Convergence of correlations in the 2D Ising model: primary fields [and the stress-energy tensor]

DMITRY CHELKAK [ÉNS, PARIS & STEKLOV INSTITUTE, ST. PETERSBURG]

[Sample of a critical 2D Ising configuration (with two disorders), © Clément Hongler (EPFL)]

"Quantum Integrable Systems, Conformal Field Theories and Stochastic Processes" Institut d'Études Scientifiques de Cargèse, Sept 20, 2016

2D ISING MODEL: CONVERGENCE OF CORRELATIONS AT CRITICALITY

[see also arXiv:1605.09035]

© Clément Hongler (EPFL)

- N.n. 2D Ising model: combinatorics
- o dimers and fermionic observables
- discrete holomorphicity at criticality
- spinor observables and spin correlations
- spin-disorder formalism
- Spin correlations at criticality
- Riemann boundary value problems for holomorphic spinors in continuum
- Convergence [Ch.–Hongler–Izyurov]
- Other primary fields: $\sigma, \mu, \varepsilon, \psi, \overline{\psi}$
- Convergence and fusion rules
- Construction of mixed correlations via Riemann boundary value problems
- [Stress-energy tensor]
- \circ (Some) discrete version of T and \overline{T}
- Convergence [Ch.–Glazman–Smirnov]

Nearest-neighbor Ising (or Lenz-Ising) model in 2D

<u>Definition</u>: Lenz-Ising model on a planar graph G^* (dual to G) is a random assignment of +/- spins to vertices of G^* (faces of G)

Q: I heard this is called a (site) percolation? A: .. according to the following probabilities:

$$\mathbb{P}\left[\text{conf. } \sigma \in \{\pm 1\}^{V(G^*)}\right] \propto \exp\left[\beta \sum_{e=\langle uv \rangle} J_{uv} \sigma_u \sigma_v\right]$$

$$\propto \prod_{e=\langle uv \rangle: \sigma \neq \sigma} X_{uv},$$

where $J_{uv} > 0$ are interaction constants assigned to edges $\langle uv \rangle$, $\beta = 1/kT$ is the inverse temperature, and $x_{uv} = \exp[-2\beta J_{uv}]$.

Nearest-neighbor Ising (or Lenz-Ising) model in 2D

<u>Definition</u>: Lenz-Ising model on a planar graph G^* (dual to G) is a random assignment of +/- spins to vertices of G^* (faces of G)

<u>Disclaimer</u>: 2D, nearest-neighbor, no external magnetic field.

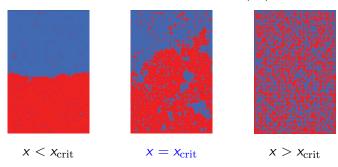
$$\mathbb{P}\left[\text{conf. } \sigma \in \{\pm 1\}^{V(G^*)}\right] \propto \exp\left[\beta \sum_{\mathbf{e} = \langle u\mathbf{v}\rangle} J_{u\mathbf{v}} \sigma_u \sigma_v\right] \\ \propto \prod_{\mathbf{e} = \langle u\mathbf{v}\rangle: \sigma_u \neq \sigma_v} x_{u\mathbf{v}},$$

where $J_{uv} > 0$ are interaction constants assigned to edges $\langle uv \rangle$, $\beta = 1/kT$ is the inverse temperature, and $x_{uv} = \exp[-2\beta J_{uv}]$.

- It is also convenient to use the parametrization $x_{uv} = \tan(\frac{1}{2}\theta_{uv})$.
- Working with subgraphs of regular lattices, one can consider the homogeneous model in which all x_{uv} are equal to each other.

Phase transition (e.g., on \mathbb{Z}^2)

E.g., Dobrushin boundary conditions: +1 on (ab) and -1 on (ba):



- Ising (1925): no phase transition in 1D → doubts about 2+D;
- Peierls (1936): existence of the phase transition in 2D;
- Kramers-Wannier (1941): $x_{\text{self-dual}} = \sqrt{2} 1 = \tan(\frac{1}{2} \cdot \frac{\pi}{4});$
- Onsager (1944): sharp phase transition at $x_{\text{crit}} = \sqrt{2} 1$.

At criticality (e.g., on \mathbb{Z}^2):

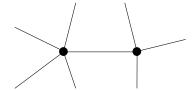
- o Kaufman-Onsager(1948-49), Yang(1952): scaling exponent $\frac{1}{8}$ for the magnetization. [via spin-spin correlations in \mathbb{Z}^2 at $x \uparrow x_{\rm crit}$]
- At criticality, for $\Omega_{\delta} \to \Omega$ and $u_{\delta} \to u \in \Omega$, it should be $\mathbb{E}_{\Omega_{\delta}}[\sigma_{u_{\delta}}] \asymp \delta^{\frac{1}{8}}$ as $\delta \to 0$.
- Question: Convergence of (rescaled) spin correlations and conformal covariance of their scaling limits in arbitrary planar domains:

 $x = x_{\rm crit}$

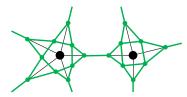
$$\delta^{-\frac{n}{8}} \cdot \mathbb{E}_{\Omega_{\delta}}[\sigma_{u_{1,\delta}} \dots \sigma_{u_{n,\delta}}] \rightarrow \langle \sigma_{u_{1}} \dots \sigma_{u_{n}} \rangle_{\Omega}
= \langle \sigma_{\varphi(u_{1})} \dots \sigma_{\varphi(u_{n})} \rangle_{\varphi(\Omega)} \cdot \prod_{s=1}^{n} |\varphi'(u_{s})|^{\frac{1}{8}}$$

• In the infinite-volume setup other techniques are available, notably "exact bosonization" approach due to J. Dubédat.

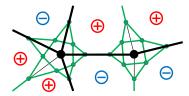
- Partition function $\mathcal{Z} = \sum_{\sigma \in \{\pm 1\}^{V(G^*)}} \prod_{e = \langle uv \rangle : \sigma_u \neq \sigma_v} x_{uv}$
- There exist various representations of the 2D Ising model via dimers on an auxiliary graph



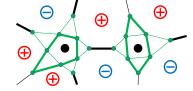
- Partition function $\mathcal{Z} = \sum_{\sigma \in \{\pm 1\}^{V(G^*)}} \prod_{e = \langle uv \rangle : \sigma_u \neq \sigma_v} x_{uv}$
- ullet There exist various representations of the 2D Ising model via dimers on an auxiliary graph G_F



- Partition function $\mathcal{Z} = \sum_{\sigma \in \{\pm 1\}^{V(G^*)}} \prod_{e = \langle uv \rangle : \sigma_u \neq \sigma_v} x_{uv}$
- There exist various representations of the 2D Ising model via dimers on an auxiliary graph: e.g. 1-to- $2^{|V(G)|}$ correspondence of $\{\pm 1\}^{V(G^*)}$ with dimers on **this** G_F

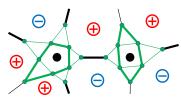


- Partition function $\mathcal{Z} = \sum_{\sigma \in \{\pm 1\}^{V(G^*)}} \prod_{e = \langle uv \rangle : \sigma_u \neq \sigma_v} x_{uv}$
- There exist various representations of the 2D Ising model via dimers on an auxiliary graph: e.g. 1-to- $2^{|V(G)|}$ correspondence of $\{\pm 1\}^{V(G^*)}$ with dimers on **this** G_F



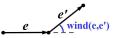
• Kasteleyn's theory: $\mathcal{Z} = \operatorname{Pf}[K]$ [K = -K $^{\top}$ is a weighted adjacency matrix of G_F]

- Partition function $\mathcal{Z} = \sum_{\sigma \in \{+1\}^{V(G^*)}} \prod_{e=\langle uv \rangle : \sigma_u \neq \sigma_v} x_{uv}$
- There exist various representations of the 2D Ising model via dimers on an auxiliary graph: e.g. 1-to- $2^{|V(G)|}$ correspondence of
- $\{\pm 1\}^{V(G^*)}$ with dimers on this G_F



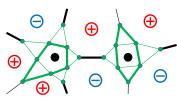
- Kasteleyn's theory: $\mathcal{Z} = Pf[K]$ [K=-K^T is a weighted adjacency matrix of G_F]
- Kac-Ward formula (1952-..., 1999-...): $\mathbb{Z}^2 = \det[Id T]$,

$$T_{e,e'} = \begin{cases} \exp\left[\frac{i}{2}\mathbf{wind}(e,e')\right] \cdot (x_e x_{e'})^{1/2} \\ 0 \end{cases}$$



is equivalent to the Kasteleyn theorem for dimers on G_F

- Partition function $\mathcal{Z} = \sum_{\sigma \in \{+1\}^{V(G^*)}} \prod_{e=\langle uv \rangle : \sigma_u \neq \sigma_v} x_{uv}$
- There exist various representations of the 2D Ising model via dimers on an auxiliary graph: e.g. 1-to- $2^{|V(G)|}$ correspondence of
- $\{\pm 1\}^{V(G^*)}$ with dimers on this G_F



