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e N.n. 2D Ising model: combinatorics

o dimers and fermionic observables

o discrete holomorphicity at criticality

o spinor observables and spin correlations
o spin-disorder formalism

e Spin correlations at criticality

o Riemann boundary value problems
for holomorphic spinors in continuum
o Convergence [Ch.—Hongler—Izyurov]

e Other primary fields: o, j1, e, ¢

o Convergence and fusion rules

o Construction of mixed correlations
via Riemann boundary value problems

e [ Stress-energy tensor | _
o (Some) discrete version of T and T
o Convergence [Ch.—Glazman-Smirnov]



Nearest-neighbor Ising (or Lenz-Ising) model in 2D
Definition: Lenz-Ising model on a planar graph G* (dual to G) is

a random assignment of +/— spins to vertices of G* (faces of G)

Q: | heard this is called a (site) percolation?
A: ..according to the following probabilities:

P [conf. o€ {il}V(G*)] o exp [ﬂz () uquUv]

X H (uv):ouoy Xuv

where J,, > 0 are interaction constants assigned to edges (uv),
B = 1/kT is the inverse temperature, and x,, = exp[—28J,,].



Nearest-neighbor Ising (or Lenz-Ising) model in 2D
Definition: Lenz-Ising model on a planar graph G* (dual to G) is

a random assignment of +/— spins to vertices of G* (faces of G)

Disclaimer: 2D, nearest-neighbor,
no external magnetic field.

P [conf. o€ {il}V(G*)] o exp [ﬂz () uquUv]
X H (uv):ouoy Xuv
where J,, > 0 are interaction constants assigned to edges (uv),
B = 1/kT is the inverse temperature, and x,, = exp[—28J,,].
e |t is also convenient to use the parametrization x,, = tan( Ou).

e Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all x,,, are equal to each other.



Phase transition (e.g., on Z?)

E.g., Dobrushin boundary conditions: +1 on (ab) and —1 on (ba):

X < Xerit X = Xcrit X > Xerit

e Ising (1925): no phase transition in 1D ~~ doubts about 2+D;
e Peierls (1936): existence of the phase transition in 2D;

o Kramers-Wannier (1941): Xeelf-dual = V2 — 1 = tan(% -3

e Onsager (1944): sharp phase transition at xgit = v/2 — 1.



At criticality (e.g., on Z?):

o Kaufman-Onsager(1948-49), Yang(1952):
scaling exponent % for the magnetization.
[via spin-spin correlations in Z2 at x 1 Xuit]

o At criticality, for Qs — Q and us —> v € Q,
it should be Eq,[o,,] = 58 as & — 0.

e Question: Convergence of (rescaled) spin
correlations and conformal covariance of their
scaling limits in arbitrary planar domains: X = Xerit

576 - Eqs[ou s - Ou 5] — (0w - 0u)0 1
= (Op(u) - To(un))o(@) * [o=y [¢'(us)[?

e In the infinite-volume setup other techniques are available,
notably “exact bosonization” approach due to J. Dubédat.



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

e Partition function Z =37 /. 3ver) []eo Xuy

(uv)iou#oy
e There exist various representa-

tions of the 2D Ising model via
dimers on an auxiliary graph



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

e Partition function Z =3, 3vie") [lec )0 20, Xuv

e There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph Gg



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

e Partition function Z =3, 3vie") [lec )0 20, Xuv
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e There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:

e.g. 1-to-2IV(G)I correspondence of
{+1}V(€") with dimers on this Gf



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

e Partition function Z =3, 3vie") [lec )0 20, Xuv

e There exist various representa- o l

tions of the 2D Ising model via ya @
dimers on an auxiliary graph: /]
e.g. 1-to-2IV(G)I correspondence of
{+1}V(€") with dimers on this Gf
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® Kasteleyn’s theory: Z == Pf[ K ] [K= —K T is a weighted adjacency matrix of Gr]



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

e Partition function Z =37 /. ven) []eo

(uv)iou#oy Xuv
e There exist various representa- o l

tions of the 2D Ising model via ya @
dimers on an auxiliary graph: /]
e.g. 1-to-2IV(G)I correspondence of
{+1}V(€") with dimers on this Gf

