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NEAREST-NEIGHBOR CRITICAL 2D ISING MODEL:
CORRELATIONS, INTERFACES, ESTIMATES

e Introduction: phase transition,
diagonal correlations, conformal invariance

e Combinatorics: dimers, Kac-Ward,
fermionic observables, double-covers

e Scaling limits at criticality via
Riemann-type boundary value problems

e More fields: o, ,1,e ~» glimpse of CFT

e Geometry: convergence of curves,
convergence to CLE [ Benoist—Hongler'16 |

e Regularity of interfaces: a priori estimates
via surgery of discrete domains [ Two disorders: sample of a

critical 2D Ising configuration

[ ] Open queStiOHS © Clément Hongler (EPFL) |



Nearest-neighbor Ising (or Lenz-Ising) model in 2D
Definition: Lenz-Ising model on a planar graph G* (dual to G) is

a random assignment of +/— spins to vertices of G* (faces of G)

Q: | heard this is called a (site) percolation?
A: ..according to the following probabilities:

P [conf. o€ {il}V(G*)] o exp [ﬂz () uquUv]

X H (uv):ouoy Xuv

where J,, > 0 are interaction constants assigned to edges (uv),
B = 1/kT is the inverse temperature, and x,, = exp[—28J,,].



Nearest-neighbor Ising (or Lenz-Ising) model in 2D
Definition: Lenz-Ising model on a planar graph G* (dual to G) is

a random assignment of +/— spins to vertices of G* (faces of G)

Remark: w/o an external magnetic field
this is a “free fermion” model.

P [conf. o € {il}V(G*)] X exp [ﬂz () uvauav]
X H (uv)iou#oy Xuv 5
where J,, > 0 are interaction constants assigned to edges (uv),
B = 1/kT is the inverse temperature, and x,, = exp[—28J,/].
e |t is also convenient to use the parametrization x,, = tan( Ouv).

e Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all x,, are equal to each other.



Lenz-Ising model: phase transition (e.g., on Z?)

E.g., Dobrushin boundary conditions: +1 on (ab) and —1 on (ba):

X < Xerit X = Xcrit X > Xerit

e Ising (1925): no phase transition in 1D ~~ doubts about 2+D;
e Peierls (1936): existence of the phase transition in 2D;

o Kramers-Wannier (1941): Xeelf-dual = V2 — 1 = tan(% -3

e Onsager (1944): sharp phase transition at xgit = v/2 — 1.



At criticality (e.g., on Z?):

e scaling exponent % for the magnetization
[ Kaufman—Onsager(1948), Yang(1952) ]
. 1
lim 00 IE[0-0(7-2n] ~ cst - |X_Xcrit|4a X T Xcrit
[ Wu (1966), correlations at x = Xcyit |
-1 —
Eloooa] = (2)"[1i2; (ll_ﬁ)s ’
~ cst-(2n)74, n— o0

Remark: “modern” proofs
(Fourier transform applied
to full-plane observables)
take several pages only.

[see arXiv:1605.09035]. Similarly, “explicit” computations can be
done in the “layered” case [ Ch.—Hongler, still in preparation], i.e.
when all interactions are the same in each of the zig-zag columns.




At criticality (e.g., on Z?):

e scaling exponent % for the magnetization
[ Kaufman—Onsager(1948), Yang(1952) ]
|imn—>oo IE:[0-00-2n] ~ cst - |X_Xcrit|za XTXcrit
[ Wu (1966), correlations at x = Xcyit |

-1 —
Eloooza] = (3)"[Ii5(1-22)" "
~ cst-(2n)74, n— o0

X = Xcrit

Theorem (layered half-plane): [Ch.-Hongler]

det H,[tY/? ]
(det H[p] det Hp[tp])/2’

where det H,[u] := det [fol ti T p(dt)] 7,1‘_:0 and
1 is the spectral measure of the Jacobi matrix
+ <)/u W)/> = Zn>o(a2n32n+1)/n_ bon+1 b2n+2}/n+1)2-

[Notation: ay = cos 6y, by = sin ), where x;, = tan %Gk is the interaction constant in the k-th zig-zag column]

E;EIQ [0_2n] =

+V+ VNV



At criticality (e.g., on Z?):

e scaling exponent % for the magnetization
[ Kaufman—Onsager(1948), Yang(1952) |
liMn—so0 E[0002n] ~ €5t + [X—Xerie| T, X T Xerit

