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• N.n. 2D Ising model: combinatorics
◦ dimers and fermionic observables
◦ discrete holomorphicity at criticality
◦ spinor observables and spin correlations
◦ spin-disorder formalism

• Spin correlations at criticality
◦ Riemann boundary value problems
for holomorphic spinors in continuum
◦ Convergence [Ch.–Hongler–Izyurov]

• Other primary fields: σ, µ, ε, ψ, ψ
◦ Convergence and fusion rules
◦ Construction of mixed correlations
via Riemann boundary value problems

• [ Stress-energy tensor ]
◦ (Some) discrete version of T and T
◦ Convergence [Ch.–Glazman–Smirnov]



Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Q: I heard this is called a (site) percolation?
A: .. according to the following probabilities:

P
[

conf. σ ∈ {±1}V (G∗)
]

∝ exp
[

β
∑

e=〈uv〉 Juvσuσv
]

∝ ∏

e=〈uv〉:σu 6=σv
xuv ,

where Juv > 0 are interaction constants assigned to edges 〈uv〉,
β = 1/kT is the inverse temperature, and xuv = exp[−2βJuv ].



Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Disclaimer: 2D, nearest-neighbor,
no external magnetic field.

P
[

conf. σ ∈ {±1}V (G∗)
]

∝ exp
[

β
∑

e=〈uv〉 Juvσuσv
]

∝ ∏

e=〈uv〉:σu 6=σv
xuv ,

where Juv > 0 are interaction constants assigned to edges 〈uv〉,
β = 1/kT is the inverse temperature, and xuv = exp[−2βJuv ].

• It is also convenient to use the parametrization xuv = tan(12θuv ).

• Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all xuv are equal to each other.



Phase transition (e.g., on Z
2)

E.g., Dobrushin boundary conditions: +1 on (ab) and −1 on (ba):

x < xcrit x = xcrit x > xcrit

• Ising (1925): no phase transition in 1D  doubts about 2+D;

• Peierls (1936): existence of the phase transition in 2D;

• Kramers-Wannier (1941): xself-dual =
√
2− 1 = tan(12 · π

4 );

• Onsager (1944): sharp phase transition at xcrit =
√
2− 1.



At criticality (e.g., on Z
2):

◦ Kaufman-Onsager(1948-49), Yang(1952):
scaling exponent 1

8 for the magnetization.
[via spin-spin correlations in Z

2 at x ↑ xcrit]

◦ At criticality, for Ωδ → Ω and uδ → u ∈ Ω,

it should be EΩδ
[σuδ ] ≍ δ

1
8 as δ → 0.

• Question: Convergence of (rescaled) spin
correlations and conformal covariance of their
scaling limits in arbitrary planar domains: x = xcrit

δ−
n
8 · EΩδ

[σu1,δ . . . σun,δ ] → 〈σu1 . . . σun〉Ω
= 〈σϕ(u1) . . . σϕ(un)〉ϕ(Ω) ·

∏n
s=1 |ϕ′(us)|

1
8

• In the infinite-volume setup other techniques are available,
notably “exact bosonization” approach due to J. Dubédat.



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn (’60s+),..., Kenyon, Dubédat (’00s+),...]

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏
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• There exist various representa-
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• Kasteleyn’s theory: Z=Pf[K ] [K=−K
⊤ is a weighted adjacency matrix of G
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• Kac–Ward formula (1952–..., 1999–...): Z2 = det[Id−T],

Te,e′ =

{

exp[ i2wind(e, e′)] · (xexe′)1/2
0

[ is equivalent to the Kasteleyn theorem for dimers on G

F

]



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn (’60s+),..., Kenyon, Dubédat (’00s+),...]

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏

e=〈uv〉:σu 6=σv
xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:
e.g. 1-to-2|V (G)| correspondence of
{±1}V (G∗) with dimers on this G

F

• Kasteleyn’s theory: Z=Pf[K ] [K=−K
⊤ is a weighted adjacency matrix of G

F

]

• Note that V (G
F

) ∼= {oriented edges and 
orners of G}

• Local relations for the entries K−1
a,e and K−1

a,
 of the inverse
Kasteleyn (or the inverse Kac–Ward) matrix:

(an equivalent form of) the identity K ·K−1= Id



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge ze (similarly, for a corner c),

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[

e−
i
2
wind(a ze)

∏

〈uv〉∈ω
xuv

]

where ηa denotes the (once and forever
fixed) square root of the direction of a.