AN

L ©
@\ ©

® Kasteleyn’s theory: Z == Pf[ K ] [K= —K T is a weighted adjacency matrix of Gr]

e Kac-Ward formula (1952-..., 1999-...): 22 = det[Id — T,

exp[Zwind(e, )] - (xexer)!/? e
Te,e/ = 0 e A wind(e,e')

[ is equivalent to the Kasteleyn theorem for dimers on Gr |



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]
e Partition function Z =37 . vien) [[om

(uv)iou#oy Xuv
e There exist various representa- o 1

tions of the 2D Ising model via -~ [©)
dimers on an auxiliary graph: /1 |
€.g. 1-to-21V(G)I correspondence of ® . ’ b
{£1}V(E") with dimers on this Gf @ \ ©

® Kasteleyn’s theory: Z == Pf[ K ] [K= —K T is a weighted adjacency matrix of Gr]

e Note that V(Gfg) = {oriented edges and corners of G}

e Local relations for the entries K and K, of the inverse
Kasteleyn (or the inverse Kac—Ward) matrlx.
(an equivalent form of) the identity K -K'=1d



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge z. (similarly, for a corner ¢),
. —iwind(awze)
FG(a’ Ze) ' "2 ZwGConfc(a,ze) [e ’ H(uv)ew Xuv:|

where 77, denotes the (once and forever
fixed) square root of the direction of a.

i

e The factor e™2 does not de-
pend on the way how w is split into non-
intersecting loops and a path a ~ z..

wind(a~ze)

e Via dimers on Gg: Fg(a,c) = 7K}
Fo(a,2e) =TeKe s+ TieKs




Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge z. (similarly, for a corner ¢),
. —iwind(awze)
Fc(a, Ze) = M, ZwéConfc(a,ze) [e 2 H(uv)ew Xuv:|

where 77, denotes the (once and forever
fixed) square root of the direction of a.

e Local relations: at criticality, can
be thought of as some (strong) form of
discrete Cauchy—Riemann equations.

e Boundary conditions F(a, z.) €zR
(€ is oriented outwards) uniquely deter-
mine F as a solution to an appropriate

discrete Riemann-type boundary value problem.



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge z. (similarly, for a corner ¢),

. — Lwind(a~ze)
FG(37 Ze) . 773 ZWGCOHfG(a,ZE) |:e 2 H(uv)ew XuV:|

Fermionic observables per se can be used

e to construct (discrete) martingales
for growing interfaces and then to
study their convergence to SLE curves
[Smirnov(2006), ..., Ch.—Duminil-Copin
—Hongler-Kemppainen-Smirnov(2013)]
e to analyze the energy density field
[Hongler-Smirnov, Hongler (2010)]

ge = 01 [0p 00+ — ]
+

where e™ are the two neighboring faces separated by an edge e

e but more involved ones are needed to study spin correlations



Energy density: convergence and conformal covariance

e Three local primary fields:
1, o (spin), £ (energy density); %\ ae
Scaling exponents: 0, g, 1.

e Theorem: [Hongler-Smirnov, Hongler (2010)]
)

(]

If Q5— and e, 5z, as 6 — 0, then E(
6" E;I—(; [661,5 e Een,a] 630 Cl(ez ... 52n>;’]_ e
where C. is a lattice-dependent constant,
(En - 20 = (Epz) - Ep(zn)) gy Tlomr |¢ (us)]
for any conformal mapping ¢ : Q — Q’, and
(G sz,,)%_ = [".Pf [(zs — zm)_l]inm:l ,  Zs = Zop+l-s -

e Ingredients: convergence of basic fermionic observables
(via Riemann-type b.v.p.) and (built-in) Pfaffian formalism




Energy density: convergence and conformal covariance

e Three local primary fields:
1, o (spin), € (energy density);
Scaling exponents: 0, g, 1.

e Theorem: [Hongler-Smirnov, Hongler (2010)]
If Q5— and e, 5z, as 6 — 0, then

6B ey Censl o o En )

e Riemann-type boundary value problem to consider (sketch):
o fg’](a, z) is holomorphic in Q except at a given point a € Q;

o Im| fg[{ﬂ(a, 0)\/7(¢)] =0, where 7(¢) is the counterclockwise
(clockwise for free boundary conditions) tangent vector at ¢ € 9Q;

o f[”](a z)= (2') %0 4 asz—» a where n should be thought
of as a square root of the direction of the edge a; — a.



