’60s+),..., Kenyon, Dubédat (’00s+),...]

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏
e=〈uv〉:σu 6=σv

xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:
e.g. 1-to-2|V (G)| correspondence of
{±1}V (G∗) with dimers on this G

F

• Kasteleyn’s theory: Z=Pf[K ] [K=−K
⊤ is a weighted adjacency matrix of G

F

]

• Energy density field: note that P[σ
e

♯σ
e

♭ = −1 ] = |K−1
e,e | .

• Local relations for the entries K−1
a,e and K−1

a,
 of the inverse
Kasteleyn (or the inverse Kac–Ward) matrix:

(an equivalent form of) the identity K ·K−1= Id



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge ze (similarly, for a corner c),

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[
e−

i
2
wind(a ze)

∏
〈uv〉∈ω

xuv

]

where ηa denotes the (once and forever
fixed) square root of the direction of a.

• The factor e−
i
2
wind(a ze) does not de-

pend on the way how ω is split into non-
intersecting loops and a path a ze .

• Via dimers on G
F

: FG (a, c) = ηcK
−1
c,a

FG (a, ze) = ηeK
−1
e,a + ηeK

−1
e,a



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge ze (similarly, for a corner c),

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[
e−

i
2
wind(a ze)

∏
〈uv〉∈ω

xuv

]

where ηa denotes the (once and forever
fixed) square root of the direction of a.

• Local relations: at criticality, can
be thought of as a special form of
discrete Cauchy–Riemann equations.

• Boundary conditions F(a, z
e

)∈η
ē

R

(e is oriented outwards) uniquely de-
termine F as a solution to an appropriate
discrete Riemann-type boundary value problem.



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge ze (similarly, for a corner c),

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[
e−

i
2
wind(a ze)

∏
〈uv〉∈ω

xuv

]

where ηa denotes the (once and forever
fixed) square root of the direction of a.

• Local relations: at criticality, can
be thought of as a special form of
discrete Cauchy–Riemann equations.

• Boundary conditions F(a, z
e

)∈η
ē

R

(e is oriented outwards) uniquely de-
termine F as a solution to an appropriate
discrete Riemann-type boundary value problem.

   Scaling limit of energy densities [ Hongler–Smirnov’10 ]



Spin correlations and spinor observables: combinatorics

• spin configurations on G ∗

! domain walls on G

! dimers on G
F

• Kasteleyn’s theory: Z =Pf[K ]
[K=−K

⊤ is a weighted adjacency matrix of G
F

]
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! dimers on G
F

• Kasteleyn’s theory: Z =Pf[K ]
[K=−K

⊤ is a weighted adjacency matrix of G
F

]

• Claim:
E[σ

u1
. . . σ

u

n

] =
Pf [K[u1,...,un] ]

Pf [K ]
,

where K[u1,...,un] is obtained from K by changing the sign of its
entries on slits linking u1, . . . ,un (and, possibly, uout) pairwise.



Spin correlations and spinor observables: combinatorics

• spin configurations on G ∗

! domain walls on G

! dimers on G
F

• Kasteleyn’s theory: Z =Pf[K ]
[K=−K

⊤ is a weighted adjacency matrix of G
F

]

• Claim:
E[σ

u1
. . . σ

u

n

] =
Pf [K[u1,...,un] ]

Pf [K ]
,

where K[u1,...,un] is obtained from K by changing the sign of its
entries on slits linking u1, . . . ,un (and, possibly, uout) pairwise.

• If one shifts u1 to a neighboring face ũ1, the “spatial derivative”

E[σ
ũ1
. . . σ

u

n

]

E[σ
u1
. . . σ

u

n

]
can be expressed via the entries of K−1

[u1,...,un]
.



Spin correlations and spinor observables: combinatorics

• spin configurations on G ∗

! domain walls on G

! dimers on G
F

• Kasteleyn’s theory: Z =Pf[K ]
[K=−K

⊤ is a weighted adjacency matrix of G
F

]

• Claim:
E[σ

u1
. . . σ

u

n

] =
Pf [K[u1,...,un] ]

Pf [K ]
,

where K[u1,...,un] is obtained from K by changing the sign of its
entries on slits linking u1, . . . ,un (and, possibly, uout) pairwise.