- Kasteleyn's theory: $\mathcal{Z} = Pf[K]$ [K = -K^T is a weighted adjacency matrix of G_F]
- Note that $V(G_F) \cong \{ oriented edges and corners of G \}$
- Local relations for the entries $K_{a,c}^{-1}$ and $K_{a,c}^{-1}$ of the inverse Kasteleyn (or the inverse Kac-Ward) matrix:

(an equivalent form of) the identity $\mathbf{K} \cdot \mathbf{K}^{-1} = \mathbf{Id}$

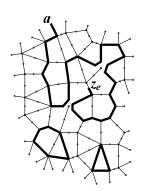
Fermionic observables: combinatorial definition [Smirnov'00s]

For an oriented edge a and a midedge z_e (similarly, for a corner c),

$$F_G(a, z_e) := \overline{\eta}_a \sum_{\omega \in \operatorname{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \operatorname{wind}(a \leadsto z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right]$$

where η_a denotes the (once and forever fixed) square root of the direction of a.

- The factor $e^{-\frac{i}{2} \text{wind}(a \sim z_e)}$ does not depend on the way how ω is split into non-intersecting loops and a path $a \sim z_e$.
- Via dimers on G_F : $F_G(a,c) = \overline{\eta}_c \mathrm{K}_{c,a}^{-1}$ $F_G(a,z_e) = \overline{\eta}_e \mathrm{K}_{e,a}^{-1} + \overline{\eta}_{\overline{e}} \mathrm{K}_{\overline{e},a}^{-1}$



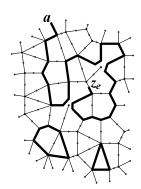
Fermionic observables: combinatorial definition [Smirnov'00s]

For an oriented edge a and a midedge z_e (similarly, for a corner c),

$$F_G(a, z_e) := \overline{\eta}_a \sum_{\omega \in \operatorname{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \operatorname{wind}(a \leadsto z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right]$$

where η_a denotes the (once and forever fixed) square root of the direction of a.

- Local relations: at criticality, can be thought of as some (strong) form of discrete Cauchy-Riemann equations.
- Boundary conditions $F(a, z_e) \in \overline{\eta}_{\bar{e}} \mathbb{R}$ (\overline{e} is oriented outwards) uniquely determine F as a solution to an appropriate



discrete Riemann-type boundary value problem.

Fermionic observables: combinatorial definition [Smirnov'00s]

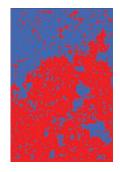
For an oriented edge a and a midedge z_e (similarly, for a corner c),

$$F_G(a, z_e) := \overline{\eta}_a \sum_{\omega \in \operatorname{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \operatorname{wind}(a \leadsto z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right]$$

Fermionic observables per se can be used

- to construct (discrete) martingales for growing **interfaces** and then to study their convergence to SLE curves [Smirnov(2006), ..., Ch.-Duminil-Copin -Hongler-Kemppainen-Smirnov(2013)]
- to analyze the energy density field [Hongler–Smirnov, Hongler (2010)]

$$\boldsymbol{\varepsilon}_{\boldsymbol{e}} := \delta^{-1} \cdot [\boldsymbol{\sigma}_{\boldsymbol{e}^{-}} \boldsymbol{\sigma}_{\boldsymbol{e}^{+}} - \varepsilon_{\boldsymbol{e}}^{\infty}]$$



where e^\pm are the two neighboring faces separated by an edge e

• but more involved ones are needed to study spin correlations

Energy density: convergence and conformal covariance

- Three local primary fields: 1, σ (spin), ε (energy density); Scaling exponents: 0, $\frac{1}{8}$, 1.
- Theorem: [Hongler–Smirnov, Hongler (2010)] If $\Omega_{\delta} \to \Omega$ and $e_{k,\delta} \to z_k$ as $\delta \to 0$, then $\delta^{-n} \cdot \mathbb{E}^+_{\Omega_{\delta}}[\varepsilon_{e_{1,\delta}} \dots \varepsilon_{e_{n,\delta}}] \underset{\delta \to 0}{\to} \mathcal{C}^n_{\varepsilon} \cdot \langle \varepsilon_{z_1} \dots \varepsilon_{z_n} \rangle_{\Omega}^+$

(O)] .e₃ .e₃

where $\mathcal{C}_{arepsilon}$ is a lattice-dependent constant,

$$\langle \varepsilon_{z_1} \dots \varepsilon_{z_n} \rangle_{\Omega}^+ = \langle \varepsilon_{\varphi(z_1)} \dots \varepsilon_{\varphi(z_n)} \rangle_{\Omega'}^+ \cdot \prod_{s=1}^n |\varphi'(u_s)|$$

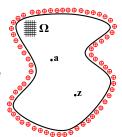
for any conformal mapping $\varphi:\Omega\to\Omega'$, and

$$\langle \varepsilon_{z_1} \dots \varepsilon_{z_n} \rangle_{\mathbb{H}}^+ = i^n \cdot \operatorname{Pf} \left[(z_s - z_m)^{-1} \right]_{s,m=1}^{2n}, \quad z_s = \overline{z}_{2n+1-s}.$$

• Ingredients: convergence of basic fermionic observables (via Riemann-type b.v.p.) and (built-in) Pfaffian formalism

Energy density: convergence and conformal covariance

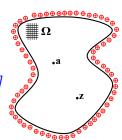
- Three local primary fields: 1, σ (spin), ε (energy density); Scaling exponents: 0, $\frac{1}{8}$, 1.
- Theorem: [Hongler–Smirnov, Hongler (2010)] If $\Omega_{\delta} \to \Omega$ and $e_{k,\delta} \to z_k$ as $\delta \to 0$, then $\delta^{-n} \cdot \mathbb{E}_{\Omega_{\delta}}^+[\varepsilon_{\mathbf{e}_{1,\delta}} \dots \varepsilon_{\mathbf{e}_{n,\delta}}] \underset{\delta \to 0}{\to} \mathcal{C}_{\varepsilon}^n \cdot \langle \varepsilon_{z_1} \dots \varepsilon_{z_n} \rangle_{\Omega}^+$



- Riemann-type boundary value problem to consider (sketch):
- $\circ f_{\Omega}^{[\eta]}(a,z)$ is holomorphic in Ω except at a given point $a \in \Omega$;
- $\circ \operatorname{Im} \left[f_{\Omega}^{[\eta]}(a,\zeta) \sqrt{\tau(\zeta)} \right] = 0, \text{ where } \tau(\zeta) \text{ is the counterclockwise}$ (clockwise for free boundary conditions) tangent vector at $\zeta \in \partial \Omega$;
- of $f_{\Omega}^{[\eta]}(a,z) = \frac{(2i)^{-1/2}\eta}{z-a} + ...$ as $z \to a$, where η should be thought of as a square root of the direction of the edge $a_{\delta} \to a$.

Energy density: convergence and conformal covariance

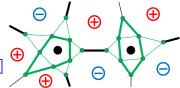
- Three local primary fields: 1, σ (spin), ε (energy density); Scaling exponents: $0, \frac{1}{0}, 1$.
- Theorem: [Hongler–Smirnov, Hongler (2010)] If $\Omega_{\delta} \to \Omega$ and $e_{k,\delta} \to z_k$ as $\delta \to 0$, then $\delta^{-n} \cdot \mathbb{E}_{\Omega_{\delta}}^+ [\varepsilon_{e_{1,\delta}} \dots \varepsilon_{e_{n,\delta}}] \underset{\delta \to 0}{\to} \mathcal{C}_{\varepsilon}^n \cdot \langle \varepsilon_{z_1} \dots \varepsilon_{z_n} \rangle_{\Omega}^+$



- Riemann-type boundary value problem to consider (sketch):
- $\circ f_{\Omega}^{[\eta]}(a,z)$ is holomorphic in Ω except at a given point $a \in \Omega$;
- $\circ \operatorname{Im} \left[f_{\Omega}^{[\eta]}(a,\zeta) \sqrt{\tau(\zeta)} \right] = 0$, where $\tau(\zeta)$ is the counterclockwise (clockwise for free boundary conditions) tangent vector at $\zeta \in \partial \Omega$;
- $\circ f_{\Omega}^{[\eta]}(\mathbf{a},\mathbf{z}) = \frac{(2i)^{-1/2}\eta}{z-\mathbf{a}} + \dots = 2^{-\frac{1}{2}} \left[e^{-i\frac{\pi}{4}}\eta \cdot \mathbf{f}_{\Omega}(\mathbf{a},\mathbf{z}) + e^{i\frac{\pi}{4}}\overline{\eta} \cdot \mathbf{f}_{\Omega}^{\dagger}(\mathbf{a},\mathbf{z}) \right]$
- $\langle \psi_z \psi_a \rangle_{\Omega}^+ := f_{\Omega}(a,z)$, $\langle \psi_z \overline{\psi}_a \rangle_{\Omega}^+ := f_{\Omega}^{\dagger}(a,z)$ and $\varepsilon_z := i \psi_z \overline{\psi}_z$.