• The factor e−
i
2
wind(a ze) does not de-

pend on the way how ω is split into non-
intersecting loops and a path a ze .

• Via dimers on G

F

: FG (a, c) = ηcK
−1
c,a

FG (a, ze) = ηeK
−1
e,a + ηeK

−1
e,a



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge ze (similarly, for a corner c),

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[

e−
i
2
wind(a ze)

∏

〈uv〉∈ω
xuv

]

where ηa denotes the (once and forever
fixed) square root of the direction of a.

• Local relations: at criticality, can
be thought of as some (strong) form of
discrete Cauchy–Riemann equations.

• Boundary conditions F(a, z
e

)∈η
ē

R

(e is oriented outwards) uniquely deter-
mine F as a solution to an appropriate

discrete Riemann-type boundary value problem.



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge ze (similarly, for a corner c),

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[

e−
i
2
wind(a ze)

∏

〈uv〉∈ω
xuv

]

Fermionic observables per se can be used

• to construct (discrete) martingales
for growing interfaces and then to
study their convergence to SLE curves
[Smirnov(2006), ..., Ch.–Duminil-Copin
–Hongler–Kemppainen–Smirnov(2013)]

• to analyze the energy density field
[Hongler–Smirnov, Hongler (2010)]

ε
e

:= δ−1 · [σ
e

−σ
e

+ − ε∞e ]

where e± are the two neighboring faces separated by an edge e

• but more involved ones are needed to study spin correlations



Energy density: convergence and conformal covariance

• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• Theorem: [Hongler–Smirnov, Hongler (2010)]

If Ωδ→Ω and ek,δ→zk as δ → 0, then

δ−n ·E+
Ωδ
[εe1,δ . . . εen,δ ] →

δ→0
Cn
ε ·〈εz1 . . . εzn〉+Ω

where Cε is a lattice-dependent constant,

〈εz1 . . . εzn〉+Ω = 〈εϕ(z1) . . . εϕ(zn)〉+Ω′ ·
∏n

s=1 |ϕ′(us)|
for any conformal mapping ϕ : Ω → Ω′, and

〈ε
z1
. . . ε

z

n

〉+
H

= in · Pf
[

(zs − zm)
−1

]2n

s,m=1
, zs = z2n+1−s .

• Ingredients: convergence of basic fermionic observables
(via Riemann-type b.v.p.) and (built-in) Pfaffian formalism



Energy density: convergence and conformal covariance

• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
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• Theorem: [Hongler–Smirnov, Hongler (2010)]

If Ωδ→Ω and ek,δ→zk as δ → 0, then

δ−n ·E+
Ωδ
[εe1,δ . . . εen,δ ] →

δ→0
Cn
ε ·〈εz1 . . . εzn〉+Ω

• Riemann-type boundary value problem to consider (sketch):

◦ f

[η]
Ω

(a, z) is holomorphic in Ω except at a given point a ∈ Ω;

◦ Im
[

f
[η]
Ω (a, ζ)

√

τ(ζ)
]

= 0, where τ(ζ) is the counterclockwise
(clockwise for free boundary conditions) tangent vector at ζ ∈ ∂Ω;

◦ f
[η]
Ω (a, z)= (2i)−1/2η

z−a
+ ... as z → a, where η should be thought

of as a square root of the direction of the edge aδ → a.
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• Riemann-type boundary value problem to consider (sketch):

◦ f

[η]
Ω

(a, z) is holomorphic in Ω except at a given point a ∈ Ω;

◦ Im
[

f
[η]
Ω (a, ζ)

√

τ(ζ)
]

= 0, where τ(ζ) is the counterclockwise
(clockwise for free boundary conditions) tangent vector at ζ ∈ ∂Ω;

◦ f
[η]
Ω (a, z)= (2i)−1/2η

z−a
+ ...= 2−

1
2 [e−i π

4 η · fΩ(a, z)+e i
π
4 η · f †

Ω
(a, z)]

• 〈ψ
z

ψ
a

〉+
Ω

:= fΩ(a, z), 〈ψz

ψ
a

〉+
Ω

:= f †Ω(a, z) and εz := iψ
z

ψ
z

.