• More invariant way to think about entries of K−1
[u1,...,un]

:

double-covers of G branching over u1, . . . ,un

• Similarly to K−1, these entries can be defined “combinatorially”
[ though most probably you do not like to see this definition... ]

• Alternative route: σ−µ formalism [Kadanoff–Ceva (1971) ]



σ−µ formalism [Kadanoff–Ceva]

• Recall that spins σu are assigned to the
faces of G . Given (an even number of)
vertices v1, ..., vm, link them pairwise by
a collection of paths κ = κ

[v1,...,vm] and
replace xe by x−1

e for all e ∈ κ. Denote

〈µ
v1
...µ

v

m

〉
G

:= Z [v1,...,vm]
G /ZG .

• Equivalently, one may think of the Ising
model on a double-cover G [v1,...,vm] that
branches over each of v1, ..., vm with the
spin-flip symmetry constrain σu♯ = −σu♭

[two disorders inserted]

if u♯ and u♭ lie over the same face of G .



σ−µ formalism [Kadanoff–Ceva]

• Recall that spins σu are assigned to the
faces of G . Given (an even number of)
vertices v1, ..., vm, link them pairwise by
a collection of paths κ = κ

[v1,...,vm] and
replace xe by x−1

e for all e ∈ κ. Denote

〈µ
v1
...µ

v

m

〉
G

:= Z [v1,...,vm]
G /ZG .

• Equivalently, one may think of the Ising
model on a double-cover G [v1,...,vm] that
branches over each of v1, ..., vm with the
spin-flip symmetry constrain σu♯ = −σu♭

[two disorders inserted]

if u♯ and u♭ lie over the same face of G . Let

〈µ
v1
...µ

v

m

σ
u1
...σ

u

n

〉
G

:= EG [v1,..,vm ][σu1 ...σun ] · 〈µv1 ...µvm〉G .

• By definition, 〈µ
v1
...µ

v

m

σ
u1
...σ

u

n

〉
G

changes the sign when one
of the faces uk goes around of one of the vertices vs .



σ−µ formalism [Kadanoff–Ceva]

• By definition, 〈µ
v1
...µ

v

m

σ
u1
...σ

u

n

〉
G

changes the sign when one of the faces uk
goes around of one of the vertices vs .

• For a corner c lying in u(c) near v(c),

ψ



:= δ
1
2 (u(
)−v(
))−

1
2µ

v(
)σu(
)

   the same fermionic observables

〈ψ

1
...ψ


2k
〉
G

= Pf[ 〈ψ



p

ψ



q

〉
G

]2k
p,q=1

as before (provided v(cp) 6= v(cq)).
[two disorders inserted]

“Revisiting 2D Ising combinatorics” [ Ch.–Cimasoni–Kassel’15 ]



σ−µ formalism [Kadanoff–Ceva]

• By definition, 〈µ
v1
...µ

v

m

σ
u1
...σ

u

n

〉
G

changes the sign when one of the faces uk
goes around of one of the vertices vs .

• For a corner c lying in u(c) near v(c),

ψ



:= δ
1
2 (u(
)−v(
))−

1
2µ

v(
)σu(
)

   the same fermionic observables

〈ψ

1
...ψ


2k
〉
G

= Pf[ 〈ψ



p

ψ



q

〉
G

]2k
p,q=1

as before (provided v(cp) 6= v(cq)).
[two disorders inserted]

• Remark: This also works in presence of other spins and/or
disorders. The antisymmetry 〈ψdψc〉G = −〈ψcψd 〉G is caused by
the sign change of the corresponding spin-disorder correlation.

• x = xcrit ⇒ 〈ψ



µv1...µvmσu1 ...σun 〉 are discrete holomorphic

[ this observation goes back at least to 1980s (Perk, Dotsenko) ]



σ−µ formalism [Kadanoff–Ceva]

• By definition, 〈µ
v1
...µ

v

m

σ
u1
...σ

u

n

〉
G

changes the sign when one of the faces uk
goes around of one of the vertices vs .