- spin configurations on G*
 ⇔ domain walls on G
 ⇔ dimers on G_F
- ullet Kasteleyn's theory: $\mathcal{Z} = \operatorname{Pf}[\mathbf{K}]$

[$\mathbf{K}\!=\!-\mathbf{K}^{ op}$ is a weighted adjacency matrix of $\mathit{G_F}$]



- spin configurations on G*
 ⇔ domain walls on G
 ⇔ dimers on G_F
- Kasteleyn's theory: $\mathcal{Z} = Pf[K]$

[
$$\mathbf{K} \! = \! - \! \mathbf{K}^{ op}$$
 is a weighted adjacency matrix of $\textit{G}_{\textit{F}}$]

• Claim:

$$\mathbb{E}[\sigma_{u_1} \dots \sigma_{u_n}] = \frac{\operatorname{Pf}[K_{[u_1, \dots, u_n]}]}{\operatorname{Pf}[K]},$$

where $\mathbf{K}_{[u_1,...,u_n]}$ is obtained from \mathbf{K} by changing the sign of its entries on slits linking $u_1,...,u_n$ (and, possibly, u_{out}) pairwise.

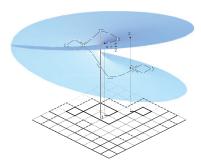
• More invariant way to think about entries of $\mathbf{K}_{[u_1,...,u_n]}^{-1}$:

double-covers of G branching over u_1,\ldots,u_n

<u>Main tool</u>: spinors on the double cover $[\Omega_{\delta}; u_1, \ldots, u_n]$.

$$F_{\Omega_{\delta}}\left(z\right) := \left[\mathcal{Z}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{1}}\ldots\sigma_{u_{n}}\right]\right]^{-1} \cdot \sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}\left(u_{1}^{\rightarrow},z\right)} \phi_{u_{1},\ldots,u_{n}}\left(\omega,z\right) \cdot x_{\operatorname{crit}}^{\#\operatorname{edges}\left(\omega\right)},$$

$$\phi_{u_1,...,u_n}(\omega,z) := e^{-\frac{i}{2}\mathrm{wind}(\mathrm{p}(\omega))} \cdot (-1)^{\#\mathrm{loops}(\omega \setminus \mathrm{p}(\omega))} \cdot \mathrm{sheet}\left(\mathrm{p}\left(\omega\right),z\right).$$

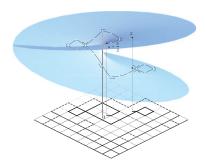


- wind $(p(\gamma))$ is the winding of the path $p(\gamma): u_1^{\rightarrow} = u_1 + \frac{\delta}{2} \rightsquigarrow z$;
- #loops those containing an odd number of u_1, \ldots, u_n inside;
- sheet $(p(\gamma), z) = +1$, if $p(\gamma)$ defines z, and -1 otherwise.
- Note that $F(z^{\sharp}) = -F(z^{\flat})$ if z^{\sharp}, z^{\flat} lie over the same edge of Ω_{δ} .

<u>Main tool</u>: spinors on the double cover $[\Omega_{\delta}; u_1, \ldots, u_n]$.

$$F_{\Omega_{\delta}}\left(z\right) := \left[\mathcal{Z}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{1}}\ldots\sigma_{u_{n}}\right]\right]^{-1} \cdot \sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}\left(u_{1}^{\rightarrow},z\right)} \phi_{u_{1},\ldots,u_{n}}\left(\omega,z\right) \cdot x_{\operatorname{crit}}^{\#\operatorname{edges}\left(\omega\right)},$$

$$\phi_{u_1,\dots,u_n}\left(\omega,z\right):=e^{-\frac{i}{2}\mathrm{wind}\left(\mathrm{p}(\omega)\right)}\cdot\left(-1\right)^{\#\mathrm{loops}\left(\omega\setminus\mathrm{p}(\omega)\right)}\cdot\mathrm{sheet}\left(\mathrm{p}\left(\omega\right),z\right).$$



Claim:

$$F_{\Omega_{\delta}}(u_1+\frac{3\delta}{2})=\frac{\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_1+2\delta}\ldots\sigma_{u_n}\right]}{\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_1}\ldots\sigma_{u_n}\right]}$$

Thus, spatial derivatives of spin correlations can be studied via the analysis of spinor observables.

• Remark: Both fermionic and spinor observables can be intro-

duced using spin-disorder formalism of Kadanoff and Ceva.

Spin-disorder formalism of Kadanoff and Ceva

• Recall that spins σ_u are assigned to the faces of G. Given (an even number of) vertices $v_1, ..., v_m$, link them pairwise by a collection of paths $\varkappa = \varkappa^{[v_1, ..., v_m]}$ and replace x_e by x_e^{-1} for all $e \in \varkappa$. Denote

$$\langle \mu_{\mathbf{v}_1}...\mu_{\mathbf{v}_m}\rangle_{\mathbf{G}} := \mathcal{Z}_G^{[\mathbf{v}_1,...,\mathbf{v}_m]}/\mathcal{Z}_G$$
.
• Equivalently, one may think of the Ising

model on a double-cover $G^{[v_1,\ldots,v_m]}$ that branches over each of v_1,\ldots,v_m with the spin-flip symmetry constrain $\sigma_{u^{\sharp}}=-\sigma_{u^{\flat}}$ if u^{\sharp} and u^{\flat} lie over the same face of G. Let

[two disorders inserted]

$$\langle \mu_{\mathbf{v_1}}...\mu_{\mathbf{v_m}}\sigma_{\mathbf{u_1}}...\sigma_{\mathbf{u_n}}\rangle_{\mathbf{G}} := \mathbb{E}_{G^{[\mathbf{v_1},..,\mathbf{v_m}]}}[\sigma_{u_1}...\sigma_{u_n}] \cdot \langle \mu_{\mathbf{v_1}}...\mu_{\mathbf{v_m}}\rangle_{\mathbf{G}}.$$

• By definition, $\langle \mu_{v_1} ... \mu_{v_m} \sigma_{u_1} ... \sigma_{u_n} \rangle_G$ changes the sign when one of the faces u_k goes around of one of the vertices v_s .

Spin-disorder formalism of Kadanoff and Ceva

- By definition, $\langle \mu_{v_1}...\mu_{v_m}\sigma_{u_1}...\sigma_{u_n}\rangle_G$ changes the sign when one of the faces u_k goes around of one of the vertices v_s .
- For a corner c lying in a face u(c) near a vertex v(c), denote $\chi_c := \mu_{v(c)} \sigma_{u(c)}$.
- Claim:

$$\langle \chi_{c_1} ... \chi_{c_{2k}} \rangle_{\mathcal{G}} = \operatorname{Pf} [\langle \chi_{c_p} \chi_{c_q} \rangle_{\mathcal{G}}]_{p,q=1}^{2k}$$

and $\langle \chi_d \chi_c \rangle_G = \mathrm{K}_{c,d}^{-1}$ provided that all the vertices $v(c_a)$ are pairwise distinct.

[two disorders inserted]

• Remark: This also works in presence of other spins and disorders. The antisymmetry $\langle \chi_d \chi_c \rangle_G = -\langle \chi_c \chi_d \rangle_G$ is caused by the sign change of the corresponding spin-disorder correlation.

Spin-disorder formalism of Kadanoff and Ceva

- By definition, $\langle \mu_{v_1}...\mu_{v_m}\sigma_{u_1}...\sigma_{u_n}\rangle_G$ changes the sign when one of the faces u_k goes around of one of the vertices v_s .
- For a corner c lying in a face u(c) near a vertex v(c), denote $\chi_c := \mu_{v(c)} \sigma_{u(c)}$.
- Claim:

$$\langle \chi_{c_1} ... \chi_{c_{2k}} \rangle_{\mathit{G}} = \mathrm{Pf}[\, \langle \chi_{c_p} \chi_{c_q} \rangle_{\mathit{G}}\,]_{p,q=1}^{2k}$$

and $\langle \chi_d \chi_c \rangle_G = \mathrm{K}_{c,d}^{-1}$ provided that all the vertices $v(c_a)$ are pairwise distinct.