[ Wu (1966), correlations at x = Xcyit |
s as Q5 — Q, it should be Eq,[0,] = 3.

e Existence of scaling limits as Q5 —
[ Ch.—Hongler—lzyurov, arXiv:1202.2838 |

578 - Eq,lou - 0u,] — (0w ---0u)0
Conformal covariance: = (Op(w) - To(un))o(@) * 1ot \gp’(us)|%
Remark. Basing on this, one can study the convergence

of random fields (5_%@)”69 to a (non-Gaussian!) limit
as § — 0 [ Camia—Garban-Newman '13, Furlan-Mourrat '16 ]



At criticality (e.g., on Z?):

e scaling exponent % for the magnetization
[ Kaufman—Onsager(1948), Yang(1952) |
liMn—so0 E[0002n] ~ €5t + [X—Xerie| T, X T Xerit

[ Wu (1966), correlations at x = Xcyit |
s as Q5 — Q, it should be Eq,[0,] = 3.

e Existence of scaling limits as Q5 —
[ Ch.—Hongler—lzyurov, arXiv:1202.2838 |

675 - Egylou - 0u] — (0w ---0u)
= () -+ Top(un)) p(Q) °

e Instead of correlation functions, one can study convergence of
curves (e.g., domain walls generated by Dobrushin boundary
conditions) and loop ensembles (either outermost or nested)
to conformally invariant limits: SLE(3)’s and CLE(3).



2D Ising model as a dimer model [Fisher, Kasteleyn (’60s), ...

e Partition function Z = 3" . jyve) [Jo—g

=(uv):ou#oy Xuv
e There exist various representa-

tions of the 2D Ising model via

dimers on an auxiliary graph:

e.g. 1-to-21V(®)l correspondence of

{#1}V(€") with dimers on this Gr

Reference: “Revisiting 2D Ising combinatorics” arXiv:1507.08242
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2D Ising model as a dimer model [Fisher, Kasteleyn (’60s), ...]

e Partition function Z = 3" . jyve) [Jo—g Xuv

uv):ou#oy
e There exist various representa- ) l

tions of the 2D Ising model via A @
dimers on an auxiliary graph: /
e.g. 1-to-2/V(G)l correspondence of

{#1}V(€") with dimers on this Gr

] Kasteleyn,s theory: Z= Pf[ K ] [K=—KT is a weighted adjacency matrix of G ]

e Kac-Ward formula (1952-...,1999-...): 22 = det[Id—T],

T — exp[éwind(e, e’)] - (xexer)'/? o
e, el — 0 e A wind(e,e')

[ is equivalent to the Kasteleyn theorem for dimers on Gr |

Reference: “Revisiting 2D Ising combinatorics” arXiv:1507.08242



2D Ising model as a dimer model [Fisher, Kasteleyn (’60s), ...]

e Partition function Z = 3" . jyve) [Jo—g Xuv

uv):ou#oy

e There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:

e.g. 1-to-21V(®)l correspondence of
{£1}Y(¢") with dimers on this Gr

] Kasteleyn,s theory: Z= Pf[ K ] [K=—KT is a weighted adjacency matrix of G ]

e Energy density field: note that P[o o, = —1] = \Ke_% |

e Local relations for the entries K;é and K;i of the inverse
Kasteleyn (or the inverse Kac—Ward) matrix:
(an equivalent form of) the identity K -K!'=1Id

Reference: “Revisiting 2D Ising combinatorics” arXiv:1507.08242



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge z. (similarly, for a corner ¢),

. —iwind(awze)
FG(aa ZE) : Ma ZUJGConfc(a,ze) |:e 2 H(uv)Ew Xuv:|

where 7, denotes the (once and forever
fixed) square root of the direction of a.
e The factor e~ 3Vnd(@2) does not de-
pend on the way how w is split into non-
intersecting loops and a path a ~ z..

e Via dimers on Gr: Fg(a,c) =7.K_}

Fe(a ze) = MKoL + MK}

Reference: “Revisiting 2D Ising combinatorics” arXiv:1507.08242



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge z. (similarly, for a corner ¢),

. —iwind(awze)
FG(aa Zé’) : Ma ZUJGConfc(a,ze) |:e 2 H(uv)Ew Xuv:|

where 7, denotes the (once and forever a
fixed) square root of the direction of a. ‘

e Local relations: at criticality, can
be thought of as a special form of
discrete Cauchy—Riemann equations.

e Boundary conditions F(a, z.) €7zR
(€ is oriented outwards) uniquely de-
termine F as a solution to an appropriate N
discrete Riemann-type boundary value problem.