• For a corner c lying in u(c) near v(c),

ψ



:= δ
1
2 (u(
)−v(
))−

1
2µ

v(
)σu(
)

a

z

a+
δ

2

• x = xcrit ⇒ 〈ψ



µv1...µvmσu1 ...σun 〉 are discrete holomorphic

[ with square-root type branchings over v1, ..., vm, u1, ..., un ]

• Denote FΩδ
(c) :=

〈ψ



µu1+δσu2 . . . σun〉
〈σu1σu2 . . . σun〉

[normalization: FΩδ
(u1 +

1
2δ) = ±i ]

FΩδ
(u1+

3δ
2
) =

E
+
Ωδ

[σ
u1+2δσu2 ...σun ]

E
+
Ωδ

[σ
u1
σ
u2
...σ

u

n

]



σ−µ formalism [Kadanoff–Ceva]

• By definition, 〈µ
v1
...µ

v

m

σ
u1
...σ

u

n

〉
G

changes the sign when one of the faces uk
goes around of one of the vertices vs .

• For a corner c lying in u(c) near v(c),

ψ



:= δ
1
2 (u(
)−v(
))−

1
2µ

v(
)σu(
)

a

z

a+
δ

2

• x = xcrit ⇒ 〈ψ



µv1...µvmσu1 ...σun 〉 are discrete holomorphic

[ with square-root type branchings over v1, ..., vm, u1, ..., un ]

• Denote FΩδ
(c) :=

〈ψ



µu1+δσu2 . . . σun〉
〈σu1σu2 . . . σun〉

[normalization: FΩδ
(u1 +

1
2δ) = ±i ]

FΩδ
(u1+

3δ
2
) =

E
+
Ωδ

[σ
u1+2δσu2 ...σun ]

E
+
Ωδ

[σ
u1
σ
u2
...σ

u

n

]

• As before, these
functions can be
thought of as
solutions to some
Riemann-type
boundary value
problems in Ωδ.



Phase transition: classical computations revisited

Let x=tan 1
2θ 6 xcrit=tan π

8 , Dn

(x) := EC⋄[σ(0,0)σ(2n,0)]

where C
⋄ = {(k , s) : k , s ∈ Z, k+s ∈ 2Z} is the π

4 -rotated Z
2.

Theorem (revisited): [ Kaufman –Onsager(1948), Yang(1952) ]

lim
n→∞D

n

(x) = (1− tan4 θ)
1
4 ∼ cst · (xcrit−x)

1
4 for x < xcrit

[Wu(1966) ] D
n

(xcrit) =
(
2
π

)n ∏n−1
s=1

(
1− 1

4s2

)s−n∼ cst · (2n)− 1
4



Phase transition: classical computations revisited

Let x=tan 1
2θ 6 xcrit=tan π

8 , Dn+1(x):=EC⋄[σ(− 3
2
,0)σ(2n+ 1

2
,0)]

• Local relations: FC⋄(d) = m

4

∑
d

′∼d

FC⋄(d ′), m := sin(2θ).

[Above, we focus on purely real values of the observable on one
particular type of corners.] Note that m = 1 iff x = xcrit.

• Decay at infinity    there exists only two-parameter family of
such functions. Moreover, they can be constructed “explicitly”.



Phase transition: classical computations revisited

Let x=tan 1
2θ 6 xcrit=tan π

8 , Dn+1(x):=EC⋄[σ(− 3
2
,0)σ(2n+ 1

2
,0)]

• Fourier transform: Q
n,s(e

it) :=
∑

k∈Z:k+s∈2Z e
1
2
ikt

FC⋄(k, s).

Combinatorics of observables ⇒ the following values on R:

Dn+1Qn,0(e
it) = 0 + Dn + . . .+ D∗

ne
int + 0

w(e it) · Dn+1Qn,0(e
it) = . . . + Dn+1 + 0 + q2D∗

n+1e
int + . . .

where w(e it)= |1−q2
e

it |, q :=tan θ61 and D∗
n :=Dn(tan(

π
4−θ)).