[two disorders inserted]

• The "corner" (resp., "edge") values of the special spinor observable on $[\Omega_{\delta}; u_1, ..., u_n]$ discussed above can be written as

$$\frac{\langle \pmb{\chi_c} \mu_{\textit{V}(\textit{u}_1^{\rightarrow})} \sigma_{\textit{u}_2} ... \sigma_{\textit{u}_n} \rangle_{\Omega_{\delta}}}{\langle \sigma_{\textit{u}_1} ... \sigma_{\textit{u}_n} \rangle_{\Omega_{\delta}}} \quad \bigg(\text{resp., } \frac{\langle \pmb{\psi_z} \mu_{\textit{V}(\textit{u}_1^{\rightarrow})} \sigma_{\textit{u}_2} ... \sigma_{\textit{u}_n} \rangle_{\Omega_{\delta}}}{\langle \sigma_{\textit{u}_1} ... \sigma_{\textit{u}_n} \rangle_{\Omega_{\delta}}} \bigg),$$

[$\psi_{
m z}$ can be thought of as linear combinations of nearby χ_c 's]

- Three local primary fields: 1, σ (spin), ε (energy density); Scaling exponents: 0, $\frac{1}{8}$, 1.
- Theorem: [Ch.-Hongler-Izyurov (2012)] If $\Omega_{\delta} \to \Omega$ and $u_{k,\delta} \to u_k$ as $\delta \to 0$, then

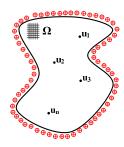
$$\boldsymbol{\delta}^{-\frac{n}{8}} \cdot \mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{1,\delta}} \dots \sigma_{u_{n,\delta}}] \underset{\delta \to 0}{\to} \mathcal{C}_{\sigma}^{n} \cdot \langle \boldsymbol{\sigma}_{u_{1}} \dots \boldsymbol{\sigma}_{u_{n}} \rangle_{\Omega}^{+}$$

where \mathcal{C}_{σ} is a lattice-dependent constant,

$$\langle \sigma_{u_1} \dots \sigma_{u_n} \rangle_{\Omega}^+ = \langle \sigma_{\varphi(u_1)} \dots \sigma_{\varphi(u_n)} \rangle_{\Omega'}^+ \cdot \prod_{s=1}^n |\varphi'(u_s)|^{\frac{1}{8}}$$

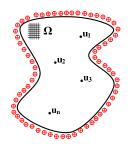
for any conformal mapping $\varphi: \Omega \to \Omega'$, and

$$\left[\left\langle \boldsymbol{\sigma}_{\boldsymbol{u_1}} \dots \boldsymbol{\sigma}_{\boldsymbol{u_n}} \right\rangle_{\mathbb{H}}^{+} \right]^2 = \prod_{1 \leqslant s \leqslant n} (2 \operatorname{Im} u_s)^{-\frac{1}{4}} \times \sum_{\beta \in \{\pm 1\}^n} \prod_{s < m} \left| \frac{u_s - u_m}{u_s - \overline{u}_m} \right|^{\frac{\beta s \beta m}{2}}$$



- Three local primary fields: 1, σ (spin), ε (energy density); Scaling exponents: 0, $\frac{1}{8}$, 1.
- Theorem: [Ch.-Hongler-Izyurov (2012)] If $\Omega_{\delta} \to \Omega$ and $u_{k,\delta} \to u_k$ as $\delta \to 0$, then

$$\boldsymbol{\delta}^{-\frac{n}{8}} \cdot \mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{1,\delta}} \dots \sigma_{u_{n,\delta}}] \underset{\delta \to 0}{\to} \mathcal{C}_{\sigma}^{n} \cdot \langle \boldsymbol{\sigma}_{\boldsymbol{u}_{1}} \dots \boldsymbol{\sigma}_{\boldsymbol{u}_{n}} \rangle_{\Omega}^{+}$$



General strategy: • in discrete: encode spatial derivatives as values of discrete holomorphic spinors F^{δ} that solve some discrete Riemann-type boundary value problems;

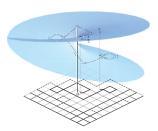
- <u>discrete \rightarrow continuum</u>: prove convergence of F^{δ} to the solutions f of the similar continuous b.v.p. [non-trivial technicalities];
- <u>continuum \rightarrow discrete</u>: find the limit of (spatial derivatives of) using the convergence $F^{\delta} \rightarrow f$ [via coefficients at singularities].

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{u}]$, one should consider the following b.v.p.:

$$\circ g(z^{\sharp}) \equiv -g(z^{\flat})$$
, branches over u ;

$$\circ \operatorname{Im} \left[g(\zeta) \sqrt{\tau(\zeta)} \right] = 0 \text{ for } \zeta \in \partial \Omega;$$

$$\circ g(z) = \frac{(2i)^{-1/2}}{\sqrt{z-u}} + \dots$$



Example: to handle $\mathbb{E}_{O_s}^+[\sigma_u]$, one should consider the following b.v.p.:

$$\circ g(z^{\sharp}) \equiv -g(z^{\flat})$$
, branches over u ;

$$\circ \operatorname{Im} [g(\zeta)\sqrt{\tau(\zeta)}] = 0 \text{ for } \zeta \in \partial \Omega;$$

$$\circ g(z) = \frac{(2i)^{-1/2}}{\sqrt{z-u}} [1 + 2 \mathcal{A}_{\Omega}(\mathbf{u})(z-u) + \ldots]$$

Claim: If
$$\Omega_{\delta}$$
 converges to Ω as $\delta \to 0$, then

. If
$$\Omega_{\delta}$$
 converges to Ω as $\delta \to 0$, then

$$\begin{array}{ll} \circ & (2\delta)^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{\delta}+2\delta}] \, / \, \mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{\delta}}] \right] \to \operatorname{Re}[\, \mathcal{A}_{\Omega}(u) \,] \, ; \\ \circ & (2\delta)^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{\delta}+2i\delta}] \, / \, \mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{\delta}}] \right] \to -\operatorname{Im}[\, \mathcal{A}_{\Omega}(u) \,] \, . \end{array}$$

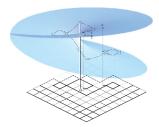
$$\circ \quad (2\delta)^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{\delta}+2i\delta}] / \mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{\delta}}] \right] \to -\operatorname{Im} \left[\mathcal{A}_{\Omega}(u) \right].$$

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{u}]$, one should consider the following b.v.p.:

$$\circ g(z^{\sharp}) \equiv -g(z^{\flat})$$
, branches over u ;

$$\circ \operatorname{Im} \left[g(\zeta) \sqrt{\tau(\zeta)} \right] = 0 \text{ for } \zeta \in \partial \Omega;$$

$$\circ g(z) = \frac{(2i)^{-1/2}}{\sqrt{z-u}} [1 + 2\mathcal{A}_{\Omega}(\mathbf{u})(z-u) + \dots]$$



Claim: If Ω_{δ} converges to Ω as $\delta \to 0$, then

$$\circ \quad (2\delta)^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{\delta}+2\delta}] \, / \, \mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{\delta}}] \right] \to \operatorname{Re}[\mathcal{A}_{\Omega}(u)];$$

$$\circ \quad (2\delta)^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{\delta}+2i\delta}] / \mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{\delta}}] \right] \to -\operatorname{Im} \left[\mathcal{A}_{\Omega}(u) \right].$$

Conformal covariance $\frac{1}{8}$: for any conformal map $\phi: \Omega \to \Omega'$,

$$\circ f_{[\Omega,a]}(w) = f_{[\Omega',\phi(a)]}(\phi(w)) \cdot (\phi'(w))^{1/2};$$

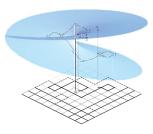
$$\circ \quad \mathcal{A}_{\Omega}(z) = \mathcal{A}_{\Omega'}(\phi(z)) \cdot \phi'(z) + \frac{1}{8} \cdot \phi''(z) / \phi'(z) \,.$$

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{u}]$, one should consider the following b.v.p.:

$$\circ g(z^{\sharp}) \equiv -g(z^{\flat})$$
, branches over u ;

$$\circ \operatorname{Im} \left[g(\zeta) \sqrt{\tau(\zeta)} \right] = 0 \text{ for } \zeta \in \partial \Omega;$$

$$\circ g(z) = \frac{(2i)^{-1/2}}{\sqrt{z-u}} [1 + 2 \mathbf{A}_{\Omega}(\mathbf{u})(z-u) + ...]$$



Claim: If Ω_{δ} converges to Ω as $\delta \to 0$, then

$$\begin{array}{l} \circ & (2\delta)^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{\delta}+2\delta}] \, / \, \mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{\delta}}] \right] \to \operatorname{Re}[\,\mathcal{A}_{\Omega}(u)\,] \, ; \\ \circ & (2\delta)^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{\delta}+2i\delta}] \, / \, \mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{\delta}}] \right] \to -\operatorname{Im}[\,\mathcal{A}_{\Omega}(u)\,] \, . \end{array}$$

Quite a lot of technical work is needed, e.g.:

- to handle tricky boundary conditions [Dirichlet for $\int \text{Re}[f^2dz]$];
- to prove convergence, incl. near singularities [complex analysis];
- to recover the **normalization** of $\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{u_1}...\sigma_{u_n}]$ [probability].