~+ Scaling limit of fermions [ Smirnov'06, Ch.—Smirnov'09 |
and of energy densities [ Hongler—Smirnov, Hongler'10 ]



Derivatives of spin correlations <+ fermions on double-covers

e spin configurations on G*

«~ domain walls on G

«~ dimers on Gfr
e Kasteleyn’s theory: Z =Pf[K]
[K=—K T isa weighted adjacency matrix of Gf |

e Claim: Pf[Kiy,.....u]
Elow -« 0u,] = Wa

where K{y, .. 4, is obtained from K by changing the sign of its
entries on slits linking uy, ..., u, (and, possibly, uy,) pairwise.




Derivatives of spin correlations <+ fermions on double-covers

e spin configurations on G*

«~ domain walls on G

«~ dimers on Gfr
e Kasteleyn’s theory: Z = Pf[K]
[K=—K T isa weighted adjacency matrix of Gf |

e Claim: Pf[Kiy,.....u]
Elow -« 0u,] = Wa

where K{y, .. 4, is obtained from K by changing the sign of its
entries on slits linking uy, ..., u, (and, possibly, uy,) pairwise.

More invariant way: double-covers branching over uy, ..., u,.

e If one shifts u; to a neighboring face 7, the “spatial derivative”

Elog o4,...0 ) _
& v, ) can be expressed via the entries of K[u11 un]’

Elowou---0u,]



Scaling limits via Riemann-type b.v.p.’s [ arXiv:1605.09035 |

e Three local primary fields:
1, o (spin), £ (energy density);
Scaling exponents: 0, g, 1.

e Theorem: [Hongler-Smirnov, Hongler'10 ]

If Qs —Q and e, —z, as 6 — 0, then

67" B [eey - Eep) 0 Cl (e - €z

where C. is a lattice-dependent constant,
(€z1 -z = (Ep(a) - Eolan)iy * Lozt 19 (us)]
for any conformal mapping ¢ : Q — @', and

. _112
(€ vy = i Pt (26 — zm) Y]

s,m=1"
e Ingredients: convergence of basic fermionic observables
(via Riemann-type b.v.p.) and (built-in) Pfaffian formalism

Zs = Zop41—s -



e Three local primary fields:
1, o (spin), £ (energy density);
Scaling exponents: 0, g, 1.

e Theorem: [Ch.—Hongler—Izyurov'12]
If Qs—Q as 6 — 0, then

5_§-E35 [Ow - 0w, o Cl Oy - Oup)
where C, is a lattice-dependent constant,
1
(0w - g = (Tp(un) - Tp(ua)) e * [lozr [ (us)]3
for any conformal mapping ¢ : Q — @/, and

(o ou)i ] = T] @mu) s« Y ]I

1<s<n Be{£1}ns<m

BsBm

2

Us— U
m

us—u

e Another approach (full plane): “exact bosonization” [J. Dubédat'11]



Scaling limits via Riemann-type b.v.p.’s [ arXiv:1605. 09035]

e Three local primary fields:
1, o (spin), £ (energy density);
Scaling exponents: 0, g, 1.

e Theorem: [Ch.—Hongler-lzyurov'12 ]
If Qs—Q as 6 — 0, then

(S_%'Egts[o-ul cee Uun] 530 CCIJ?'<O-U1 et a-un>$

E.g., to handle E;;a [ag]/E;;s[au], one
should consider the following b.v.p.:

o g(z%) = —g(2"), branches over u;

oIm[ (¢ )m] =0 for ( € 092,
0 g(z) = B 14240 (u)(z-u) +.. ]

e Conformal covariance: Ag(z) = Aq/(4(2)) - ¢'(z) + 8 ¢,((Zz))



o—p formalism [Kadanoff-Ceva’71]

e Given (an even number of) vertices
Vi, ..., Vm, consider the Ising model on a
double-cover Glvml ramified at each
of vi,...,vy with the spin-flip symmetry
constrain o,s = —o if ut and o lie over
the same face of G. Let

(uv1°'°HVmUu1°'°Uun>G
= ]EG[vl,..,vm] [Uul...O'un] . Zgl’m’vm]/ZG .