Energy density: convergence and conformal covariance

e Three local primary fields:
1, o (spin), € (energy density); %\ fo
Scaling exponents: 0, g, 1.

e Theorem: [Hongler-Smirnov, Hongler (2010)]
If Q5— and e, 5z, as 6 — 0, then %

(]

6" EKJ’?_(S [Eel,é ce Een,é] 5:>0 Cg'<621 s é:Zn>Q $e$®$®$® ;
e Riemann-type boundary value problem to consider (sketch):
o f([z"](a, z) is holomorphic in Q except at a given point a € Q;

o Im| fg[Z"](a, 0)\/7(¢)] =0, where 7(¢) is the counterclockwise
(clockwise for free boundary conditions) tangent vector at ¢ € 9Q;

o fiMa,z) =Ll 4~ 0-3e iy fy(a, 2)+e'iT - £l(a, 2)]
o (V,0a) ¢ = fa(a,2), (Y, 0,) 8 = fl(a,z) and e, := i, 1b,.



Spin correlations and spinor observables: combinatorics

e spin configurations on G*
«~ domain walls on G
«~ dimers on Gfr
e Kasteleyn’s theory: Z =Pf[K]

K=—-K ' isa weighted adjacency matrix of G,
F




Spin correlations and spinor observables: combinatorics

e spin configurations on G*
«~ domain walls on G
«~ dimers on Gfr
e Kasteleyn’s theory: Z =Pf[K]

[K=—K T isa weighted adjacency matrix of Gf |

e Claim:
Pf[ K[ul,...,u,,] ]

Pf[K]
where K, . ., is obtained from K by changing the sign of its
entries on slits linking vy, ..., u, (and, possibly, uy,) pairwise.

Elow -« 0Ou,)

e More invariant way to think about entries of K[_ul1 e

double-covers of G branching over uy,...,u,



Spin correlations and spinor observables: combinatorics

Main tool: spinors on the double cover [Q2s;uy,. .., ug].

-1 edges(w
Fo, (2) = (28 [ow 0wl ] Y upu, (w,2) xEES),

wGCoan(s(uf‘, z)

Guy,un (W, 2) = e~ zwind(p(w)) | (—1)#1°°ps(“’\p(“’))- sheet (p (w), 2).

e wind (p(v)) is the winding of

T . _ é .
(\/></ﬁ>%, the path p(v) : uy” = 1 +5~2z;
X e #loops — those containing an
odd number of uq, ..., u, inside;

e sheet (p(7),z) = +1, if p(v)
defines z, and —1 otherwise.

e Note that F(z!) = —F(2) if
2%, 2° lie over the same edge of Q.




Spin correlations and spinor observables: combinatorics

Main tool: spinors on the double cover [Q2s;uy,. .., ug].

-1 edges(w
Fo, (2) = (28 [ow 0wl ] Y upu, (w,2) xEES),

wECoan(;(uf‘, z)

Guy,un (W, 2) = e~ zwind(p(w)) | (—1)#1°°ps(“’\p(“’))- sheet (p (w), 2).

Claim: N
Eg, [ow+25 -+ 0u,]

Egé low ---0ou,]
Thus, spatial derivatives of spin

correlations can be studied via
the analysis of spinor observables.

FQJ(U1+375)

e Remark: Both fermionic and
spinor observables can be intro-
duced using spin-disorder formalism of Kadanoff and Ceva.



Spin-disorder formalism of Kadanoff and Ceva

e Recall that spins o, are assigned to the
faces of G. Given (an even number of)
vertices vi, ..., Vmym, link them pairwise by
a collection of paths s = sVi-vml and
replace xe by x;! for all e € 5. Denote

<l’l’V1"'u‘vm>G = Zg/l,...,Vm]/ZG.

e Equivalently, one may think of the Ising
model on a double-cover G[t»Vml that
branches over each of v, ..., v,,; with the

spin-flip symmetry constrain o = —o

if uf and u” lie over the same face of G. Let

[two disorders inserted]

<Hv1---l1'vm0'u1---0'un>6 = IEG[\q,--,Vm] [aul-'-gun] : </J/V1"‘/J’Vm>G .
e By definition, (fty,.+-fty,,Ouy---Ou,) G changes the sign when one
of the faces uy goes around of one of the vertices vs.



