2D ISING MODEL: COMBINATORICS,

CFT/CLE DESCRIPTION AT CRITICALITY
[ AND BEYOND... |

DMITRY CHELKAK (ENS)

[ Sample of a critical 2D Ising configuration (with two disorders), © Clément Hongler (EPFL) ]
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NEAREST-NEIGHBOR 2D ISING MODEL

e Combinatorics:

o dimers and fermionic observables
o double-covers and spin correlations
o spin-disorder formalism

Holomorphicity and phase transition:
some classical computations revisited

CFT: correlation functions at criticality
Riemann-type boundary value problems
Convergence and conformal covariance
Fusion rules (¢, &, u, o) etc

O O O e

Convergence to CLE [Benoist-Hongler'16]
Convergence of curves via martingales

o

[ Two disorders: sample of a

Crossing estimates (precompactness) critical 2D Ising configuration

(¢]

e Open questions © Clément Hongler (EPFL) |



Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G* (dual to G) is
a random assignment of +/— spins to vertices of G* (faces of G)

Q: | heard this is called a (site) percolation?

[sample of a honeycomb percolation]



Nearest-neighbor Ising (or Lenz-Ising) model in 2D
Definition: Lenz-Ising model on a planar graph G* (dual to G) is

a random assignment of +/— spins to vertices of G* (faces of G)

Q: | heard this is called a (site) percolation?
A: ..according to the following probabilities:

P [conf. o€ {il}V(G*)] o exp [ﬂz () uquUv]

X H (uv):ouoy Xuv

where J,, > 0 are interaction constants assigned to edges (uv),
B = 1/kT is the inverse temperature, and x,, = exp[—28J,,].



Nearest-neighbor Ising (or Lenz-Ising) model in 2D
Definition: Lenz-Ising model on a planar graph G* (dual to G) is

a random assignment of +/— spins to vertices of G* (faces of G)

Remark: w/o an external magnetic field
this is a “free fermion” model.

P [conf. o € {il}V(G*)] X exp [ﬂz () uvauav]
X H (uv)iou#oy Xuv 5
where J,, > 0 are interaction constants assigned to edges (uv),
B = 1/kT is the inverse temperature, and x,, = exp[—28J,/].
e |t is also convenient to use the parametrization x,, = tan( Ouv).

e Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all x,, are equal to each other.



Lenz-Ising model: phase transition (e.g., on Z?)

E.g., Dobrushin boundary conditions: +1 on (ab) and —1 on (ba):

X < Xerit X = Xcrit X > Xerit

e Ising (1925): no phase transition in 1D ~~ doubts about 2+D;
e Peierls (1936): existence of the phase transition in 2D;

o Kramers-Wannier (1941): Xeelf-dual = V2 — 1 = tan(% -3

e Onsager (1944): sharp phase transition at xgit = v/2 — 1.



At criticality (e.g., on Z?):

e scaling exponent % for the magnetization
[ Kaufman—Onsager(1948), Yang(1952), via
“diagonal” spin-spin correlations at x T Xcrit]

o [ Wu (1966), correlations at x = Xcyit, |
s as Q5 — Q, it should be Eq,[0,] = 3.

e Existence of the scaling limits as Q5 —

578 - Eq 0w - 0u,] — (0w .- -0uw)0




At criticality (e.g., on Z?):

e scaling exponent % for the magnetization
[ Kaufman—Onsager(1948), Yang(1952), via
“diagonal” spin-spin correlations at x T Xcrit]

o [ Wu (1966), correlations at x = Xcyit, |
s as Q5 — Q, it should be Eq,[0,] = 3.

e Existence of the scaling limits as Q5 —

578 - Eq 0w - 0u,] — (0w .- -0uw)0

X = Xcrit

Conformal covariance: = (0p(u) - Tp(un)) (@) - [ o—1 \go’(us)|%

e Basing on this, one can also deduce the convergence of the
, 1 . -
random fields (0~ 80y),ecq to a (non-Gaussian!) limit as 6 — 0

[ Camia—Garban—Newman '13, Furlan-Mourrat '16; see also
Caravenna—-Sun—Zygouras '15 on disorder-relevance results].



