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Outline of the talk:

> Running illustration: Aztec diamonds
(w/ Ramassamy, arXiv:2002.07540).

> Intro: Thurston’s height functions,
conv. to GFF in a non-trivial metric.

> Long][!]-term motivation: ¥

> T-embeddings: basic concepts and
a priori regularity estimates (w/ Laslier
and Russkikh, arXiv:2001. 11871).

> Perfect t-embeddings and Lorentz-
minimal surfaces. Main theorem (w/
Laslier and Russkikh, arXiv:20%* . *x*).

> (Some) open questions/perspectives.

lllustration:

(homogeneous) Aztec
diamonds A, Cc n~1Z2
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Theorem: [ Ch. — Laslier — Russkikh |
[arXiv:2001.11871 + 20%x* . ** ]

Let G%, § — 0, be finite weighted bipar-
tite planar graphs. Assume that

e 779 are perfect t-embeddings of (G°)*
[ satisfying assumption Exp-FAT(0) [;
e as § — 0, the images of 7° converge
to a domain D¢ [£ € Lipy(T), [£[< 5 ];
e origami maps (T°,0°) converge to a
Lorentz-minimal surface S¢ C D¢ x R.

Then, height functions fluctuations in
the dimer models on 7% converge to the
standard Gaussian Free Field in the

intrinsic metric of S¢ C R2+1 c RZH2

lllustration:

(homogeneous) Aztec
diamonds A, C n~1Z2




Theorem: [ Ch. — Laslier — Russkikh |
[arXiv:2001.11871 + 20%x* . ** ]

Let G%, § — 0, be finite weighted bipar-
tite planar graphs. Assume that

e 779 are perfect t-embeddings of (G°)*
[ satisfying assumption Exp-FAT(0) [;

e as 0 — 0, the images of To converge
to a domain D¢ [ € Lip,(T), |¢| < z I;

e origami maps (T°,0°) converge to a
Lorentz-minimal surface S¢ C D¢ x R.

Then, height functions fluctuations in
the dimer models on 7% converge to the
standard Gaussian Free Field in the

intrinsic metric of S¢ C R2+l  R2+2

e Domains D¢, surfaces Sg:
e 1-Lipschitz function |{(¢)| <5 on T;
e D¢: inside of z(¢)=e'?/cos(£(9));

* S¢ spans Lg = (2(), tan(&(¢)))ger
Le C {xeR¥ L |Ix|2= ¢ + ¢ = = 1},

Aztec case
(D§7 SE):




Bipartite dimer model: basics

e (G,vpy) — finite weighted bipartite
planar graph (w/ marked outer face);

e Dimer configuration = perfect match-
ing D C E(G): subset of edges such
that each vertex is covered exactly once;

e Probability P(D) o< []oep Ve-

(Very) particular example:
[ Temperleyan domains Gr C Z?]
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Bipartite dimer model: basics

e (G,vpy) — finite weighted bipartite
planar graph (w/ marked outer face);
e Dimer configuration = perfect match-

ing D C E(G): subset of edges such
that each vertex is covered exactly once;

e Probability P(D) o< []oep Ve-

(Very) particular example:
[ Temperleyan domains Gr C Z?]

e In Temperleyan domains, random
walks and discrete harmonic functions
with ‘nice’ boundary conditions natu-
rally appear. This is a very special case.

Temperley bijection: dimers on Gp
<> spanning trees on another graph.
This procedure is highly sensitive to the
microscopic structure of the boundary.



Bipartite dimer model: basics

e (G,vpy) — finite weighted bipartite
planar graph (w/ marked outer face);
e Dimer configuration = perfect match-
ing D C E(G): subset of edges such
that each vertex is covered exactly once;
e Probability P(D) o< []oep Ve-
e Random height function h (on G*): fix
Dy, view DUDy as a topographic map.
e Height fluctuations h := h — E[h]

do not depend on the choice of Dy.
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Bipartite dimer model: basics

e (G,vpy) — finite weighted bipartite
planar graph (w/ marked outer face);
e Dimer configuration = perfect match-
ing D C E(G): subset of edges such
that each vertex is covered exactly once;
e Probability P(D) o< []oep Ve-
e Random height function h (on G*): fix
Do, view DUDy as a topographic map.
e Height fluctuations h := h — E[h]

do not depend on the choice of Dy.

e Gaussian Free Field: E[/(z)] =0,
E[a(z)h(w)] = Gy(z, W):—Aﬁl(z, w).

(Very) particular example:
[ Temperleyan domains Gr C Z?]

Theorem [Kenyon'00]:
§72 565 - QccC
= 1 — 7 2GFF(Q)
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[111] Still, the limit of A% as 6 — 0
heavily depends on the limit of (deter-
ministic) boundary profiles of §h°.
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Bipartite dimer model: basics

e (G,vpy) — finite weighted bipartite
planar graph (w/ marked outer face);
e Dimer configuration = perfect match-
ing D C E(G): subset of edges such
that each vertex is covered exactly once;
e Probability P(D) o< []oep Ve-
e Random height function h (on G*): fix
Do, view DUDy as a topographic map.
e Height fluctuations h := h — E[h]

do not depend on the choice of Dy.