Phase transition: classical computations revisited

Let x=tan 1
2θ 6 xcrit=tan π

8 , Dn+1(x):=EC⋄[σ(− 3
2
,0)σ(2n+ 1

2
,0)]

•    the values of these full-plane observables on the real line
are coefficients of certain orthogonal polynomials Q

n

wrt w(e it)
[ which are simply Legendre polynomials if x = xcrit ].

=⇒ one can express Dn+1,D
∗
n+1 via Dn,D

∗
n and norms of Qn,

where w(e it)= |1−q2
e

it |, q :=tan θ61 and D∗
n :=Dn(tan(

π
4−θ)).



Phase transition: classical computations revisited

Let x=tan 1
2θ 6 xcrit=tan π

8 , Dn+1(x):=EC⋄[σ(− 3
2
,0)σ(2n+ 1

2
,0)]

Theorem (revisited): [ Kaufman –Onsager(1948), Yang(1952) ]

lim
n→∞D

n

(x) = (1− tan4 θ)
1
4 ∼ cst · (xcrit−x)

1
4 for x < xcrit

[Wu(1966) ] D
n

(xcrit) =
(
2
π

)n ∏n−1
s=1

(
1− 1

4s2

)s−n∼ cst · (2n)− 1
4

• Remark: similar computations for the magnetization (single
spin expectation) in the half-plane and for the “layered” model.



Scaling limits via Riemann-type b.v.p.’s: ε (energy density)

• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• Theorem: [ Hongler–Smirnov, Hongler’10 ]

If Ωδ→Ω and ek→zk as δ → 0, then

δ−n · E+
Ωδ
[εe1 . . . εen ] →

δ→0
Cn
ε ·〈εz1 . . . εzn〉+Ω

where Cε is a lattice-dependent constant,

〈εz1 . . . εzn〉+Ω = 〈εϕ(z1) . . . εϕ(zn)〉+Ω′ ·
∏

n

s=1 |ϕ
′(u

s

)|

for any conformal mapping ϕ : Ω → Ω′, and

〈ε
z1
. . . ε

z

n

〉+
H

= in · Pf
[
(zs − zm)

−1
]2n
s,m=1

, zs = z2n+1−s .

• Ingredients: convergence of basic fermionic observables
(via Riemann-type b.v.p.) and (built-in) Pfaffian formalism



Scaling limits via Riemann-type b.v.p.’s: σ (spin)

• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• Theorem: [ Ch.–Hongler–Izyurov’12 ]

If Ωδ→Ω as δ → 0, then

δ−
n

8 ·E+
Ωδ
[σu1 . . . σun ] →

δ→0
Cn
σ·〈σu1 . . . σun〉+Ω

where Cσ is a lattice-dependent constant,

〈σu1 . . . σun〉+Ω = 〈σϕ(u1) . . . σϕ(un)〉+Ω′ ·
∏n

s=1 |ϕ′(us)|
1
8

for any conformal mapping ϕ : Ω → Ω′, and
[
〈σ

u1
. . . σ

u

n

〉+
H

]2
=

∏

16s6n

(2 Im us)
− 1

4 ×
∑

β∈{±1}n

∏

s<m

∣∣∣∣
us−um

us−um

∣∣∣∣

βsβm
2



Scaling limits via Riemann-type b.v.p.’s: σ (spin)

• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• Theorem: [ Ch.–Hongler–Izyurov’12 ]

If Ωδ→Ω as δ → 0, then

δ−
n

8 ·E+
Ωδ
[σu1 . . . σun ] →

δ→0
Cn
σ·〈σu1 . . . σun〉+Ω

where Cσ is a lattice-dependent constant,

〈σu1 . . . σun〉+Ω = 〈σϕ(u1) . . . σϕ(un)〉+Ω′ ·
∏n

s=1 |ϕ′(us)|
1
8

for any conformal mapping ϕ : Ω → Ω′.