[two disorders inserted]

[ by definition, the (formal) correlator (fty,...fty,,Ouy+-Ou,) G
changes the sign when one of uy goes around of one of v ]

Reference: “Revisiting 2D Ising combinatorics” arXiv:1507.08242



o—p formalism [Kadanoff-Ceva’71]

e Given (an even number of) vertices
Vi, ..., Vm, consider the Ising model on a
double-cover Glvml ramified at each
of vi,...,vy with the spin-flip symmetry
constrain o,s = —o if ut and o lie over
the same face of G. Let

(l"v “‘I‘LVmUU1“‘UUn>G
= ]EG[vl,..,vm] [Uul...O'un] . Zgl’m’vm]/ZG .

[two disorders inserted]

e For a corner c lying in the face u(c) near the vertex v(c), set
1 1 .
Pe =62 (u(c)—v(c)) 2y (c)Tu(c)- Provided v(cp) # v(cq),

~+ the same fermions (v,...10¢,, )¢ = Pf[ (¢, 0¢c,) 6 ]‘z,fqzl,
this also works in presence of other spins and/or disorders.

Reference: “Revisiting 2D Ising combinatorics” arXiv:1507.08242



Scaling limits via Riemann-type b.v.p.’s: more fields

[ Ch.—Hongler—lzyurov '17 (to appear soon...) ] i
e Convergence of mixed correlations: |  Conformal
spins (o), disorders (p), fermions (v), | ) Thes
energy densities (¢) (in multiply connected | . |
domains €, with mixed fixed/free boundary @%&
conditions b) to conformally covariant limits, | 5
which can be defined via solutions to appropriate |
Riemann-type boundary value problems in €. ‘ b

e Standard CFT fusion rules

op~ 3@ +nP*), o~ p, du o,
FPY* ~ g, aawl—k%s, u,uwl—%e

can be deduced directly from the analysis of these b.v.p.'s

[ cf. the invited session talk by lzyurov (on Monday...) ]



Scaling limits via Riemann-type b.v.p.’s: more fields

[ Ch.—Hongler—lzyurov '17 (to appear soon...)]

e Convergence of mixed correlations:
spins (o), disorders (p), fermions (),
energy densities (g) (in multiply connected
domains €, with mixed fixed/free boundary
conditions b) to conformally covariant limits,
which can be defined via solutions to appropriate
Riemann-type boundary value problems in €.

e Standard CFT fusion rules, e.g. o ~» 1+ ¢:

1
(Oywou.)y = —u|"7 [(L)5+ 5|u' —ul(e,

Conformal
Field Theory

|
b gl

ot

can be deduced directly from the analysis of these b.v.p.'s

e More CFT: stress-energy tensor [ Ch.—Glazman—Smirnov'16 |;
Virasoro algebra on local fields [ Hongler—Kytola—Viklund('13-17) |



Geometric viewpoint: conformal loop ensembles (CLEs)

Question: What could be a good can-
didate for the scaling limit of loops sur-
rounding clusters (e.g., with “+” b.c.)?

Intuition: Distribution of loops should
(a) be conformally invariant
(b) satisfy the domain Markov property:

given the loops intersecting D> \ Dy, the _—
remaining ones form an independent CLE critical Ising sample with
. free b.c., © C. Hongler
in each component of the complement.

2200\ o0
e

3

Q



Geometric viewpoint: conformal loop ensembles (CLEs)
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didate for the scaling limit of loops sur-
rounding clusters (e.g., with “+” b.c.)?
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(b) satisfy the domain Markov property:

given the loops intersecting D, \ Dy, the -
remaining ones form an independent CLE critical Ising sample with
. free b.c., © C. Hongler
in each component of the complement. e

Loop-soup construction:

e sample a (countable) set of
Brownian loops using some
natural  conformally-friendly
Poisson process of intensity c.
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given the loops intersecting D, \ Dy, the -
remaining ones form an independent CLE critical Ising sample with
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Loop-soup construction:

e sample a (countable) set of
Brownian loops using some
natural  conformally-friendly
Poisson process of intensity c.
o fill the outermost clusters




Geometric viewpoint: conformal loop ensembles (CLEs)

Question: What could be a good can-
didate for the scaling limit of loops sur-
rounding clusters (e.g., with “+” b.c.)?