Spin correlations and spinor observables: combinatorics

• spin configurations on G ∗

! domain walls on G
! dimers on G

F

• Kasteleyn’s theory: Z =Pf[K ]
[K=−K
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Spin correlations and spinor observables: combinatorics

• spin configurations on G ∗

! domain walls on G
! dimers on G

F

• Kasteleyn’s theory: Z =Pf[K ]
[K=−K

⊤ is a weighted adjacency matrix of G
F

]

• Claim:

E[σ
u1
. . . σ

u

n

] =
Pf [K[u1,...,un] ]

Pf [K ]
,

where K[u1,...,un] is obtained from K by changing the sign of its
entries on slits linking u1, . . . ,un (and, possibly, uout) pairwise.

• More invariant way to think about entries of K−1
[u1,...,un]

:

double-covers of G branching over u1, . . . ,un



Spin correlations and spinor observables: combinatorics

Main tool: spinors on the double cover [Ωδ;u1, . . . ,un].

FΩδ
(z) :=

[

Z+
Ωδ

[σu1 . . . σun ]
]−1 ·

∑

ω∈ConfΩδ (u
→
1 , z)

φu1,...,un (ω, z) ·x
#edges(ω)
crit ,

φu1,...,un (ω, z) := e−
i
2
wind(p(ω)) · (−1)#loops(ω\p(ω))· sheet (p (ω) , z).

a

z

a+
δ

2

• wind (p (γ)) is the winding of
the path p (γ) : u→1 = u1+

δ
2 z ;

• #loops – those containing an
odd number of u1, . . . , un inside;

• sheet (p (γ) , z) = +1, if p(γ)
defines z , and −1 otherwise.

• Note that F(z♯) = −F(z♭) if
z ♯, z ♭ lie over the same edge of Ωδ.



Spin correlations and spinor observables: combinatorics

Main tool: spinors on the double cover [Ωδ;u1, . . . ,un].

FΩδ
(z) :=

[

Z+
Ωδ

[σu1 . . . σun ]
]−1 ·

∑

ω∈ConfΩδ (u
→
1 , z)

φu1,...,un (ω, z) ·x
#edges(ω)
crit ,

φu1,...,un (ω, z) := e−
i
2
wind(p(ω)) · (−1)#loops(ω\p(ω))· sheet (p (ω) , z).

a

z

a+
δ

2

Claim:

FΩδ
(u1+

3δ
2 ) =

E
+
Ωδ

[σ
u1+2δ . . . σu

n

]

E
+
Ωδ

[σ
u1
. . . σ

u

n

]

Thus, spatial derivatives of spin
correlations can be studied via
the analysis of spinor observables.

• Remark: Both fermionic and
spinor observables can be intro-

duced using spin-disorder formalism of Kadanoff and Ceva.



Spin-disorder formalism of Kadanoff and Ceva

• Recall that spins σu are assigned to the
faces of G . Given (an even number of)
vertices v1, ..., vm, link them pairwise by
a collection of paths κ = κ

[v1,...,vm] and
replace xe by x−1

e for all e ∈ κ. Denote

〈µ
v1
...µ

v

m

〉
G

:= Z [v1,...,vm]
G

/ZG .

• Equivalently, one may think of the Ising
model on a double-cover G [v1,...,vm] that
branches over each of v1, ..., vm with the
spin-flip symmetry constrain σu♯ = −σu♭

[two disorders inserted]

if u♯ and u♭ lie over the same face of G . Let

〈µ
v1
...µ

v

m

σ
u1
...σ

u

n

〉
G

:= EG [v1,..,vm ][σu1 ...σun ] · 〈µv1 ...µvm〉G .
• By definition, 〈µ

v1
...µ

v

m

σ
u1
...σ

u

n

〉
G

changes the sign when one
of the faces uk goes around of one of the vertices vs .



Spin-disorder formalism of Kadanoff and Ceva

• By definition, 〈µ
v1
...µ

v

m

σ
u1
...σ

u

n

〉
G

changes the sign when one of the faces uk
goes around of one of the vertices vs .

• For a corner c lying in a face u(c) near
a vertex v(c), denote χ




:= µ
v(
)σu(
).