Spin correlations: multiplicative normalization

We define $\langle \sigma_{u_1} \dots \sigma_{u_n} \rangle_{\Omega}^+ := \exp[\int \mathcal{L}(u_1, \dots, u_n)]$, where

$$\mathcal{L}_{\Omega}(u_1,\ldots,u_n) := \sum_{s=1}^n \operatorname{Re} \left[\mathcal{A}_{\Omega}(u_s;u_1,...,\hat{u}_s,...,u_n) du_s \right],$$

where the coefficients $A_{\Omega}(...)$ are defined via solutions to similar Riemann boundary values problems and the normalization satisfies

$$\langle \sigma_{u_1} ... \sigma_{u_n} \rangle_{\Omega}^+ \sim \langle \sigma_{u_1} ... \sigma_{u_{n-1}} \rangle_{\Omega}^+ \cdot \langle \sigma_{u_n} \rangle_{\Omega}^+ \quad \text{as } u_n \to \partial \Omega,$$

 $\langle \sigma_{u_1} \sigma_{u_2} \rangle_{\Omega}^+ \sim |u_2 - u_1|^{-1/4} \quad \text{as } u_2 \to u_1 \in \Omega.$

Spin correlations: multiplicative normalization

We define $\langle \sigma_{u_1} \dots \sigma_{u_n} \rangle_{\Omega}^+ := \exp[\int \mathcal{L}(u_1, \dots, u_n)]$, where

$$\mathcal{L}_{\Omega}(u_1,\ldots,u_n) := \sum_{s=1}^n \operatorname{Re} \left[\mathcal{A}_{\Omega}(u_s;u_1,...,\hat{u}_s,...,u_n) du_s \right],$$

where the coefficients $\mathcal{A}_{\Omega}(\ldots)$ are defined via solutions to similar Riemann boundary values problems and the normalization satisfies

$$\begin{split} \langle \sigma_{u_1} ... \sigma_{u_n} \rangle_{\Omega}^+ &\sim & \langle \sigma_{u_1} ... \sigma_{u_{n-1}} \rangle_{\Omega}^+ \cdot \langle \sigma_{u_n} \rangle_{\Omega}^+ & \text{as } u_n \to \partial \Omega \,, \\ \langle \sigma_{u_1} \sigma_{u_2} \rangle_{\Omega}^+ &\sim & |u_2 - u_1|^{-1/4} & \text{as } u_2 \to u_1 \in \Omega \,. \end{split}$$

- $\circ g(z^{\sharp}) \equiv -g(z^{\flat})$ is a holomorphic spinor on $[\Omega; u_1, ..., u_n]$;
- $\circ \operatorname{Im} \left[g(\zeta)(\tau(\zeta))^{\frac{1}{2}} \right] = 0 \text{ for } \zeta \in \partial \Omega;$
- $\circ g(z) = e^{i\frac{\pi}{4}}c_s \cdot (z-u_s)^{-\frac{1}{2}} + \dots$ for some (unknown) $c_s \in \mathbb{R}$, $s \geqslant 2$;

$$\circ g(z) = 2^{-\frac{1}{2}} e^{-i\frac{\pi}{4}} (z - u_1)^{-\frac{1}{2}} [1 + 2 \mathcal{A}_{\Omega}(u_1; u_2, ..., u_n)(z - u_1) + ...]$$

Spin correlations: multiplicative normalization

We define $\langle \sigma_{u_1} \dots \sigma_{u_n} \rangle_{\Omega}^+ := \exp[\int \mathcal{L}(u_1, \dots, u_n)]$, where

$$\mathcal{L}_{\Omega}(u_1,\ldots,u_n) := \sum_{s=1}^n \operatorname{Re} \left[\mathcal{A}_{\Omega}(u_s;u_1,\ldots,\hat{u}_s,\ldots,u_n) du_s \right],$$

where the coefficients $\mathcal{A}_{\Omega}(\ldots)$ are defined via solutions to similar Riemann boundary values problems and the normalization satisfies

Remarks: • The fact that $\mathcal{L}_{\Omega,n}$ is a closed differential form and the existence of an appropriate multiplicative normalization are not a priori clear but can be deduced along the proof of convergence.

• This also works for mixed fixed/free boundary conditions and/or in multiply connected domains. (No explicit formulae!)

[not published, a part of a larger project in progress...]

Mixed correlations: convergence

[Ch.-Hongler-Izyurov (2016, in progress)]

• Convergence of mixed correlations: spins (σ) , disorders (μ) , fermions (ψ) , energy densities (ε) (in multiply connected domains Ω , with mixed fixed/free boundary conditions $\mathfrak b$) to conformally covariant limits that can be defined via solutions to appropriate Riemann-type boundary value problems in Ω .

Standard CFT fusion rules

$$\begin{array}{lll} \sigma\mu \leadsto \eta\psi + \overline{\eta}\overline{\psi}, & \psi\sigma \leadsto \mu, & \psi\mu \leadsto \sigma, \\ i\psi\overline{\psi} \leadsto \varepsilon, & \sigma\sigma \leadsto 1 + \varepsilon, & \mu\mu \leadsto 1 - \varepsilon \end{array}$$

can be deduced from properties of solutions to Riemann-type b.v.p.

• Stress-energy tensor: [Ch.-Glazman-Smirnov (2016)]

Mixed correlations: convergence

[Ch.-Hongler-Izyurov (2016, in progress)]

• Convergence of mixed correlations: spins (σ) , disorders (μ) , fermions (ψ) , energy densities (ε) (in multiply connected domains Ω , with mixed fixed/free boundary conditions $\mathfrak b$) to conformally covariant limits that can be defined via solutions to appropriate Riemann-type boundary value problems in Ω .

• Standard **CFT fusion rules**, e.g. $\sigma\sigma \rightsquigarrow 1 + \varepsilon$:

$$\langle \sigma_{u'}\sigma_{u...}\rangle_{\Omega}^{\mathfrak{b}} = |u'-u|^{-\frac{1}{4}} \left[\langle ... \rangle_{\Omega}^{\mathfrak{b}} + \frac{1}{2}|u'-u|\langle \varepsilon_{u...}\rangle_{\Omega}^{\mathfrak{b}} + \ldots \right],$$

can be deduced from properties of solutions to Riemann-type b.v.p.

More details: arXiv:1605.09035, arXiv:1[6]??.?????

(I) Each $\langle \mu_{v_1}...\mu_{v_n}\sigma_{u_1}...\sigma_{u_m}\rangle_{\Omega}^{\mathfrak{b}}$ is a spinor defined on the Riemann surface of the function $[\prod_{l=1}^n\prod_{s=1}^m(v_l-u_s)]^{\frac{1}{2}}$. As some of the points $v_1,...,v_n$ approach $u_1,...,u_m$ along the rays $v_s-u_s\in\eta_s^2\mathbb{R}$, where $|\eta_s|=1$, there exist limits

$$\begin{split} \langle \boldsymbol{\psi}_{\boldsymbol{u}_{1}}^{\boldsymbol{[\eta_{1}]}}...\boldsymbol{\psi}_{\boldsymbol{u}_{k}}^{\boldsymbol{[\eta_{k}]}}\mathcal{O}[\boldsymbol{\mu},\boldsymbol{\sigma}]\rangle_{\Omega}^{\mathfrak{b}} := \\ & \lim_{\boldsymbol{v}_{s}\to\boldsymbol{u}_{s}} |(\boldsymbol{v}_{1}-\boldsymbol{u}_{1})...(\boldsymbol{v}_{k}-\boldsymbol{u}_{k})|^{\frac{1}{4}} \langle \boldsymbol{\mu}_{\boldsymbol{v}_{1}}\boldsymbol{\sigma}_{\boldsymbol{u}_{1}}...\boldsymbol{\mu}_{\boldsymbol{v}_{k}}\boldsymbol{\sigma}_{\boldsymbol{u}_{k}}\mathcal{O}[\boldsymbol{\mu},\boldsymbol{\sigma}]\rangle_{\Omega}^{\mathfrak{b}}. \end{split}$$

These (real) limits change signs if η_s is replaced by $-\eta_s$ and are anti-symmetric with respect to the order in which ψ 's are written.