Spin-disorder formalism of Kadanoff and Ceva

e By definition, (fty; e bvmOuy--Ou,) G
changes the sign when one of the faces vy
goes around of one of the vertices vs.

e For a corner c lying in a face u(c) near
a vertex v(c), denote X = [y (c)Tu(c)-

e Claim:

<XCl"'XC2k>G = Pf[ <XCpXCq>G ifq:l

and (XdXc)e = K;(lj provided that all
the Vertices V(CQ) are pairWise dIStInCt [two disorders inserted)]

e Remark: This also works in presence of other spins and
disorders. The antisymmetry (xaXc)c = —(XcXd) G is caused by
the sign change of the corresponding spin-disorder correlation.



Spin-disorder formalism of Kadanoff and Ceva

e By definition, (fty; e bvmOuy--Ou,) G
changes the sign when one of the faces vy
goes around of one of the vertices vs.

e For a corner c lying in a face u(c) near
a vertex v(c), denote X = [y (c)Tu(c)-

e Claim:

<XCl"'XC2k>G = Pf[ <XCpXCq>G ifq:l

and (XdXc)e = K;(lj provided that all
the Vertices V(CQ) are pairWise dIStInCt [two disorders inserted)]

e The “corner” (resp., “edge”) values of the special spinor
observable on [Qs; u1, ..., u,] discussed above can be written as

(Xehv(up)Tu--Tuy )0 (res (Y2 (up )OO )05 )
(Ou - Oup)Qs ' (OuyOuy)Qs ’

[, can be thought of as linear combinations of nearby x.’s]




Spin correlations: convergence and conformal covariance

e Three local primary fields:
1, o (spin), € (energy density);
Scaling exponents: 0, g, 1.

e Theorem: [Ch.—Hongler-Izyurov (2012)]
If Q5 —Q and uy 5— ug as & — 0, then

5‘%-1}355 [Uul’a . Uun’a] 630 Co{Ouy -+ Oup) gy
where C, is a lattice-dependent constant,

(Our - Oun)ty = (Opfun) -+ T i TToy [/ (us)]
for any conformal mapping ¢ : Q — @/, and

[(a’ul...au,,)ﬁ_]z = I ecmuw) s x> ]

1<s<n Be{£1}ns<m

BsBm

2

Us—Um
Us—Um




Spin correlations: convergence and conformal covariance

e Three local primary fields:
1, o (spin), € (energy density);
Scaling exponents: 0, g, 1.

e Theorem: [Ch.—Hongler-Izyurov (2012)]

If Q5 —Q and uy 5— ug as & — 0, then

_n
1) B-Egé[aul’é . Uu,,’(;] 630 Colouy - .o-un>é'2

General strategy: e in discrete: encode spatial derivatives
as values of discrete holomorphic spinors F° that solve some

discrete Riemann-type boundary value problems;

e discrete—continuum: prove convergence of F° to the solutions f
of the similar continuous b.v.p. [non-trivial technicalities |;

e continuum—discrete: find the limit of (spatial derivatives of)
using the convergence F® — f [via coefficients at singularities].




Spin correlations: convergence and conformal covariance

Example: to handle E;Eé [04], one

. . .
should consider the following b.v.p.: i "

og(z) = —g(z |7) branches over u;

oIm[ (O)/7( ] =0 for ¢ € 09;

Og(Z):(%})ZTll/IZ—f-




Spin correlations: convergence and conformal covariance

Example: to handle E;Eé [04], one i
.
should consider the following b.v.p.: /\V\/"" !

NS>

o g(z*) = —g(2’), branches over u;

o Im|[g(¢)\/7(¢)] =0 for ¢ € 0%;

0 g(z) = (14240 (u)(z-0)+ ]

Claim: If Qg converges to Q2 as § — 0, then
o (20 log [EY, [7u420] / B, lorus]| = Re[ Aa(u)];

o (26)log [E$6[0u5+2;5] /Egé[aué]} — —Im[Aq(u)].