At criticality (e.g., on Z?):

e scaling exponent % for the magnetization
[ Kaufman—Onsager(1948), Yang(1952), via
“diagonal” spin-spin correlations at x T Xcrit]

o [ Wu (1966), correlations at x = Xcyit, |
s as Q5 — Q, it should be Eq,[0,] = 3.

e Existence of the scaling limits as Q5 —

578 - Eq 0w - 0u,] — (0w .- -0uw)0

X = Xcrit

Conformal covariance: = (0p(u) - Tp(un)) (@) - [ o—1 \go’(us)|%

e Instead of studying correlation functions, one can describe the
limit geometrically: convergence of curves (e.g., domain walls
generated by Dobrushin boundary conditions) and loop ensembles
(either outermost or nested) to conformally invariant limits.



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

e Partition function Z =37 /. 3ver) []eo Xuy

(uv)iou#oy
e There exist various representa-

tions of the 2D Ising model via
dimers on an auxiliary graph



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

e Partition function Z =3, 3vie") [lec )0 20, Xuv

e There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph Gg



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

e Partition function Z =3, 3vie") [lec )0 20, Xuv

©

e There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:

e.g. 1-to-2IV(G)I correspondence of
{+1}V(€") with dimers on this Gf



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

e Partition function Z =3, 3vie") [lec )0 20, Xuv

e There exist various representa- o 1
tions of the 2D Ising model via ~ @
dimers on an auxiliary graph: ‘
e.g. 1-to-2IV(G)I correspondence of ®
{+1}V(€") with dimers on this Gf

—
@\ ©

® Kasteleyn’s theory: Z == Pf[ K ] [K= —K T is a weighted adjacency matrix of Gr]

e Reminder: Let K = —K' be a 2N x 2N antisymmetric matrix.

1
Pf[K] := 2’VN' Z )sign(©) Ko(1)o(2) - Koen—1)o2n) = (det[K])2



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

e Partition function Z =3, 3vie") [lec )0 20, Xuv

e There exist various representa- o l

tions of the 2D Ising model via ya @
dimers on an auxiliary graph: /]
e.g. 1-to-2IV(G)I correspondence of
{+1}V(€") with dimers on this Gf

AN

L ©
@\ ©

® Kasteleyn’s theory: Z == Pf[ K ] [K= —K T is a weighted adjacency matrix of Gr]

< Kac-Ward formula (1952-...,1999-...): 22 = det[Id—T],

exp[Zwind(e, )] - (xexer)!/? e
Te,e/ = 0 e A wind(e,e')

“Revisiting 2D Ising combinatorics” [ Ch.—Cimasoni—Kassel'15 |



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]
e Partition function Z =37 . vien) [[om

(uv)iou#oy Xuv

tions of the 2D Ising model via
dimers on an auxiliary graph: ‘ —
e.g. 1-to-2IV(G)I correspondence of e d A
{+1}V(€") with dimers on this Gf @ \ ©

® Kasteleyn’s theory: Z == Pf[ K ] [K= —K T is a weighted adjacency matrix of Gr]

e There exist various representa- o 1
AR

AN

e Energy density field: note that P[o 0, = —1] = \Ke_% .

e Local relations for the entries K % and K, L of the inverse
Kasteleyn (or the inverse Kac—Ward) matrlx.
(an equivalent form of) the identity K -K'=1d



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge z. (similarly, for a corner ¢),
. —iwind(awze)
FG(a’ Ze) ' "2 ZwGConfc(a,ze) [e ’ H(uv)ew Xuv:|

where 77, denotes the (once and forever
fixed) square root of the direction of a.

i

e The factor e™2 does not de-
pend on the way how w is split into non-
intersecting loops and a path a ~ z..

wind(a~ze)

e Via dimers on Gg: Fg(a,c) = 7K}
Fo(a,2e) =TeKe s+ TieKs




Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge z. (similarly, for a corner ¢),
. —iwind(awze)
Fc(a, Ze) = M, ZwéConfc(a,ze) [e 2 H(uv)ew Xuv:|

where 77, denotes the (once and forever a
fixed) square root of the direction of a.

e Local relations: at criticality, can
be thought of as a special form of
discrete Cauchy—Riemann equations.

e Boundary conditions F(a, z.) €zR
(€ is oriented outwards) uniquely de-
termine F as a solution to an appropriate
discrete Riemann-type boundary value problem.




Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge z. (similarly, for a corner ¢),
. —iwind(awze)
FG(aa Zé’) : Ma ZUJGConfc(a,ze) |:e 2 H(uv)Ew Xuv:|

where 77, denotes the (once and forever a
fixed) square root of the direction of a.

e Local relations: at criticality, can
be thought of as a special form of
discrete Cauchy—Riemann equations.

e Boundary conditions F(a, z.) €zR
(€ is oriented outwards) uniquely de-
termine F as a solution to an appropriate
discrete Riemann-type boundary value problem.

~+ Scaling limit of energy densities [ Hongler—Smirnov'10 ]



Spin correlations and spinor observables: combinatorics

e spin configurations on G*
«~ domain walls on G
«~ dimers on Gfr
e Kasteleyn’s theory: Z =Pf[K]

K=—-K ' isa weighted adjacency matrix of G,
F




Spin correlations and spinor observables: combinatorics

e spin configurations on G*

«~ domain walls on G

«~ dimers on Gfr
e Kasteleyn’s theory: Z =Pf[K]
[K=—K T isa weighted adjacency matrix of Gf |

e Claim: Pf[Kiy,.....u]
Elow -« 0u,] = Wa

where K|, . ., is obtained from K by changing the sign of its
entries on slits linking uy, ..., u, (and, possibly, uy,) pairwise.




Spin correlations and spinor observables: combinatorics
e spin configurations on G*

«~ domain walls on G

«~ dimers on Gfr
e Kasteleyn’s theory: Z = Pf[K]
[K=—K T isa weighted adjacency matrix of Gf |

e Claim: Pf[Kiy,.....u]
Elow -« 0u,] = Wa

where K|, . ., is obtained from K by changing the sign of its
entries on slits linking uy, ..., u, (and, possibly, toy,) pairwise.

e If one shifts u; to a neighboring face 7, the “spatial derivative”

Elog ... 0
M can be expressed via the entries of K[_u1 unl’
Eloy, ... 0u,] Loesstin



Spin correlations and spinor observables: combinatorics

e spin configurations on G*
«~ domain walls on G
«~ dimers on Gf

e Kasteleyn’s theory: Z =Pf[K]
[K=—K T isa weighted adjacency matrix of Gf |

e Claim: Pf[Kiy,.....u]
E[am .. 'Uun] = W

where K|, . ., is obtained from K by changing the sign of its
entries on slits linking uy, ..., u, (and, possibly, uy,) pairwise.
1 ]
[u1yeeyun] *
double-covers of G branching over uy,...,u,

9

e More invariant way to think about entries of K

e Similarly to K1, these entries can be defined “combinatorially”
[though most probably you do not like to see this definition... |
e Alternative route: o—pu formalism [ Kadanoff-Ceva (1971) |



o—u formalism [Kadanoff-Ceva]

e Recall that spins o, are assigned to the
faces of G. Given (an even number of)
vertices vi, ..., Vm, link them pairwise by
a collection of paths 3¢ = s[v1-vml and
replace xe by x;'! for all e € 5. Denote

<l'l’V1"'”‘vm>G = Zgl’...’vm]/ZG-

e Equivalently, one may think of the Ising
model on a double-cover GIVi+¥ml that
branches over each of vy, ..., v, with the
spin-flip symmetry constrain o,; = —o
if u? and u” lie over the same face of G.

[two disorders inserted)]



o—p formalism [Kadanoff-Ceval

e Recall that spins o, are assigned to the
faces of G. Given (an even number of)
vertices vi, ..., Vm, link them pairwise by
a collection of paths 3¢ = s[v1-vml and
replace xe by x;! for all e € 5. Denote

<l’l’V1"'u‘vm>G = Zgﬁ,...,vm]/ZG.

e Equivalently, one may think of the Ising
model on a double-cover G[VtVml that
branches over each of vy, ..., v, with the
spin-flip symmetry constrain o,; = —o

if uf and 1 lie over the same face of G. Let

B 3
f ,Q__:“ A d Y 8

[two disorders inserted]