[111] Still, the limit of A% as 6 — 0
heavily depends on the limit of (deter-
ministic) boundary profiles of §h°.

Examples (on Hex™) [(c) Kenyon]:

e [Cohn—Kenyon—Propp’00] the random
profile §h® concentrates near a surface
maximizing certain entropy functional.

e [Kenyon—Okounkov—Sheffield'06] gen.
periodic lattices; prediction on RO
GFF in the profile-dependent metric.

e Problematic beyond periodic case.



Bipartite dimer model: basics

e (G,vpy) — finite weighted bipartite
planar graph (w/ marked outer face);
e Dimer configuration = perfect match-
ing D C E(G): subset of edges such
that each vertex is covered exactly once;
e Probability P(D) o< []oep Ve-
e Random height function h (on G*): fix
Do, view DUDy as a topographic map.
e Height fluctuations h := h — E[h]

do not depend on the choice of Dy.

[111] Still, the limit of A% as 6 — 0
heavily depends on the limit of (deter-
ministic) boundary profiles of §h°.

(Very) particular example:
[ Temperleyan domains Gr C Z?]

Remark: If G% are Temperleyan, then
the boundary profiles of 5h° are ‘flat’.

The converse is (by far) false: e.g., do-
mains composed of 2x2 blocks are ‘flat’.



Known results: 672 > Gy — QC C Aztec diamonds

A, C n~17% )
s -1/2 . ' n
o i’ — GFF(Q) [Kenyon'00] [Elkies— Kuperberg— I:E
Larsen—Propp '92, ...]
e Non-flat case: GFFM(Q) [(c) A.&M. Borodin, S. Chhita] ’_{:H

> Temperleyan-type domains C Hex*
coming from T-graphs [ Kenyon'04 ]

> ‘polygons’ via ‘integrable probability’
and (rather hard) asymptotic analysis
[ Petrov, Bufetov—Gorin, ... '12+]

> thorough analysis of
concrete setups (e.g.,
Aztec diamonds) w/
interesting behavior
[ Chhita—Johansson-Young, ... '12+]




Known results: 672 > Gy — QC C
o ) — 7~1/2. GFF(Q) [Kenyon'00]

e Non-flat case: GFF,(Q)

> Temperleyan-type domains C Hex*
coming from T-graphs [Kenyon'04 ]

> ‘polygons’ via ‘integrable probability’
and (rather hard) asymptotic analysis
[ Petrov, Bufetov—Gorin, ... '12+]

> thorough analysis of
concrete setups (e.g.,
Aztec diamonds) w/
interesting behavior v
[ Chhita—Johansson—Young, ...

12+]

e Known tools: problematic to apply
T17] to generic graphs (G, v)
e Long[!]-term goal:

attack random maps carrying the bipar-
tite dimer [or the critical Ising] model.

(c) N. Curien

“Bosonization”: [Dubédat'l1, ...]:

bipartite dimers

2D n.n. Ising  —




Known results: 672 > Gy — QC C
o ) — 7~1/2. GFF(Q) [Kenyon'00]

e Non-flat case: GFF,(Q)

> Temperleyan-type domains C Hex*
coming from T-graphs [Kenyon'04 ]

> ‘polygons’ via ‘integrable probability’
and (rather hard) asymptotic analysis
[ Petrov, Bufetov—Gorin, ... '12+]

> thorough analysis of
concrete setups (e.g.,
Aztec diamonds) w/
interesting behavior
[ Chhita—Johansson—Young, ... '12+]

e Known tools: problematic to apply
T17] to generic graphs (G, v)
e Long[!]-term goal:

attack random maps carrying the bipar-
tite dimer [or the critical Ising] model.

(c) N. Curien

e Wanted: special embeddings of ab-
stract weighted bipartite planar graphs
+ ‘discrete complex analysis’ techniques
on such embeddings

~+ complex structure in the limit.
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Embeddings of weighted bipartite planar graphs carrying the dimer model
[and admitting reasonable notions of discrete complex analysis |

Coulomb gauges [ Kenyon—Lam —Ramassamy — Russkikh, arXiv:1810.05616 ]

)

t-embeddings [ Ch.—Laslier — Russkikh, arXiv:2001.11871, arXiv:20%*.*x*]

Particular cases: harmonic/ Tutte's embeddings [via the Temperley bijection |
Ising model s-embeddings [arXiv:1712.04192, via the bosonization ]

Extremely particular case:
Baxter's critical Z-invariant Ising model
on rhombic lattices/isoradial graphs

[ Ch.—Smirnov, arXiv:0910.2045
“Universality in the 2D Ising model and con-
formal invariance of fermionic observables’ |




Embeddings of weighted bipartite planar graphs carrying the dimer model
[and admitting reasonable notions of discrete complex analysis |

e t-embeddings = Coulomb gauges: given (G,v),
find T : G* — C [G* — augmented dual] s.t.