The spin-disorder correlations $\langle \mu_{v_1} ... \mu_{v_n} \sigma_{u_1} ... \sigma_{u_m} \rangle_{\Omega}^{\mathfrak{b}}$ lead to

(I)
$$\langle \psi_{u_1}^{[\eta_1]} ... \psi_{u_k}^{[\eta_k]} \mathcal{O}[\mu, \sigma] \rangle_{\Omega}^{\mathfrak{h}} := \lim_{V_s \to u_s} |(v_1 - u_1) ... (v_k - u_k)|^{\frac{1}{4}} \langle \mu_{V_1} \sigma_{u_1} ... \mu_{V_k} \sigma_{u_k} \mathcal{O}[\mu, \sigma] \rangle_{\Omega}^{\mathfrak{h}}.$$

(II) These functions satisfy Pfaffian identites (fermionic Wick rules). Moreover, they depend on η 's in a real-linear way:

$$\langle \psi_{\mathbf{z}}^{[\eta]} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} = 2^{-\frac{1}{2}} \left[e^{-i\frac{\pi}{4}} \eta \cdot \langle \psi_{\mathbf{z}} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} + e^{i\frac{\pi}{4}} \overline{\eta} \cdot \langle \overline{\psi}_{\mathbf{z}} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} \right].$$

One has $\overline{\langle \mathcal{O}[\psi,\mu,\sigma] \rangle_{\Omega}^{\mathfrak{b}}} = \langle \mathcal{O}[\psi^*,\mu,\sigma] \rangle_{\Omega}^{\mathfrak{b}}$ with $\psi_z^* := \overline{\psi}_z$, $\overline{\psi}_z^* := \psi_z$.

Each of the functions $\langle \psi_z \mathcal{O}[\psi,\mu,\sigma] \rangle_{\Omega}^{\mathfrak{h}}$ is holomorphic in z and each of $\langle \overline{\psi}_z \mathcal{O}[\psi,\mu,\sigma] \rangle_{\Omega}^{\mathfrak{h}}$ is anti-holomorphic in z. Moreover,

$$\langle \overline{\psi}_z \mathcal{O}[\psi,\mu,\sigma] \rangle_{\Omega}^{\mathfrak{b}} = au(z) \langle \psi_z \mathcal{O}[\psi,\mu,\sigma] \rangle_{\Omega}^{\mathfrak{b}} \,\, ext{for} \,\, z \in \partial \Omega$$
 ,

where $\tau(z)$ denotes the (properly oriented) tangent vector to $\partial\Omega$.

The spin-disorder correlations $\langle \mu_{v_1} ... \mu_{v_n} \sigma_{u_1} ... \sigma_{u_m} \rangle_{\Omega}^{\mathfrak{b}}$ lead to

(1)
$$\langle \psi_{u_1}^{[\eta_1]} ... \psi_{u_k}^{[\eta_k]} \mathcal{O}[\mu, \sigma] \rangle_{\Omega}^{\mathfrak{h}} := \lim_{\mathsf{v}_{\mathsf{s}} \to \mathsf{u}_{\mathsf{s}}} |(\mathsf{v}_1 - \mathsf{u}_1) ... (\mathsf{v}_k - \mathsf{u}_k)|^{\frac{1}{4}} \langle \mu_{\mathsf{v}_1} \sigma_{\mathsf{u}_1} ... \mu_{\mathsf{v}_k} \sigma_{\mathsf{u}_k} \mathcal{O}[\mu, \sigma] \rangle_{\Omega}^{\mathfrak{h}}.$$

(II)
$$\langle \psi_{\mathbf{z}}^{[\eta]} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} = 2^{-\frac{1}{2}} \left[e^{-i\frac{\pi}{4}} \eta \cdot \langle \psi_{\mathbf{z}} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} + e^{i\frac{\pi}{4}} \overline{\eta} \cdot \langle \overline{\psi}_{\mathbf{z}} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} \right].$$

Moreover, $\langle \overline{\psi}_z \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} = \tau(z) \langle \psi_z \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}}$ for $z \in \partial \Omega$.

(III) Each of the functions $\langle \psi_z ... \rangle_{\Omega}^{\mathfrak{b}}$ has the following asymptotics (aka operator product expansions) as ψ_z approaches other fields:

$$\langle \psi_z \psi_{z'} \dots \rangle_{\Omega}^{\mathfrak{b}} = (z - z')^{-1} \left[\langle \dots \rangle_{\Omega}^{\mathfrak{b}} + O(|z - z'|^2) \right], \ \langle \psi_z \overline{\psi}_{z'} \dots \rangle_{\Omega}^{\mathfrak{b}} = O(1),$$
$$\langle \psi_z \sigma_u \dots \rangle_{\Omega}^{\mathfrak{b}} = 2^{-\frac{1}{2}} e^{\frac{i\pi}{4}} (z - u)^{-\frac{1}{2}} \left[\langle \mu_u \dots \rangle_{\Omega}^{\mathfrak{b}} + 4(z - u) \partial_u \langle \mu_u \dots \rangle_{\Omega}^{\mathfrak{b}} + \dots \right],$$

$$\langle \psi_z \mu_{\nu} ... \rangle_{\Omega}^{\mathfrak{b}} = 2^{-\frac{1}{2}} e^{\frac{-i\pi}{4}} (z - v)^{-\frac{1}{2}} [\langle \sigma_{\nu} ... \rangle_{\Omega}^{\mathfrak{b}} + 4(z - v) \partial_{\nu} \langle \sigma_{\nu} ... \rangle_{\Omega}^{\mathfrak{b}} + ...],$$

Similar OPEs hold true for the antiholomorphic functions $\langle \overline{\psi}_z ... \rangle_{\Omega}^{\mathfrak{b}}$.

The spin-disorder correlations $\langle \mu_{V_1} ... \mu_{V_n} \sigma_{U_1} ... \sigma_{U_m} \rangle_{\Omega}^{\mathfrak{h}}$ lead to

(I)
$$\langle \psi_{\mathbf{u}_1}^{[\eta_1]}...\psi_{\mathbf{u}_k}^{[\eta_k]}\mathcal{O}[\mu,\sigma]\rangle_{\Omega}^{\mathfrak{b}} := \lim_{\mathbf{v}_s \to \mathbf{u}_s} |(\mathbf{v}_1 - \mathbf{u}_1)...(\mathbf{v}_k - \mathbf{u}_k)|^{\frac{1}{4}} \langle \mu_{\mathbf{v}_1}\sigma_{\mathbf{u}_1}...\mu_{\mathbf{v}_k}\sigma_{\mathbf{u}_k}\mathcal{O}[\mu,\sigma]\rangle_{\Omega}^{\mathfrak{b}}.$$

(II)
$$\langle \psi_{\mathbf{z}}^{[\eta]} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} = 2^{-\frac{1}{2}} \left[e^{-i\frac{\pi}{4}} \eta \cdot \langle \psi_{\mathbf{z}} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} + e^{i\frac{\pi}{4}} \overline{\eta} \cdot \langle \overline{\psi}_{\mathbf{z}} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} \right].$$

Moreover, $\langle \overline{\psi}_z \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{h}} = \tau(z) \langle \psi_z \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{h}}$ for $z \in \partial \Omega$.