• Another approach: “exact bosonization” [ J. Dubédat’11 ],
see also the works of C. Boutillier & B. de Tilière(’08 – ...)
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• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• Theorem: [ Ch.–Hongler–Izyurov’12 ]

If Ωδ→Ω as δ → 0, then

δ−
n

8 ·E+
Ωδ
[σu1 . . . σun ] →

δ→0
Cn
σ·〈σu1 . . . σun〉+Ω

• General strategy: ◦ spatial derivatives in discrete: encode them

via holomorphic spinors F δ solving discrete Riemann-type b.v.p.’s
◦ discrete continuum: prove convergence of F δ to solutions
of similar continuous b.v.p.’s [ non-trivial technicalities ];
◦ continuum discrete: find the limit of spatial derivatives
using the convergence F δ → f [ via coefficients at singularities ];
◦ spatial derivatives correlations: recover the multiplicative
normalization [ technicalities: “decoupling” estimates in discrete ].



Scaling limits via Riemann-type b.v.p.’s: σ (spin)

Example: to handle E
+
Ωδ
[σu], one

should consider the following b.v.p.:

◦ g(z ♯) ≡ −g(z ♭), branches over u;

◦ Im
[
g(ζ)

√
τ(ζ)

]
= 0 for ζ ∈ ∂Ω;

◦ g(z) = (2i)−1/2
√
z−u

+ . . .

a

z

a+
δ

2
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Example: to handle E
+
Ωδ
[σu], one

should consider the following b.v.p.:

◦ g(z ♯) ≡ −g(z ♭), branches over u;

◦ Im
[
g(ζ)

√
τ(ζ)

]
= 0 for ζ ∈ ∂Ω;

◦ g(z) = (2i)−1/2
√
z−u

[1+2AΩ(u)(z−u)+...]
a

z

a+
δ

2

Claim: If Ωδ converges to Ω as δ → 0, then

◦ (2δ)−1 log
[
E
+
Ωδ
[σuδ+2δ] /E

+
Ωδ
[σuδ ]

]
→ Re[AΩ(u) ] ;

◦ (2δ)−1 log
[
E
+
Ωδ
[σuδ+2iδ] /E

+
Ωδ
[σuδ ]

]
→ − Im [AΩ(u) ] .



Scaling limits via Riemann-type b.v.p.’s: σ (spin)

Example: to handle E
+
Ωδ
[σu], one

should consider the following b.v.p.:

◦ g(z ♯) ≡ −g(z ♭), branches over u;

◦ Im
[
g(ζ)

√
τ(ζ)

]
= 0 for ζ ∈ ∂Ω;

◦ g(z) = (2i)−1/2
√
z−u

[1+2AΩ(u)(z−u)+...]
a

z

a+
δ

2

Claim: If Ωδ converges to Ω as δ → 0, then

◦ (2δ)−1 log
[
E
+
Ωδ
[σuδ+2δ] /E

+
Ωδ
[σuδ ]

]
→ Re[AΩ(u) ] ;

◦ (2δ)−1 log
[
E
+
Ωδ
[σuδ+2iδ] /E

+
Ωδ
[σuδ ]

]
→ − Im [AΩ(u) ] .

Conformal covariance 1
8
: for any conformal map φ : Ω → Ω′,

◦ f[Ω,a](w) = f[Ω′,φ(a)](φ(w)) · (φ′(w))1/2 ;

◦ AΩ(z) = AΩ′(φ(z)) · φ′(z) + 1
8
· φ′′(z)/φ′(z) .



Scaling limits via Riemann-type b.v.p.’s: more fields

[ Ch.–Hongler–Izyurov ’17 (in progress...) ]

• Convergence of mixed correlations:
spins (σ), disorders (µ), fermions (ψ),
energy densities (ε) (in multiply connected
domains Ω, with mixed fixed/free boundary
conditions b) to conformally covariant limits,
which can be defined via solutions to appropriate
Riemann-type boundary value problems in Ω.

• Standard CFT fusion rules

σµ ηψ + ηψ, ψσ  µ, ψµ σ,

iψψ  ε, σσ  1 + ε, µµ 1− ε

can be deduced directly from the analysis of these b.v.p.’s



Scaling limits via Riemann-type b.v.p.’s: more fields

[ Ch.–Hongler–Izyurov ’17 (in progress...) ]

• Convergence of mixed correlations:
spins (σ), disorders (µ), fermions (ψ),
energy densities (ε) (in multiply connected
domains Ω, with mixed fixed/free boundary
conditions b) to conformally covariant limits,
which can be defined via solutions to appropriate
Riemann-type boundary value problems in Ω.