(Bvi e v O+ Oup) 6 = Bty vml[Oug-0u,] - (v o hvm) G -

e By definition, (fty,.+fty,,Ou---Ou,) G changes the sign when one
of the faces uy goes around of one of the vertices vs.



o—u formalism [Kadanoff-Ceva]

e By definition, (fty; e bvmOuy--Ou,) G
changes the sign when one of the faces vy
goes around of one of the vertices vs.

e For a corner c lying in u(c) near v(c),
1 _1
e :=02(u(c)—v(€)) Iy (c)Tu(c)
~+ the same fermionic observables

<1/’C1"'¢C2k>6 = Pf] (¢Cp¢cq>6 p.q=1

as before (provided v(cp) # v(cg)). [owo disorders inserted]

“Revisiting 2D Ising combinatorics” [ Ch.—Cimasoni-Kassel'15]



o—p formalism [Kadanoff-Ceval

e By definition, (fty; e bvmOuy--Ou,) G
changes the sign when one of the faces vy
goes around of one of the vertices vs.

e For a corner c lying in u(c) near v(c),
he 1= 6%(u(c)_V(C))_%“v(c)au(c)
~~ the same fermionic observables
(e othey ) 6 = PI| <¢Cp¢cq>6 f)fq:l
as before (provided v(cp) # v(cg)).

[two disorders inserted]

e Remark: This also works in presence of other spins and/or

disorders. The antisymmetry (¢gtc)c = —(¥ctbg) G is caused by

the sign change of the corresponding spin-disorder correlation.

® X = Xerit = (Yclbvy- v, Ouy---0y,) are discrete holomorphic
[this observation goes back at least to 1980s (Perk, Dotsenko) |



o—p formalism [Kadanoff-Ceva]

e By definition, (fty; e bvmOuy--Ou,) G
changes the sign when one of the faces uy
goes around of one of the vertices vs.

e For a corner c lying in u(c) near v(c),
1 1
e 1= 62(u(c)—v(€)) 2y (c)Tu(c)

® X = Xerit = (Yelbyy vy Ouy---Ou,) are discrete holomorphic

[ with square-root type branchings over vy, ..., vy, U1, ..., up |

<d’cﬂu1+5o'uz ce. Uun>
(OCuwOuy - - Ouy)

[normalization: Fo,(uy + 16) = £i ]

e Denote Fq,(c) =

Egé [Ou+260u,--Ou,]

Egé [6wou.--ou,]

Fﬂa(ul"_%) =



o—p formalism [Kadanoff-Ceva]

e By definition, (fty; e bvmOuy--Ou,) G
changes the sign when one of the faces uy
goes around of one of the vertices vs.

e For a corner c lying in u(c) near v(c),
1 1
e 1= 62(u(c)—v(€)) 2y (c)Tu(c)

® X = Xerit = (Yelbyy vy Ouy---Ou,) are discrete holomorphic

[ with square-root type branchings over vy, ..., vy, U1, ..., up |

e As before, these

e Denote Fq,(c) = (Yt +5u -+ Tun) functions can be
(OuOu, - Ouy) thought of as
[normalization: Fq,(u1 + %5) =+ solutions to some

Riemann-type
boundary value
problems in ;.

Egé [Ou+260u,--Ou,]

Fo,(n+3) =
° 2 Egé [6wou.--ou,]




Phase transition: classical computations revisited

Let x=tan %9 < Xait=tan §, Dp(x) := Ece[0(0,0)0(2n,0)]
where C® = {(k,s) : k,s € Z, k+s € 2Z} is the Z-rotated Z2.

Theorem (revisited): [Kaufman—Onsager(1948), Yang(1952) ]
lim, o0 Dp(x) = (1 —tan* 9)% ~ cst - (xcrit—x)% for x < Xerit

[Wu(1966) ] D (Xeric) = (2)" TI7t(1—4L)° "~ cst - (2n) 3

s=1



Phase transition: classical computations revisited

Let x=tan %6’ < Xerit =tan g, Dpy1(x) :=Eco [0'(_%70)0'(2n+%’0)]

e Local relations: Fco(d) = 7>/ gFce(d’), m:=sin(20).