Intuition: Distribution of loops should
(a) be conformally invariant
(b) satisfy the domain Markov property:

given the loops intersecting D, \ Dy, the -
remaining ones form an independent CLE critical Ising sample with
. free b.c., © C. Hongler
in each component of the complement. e

s @ Thm [Sheffield-Werner'10]:
P> provided that loops do not
touch each other, (a) and (b)
imply that CLE has the law of
loop-soup boundaries for some
intensity ¢ € (0, 1].




Geometric viewpoint: conformal loop ensembles (CLEs)

Question: What could be a good can-
didate for the scaling limit of loops sur-
rounding clusters (e.g., with “+” b.c.)? 4

Theorem [ Benoist —Hongler’16 |: #{f ,; 
¥

-

The limit of critical spin-Ising clusters is %%, I% 8

a (nested) CLE corresponding to ¢ = 1. " ﬁ“:ﬁ

U : A
e The intensity in the loop-soup con- ‘%# o
struction coincide with the central charge critical lsing sample with

. i i free b.c., © C. Hongler
in the CFT formalism for correlations.

Loop-soup construction:

e sample a (countable) set of
Brownian loops using some
natural  conformally-friendly
Poisson process of intensity c.
o fill the outermost clusters




Geometric viewpoint: conformal loop ensembles (CLEs)

Question: What could be a good can-
didate for the scaling limit of loops sur-
rounding clusters (e.g., with “+” b.c.)?

Theorem [ Benoist —Hongler’16 |:

The limit of critical spin-Ising clusters is

a (nested) CLE corresponding to ¢ = 1.

e This is the tip of the iceberg, which e
is b.uilft upon a work of many people. ree b ¢ Honeler
Preliminary results ['06 —"16] include:

o Convergence of individual curves (via martingale observables)
for both spin- and FK-representations of the model [ Smirnov'06,
Ch.—Smirnov, Hongler—Kytola / Izyurov, Kemppainen —Smirnov |
o Uniform RSW-type bounds [ Ch.— Duminil-Copin—Hongler|
based on discrete complex analysis estimates in rough domains.



Convergence of correlations ~» convergence of interfaces
[see Ch.—Duminil-Copin—Hongler — Kemppainen —Smirnov '13 ]
e “Martingale observables”: choose
a function Mgq,(z), z € Qs5, such

that Mq,\s[0,n(2) is @ martingale
wrt the filtration F, := o(v5[0, n]).

Example: Eq,[o.].

e Convergence of observables: prove uniform (wrt Q5) convergence
of the (re-scaled) martingales Mq,(z) to Mq(z) as § — 0.

Remark: technically, Eq,[o,] is (by far) not an optimal choice of
a martingale: e.g., fermionic observables are much easier
to handle [ Smirnov '06; Ch.—Smirnov'09; lzyurov '14]



Convergence of correlations ~» convergence of interfaces
[see Ch.—Duminil-Copin—Hongler — Kemppainen —Smirnov '13 ]
e “Martingale observables”: choose

a function Mgq,(z), z € Qs5, such
that Mqo,\+s[0,q(2) is @ martingale

e Convergence of observables: prove
uniform (wrt ;) convergence of the
(re-scaled) martingales Mq,(z)

e RSW-type crossing estimates = tightness of the family (vs5)s-0:
[ Aizenmann—Burchard (1999), Kemppainen—Smirnov'12];

o Crossings in rectangles: [ Duminil-Copin—Hongler—Nolin "09];

o Rough domains: [Ch."12 ~» Ch.—Duminil-Copin—Hongler 13|

e |dentification of subsequential limits: for each v = lims, s, ,
the quantities Mg\ ,,(2) are martingales wrt F; := a(7[0, t]).

e conformal covariance of Mo =- conformal invariance of ~



Convergence of correlations ~» convergence of interfaces
[see Ch.—Duminil-Copin—Hongler —Kemppainen —Smirnov '13]

e “Martingale observables”

e Convergence of observables

e Uniform RSW-type estimates
~~ control of “pinning points”
arising along the exploration

Convergence and conformal invariance of the loop ensemble

e “Exploration” [ Hongler —Kytola'11;
Benoist — Duminil-Copin—Hongler'14;
“Taw . Benoist—Hongler'16 | iteratively switching
; ‘h‘mw* between spin- and FK(=random-cluster)-
representations of the Ising model.