• Claim:

〈χ

1
...χ


2k
〉
G

= Pf[ 〈χ



p

χ



q

〉
G

]2k
p,q=1

and 〈χdχc〉G = K−1
c,d provided that all

the vertices v(cq) are pairwise distinct. [two disorders inserted]

• Remark: This also works in presence of other spins and
disorders. The antisymmetry 〈χdχc〉G = −〈χcχd〉G is caused by
the sign change of the corresponding spin-disorder correlation.



Spin-disorder formalism of Kadanoff and Ceva

• By definition, 〈µ
v1
...µ

v

m

σ
u1
...σ

u

n

〉
G

changes the sign when one of the faces uk
goes around of one of the vertices vs .

• For a corner c lying in a face u(c) near
a vertex v(c), denote χ




:= µ
v(
)σu(
).

• Claim:

〈χ

1
...χ


2k
〉
G

= Pf[ 〈χ



p

χ



q

〉
G

]2k
p,q=1

and 〈χdχc〉G = K−1
c,d provided that all

the vertices v(cq) are pairwise distinct. [two disorders inserted]

• The “corner” (resp., “edge”) values of the special spinor
observable on [Ωδ; u1, ..., un] discussed above can be written as

〈χ



µv(u→1 )σu2 ...σun 〉Ωδ

〈σu1 ...σun〉Ωδ

(

resp.,
〈ψ

z

µv(u→1 )σu2 ...σun 〉Ωδ

〈σu1 ...σun 〉Ωδ

)

,

[ψ
z

can be thought of as linear combinations of nearby χ



’s ]



Spin correlations: convergence and conformal covariance

• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• Theorem: [Ch.–Hongler–Izyurov (2012)]

If Ωδ→Ω and uk,δ→uk as δ → 0, then

δ−
n

8 ·E+
Ωδ
[σu1,δ . . . σun,δ ] →

δ→0
Cn
σ·〈σu1 . . . σun〉+Ω

where Cσ is a lattice-dependent constant,

〈σu1 . . . σun〉+Ω = 〈σϕ(u1) . . . σϕ(un)〉+Ω′ ·
∏n

s=1 |ϕ′(us)|
1
8

for any conformal mapping ϕ : Ω → Ω′, and
[

〈σ
u1
. . . σ

u

n

〉+
H

]2
=

∏

16s6n

(2 Im us)
− 1

4 ×
∑

β∈{±1}n

∏

s<m

∣

∣

∣

∣

us−um
us−um

∣

∣

∣

∣

βsβm
2



Spin correlations: convergence and conformal covariance

• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
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• Theorem: [Ch.–Hongler–Izyurov (2012)]

If Ωδ→Ω and uk,δ→uk as δ → 0, then

δ−
n

8 ·E+
Ωδ
[σu1,δ . . . σun,δ ] →

δ→0
Cn
σ·〈σu1 . . . σun〉+Ω

General strategy: • in discrete: encode spatial derivatives
as values of discrete holomorphic spinors F δ that solve some

discrete Riemann-type boundary value problems;

• discrete→continuum: prove convergence of F δ to the solutions f
of the similar continuous b.v.p. [ non-trivial technicalities ];

• continuum→discrete: find the limit of (spatial derivatives of)
using the convergence F δ → f [ via coefficients at singularities ].



Spin correlations: convergence and conformal covariance

Example: to handle E
+
Ωδ
[σu], one

should consider the following b.v.p.:

◦ g(z ♯) ≡ −g(z ♭), branches over u;

◦ Im
[

g(ζ)
√

τ(ζ)
]

= 0 for ζ ∈ ∂Ω;

◦ g(z) = (2i)−1/2
√
z−u

+ . . .

a

z

a+
δ

2
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z

a+
δ

2

Claim: If Ωδ converges to Ω as δ → 0, then

◦ (2δ)−1 log
[

E
+
Ωδ
[σuδ+2δ] /E

+
Ωδ
[σuδ ]

]

→ Re[AΩ(u) ] ;

◦ (2δ)−1 log
[

E
+
Ωδ
[σuδ+2iδ] /E

+
Ωδ
[σuδ ]

]

→ − Im [AΩ(u) ] .
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Conformal covariance 1
8
: for any conformal map φ : Ω → Ω′,

◦ f[Ω,a](w) = f[Ω′,φ(a)](φ(w)) · (φ′(w))1/2 ;

◦ AΩ(z) = AΩ′(φ(z)) · φ′(z) + 1
8
· φ′′(z)/φ′(z) .
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Example: to handle E
+
Ωδ
[σu], one
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Claim: If Ωδ converges to Ω as δ → 0, then
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Quite a lot of technical work is needed, e.g.:

• to handle tricky boundary conditions [ Dirichlet for
∫

Re[f 2dz ] ];
• to prove convergence, incl. near singularities [ complex analysis ];
• to recover the normalization of E+

Ωδ
[σu1 ...σun ] [ probability ].