Spin correlations: convergence and conformal covariance

Example: to handle E$6 [04], one
should consider the following b.v.p.:

o g(z*) = —g(2’), branches over u;
o Im|[g(¢)\/7(¢)] =0 for ¢ € 0%;
0 g(z) = (14240 (u)(z-0)+ ]
Claim: If Qg converges to Q2 as § — 0, then

o (20 log [EY, [7u420] / B, lorus]| = Re[ Aa(u)];

o (28)'log [Egé[aud%] /Egé[aué]} — —Im[Aq(u)].

Conformal covariance % - for any conformal map ¢ : Q — 0/,
o figa(w) = fiar gy (¢(w)) - (¢'(w))/?;
o Aq(z) = Ap(6(2)) - ¢/(2) + 5 - ¢"(2)/¢/(2).



Spin correlations: convergence and conformal covariance

Example: to handle E$6 [04], one i
.
should consider the following b.v.p.: /\V\/"" !

NS>

o g(z*) = —g(2’), branches over u;
o Im|[g(¢)\/7(¢)] =0 for ¢ € 0%;
0 g(z) = (14240 (u)(z-0)+ ]
Claim: If Qg converges to Q2 as § — 0, then

o (20 log [EY, [7u420] / B, lorus]| = Re[ Aa(u)];

o (28)'log [Egé[aud%] /Egé[aué]} — —Im[Aq(u)].

Quite a lot of technical work is needed, e.g.:

e to handle tricky boundary conditions [ Dirichlet for [ Re[f2dz] |;
e to prove convergence, incl. near singularities [ complex analysis |;
e to recover the normalization of Egé [0y, ...0u,] [ probability |.



Spin correlations: multiplicative normalization

We define (o, . ..0u, ) = exp| [L(u1,...,u,)], where
Lo(ur,...,up) = 0 1 Re[Aq(us;ur,..., s, ..., up)dus ],

where the coefficients Agq(...) are defined via solutions to similar
Riemann boundary values problems and the normalization satisfies

(OugeOu)l ~ (Oumeu, )b (Ou)d as u, — 09,
(Owow)g ~ |up— | V4 as uy > u €Q.



Spin correlations: multiplicative normalization
We define (o, . ..0u, ) = exp| [L(u1,...,u,)], where
Lo(ur,...,up) = 0 1 Re[Aq(us;ur,..., s, ..., up)dus ],

where the coefficients Agq(...) are defined via solutions to similar
Riemann boundary values problems and the normalization satisfies

(OugeOu)l ~ (Oumeu, )b (Ou)d as u, — 09,
(Owow)g ~ |up— | V4 as uy > u €Q.

o g(z!) = —g(2°) is a holomorphic spinor on [Q; uy, ..., t,];
o Im[g(¢)(r(¢))2] = 0 for ¢ € O,
og(z) =e's

e'rcs- (z—us)_% + ... for some (unknown) ¢; € R, s>2;
og(z)= 2_%e_i%(z—u1)_%[1 +2A0 (u5upy ey up)(z—up) + .. ]



Spin correlations: multiplicative normalization

We define (o, . ..0u, ) = exp| [L(u1,...,u,)], where
Lo(ur,...,up) = 0 1 Re[Aq(us;ur,..., s, ..., up)dus ],

where the coefficients Agq(...) are defined via solutions to similar
Riemann boundary values problems and the normalization satisfies

(OugeOu)l ~ (Oumeu, )b (Ou)d as u, — 09,

(Owow)g ~ |up— | V4 as uy > u €Q.

Remarks: e The fact that Lq , is a closed differential form and the
existence of an appropriate multiplicative normalization are not a
priori clear but can be deduced along the proof of convergence.

e This also works for mixed fixed/free boundary conditions
and/or in multiply connected domains. (No explicit formulae!)
[not published, a part of a larger project in progress... |



Mixed correlations: convergence
[Ch.—Hongler—Izyurov (2016, in progress)]

e Convergence of mixed correlations:
spins (o), disorders (u), fermions (v),
energy densities () (in multiply connected
domains €, with mixed fixed/free boundary
conditions b) to conformally covariant limits
that can be defined via solutions to appropriate
Riemann-type boundary value problems in €.