• Standard CFT fusion rules, e.g. σσ  1 + ε:

〈σu′σu...〉bΩ = |u′−u|− 1
4

[
〈...〉bΩ+ 1

2 |u′−u|〈εu ...〉bΩ+ . . .
]
,

can be deduced directly from the analysis of these b.v.p.’s

• More CFT: stress-energy tensor [ Ch. –Glazman – Smirnov’16 ];
Virasoro algebra on local fields [ Honlger–Kytölä–Viklund(’13–17) ]



Geometric viewpoint: conformal loop ensembles (CLEs)

Question: What could be a good can-
didate for the scaling limit of loops sur-
rounding clusters (e.g., with “+” b.c.)?

Intuition: Distribution of loops should
(a) be conformally invariant
(b) satisfy the domain Markov property:

given the loops intersecting D2 \D1, the

remaining ones form an independent CLE

in each component of the complement.

critical Ising sample with

free b.c., c© C. Hongler
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Loop-soup construction:

• sample a (countable) set of
Brownian loops using some
natural conformally-friendly
Poisson process of intensity c .
• fill the outermost clusters
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Geometric viewpoint: conformal loop ensembles (CLEs)

Question: What could be a good can-
didate for the scaling limit of loops sur-
rounding clusters (e.g., with “+” b.c.)?

Intuition: Distribution of loops should
(a) be conformally invariant
(b) satisfy the domain Markov property:

given the loops intersecting D2 \D1, the

remaining ones form an independent CLE

in each component of the complement.

critical Ising sample with

free b.c., c© C. Hongler

Thm [Sheffield–Werner’10]:
provided that loops do not
touch each other, (a) and (b)
imply that CLE has the law of
loop-soup boundaries for some
intensity c ∈ (0, 1].



Geometric viewpoint: conformal loop ensembles (CLEs)

Question: What could be a good can-
didate for the scaling limit of loops sur-
rounding clusters (e.g., with “+” b.c.)?

Theorem [Benoist –Hongler’16]:

The limit of critical spin-Ising clusters is
a (nested) CLE corresponding to c = 1

2 .

• The intensity in the loop-soup con-

struction coincide with the central charge

in the CFT formalism for correlations.

critical Ising sample with

free b.c., c© C. Hongler

Loop-soup construction:

• sample a (countable) set of
Brownian loops using some
natural conformally-friendly
Poisson process of intensity c .
• fill the outermost clusters
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rounding clusters (e.g., with “+” b.c.)?

Theorem [Benoist –Hongler’16]:

The limit of critical spin-Ising clusters is
a (nested) CLE corresponding to c = 1

2 .

• This is the tip of the iceberg, which
is built upon a work of many people.
Preliminary results [’06 – ’16] include:
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Geometric viewpoint: conformal loop ensembles (CLEs)

Question: What could be a good can-
didate for the scaling limit of loops sur-
rounding clusters (e.g., with “+” b.c.)?

Theorem [Benoist –Hongler’16]:

The limit of critical spin-Ising clusters is
a (nested) CLE corresponding to c = 1

2 .

• This is the tip of the iceberg, which
is built upon a work of many people.
Preliminary results [’06 – ’16] include:

critical Ising sample with

free b.c., c© C. Hongler

◦ Convergence of individual curves (via martingale observables)
for both spin- and FK-representations of the model [ Smirnov’06,
Ch. – Smirnov, Hongler – Kytölä / Izyurov, Kemppainen – Smirnov ]

◦ Uniform RSW-type bounds [ Ch. –Duminil-Copin –Hongler]
based on discrete complex analysis estimates in rough domains.



Convergence of correlations    convergence of interfaces

[ see Ch. –Duminil-Copin –Hongler –Kemppainen – Smirnov ’13 ]

• “Martingale observables”: choose
a function MΩδ

(z), z ∈ Ωδ, such
that MΩδ\γδ[0,n](z) is a martingale
wrt the filtration Fn := σ(γδ[0, n]).

Example: EΩδ
[σz ] for +/−/free b. c.