Spin correlations: multiplicative normalization

We define 〈σ
u1
. . . σ

u

n

〉+
Ω

:= exp[
∫

L(u1, . . . , un) ], where

LΩ(u1, . . . , un) :=
∑n

s=1 Re [AΩ(us ; u1, ..., ûs , ..., un)dus ] ,

where the coefficients AΩ(. . .) are defined via solutions to similar
Riemann boundary values problems and the normalization satisfies

〈σu1 ...σun 〉+Ω ∼ 〈σu1 ...σun−1〉+Ω · 〈σun〉+Ω as un → ∂Ω ,

〈σu1σu2〉+Ω ∼ |u2 − u1|−1/4 as u2 → u1 ∈ Ω .
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We define 〈σ
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. . . σ
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n

〉+
Ω

:= exp[
∫

L(u1, . . . , un) ], where

LΩ(u1, . . . , un) :=
∑n

s=1 Re [AΩ(us ; u1, ..., ûs , ..., un)dus ] ,

where the coefficients AΩ(. . .) are defined via solutions to similar
Riemann boundary values problems and the normalization satisfies

〈σu1 ...σun 〉+Ω ∼ 〈σu1 ...σun−1〉+Ω · 〈σun〉+Ω as un → ∂Ω ,

〈σu1σu2〉+Ω ∼ |u2 − u1|−1/4 as u2 → u1 ∈ Ω .

◦ g(z ♯) ≡ −g(z ♭) is a holomorphic spinor on [Ω; u1, ..., un];

◦ Im
[

g(ζ)(τ(ζ))
1
2

]

= 0 for ζ ∈ ∂Ω;

◦ g(z) = e i
π
4 cs · (z−us)

− 1
2 + . . . for some (unknown) cs ∈ R, s>2;

◦ g(z) = 2−
1
2 e−i π

4 (z−u1)
− 1

2 [1 + 2AΩ(u1;u2, ...,un)(z−u1) + . . .]



Spin correlations: multiplicative normalization

We define 〈σ
u1
. . . σ

u

n

〉+
Ω

:= exp[
∫

L(u1, . . . , un) ], where

LΩ(u1, . . . , un) :=
∑n

s=1 Re [AΩ(us ; u1, ..., ûs , ..., un)dus ] ,

where the coefficients AΩ(. . .) are defined via solutions to similar
Riemann boundary values problems and the normalization satisfies

〈σu1 ...σun 〉+Ω ∼ 〈σu1 ...σun−1〉+Ω · 〈σun〉+Ω as un → ∂Ω ,

〈σu1σu2〉+Ω ∼ |u2 − u1|−1/4 as u2 → u1 ∈ Ω .

Remarks: • The fact that LΩ,n is a closed differential form and the
existence of an appropriate multiplicative normalization are not a
priori clear but can be deduced along the proof of convergence.

• This also works for mixed fixed/free boundary conditions
and/or in multiply connected domains. (No explicit formulae!)

[ not published, a part of a larger project in progress... ]



Mixed correlations: convergence

[Ch.–Hongler–Izyurov (2016, in progress)]

• Convergence of mixed correlations:
spins (σ), disorders (µ), fermions (ψ),
energy densities (ε) (in multiply connected
domains Ω, with mixed fixed/free boundary
conditions b) to conformally covariant limits
that can be defined via solutions to appropriate
Riemann-type boundary value problems in Ω.

• Standard CFT fusion rules

σµ ηψ + ηψ, ψσ  µ, ψµ σ,

iψψ  ε, σσ  1 + ε, µµ 1− ε

can be deduced from properties of solutions to Riemann-type b.v.p.