e Standard CFT fusion rules

op b+, Yo, o,
i) ~ g, o0~ 14¢, pp~>1—¢

can be deduced from properties of solutions to Riemann-type b.v.p.

e Stress-energy tensor: [Ch.—Glazman-Smirnov (2016)]



Mixed correlations: convergence
[Ch.—Hongler—Izyurov (2016, in progress)]

e Convergence of mixed correlations:
spins (o), disorders (u), fermions (v),
energy densities () (in multiply connected
domains €, with mixed fixed/free boundary
conditions b) to conformally covariant limits
that can be defined via solutions to appropriate
Riemann-type boundary value problems in €.

e Standard CFT fusion rules, e.g. 00 ~~ 1+ ¢:
1
(Oyoy..)y = | —u|"% [(.)5+ | —ul(ey. )+ .. ],

can be deduced from properties of solutions to Riemann-type b.v.p.



Mixed correlations: properties (fusion rules) and existence

(1) Each {fty, e by, Ouy---Ou,, ) S is a spinor defined on the
Riemann surface of the function [[]/_; [Ter; (v — us)]%.
As some of the points vy, ..., v,, approach uy, .., u, along
the rays vs—us € 2R, where |n5|=1, there exist limits
(Wi i O, o))
limy, s (v1 — u1>...<vk — )3 (f11, Oy b1y, 70, Ol 1, 1)

These (real) limits change signs if 75 is replaced by —ns and are
anti-symmetric with respect to the order in which v's are written.



Mixed correlations: properties (fusion rules) and existence
The spin-disorder correlations (fby, ...y, Tuy -+ Ou,, ) S lead to
(1) (Wb Ol ol =

limy, (v — u1)- (vie — ”k)|1(MV1UU1--'NV;<UU;<O[N7U]>?z-

(1) These functions satisfy Pfaffian identites (fermionic Wick
rules). Moreover, they depend on 7's in a real-linear way:

WO, o] = o
272 (e "4 (YO, pya])g + €57 - (4,00, u o)) |-
One has <O[¢’uva]>?z = <O[¢*7M>U]>?7 with 47 1= Ezr E: = ;.

Each of the functions (1,0, p, 0])Y is holomorphic in z and
each of (1,0[, u,0]), is anti-holomorphic in z. Moreover,

(1,0, u, a]>§’2 = 7(2) (¥, O, p, a]>§’2 for z € 992,

where 7(z) denotes the (properly oriented) tangent vector to 0f.



Mixed correlations: properties (fusion rules) and existence

The spin-disorder correlations (fby, ...y, Tuy -+ Ou,, ) S lead to
(1) i Ol o)), =
Iimvs_>us|(v1 — Ul)...(Vk — Uk)|
(1) (WO, o]y = o
272 [e_'zﬁ (YO, p, U])?‘z + "4 - (Y, 0y, u, U])?‘z] .
Moreover, (1,0[, u, o))y = 7(2) (1, O, u, o))} for z € 09

(111) Each of the functions (1),...), has the following asymptotics
(aka operator product expansions) as 1, approaches other fields:

(Whpr. ) = (2=2") ()G + O(l2=2'P)], (¢z90,-.)8 = O(1),
(040 = 27265 (2= 1) "2 [{tye- )+ 42— 1)y (pru- )0+ - . ]
(zpty..)g = 2_%e%m(z—v)_% [{ov..) +4(z—v)Dy (ov..)5 +..],

Similar OPEs hold true for the antiholomorphic functions (1/,...)%.

NI

(i, Ouy -, 00, Olp, 01



Mixed correlations: properties (fusion rules) and existence

The spin-disorder correlations (fby, ...y, Tuy -+ Ou,, ) S lead to

(|) ( 1[17111] [nk]O[F’JaUDQ =
Iimvs_>us|(v1 - ul)...(vk - uk)|

() WO, p o)y =
273 [e 5y (YO, py o) + €37 (3,00, p,0])h | .
Moreover, (1,0[, u, o))y = 7(2) (1, O, u, o))} for z € 09
(M) P ~ 1+ ..., Po ~ 21_%ei%[u A0+ ..,
i~ 272e7E [0 + 4d0 + ...
(IV) Denote (€,0[e, 2, o, p]), := i{(Ypy1h,Ole, b, 0, u])% . Then

_1
(Oyoy.)l = | —u|~% [(.)8 + 4 —ul(ep.)d + .. .];

_1
(v} =V =v[77 [()8 — SV —v|(ev..)g + ...