> weights v, are gauge equivalent to x(,,y- = |T (V') =T (V)|
(i.e., Vpw = 8pXbw8w for some g : BUW — R, ) and

> at each inner vertex 7 (v), the sum of black angles = .




Embeddings of weighted bipartite planar graphs carrying the dimer model
[and admitting reasonable notions of discrete complex analysis |

e t-embeddings = Coulomb gauges: given (G,v),
find T : G* — C [G* — augmented dual] s.t.

> weights v, are gauge equivalent to x(,,y- = |T (V') =T (V)|
(i.e., Vpw = 8pXbw8w for some g : BUW — R, ) and

> at each inner vertex 7 (v), the sum of black angles = .

e p-embeddings = perfect t-embeddings:
>> outer face is a tangential (possibly, non-convex) polygon,
> edges adjacent to outer vertices are bisectors.
e Warning: for general (G,v), the existence of perfect
t-embeddings is not known though they do exist in particular
cases + the count of #(degrees of freedom) matches.




Embeddings of weighted bipartite planar graphs carrying the dimer model
[and admitting reasonable notions of discrete complex analysis |

e t-embeddings = Coulomb gauges: given (G,v),
find 7 : G* — C [G* — augmented dual] s.t.

> weights v, are gauge equivalent to x(,,y- = |T (V') =T (V)|
(i.e., Vpw = 8pXbw8w for some g : BUW — R, ) and

> at each inner vertex 7 (v), the sum of black angles = .

e origami maps O: G* — C [ "“fold C along segments of 7" |
e T-graphs T+a20, |a|=1: [GeoGebral]




Embeddings of weighted bipartite planar graphs carrying the dimer model
[and admitting reasonable notions of discrete complex analysis |
e “Regular” case: triangular grids [ Kenyon'04 + Laslier'13]
q e

7

e T-graphs T+a20, |a|=1: [GeoGebra]

e t-holomorphic functions F° : W — C
a-{ gradients of harmonic on 7+a?0 }

[ this notion does not depend on ]




Embeddings of weighted bipartite planar graphs carrying the dimer model
[and admitting reasonable notions of discrete complex analysis |

A priori regularity theory [arXiv:2001.11871]
o 79 satisfies Lir(x,0) for k < 1 and § > 0 if

zeC

2 —z| >0 = |0%Z)-0%2)|<k-|Z -z

e (triangulations) 7 satisfy Exp-FAT(0) as § — 0 if
for each 8 > 0, if one removes all ‘exp(—73d 1)-fat’
triangles from 77, then the size of remaining vertex-
connected components tends to zero as § — 0.

Results: e Holder regularity of t-holomorphic functions, e What can be said on

e Lipschitz regularity of harmonic functions on T°4a20°. subsequential limits?



Embeddings of weighted bipartite planar graphs carrying the dimer model
[and admitting reasonable notions of discrete complex analysis |

A priori regularity theory [arXiv:2001.11871] 2€C

e Assume that O%(z) —19(z), § — 0. Then, limits of
harmonic functions on 7% + 2O’ are martingales wrt
to a certain diffusion whose coefficients depend on ¥, «.

2

Results: e Holder regularity of t-holomorphic functions, e What can be said on

e Lipschitz regularity of harmonic functions on T°4a20°. subsequential limits?



Embeddings of weighted bipartite planar graphs carrying the dimer model
[and admitting reasonable notions of discrete complex analysis |

A priori regularity theory [arXiv:2001.11871]
e 79 satisfy LiP(x,0) and Exp-FAT(5) as § — 0.

Results: e Holder reg. of t-holomorphic functions,

o Lipschitz reg. of harmonic functions on T°+a??.

e Assume that 0°(z) — ¥(z), z€ D, § — 0 and that

e {(z,9(2))}zep C R?*2 is a Lorentz-minimal surface.

e Let a parametrization ¢ be conformal z;:z; = 9. and harmonic zp=10.;=0.

e Then, subsequential limits of harmonic functions on all T-graphs 7% + a20?, |a| = 1,
and, moreover, all limits of dimer height functions correlations are harmonic in (.
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Open questions, perspectives [general (G,v)]
. . > degfout = 4:
e Existence of perfect t-embeddings OK [KLRR]
p-embeddings = perfect t-embeddings:

> outer face is a tangential (non-convex) polygon,

> edges adjacent to outer vertices are bisectors.

> #(degrees of
freedom): OK
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> edges adjacent to outer vertices are bisectors.

e Why do Lorentz-minimal surfaces appear?

Another example: annulus-type graphs
~ Lorentz-minimal cusp (z, arcsinh |z|).

[?] P-embeddings «~ more algebraic viewpoints:
embeddings to the Klein/Pliicker quadric?
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[...] Eventually, what about embeddings of random
maps weighted by the Ising model? Liouville CFT?

(c) N. Curien
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THANK YOU!