(III) $\psi \psi \rightsquigarrow 1 + ..., \quad \psi \sigma \rightsquigarrow 2^{-\frac{1}{2}} e^{i\frac{\pi}{4}} [\mu + 4\partial \mu + ...].$

(III)
$$\psi\psi \rightsquigarrow 1 + ..., \quad \psi\sigma \rightsquigarrow 2 \quad 2e^{i} \quad [\mu + 4\partial\mu + ...],$$

$$\psi\mu \rightsquigarrow 2^{-\frac{1}{2}}e^{-i\frac{\pi}{4}}[\sigma + 4\partial\sigma + ...].$$

(IV) Denote $\langle \boldsymbol{\varepsilon}_{\boldsymbol{u}} \mathcal{O}[\boldsymbol{\varepsilon}, \boldsymbol{\psi}, \boldsymbol{\sigma}, \boldsymbol{\mu}] \rangle_{\Omega}^{\mathfrak{b}} := i \langle \psi_{\boldsymbol{u}} \overline{\psi}_{\boldsymbol{u}} \mathcal{O}[\boldsymbol{\varepsilon}, \psi, \boldsymbol{\sigma}, \boldsymbol{\mu}] \rangle_{\Omega}^{\mathfrak{b}}$. Then $\langle \sigma_{\boldsymbol{u}'} \sigma_{\boldsymbol{u}} \dots \rangle_{\Omega}^{\mathfrak{b}} = |\boldsymbol{u}' - \boldsymbol{u}|^{-\frac{1}{4}} \left[\langle \dots \rangle_{\Omega}^{\mathfrak{b}} + \frac{1}{2} |\boldsymbol{u}' - \boldsymbol{u}| \langle \boldsymbol{\varepsilon}_{\boldsymbol{u}} \dots \rangle_{\Omega}^{\mathfrak{b}} + \dots \right];$ $\langle \mu_{\boldsymbol{v}'} \mu_{\boldsymbol{v}} \dots \rangle_{\Omega}^{\mathfrak{b}} = |\boldsymbol{v}' - \boldsymbol{v}|^{-\frac{1}{4}} \left[\langle \dots \rangle_{\Omega}^{\mathfrak{b}} - \frac{1}{2} |\boldsymbol{v}' - \boldsymbol{v}| \langle \boldsymbol{\varepsilon}_{\boldsymbol{v}} \dots \rangle_{\Omega}^{\mathfrak{b}} + \dots \right].$

The spin-disorder correlations $\langle \mu_{V_1} ... \mu_{V_n} \sigma_{U_1} ... \sigma_{U_m} \rangle_{\Omega}^{\mathfrak{b}}$ lead to

(1)
$$\langle \psi_{\mathbf{u}_1}^{[\eta_1]}...\psi_{\mathbf{u}_k}^{[\eta_k]}\mathcal{O}[\mu,\sigma]\rangle_{\Omega}^{\mathfrak{b}} := \lim_{\mathbf{v}_s \to \mathbf{u}_s} |(\mathbf{v}_1 - \mathbf{u}_1)...(\mathbf{v}_k - \mathbf{u}_k)|^{\frac{1}{4}} \langle \mu_{\mathbf{v}_1}\sigma_{\mathbf{u}_1}...\mu_{\mathbf{v}_k}\sigma_{\mathbf{u}_k}\mathcal{O}[\mu,\sigma]\rangle_{\Omega}^{\mathfrak{b}}.$$

(II)
$$\langle \psi_{\mathbf{z}}^{[\eta]} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} = 2^{-\frac{1}{2}} \left[e^{-i\frac{\pi}{4}} \eta \cdot \langle \psi_{\mathbf{z}} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} + e^{i\frac{\pi}{4}} \overline{\eta} \cdot \langle \overline{\psi}_{\mathbf{z}} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} \right].$$

Moreover, $\langle \overline{\psi}_z \mathcal{O}[\psi,\mu,\sigma] \rangle_{\Omega}^{\mathfrak{b}} = \tau(z) \langle \psi_z \mathcal{O}[\psi,\mu,\sigma] \rangle_{\Omega}^{\mathfrak{b}}$ for $z \in \partial \Omega$.

(III)
$$\psi\psi \rightsquigarrow 1 + ..., \quad \psi\sigma \rightsquigarrow 2^{-\frac{1}{2}}e^{i\frac{\pi}{4}}[\mu + 4\partial\mu + ...],$$

$$\psi\mu \rightsquigarrow 2^{-\frac{1}{2}}e^{-i\frac{\pi}{4}}[\sigma + 4\partial\sigma + ...].$$

(IV)
$$\varepsilon_{u} := i\psi_{u}\overline{\psi}_{u} \Longrightarrow \sigma\sigma \rightsquigarrow 1 + \frac{1}{2}\varepsilon + ..., \ \mu\mu \rightsquigarrow 1 - \frac{1}{2}\varepsilon + ...$$

The spin-disorder correlations $\langle \mu_{v_1} ... \mu_{v_n} \sigma_{u_1} ... \sigma_{u_m} \rangle_{\Omega}^{\mathfrak{b}}$ lead to

(1)
$$\langle \psi_{u_1}^{[\eta_1]} ... \psi_{u_k}^{[\eta_k]} \mathcal{O}[\mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} := \lim_{\mathsf{v}_s \to u_s} |(\mathsf{v}_1 - \mathsf{u}_1) ... (\mathsf{v}_k - \mathsf{u}_k)|^{\frac{1}{4}} \langle \mu_{\mathsf{v}_1} \sigma_{u_1} ... \mu_{\mathsf{v}_k} \sigma_{u_k} \mathcal{O}[\mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}}.$$

(II)
$$\langle \psi_{z}^{[\eta]} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} = 2^{-\frac{1}{2}} \left[e^{-i\frac{\pi}{4}} \eta \cdot \langle \psi_{z} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} + e^{i\frac{\pi}{4}} \overline{\eta} \cdot \langle \overline{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} \right].$$

Moreover, $\langle \overline{\psi}_z \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} = \tau(z) \langle \psi_z \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}}$ for $z \in \partial \Omega$.

(III)
$$\psi\psi \rightsquigarrow 1 + ..., \quad \psi\sigma \rightsquigarrow 2^{-\frac{1}{2}}e^{i\frac{\pi}{4}}[\mu + 4\partial\mu + ...],$$

$$\psi\mu \rightsquigarrow 2^{-\frac{1}{2}}e^{-i\frac{\pi}{4}}[\sigma + 4\partial\sigma + ...].$$

(IV)
$$\varepsilon_{\it u} := i\psi_{\it u}\overline{\psi}_{\it u} \Longrightarrow \sigma\sigma \leadsto 1 + \frac{1}{2}\varepsilon + ..., \ \mu\mu \leadsto 1 - \frac{1}{2}\varepsilon + ...$$

Claim: The set of conditions (I)–(IV) admits a (unique) solution.

 $\textbf{Sketch:} \, \circ \, \boldsymbol{f}_{\lceil \Omega:u_1,...,u_n \rceil}^{[\eta]}(\boldsymbol{a},\boldsymbol{z}) := \langle \psi_{\boldsymbol{z}} \psi_{\boldsymbol{a}}^{[\eta]} \sigma_{u_1} ... \sigma_{u_n} \rangle_{\Omega}^{\mathfrak{b}} / \langle \sigma_{u_1} ... \sigma_{u_n} \rangle_{\Omega}^{\mathfrak{b}},$

- Define all the other correlations starting with these functions;
- Prove all other fusion rules [interplays with convergence(!)].

The spin-disorder correlations $\langle \mu_{v_1} ... \mu_{v_n} \sigma_{u_1} ... \sigma_{u_m} \rangle_{\Omega}^{\mathfrak{b}}$ lead to

(I)
$$\langle \psi_{u_1}^{[\eta_1]} ... \psi_{u_k}^{[\eta_k]} \mathcal{O}[\mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} := \lim_{V_s \to u_s} |(v_1 - u_1) ... (v_k - u_k)|^{\frac{1}{4}} \langle \mu_{V_1} \sigma_{u_1} ... \mu_{V_k} \sigma_{u_k} \mathcal{O}[\mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}}.$$

(II)
$$\langle \psi_{z}^{[\eta]} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} = 2^{-\frac{1}{2}} \left[e^{-i\frac{\pi}{4}} \eta \cdot \langle \psi_{z} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} + e^{i\frac{\pi}{4}} \overline{\eta} \cdot \langle \overline{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} \right].$$

Moreover, $\langle \overline{\psi}_z \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}} = \tau(z) \langle \psi_z \mathcal{O}[\psi, \mu, \sigma] \rangle_{\Omega}^{\mathfrak{b}}$ for $z \in \partial \Omega$.

(III)
$$\psi\psi \rightarrow 1 + ..., \quad \psi\sigma \rightarrow 2^{-\frac{1}{2}}e^{i\frac{\pi}{4}}[\mu + 4\partial\mu + ...],$$

$$\psi\mu \rightarrow 2^{-\frac{1}{2}}e^{-i\frac{\pi}{4}}[\sigma + 4\partial\sigma + ...].$$

(IV)
$$\varepsilon_{u} := i\psi_{u}\overline{\psi}_{u} \Longrightarrow \sigma\sigma \rightsquigarrow 1 + \frac{1}{2}\varepsilon + ..., \ \mu\mu \rightsquigarrow 1 - \frac{1}{2}\varepsilon + ...$$

Theorem: [Ch.-Hongler-Izyurov, 2016] All mixed correlations of spins, disorders, discrete fermions and energy densities in the Ising model on Ω_{δ} with boundary conditions \mathfrak{b} , after a proper rescaling, converge to their continuous counterparts $\langle ... \rangle_{\Omega}^{\mathfrak{b}}$ as $\delta \to 0$.