[Above, we focus on purely real values of the observable on one
particular type of corners.] Note that m = 1 iff x = x¢,i¢.

e Decay at infinity ~ there exists only two-parameter family of
such functions. Moreover, they can be constructed “explicitly”.



Phase transition: classical computations revisited

Let x=tan %6’ < Xerit =tan g, Dpy1(x) :=Eco [0'(_%’0)0'(2"_'_%’0)]

REGLRE

6 &> ¢ 56

. ; 1
e Fourier transform: Qns(e") 1= i cr.kyscoz e2’* Fro(k,s).

Combinatorics of observables = the following values on R:
' Dn+1Qn,o(e’:t) = 0+ D, +...+4 Dre™ 40
W(elf) : Dn+1Qn,0(e't) = ...+ Dpy1 + 0 + qZD*+1e’"t + ...

where w(e') =|1—q%e®|, g:=tan0 <1 and D};:=D,(tan(Z—9)).



Phase transition: classical computations revisited

Let x=tan %6’ < Xerit =tan g, Dpy1(x) :=Eco [0'(_%’0)0'(2"_'_%’0)]

LR
6 5@ ¢ 56

e ~~ the values of these full-plane observables on the real line
are coefficients of certain orthogonal polynomials Q, wrt w(e')
[ which are simply Legendre polynomials if x = Xt |.

= one can express D, 11,0, via D,,D;; and norms of @,

where w(e) =|1—q%e|, g:=tan0<1 and D} :=D,(tan(5—0)).



Phase transition: classical computations revisited

Let x=tan %6’ < Xerit =tan g, Dpy1(x) :=Eco [0'(_%’0)0'(2"_'_%’0)]

LR

6 5@ ¢ 56

Theorem (revisited): [ Kaufman—Onsager(1948), Yang(1952)]

lim, o0 Dp(x) = (1 —tan* 9)% ~ cst - (xcrit—x)% for x < Xerit

[Wu(1966) | Dp(xcrit) = (2)" 1021 (1= 3%)" "~ cst - (2m) 3

e Remark: similar computations for the magnetization (single
spin expectation) in the half-plane and for the “layered” model.



Scaling limits via Riemann-type b.v.p.’s: £ (energy density)

e Three local primary fields:
1, o (spin), £ (energy density);
Scaling exponents: 0, g, 1.

e Theorem: [Hongler-Smirnov, Hongler'10 ]

If Qs —Q and e, —z, as 6 — 0, then

67" B [eey - Eep) 0 Cl (e - €z

where C. is a lattice-dependent constant,
(€z - Ea)g = (Ep(a) - Eolan) iy * L Lomn [ (us)]
for any conformal mapping ¢ : Q — @', and

. _112
(€ vy = i Pt (26 — zm) Y]

s,m=1"
e Ingredients: convergence of basic fermionic observables
(via Riemann-type b.v.p.) and (built-in) Pfaffian formalism

Zs = Zop41—s -



Scaling limits via Riemann-type b.v.p.’s: o (spin)

e Three local primary fields:
1, o (spin), £ (energy density);

Scaling exponents: 0, g, 1.
e Theorem: [Ch.—Hongler-lzyurov'12 ]

If Qs—Q as 6 — 0, then

5_§-E55 [Ow - 0w, o Cl Oy - Oup)
where C, is a lattice-dependent constant,

n l
(Ou - )G = (Tp(un) - Ty~ Lot [ (us)|s

for any conformal mapping ¢ : Q — @/, and

[(a’ul...au,,)ﬁ_]z = I ecmuw) s x> ]

1<s<n Be{£1}ns<m

BsBm

2

Us—Um
Us—Um




Scaling limits via Riemann-type b.v.p.’s: o (spin)

e Three local primary fields:
1, o (spin), € (energy density);

Scaling exponents: 0, g, 1.
e Theorem: [Ch.—Hongler—Izyurov'12]

If Qs—Q as 6 — 0, then

5_§'E35 [Ow - 0w, o Cl Oy - Oup)
where C, is a lattice-dependent constant,

n l
(Ou - )G = (Tp(un) - Ty~ Lot [ (us)|s

for any conformal mapping ¢ : Q — Q'.

e Another approach: “exact bosonization” [J. Dubédat'11],
see also the works of C. Boutillier & B. de Tiliere('08—...)