NI

<,Uv10'u1'--,uvk0'uk0[ﬂa U]>?z



Mixed correlations: properties (fusion rules) and existence

The spin-disorder correlations (fby, ...y, Tuy -+ Ou,, ) S lead to

(1) (il o, o)), =
Iimvs_>us|(v1 — ul)...(vk — uk)|
(1) (WO, o]y = o
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Moreover, (1,0[, u, o))y = 7(2) (1, O, u, o))} for z € 09
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Y~ 272675 [0 + 400 + ..
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Mixed correlations: properties (fusion rules) and existence

The spin-disorder correlations (fby, ...y, Tuy -+ Ou,, ) S lead to

() (@i wlMom, o], =
Iimvs_>us|(v1 — ul)...(vk — uk)|
(1) (WO, o]y = o
272 [6_777 ' <'¢ZO['¢’ M U])?‘z + e’Zﬁ ' <¢zo['¢’ M U])?‘z] .
Moreover, (1,0[, u, o))y = 7(2) (1, O, u, o))} for z € 09
() Y3 ~ 1+ ..., Yo~ 2 2eld [+ 40p+ ..,
Y~ 272675 [0 + 400 + ..
(V) ey :=itpyp, => 00~ L+ 3e+ .., pp~1—3e+...

NI

<,Uv10'u1'--,uvk0'uk0[,ua U]>?‘z

Claim: The set of conditions (I)—(IV) admits a (unique) solution.

Sketch: o fi[g;]u“_',u"](av Z) = <wzw£n]0'u1"-aun>?2/<au1"'O-Un>?‘z;
o Define all the other correlations starting with these functions;
o Prove all other fusion rules [interplays with convergence(!)].



Mixed correlations: properties (fusion rules) and convergence

The spin-disorder correlations (fby, ...y, Tuy -+ Ou,, ) S lead to
(1) i Ol o)), =

limy,—u(vi — u1)...(vk — ug)]
(1) (WO, o]y =

272 [e7"in - (PO, py o)y + €47 (B, 01, 501N ] -
Moreover, (1,0[, u, o))y = 7(2) (1, O, u, o))} for z € 09
() Y3 ~ 1+ ..., Yo~ 2 2eld [+ 40p+ ..,

Y~ 272675 [0 + 400 + ..

(V) ey :=itpyp, => 00~ L+ 3e+ .., pp~1—3e+...

NI

<,Uv10'u1'--,uvk0'uk0[ﬂa U]>?z

Theorem: [Ch.-Hongler-Izyurov, 2016] All mixed correlations of
spins, disorders, discrete fermions and energy densities in the Ising
model on s with boundary conditions b, after a proper rescaling,
converge to their continuous counterparts (...)% as § — 0.



Stress-energy tensor [ Ch.—Glazman-Smirnov, arXiv:1604.06339 |

e There exist several ways to introduce a stress-energy tensor as a
local field (function of several nearby spins) in the 2D Ising model.
Presumably, the first was suggested by Kadanoff and Ceva in 1970.
e As § — 0, correlations of these different local fields should have
the same scaling limits: CFT correlations of (components of) the
holomorphic T, and anti-holomorphic T, defined on a given Q.
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Presumably, the first was suggested by Kadanoff and Ceva in 1970.

e As § — 0, correlations of these different local fields should have
the same scaling limits: CFT correlations of (components of) the
holomorphic T, and anti-holomorphic T, defined on a given Q.
e We would like to have a definition of T, in discrete, which

o “geometrically” describes a perturbation of the metric,

o satisfies (at least, a part of) Cauchy-Riemann equations,

o resembles the “free fermion” formula Tz:—% 1,0, 1,

o and leads to the correct scaling limits of correlations.
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e There exist several ways to introduce a stress-energy tensor as a
local field (function of several nearby spins) in the 2D Ising model.
Presumably, the first was suggested by Kadanoff and Ceva in 1970.

e As § — 0, correlations of these different local fields should have
the same scaling limits: CFT correlations of (components of) the
holomorphic T, and anti-holomorphic T, defined on a given Q.
e We would like to have a definition of T, in discrete, which

o “geometrically” describes a perturbation of the metric,

o satisfies (at least, a part of) Cauchy-Riemann equations,

o resembles the “free fermion” formula Tz:—% 1,0, 1,

o and hence leads to the correct scaling limits of correlations.
Remark: in continuum, all the standard properties of T,
(holomorphicity, Schwarzian covariance under conformal
maps ¢ : Q — Q/, standard OPEs for TT, To, Te) can
be deduced from the expression of T, via fermions.