• Stress-energy tensor: [Ch.–Glazman–Smirnov (2016)]



Mixed correlations: convergence

[Ch.–Hongler–Izyurov (2016, in progress)]

• Convergence of mixed correlations:
spins (σ), disorders (µ), fermions (ψ),
energy densities (ε) (in multiply connected
domains Ω, with mixed fixed/free boundary
conditions b) to conformally covariant limits
that can be defined via solutions to appropriate
Riemann-type boundary value problems in Ω.

• Standard CFT fusion rules, e.g. σσ  1 + ε:

〈σu′σu...〉bΩ = |u′−u|− 1
4

[

〈...〉bΩ+ 1
2 |u′−u|〈εu ...〉bΩ+ . . .

]

,

can be deduced from properties of solutions to Riemann-type b.v.p.

• More details: arXiv:1605.09035, arXiv:1[6]??.?????



Mixed correlations: properties (fusion rules) and existence

(I) Each 〈µ
v1
...µ

v

n

σ
u1
...σ

u

m

〉bΩ is a spinor defined on the

Riemann surface of the function [
∏n

l=1

∏m
s=1(vl − us) ]

1
2 .

As some of the points v1, ..., vn approach u1, .., um along
the rays vs−us ∈ ηs2R, where |ηs |=1, there exist limits

〈ψ
[η1]
u1 ...ψ

[η
k

]
u

k

O[µ,σ]〉bΩ :=

limvs→us |(v1 − u1)...(vk − uk)|
1
4 〈µv1σu1 ...µvkσukO[µ, σ]〉bΩ.

These (real) limits change signs if ηs is replaced by −ηs and are
anti-symmetric with respect to the order in which ψ’s are written.



Mixed correlations: properties (fusion rules) and existence

The spin-disorder correlations 〈µ
v1
...µ

v

n

σ
u1
...σ

u

m

〉bΩ lead to

(I) 〈ψ
[η1]
u1
...ψ

[η
k

]
u

k

O[µ,σ]〉bΩ :=

limvs→us |(v1 − u1)...(vk − uk)|
1
4 〈µv1σu1 ...µvkσukO[µ, σ]〉bΩ.

(II) These functions satisfy Pfaffian identites (fermionic Wick
rules). Moreover, they depend on η’s in a real-linear way:

〈ψ[η]
z O[ψ, µ, σ]〉bΩ =

2−
1
2

[

e−i π
4 η · 〈ψ

z

O[ψ,µ,σ]〉bΩ + e i
π
4 η · 〈ψ

z

O[ψ,µ,σ]〉bΩ
]

.

One has 〈O[ψ, µ, σ]〉bΩ = 〈O[ψ∗, µ, σ]〉bΩ with ψ∗
z := ψz , ψ

∗
z := ψz .

Each of the functions 〈ψzO[ψ, µ, σ]〉bΩ is holomorphic in z and
each of 〈ψzO[ψ, µ, σ]〉bΩ is anti-holomorphic in z . Moreover,

〈ψzO[ψ, µ, σ]〉bΩ = τ(z)〈ψzO[ψ, µ, σ]〉bΩ for z ∈ ∂Ω ,

where τ(z) denotes the (properly oriented) tangent vector to ∂Ω.
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n

σ
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u
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〉bΩ lead to

(I) 〈ψ
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u1
...ψ
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k
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k
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1
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(II) 〈ψ[η]
z O[ψ, µ, σ]〉bΩ =

2−
1
2

[

e−i π
4 η · 〈ψ

z

O[ψ,µ,σ]〉bΩ + e i
π
4 η · 〈ψ

z

O[ψ,µ,σ]〉bΩ
]

.

Moreover, 〈ψzO[ψ, µ, σ]〉bΩ = τ(z)〈ψzO[ψ, µ, σ]〉bΩ for z ∈ ∂Ω .

(III) Each of the functions 〈ψz ...〉bΩ has the following asymptotics
(aka operator product expansions) as ψz approaches other fields:

〈ψzψz ′ ...〉bΩ = (z−z ′)−1
[

〈...〉bΩ + O(|z−z ′|2)
]

, 〈ψzψz ′ ...〉bΩ =O(1),

〈ψzσu ...〉bΩ = 2−
1
2 e

iπ
4 (z−u)−

1
2

[

〈µu ...〉bΩ+ 4(z−u)∂u〈µu...〉bΩ+ . . .
]

,

〈ψzµv ...〉bΩ = 2−
1
2 e

−iπ
4 (z−v)− 1

2

[

〈σv ...〉bΩ + 4(z−v)∂v 〈σv ...〉bΩ + ...
]

,

Similar OPEs hold true for the antiholomorphic functions 〈ψz ...〉bΩ.