Scaling limits via Riemann-type b.v.p.’s: o (spin)

e Three local primary fields:
1, o (spin), £ (energy density);
Scaling exponents: 0, g, 1.

e Theorem: [Ch.—Hongler-lzyurov'12 ]
If Qs—Q as 6 — 0, then

(S_%'Egé[o-ul cee Uun] 530 CCIJ?'<O-U1 et a-un>$

e General strategy: o spatial derivatives in discrete: encode them
via holomorphic spinors F? solving discrete Riemann-type b.v.p.’s
o discrete ~ continuum: prove convergence of F? to solutions

of similar continuous b.v.p.’s [ non-trivial technicalities];

o continuum ~ discrete: find the limit of spatial derivatives

using the convergence F — f [via coefficients at singularities];

o spatial derivatives ~~ correlations: recover the multiplicative
normalization [technicalities: “decoupling” estimates in discrete].




Scaling limits via Riemann-type b.v.p.’s: o (spin)

Example: to handle E$6 [04], one

should consider the following b.v.p.:

og(z) = —g(z |7) branches over u;

oIm[ (O)/7( ] =0 for ¢ € 09;

Og(Z):(%})ZTll/IZ—f-




Scaling limits via Riemann-type b.v.p.’s: o (spin)

Example: to handle E$6 [04], one
should consider the following b.v.p.:

o g(z*) = —g(2’), branches over u;

o Im|[g(¢)\/7(¢)] =0 for ¢ € 0%;

0 g(z) = (14240 (u)(z-0)+ ]

Claim: If Qg converges to Q2 as § — 0, then
o (20 log [EY, [7u420] / B, lorus]| = Re[ Aa(u)];

o (26)log [Egé[aud%] /Egé[aué]} — —Im[Aq(u)].




Scaling limits via Riemann-type b.v.p.’s: o (spin)

Example: to handle E;;a [04], one
should consider the following b.v.p.:

o g(z*) = —g(2’), branches over u;
o Im|[g(¢)\/7(¢)] =0 for ¢ € 0%;
0 g(2) = B (14240 (u)(z-u) +..]
Claim: If Qg converges to Q2 as § — 0, then
o (20 log [EY, [7u420] / B, lorus]| = Re[ Aa(u)];
o (28)'log [Egé[aud%] /Egé[aué]} — —Im[Aq(u)].

Conformal covariance % : for any conformal map ¢ : Q — @,
o figa(w) = fiar gy (¢(w)) - (¢'(w))"/?;
o Aq(z) = Ap(6(2)) - ¢/(2) + 5 - ¢"(2)/¢/(2).



Scaling limits via Riemann-type b.v.p.’s: more fields

[ Ch.—Hongler—lzyurov '17 (in progress...) |
e Convergence of mixed correlations:
spins (o), disorders (p), fermions (),
energy densities (g) (in multiply connected
domains €, with mixed fixed/free boundary
conditions b) to conformally covariant limits,
which can be defined via solutions to appropriate
Riemann-type boundary value problems in €.

e Standard CFT fusion rules

op D, o e,
i) ~~ g, oo~ 1+4¢,

-
' Conformal
Field Theory

hp ~~ o,
pp~~>1—e

can be deduced directly from the analysis of these b.v.p.'s



Scaling limits via Riemann-type b.v.p.’s: more fields

[ Ch.—Hongler—lzyurov '17 (in progress...) | i
e Convergence of mixed correlations: |  Conformal
spins (o), disorders (p), fermions (v), | ) Thes
energy densities (¢) (in multiply connected | . |
domains €, with mixed fixed/free boundary ‘ @%&
conditions b) to conformally covariant limits, | 5
which can be defined via solutions to appropriate |
Riemann-type boundary value problems in €. ! b

e Standard CFT fusion rules, e.g. o ~» 1+ ¢:
1
(Oywoy..)g = | —u|77 [(.)5+ S| —ul(ey.. )5+ .. ],

can be deduced directly from the analysis of these b.v.p.'s

e More CFT: stress-energy tensor [ Ch.—Glazman—Smirnov'16 |;
Virasoro algebra on local fields [ Honlger—Kytola—Viklund('13-17) |



Geometric viewpoint: conformal loop ensembles (CLEs)

Question: What could be a good can-
didate for the scaling limit of loops sur-
rounding clusters (e.g., with “+” b.c.)?