Stress-energy tensor [ Ch.—Glazman-Smirnov, arXiv:1604.06339 |

e Ising model on faces of (a part of) the honeycomb lattice can be
equivalently thought of as the loop O(1) model on a discrete
domain glued from equilateral triangles <= “standard lozenges".

e One can consistently define the loop O(n) model on any
(possible, non-flat) discrete domain glued from rhombi and
equilateral triangles using the Nienhuis' “integrable” weights.

0868
r2060°°

w1 (6) wa(6)

e Consistency: x=u1(3), x*=u(5)=v(3)=wm1(3), wo(3)=0.
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e Ising model on faces of (a part of) the honeycomb lattice can be
equivalently thought of as the loop O(1) model on a discrete
domain glued from equilateral triangles <= “standard lozenges".
e One can consistently define the loop O(n) model on any
(possible, non-flat) discrete domain glued from rhombi and
equilateral triangles using the Nienhuis' “integrable” weights.

e Consistency: x=u1(3), xX*=u(5)=v(5)=w1(3), w2(3)=0;

wrt re-gluing of “flat” vertices: by
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e Definition: Let m be a midline of some hexagon in a discrete
domain 5. We deform the lattice by gluing an additional tiny
rhombus of angle § — 0 along m, denote the new partition function
by Zq,(m,#), and define To,(m) := cst—|—de9 log ng(m,0)|9=0

e In fact, one can work with pictures drawn on the original lattice:

weighted by di:=uf(0), dr=uj(0), ds:=v/(0), da:=w{(0), ds:=w}(0).
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e Definition: Let m be a midline of some hexagon in a discrete
domain 5. We deform the lattice by gluing an additional tiny
rhombus of angle § — 0 along m, denote the new partition function
by Zq,(m,#), and define To,(m) := cst—|—de9 log ng(m,0)|9=0

e In fact, one can work with pictures drawn on the original lattice:

Weighted by di:=uj(0), dr=u)(0), ds:=v'(0), da:=wy(0), ds:=w}(0).

e For the loop O(1) model, one has dsy + ds = 2d; = —2d3. This
allows one to rewrite all these sums via fermions and leads to the
cancelation of main terms in all contributions except of type db.
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domain 5. We deform the lattice by gluing an additional tiny
rhombus of angle § — 0 along m, denote the new partition function
by Zq,(m,#), and define To,(m) := cst—|—de9 log Zq,(m, 0)|9=0

e At the same time, T(m) can be thought of as a local field:

@ B
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e Definition: Let m be a midline of some hexagon in a discrete
domain 5. We deform the lattice by gluing an additional tiny
rhombus of angle § — 0 along m, denote the new partition function
by Zq,(m,#), and define To,(m) := cst—|—di0 log Zq,(m, 0)|0=0

e At the same time, T(m) can be thought of as a local field:

@ B

e Theorem: Let Q5 — € and my be a midline of a hexagon
ws — w € € oriented in the direction 7. Then

872EY [T(ms)] — Re[73(Tu)d |-

e Since the question is essentially reduced to the convergence of
fermions, similar results can be proved for multi-point correlations.



Some research routes and open questions
e Better understanding of “geometric” observables at criticality:
e.g., probability distributions on topological classes of domain walls.

o Near-critical (massive) regime x — Xyt = m - d: convergence
of correlations, massive SLE3 curves and loop ensembles.

e Super-critical regime: e.g., convergence of interfaces to SLEg
curves for any fixed x > xqit [ known only for x=1 (percolation) ]

e Renormalization

fixed x> xgit, 0 —0
e

(X —Xerit) - 071 — o0

X = Xcrit
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THANK YOU!