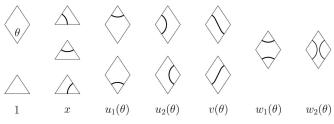
- There exist several ways to introduce a stress-energy tensor as a *local field (function of several nearby spins)* in the 2D Ising model. Presumably, the first was suggested by Kadanoff and Ceva in 1970.
- As $\delta \to 0$, correlations of these different local fields should have the same scaling limits: CFT correlations of (components of) the holomorphic T_z and anti-holomorphic \overline{T}_z defined on a given Ω .

- There exist several ways to introduce a stress-energy tensor as a *local field (function of several nearby spins)* in the 2D Ising model. Presumably, the first was suggested by Kadanoff and Ceva in 1970.
- As $\delta \to 0$, correlations of these *different local fields* should have the same scaling limits: CFT correlations of (components of) the holomorphic T_z and anti-holomorphic \overline{T}_z defined on a given Ω .
- ullet We would like to have a definition of T_z in discrete, which
 - o "geometrically" describes a *perturbation of the metric*,
 - o satisfies (at least, a part of) Cauchy-Riemann equations,
 - \circ resembles the "free fermion" formula $T_z = -\frac{1}{2} : \psi_z \partial \psi_z :$,
 - o and leads to the *correct scaling limits* of correlations.

- There exist several ways to introduce a stress-energy tensor as a *local field (function of several nearby spins)* in the 2D Ising model. Presumably, the first was suggested by Kadanoff and Ceva in 1970.
- As $\delta \to 0$, correlations of these different local fields should have the same scaling limits: CFT correlations of (components of) the holomorphic T_z and anti-holomorphic \overline{T}_z defined on a given Ω .
- ullet We would like to have a definition of T_z in discrete, which
 - "geometrically" describes a perturbation of the metric,
 satisfies (at least, a part of) Cauchy-Riemann equations,
 - resembles the "free fermion" formula $T_z = -\frac{1}{2} : \psi_z \partial \psi_z :$,
 - o and hence leads to the correct scaling limits of correlations.

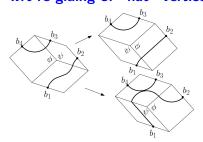
Remark: in continuum, all the standard properties of T_z (holomorphicity, Schwarzian covariance under conformal maps $\phi:\Omega\to\Omega'$, standard OPEs for TT, $T\sigma$, $T\varepsilon$) can be deduced from the expression of T_z via fermions.

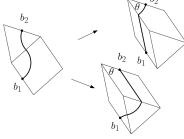
- Ising model on faces of (a part of) the honeycomb lattice can be equivalently thought of as the loop O(1) model on a discrete domain glued from equilateral triangles \iff "standard lozenges".
- One can consistently define the loop O(n) model on any (possible, non-flat) discrete domain glued from rhombi and equilateral triangles using the Nienhuis' "integrable" weights.



• Consistency: $x = u_1(\frac{\pi}{3})$, $x^2 = u_2(\frac{\pi}{3}) = v(\frac{\pi}{3}) = w_1(\frac{\pi}{3})$, $w_2(\frac{\pi}{3}) = 0$.

- Ising model on faces of (a part of) the honeycomb lattice can be equivalently thought of as the loop O(1) model on a discrete domain glued from equilateral triangles \iff "standard lozenges".
- One can consistently define the loop O(n) model on any (possible, non-flat) discrete domain glued from rhombi and equilateral triangles using the Nienhuis' "integrable" weights.
- Consistency: $x = u_1(\frac{\pi}{3})$, $x^2 = u_2(\frac{\pi}{3}) = v(\frac{\pi}{3}) = w_1(\frac{\pi}{3})$, $w_2(\frac{\pi}{3}) = 0$; wrt re-gluing of "flat" vertices:





- **Definition:** Let m be a midline of some hexagon in a discrete domain Ω_{δ} . We deform the lattice by gluing an additional tiny rhombus of angle $\theta \to 0$ along m, denote the new partition function by $\mathcal{Z}_{\Omega_{\delta}}(m,\theta)$, and define $T_{\Omega_{\delta}}(m) := cst + \frac{d}{d\theta} \log \mathcal{Z}_{\Omega_{\delta}}(m,\theta)\big|_{\theta=0}$
- In fact, one can work with pictures drawn on the original lattice:

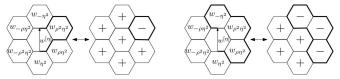
weighted by $d_1:=u_1'(0), \quad d_2:=u_2'(0), \quad d_3:=v'(0), \quad d_4:=w_1'(0), \ d_5:=w_2'(0).$

- **Definition:** Let m be a midline of some hexagon in a discrete domain Ω_{δ} . We deform the lattice by gluing an additional tiny rhombus of angle $\theta \to 0$ along m, denote the new partition function by $\mathcal{Z}_{\Omega_{\delta}}(m,\theta)$, and define $T_{\Omega_{\delta}}(m) := cst + \frac{d}{d\theta} \log \mathcal{Z}_{\Omega_{\delta}}(m,\theta) \big|_{\theta=0}$
- In fact, one can work with pictures drawn on the original lattice:

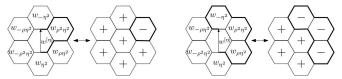
weighted by $d_1:=u_1'(0), \quad d_2:=u_2'(0), \quad d_3:=v'(0), \quad d_4:=w_1'(0), \ d_5:=w_2'(0).$

• For the loop O(1) model, one has $d_4 + d_5 = 2d_1 = -2d_3$. This allows one to *rewrite all these sums via fermions* and leads to the cancelation of main terms in all contributions except of type d_2 .

- **Definition:** Let m be a midline of some hexagon in a discrete domain Ω_{δ} . We deform the lattice by gluing an additional tiny rhombus of angle $\theta \to 0$ along m, denote the new partition function by $\mathcal{Z}_{\Omega_{\delta}}(m,\theta)$, and define $T_{\Omega_{\delta}}(m) := cst + \frac{d}{d\theta} \log \mathcal{Z}_{\Omega_{\delta}}(m,\theta)\big|_{\theta=0}$
- At the same time, T(m) can be thought of as a *local field*:



- **Definition:** Let m be a midline of some hexagon in a discrete domain Ω_{δ} . We deform the lattice by gluing an additional tiny rhombus of angle $\theta \to 0$ along m, denote the new partition function by $\mathcal{Z}_{\Omega_{\delta}}(m,\theta)$, and define $T_{\Omega_{\delta}}(m) := cst + \frac{d}{d\theta} \log \mathcal{Z}_{\Omega_{\delta}}(m,\theta)\big|_{\theta=0}$
- At the same time, T(m) can be thought of as a *local field*:



• Theorem: Let $\Omega_{\delta} \to \Omega$ and m_{δ} be a midline of a hexagon $w_{\delta} \to w \in \Omega$ oriented in the direction τ . Then

$$\delta^{-2}\mathbb{E}_{\Omega_s}^+[T(m_\delta)] \to \operatorname{Re}[\tau^2 \langle T_w \rangle_{\Omega}^+].$$

• Since the question is essentially reduced to the convergence of fermions, similar results can be proved for multi-point correlations.

Some research routes and open questions

- Better understanding of "geometric" observables at criticality: e.g., probability distributions on topological classes of domain walls.
- Near-critical (massive) regime $x x_{\rm crit} = m \cdot \delta$: convergence of correlations, massive ${\rm SLE_3}$ curves and loop ensembles.
- Super-critical regime: e.g., convergence of interfaces to ${\rm SLE}_6$ curves for any fixed $x > x_{\rm crit}$ [known only for x = 1 (percolation)]

Renormalization

$$\xrightarrow{\text{fixed } x > x_{\text{crit}}, \ \delta \to 0}$$
$$\xrightarrow{(x - x_{\text{crit}}) \cdot \delta^{-1} \to \infty}$$

$$x = x_{\rm crit}$$

$$x = 1$$

Some research routes and open questions

- Better understanding of "geometric" observables at criticality: e.g., probability distributions on topological classes of domain walls.
- Near-critical (massive) regime $x x_{\rm crit} = m \cdot \delta$: convergence of correlations, massive ${\rm SLE}_3$ curves and loop ensembles.
- Super-critical regime: e.g., convergence of interfaces to ${\rm SLE}_6$ curves for any fixed $x > x_{\rm crit}$ [known only for x = 1 (percolation)]

Renormalization

$$\xrightarrow{\text{fixed } x > x_{\text{crit}}, \ \delta \to 0}$$
$$\xrightarrow{(x - x_{\text{crit}}) \cdot \delta^{-1} \to \infty}$$

$$x = 1$$

THANK YOU!