Related work: [ Kempainnen—Smirnov'15-'16]



“Strong” RSW-type theory for the critical (FK-)Ising model

[ “toolbox" arXiv:1212.6205 & Duminil-Copin—Hongler — Nolin'09
~~ Ch.—Duminil-Copin—Hongler'13 ]

a

Thm: [Ch—DC-H] Uniformly wrt © and boundary conditions,

PG [(ab) ¢ (cd)] € [n(L), 1 —n(L)],

where L is the effective resistance of (; (ab), (cd)).

FK-representation of the Ising model: sample a Bernoulli
percolation with parameter 1—x..i; on edges of spin clusters.



“Strong” RSW-type theory for the critical (FK-)Ising model

[ “toolbox" arXiv:1212.6205 & Duminil-Copin—Hongler — Nolin'09
~~ Ch.—Duminil-Copin—Hongler'13 ]

e Basic ingredients: second moment method, FKG inequality
and estimates of point-to-wired arc connection events via
fermionic observables and then discrete harmonic functions.

e But.. How to handle triple connections x <+ y <> @ 7



“Strong” RSW-type theory for the critical (FK-)Ising model

[ “toolbox" arXiv:1212.6205 & Duminil-Copin—Hongler — Nolin'09
~~ Ch.—Duminil-Copin—Hongler'13 ]

e “Surgery”: given x,y (and w), to construct wy,w, such that
ZRw[X — w] = ZRw[X d wx] . ZRw[wX <~ w],
ZRw[y <~ w] = ZRw[y <~ wy] . ZRw[wy <~ w]

( with uniform wrt everything(!) constants in =< estimates ) and

ZRw[wX <~ w] = ZRw[(Xy) < w] = ZRw[wy <~ w]



“Strong” RSW-type theory for the critical (FK-)Ising model

[ “toolbox" arXiv:1212.6205 & Duminil-Copin—Hongler — Nolin'09
~~ Ch.—Duminil-Copin—Hongler'13 ]

e “Surgery”: given x,y (and w), to construct wy,w, such that
ZRw[X — w] = ZRw[X d wx] . ZRw[wX <~ w]
e Remark. Note that for the effective resistances one would have
L[x < @] < L[x +> wy] + L[wx ¢ @]

[see arXiv:1212.6205 for all that and more, e.g. L < log(1+Zgyw)]



Some important open questions

e Spin field vs nested CLE(3): is there a way to couple them
so that one (of them) is a deterministic function of the other?

Can one construct correlation functions of other CFT fields
from CLE(3)? E.g., energy field «~ “occupation density” ?




Some important open questions

e Massive SLE(3) curves: fix m e R and let x = Xerit +m9.
This breaks the conformal invariance (Of — imf = 0) but one can
consider correlations and interfaces in a fixed domain as § — 0.

. \\.1 ge(b)=o°
.}1:(1)

- \
- ’ ~
21 >

& / gi(a.)

Similarly to mLERW computations from [Makarov—Smirnov'09],
B 2dt _ 5 (m)

dgi(z) = FOER dér = V3dB: + 3 32-log Fy " (ar, b) dt,
! (ae, b) = [ (@)™ (B)a, / (1(ae (b)), 112

~ 3 (%tlog]-'g(z':’)(at, b) is a quite non-trivial functional of &[0, ¢].

A priori, even the existence of SDE solutions is unclear...



Some important open questions

e Spin field vs nested CLE(3): is there a way to couple them
so that one (of them) is a deterministic function of the other?

e Massive SLE(3) curves: fix m e R and let x = Xt +mod.
This breaks the conformal invariance (0f — imf = 0) but one can
consider correlations and interfaces in a fixed domain as § — 0.

e Super-critical regime: interfaces should converge to SLE(6)...
Is it true that mSLE(3)— SLE(6) as m — +o0?

e Renormalization

fixed x> Xcrit, 0 —0
e

(X —Xerit) - 071 — o0
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X = Xerit THANK YOU!