Intuition: Distribution of loops should
(a) be conformally invariant
(b) satisfy the domain Markov property:

given the loops intersecting D, \ Dy, the -
remaining ones form an independent CLE critical Ising sample with
. free b.c., © C. Hongler
in each component of the complement. e
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s @ Thm [Sheffield-Werner'10]:
P> provided that loops do not
touch each other, (a) and (b)
imply that CLE has the law of
loop-soup boundaries for some
intensity ¢ € (0, 1].
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The limit of critical spin-Ising clusters is %%, I% 8

a (nested) CLE corresponding to ¢ = 1. " ﬁ“:ﬁ

U : A
e The intensity in the loop-soup con- ‘%# o
struction coincide with the central charge critical lsing sample with

. i i free b.c., © C. Hongler
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Theorem [ Benoist — Hongler'16]:

The limit of critical spin-Ising clusters is

a (nested) CLE corresponding to ¢ = 1.

e This is the tip of the iceberg, which e
is b.uilft upon a work of many people. ree b ¢ Honeler
Preliminary results ['06 —"16] include:

o Convergence of individual curves (via martingale observables)
for both spin- and FK-representations of the model [ Smirnov'06,
Ch.—Smirnov, Hongler—Kytola / Izyurov, Kemppainen —Smirnov |
o Uniform RSW-type bounds [ Ch.— Duminil-Copin—Hongler|
based on discrete complex analysis estimates in rough domains.



Convergence of correlations ~» convergence of interfaces
[see Ch.—Duminil-Copin—Hongler — Kemppainen —Smirnov '13 ]
e “Martingale observables”: choose
a function Mgq,(z), z € Qs5, such
that Mq,\s[0,n(2) is @ martingale
wrt the filtration F, := o(v5[0, n]).

Example: Eq,[o,] for +/—/free b.c.

e Convergence of observables: prove uniform (wrt Q5) convergence
of the (re-scaled) martingales Mq,(z)to Mq(z) as 6 — 0.

Remark: technically, the martingale above is (by far) not an
optimal choice: fermionic correlations are much easier to handle
[ Smirnov '06; Ch.—Smirnov'09; Hongler —Kytola '11; lzyurov '14]



Convergence of correlations ~» convergence of interfaces
[see Ch.—Duminil-Copin—Hongler — Kemppainen —Smirnov '13 ]
e “Martingale observables”: choose

a function Mgq,(z), z € Qs5, such
that Mqo,\+s[0,q(2) is @ martingale

e Convergence of observables: prove
uniform (wrt ;) convergence of the
(re-scaled) martingales Mq,(z)

e RSW-type crossing estimates = tightness of the family (vs5)s-0:
[ Aizenmann—Burchard (1999), Kemppainen—Smirnov'12];

o Crossings in rectangles: [ Duminil-Copin—Hongler—Nolin "09];

o Rough domains: [Ch."12 ~» Ch.—Duminil-Copin—Hongler 13|

e |dentification of subsequential limits: for each v = lims, s, ,
the quantities Mg\ ,,(2) are martingales wrt F; := a(7[0, t]).

e conformal covariance of Mo =- conformal invariance of ~



Convergence of correlations ~» convergence of interfaces
[see Ch.—Duminil-Copin—Hongler —Kemppainen —Smirnov '13]

e “Martingale observables”

e Convergence of observables

e Uniform RSW-type estimates
~~ control of “pinning points”
arising along the exploration

Convergence and conformal invariance of the loop ensemble

e |terative “exploration algorithm”

[ Benoist —Hongler '16 |, switching
between spin- and FK(random-cluster)-
representations of the model, see also
[ Benoist — Duminil-Copin — Hongler '14].

Related work: [ Kempainnen—Smirnov'15-'16]
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e Irregular graphs/interactions,
Ising model on planar maps etc: (infinitely) many questions...
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THANK YOU!