• Convergence of observables: prove uniform (wrt Ωδ) convergence
of the (re-scaled) martingales MΩδ

(z)to MΩ(z) as δ → 0.

Remark: technically, the martingale above is (by far) not an
optimal choice: fermionic correlations are much easier to handle
[ Smirnov ’06; Ch. – Smirnov ’09; Hongler –Kytölä ’11; Izyurov ’14 ]



Convergence of correlations    convergence of interfaces

[ see Ch. –Duminil-Copin –Hongler –Kemppainen – Smirnov ’13 ]

• “Martingale observables”: choose
a function MΩδ

(z), z ∈ Ωδ, such
that MΩδ\γδ [0,n](z) is a martingale

• Convergence of observables: prove
uniform (wrt Ωδ) convergence of the
(re-scaled) martingales MΩδ

(z)

• RSW-type crossing estimates ⇒ tightness of the family (γδ)δ→0:

[ Aizenmann –Burchard (1999), Kemppainen – Smirnov ’12 ];

◦ Crossings in rectangles: [ Duminil-Copin –Hongler –Nolin ’09 ];
◦ Rough domains: [ Ch. ’12  Ch. –Duminil-Copin –Hongler ’13 ]

• Identification of subsequential limits: for each γ = limδk→0 γδk ,
the quantities MΩ\γ[0,t](z) are martingales wrt Ft := σ(γ[0, t]).

• conformal covariance of MΩ ⇒ conformal invariance of γ



Convergence of correlations    convergence of interfaces

[ see Ch. –Duminil-Copin –Hongler –Kemppainen – Smirnov ’13 ]

• “Martingale observables”

• Convergence of observables

• Uniform RSW-type estimates
   control of “pinning points”

arising along the exploration

Convergence and conformal invariance of the loop ensemble

• Iterative “exploration algorithm”

[ Benoist –Hongler ’16 ], switching
between spin- and FK(random-cluster)-
representations of the model, see also
[ Benoist –Duminil-Copin –Hongler ’14].

Related work: [ Kempainnen – Smirnov ’15–’16]
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in some combinatorial representation of the critical Ising model?



Open questions

• Can one find (semi-)discrete precursors of loop-soups just
in some combinatorial representation of the critical Ising model?

• From CLE(s) to CFT(s): is there a way to construct the spin
field (or energy density) starting from the (nested) CLE loop
ensemble? If yes, can one do something similar for 
 6= 1

2
?



Open questions

• Can one find (semi-)discrete precursors of loop-soups just
in some combinatorial representation of the critical Ising model?

• From CLE(s) to CFT(s): is there a way to construct the spin
field (or energy density) starting from the (nested) CLE loop
ensemble? If yes, can one do something similar for 
 6= 1

2
?

• How universal are these convergence results at criticality?

◦ Nearest-neighbor: only a very special model on isoradial graphs
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• From CLE(s) to CFT(s): is there a way to construct the spin
field (or energy density) starting from the (nested) CLE loop
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• How universal are these convergence results at criticality?

◦ Nearest-neighbor: only a very special model on isoradial graphs
is understood. Even the case of general periodic graphs is open...

◦ Finite-range: much harder because of the lack of integrability.
Nevertheless, some results revealing the Pfaffian structure in the
limit δ → 0 are available: [ Giuliani – Greenblatt –Mastropietro’12 ]

[ Aizenman–Duminil-Copin –Tassion –Warzel’17 ]

• Irregular graphs/interactions,
Ising model on planar maps etc: (infinitely) many questions...
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Open questions

• Can one find (semi-)discrete precursors of loop-soups just
in some combinatorial representation of the critical Ising model?

• From CLE(s) to CFT(s): is there a way to construct the spin
field (or energy density) starting from the (nested) CLE loop
ensemble? If yes, can one do something similar for 
 6= 1

2
?

• Super-critical regime: e.g., convergence of interfaces to SLE6

curves for any fixed x > xcrit [ known only for x=1 (percolation)]

x = xcrit

• Renormalization

fixed x>xcrit, δ→0

−−−−−−−−→
(x−xcrit) · δ−1 → ∞

x = 1Thank you!