Mixed correlations: properties (fusion rules) and existence

The spin-disorder correlations 〈µ
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4 η · 〈ψ

z

O[ψ,µ,σ]〉bΩ + e i
π
4 η · 〈ψ

z

O[ψ,µ,σ]〉bΩ
]

.

Moreover, 〈ψzO[ψ, µ, σ]〉bΩ = τ(z)〈ψzO[ψ, µ, σ]〉bΩ for z ∈ ∂Ω .

(III) ψψ  1 + ..., ψσ  2−
1
2 e i

π
4 [µ+ 4∂µ+ ...],

ψµ 2−
1
2 e−i π

4 [σ + 4∂σ + ...].

(IV) Denote 〈ε
u

O[ε,ψ,σ,µ]〉bΩ := i〈ψuψuO[ε, ψ, σ, µ]〉bΩ . Then

〈σu′σu...〉bΩ = |u′−u|− 1
4

[

〈...〉bΩ + 1
2 |u′−u|〈εu...〉bΩ + . . .

]

;

〈µv ′µv ...〉bΩ = |v ′−v |− 1
4

[

〈...〉bΩ − 1
2 |v ′−v |〈εv ...〉bΩ + . . .

]

.
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Moreover, 〈ψzO[ψ, µ, σ]〉bΩ = τ(z)〈ψzO[ψ, µ, σ]〉bΩ for z ∈ ∂Ω .
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1
2 e i

π
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1
2 e−i π

4 [σ + 4∂σ + ...].

(IV) ε
u

:= iψ
u

ψ
u

=⇒ σσ  1 + 1
2ε+ ..., µµ 1− 1

2ε+ ...



Mixed correlations: properties (fusion rules) and existence

The spin-disorder correlations 〈µ
v1
...µ

v

n

σ
u1
...σ

u

m

〉bΩ lead to

(I) 〈ψ
[η1]
u1
...ψ
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O[µ,σ]〉bΩ :=

limvs→us |(v1 − u1)...(vk − uk)|
1
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(II) 〈ψ[η]
z O[ψ, µ, σ]〉bΩ =

2−
1
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4 η · 〈ψ

z
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.

Moreover, 〈ψzO[ψ, µ, σ]〉bΩ = τ(z)〈ψzO[ψ, µ, σ]〉bΩ for z ∈ ∂Ω .

(III) ψψ  1 + ..., ψσ  2−
1
2 e i

π
4 [µ+ 4∂µ+ ...],

ψµ 2−
1
2 e−i π

4 [σ + 4∂σ + ...].

(IV) ε
u

:= iψ
u

ψ
u

=⇒ σσ  1 + 1
2ε+ ..., µµ 1− 1

2ε+ ...

Claim: The set of conditions (I)–(IV) admits a (unique) solution.

Sketch: ◦ f

[η]
[Ω;u1,...,un]

(a, z) := 〈ψzψ
[η]
a σu1 ...σun〉bΩ/〈σu1 ...σun〉bΩ;

◦ Define all the other correlations starting with these functions;
◦ Prove all other fusion rules [interplays with convergence(!)].



Mixed correlations: properties (fusion rules) and convergence

The spin-disorder correlations 〈µ
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1
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1
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4 η · 〈ψ

z
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z
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]

.

Moreover, 〈ψzO[ψ, µ, σ]〉bΩ = τ(z)〈ψzO[ψ, µ, σ]〉bΩ for z ∈ ∂Ω .

(III) ψψ  1 + ..., ψσ  2−
1
2 e i

π
4 [µ+ 4∂µ+ ...],

ψµ 2−
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(IV) ε
u

:= iψ
u

ψ
u

=⇒ σσ  1 + 1
2ε+ ..., µµ 1− 1

2ε+ ...

Theorem: [Ch.-Hongler-Izyurov, 2016] All mixed correlations of
spins, disorders, discrete fermions and energy densities in the Ising
model on Ωδ with boundary conditions b, after a proper rescaling,
converge to their continuous counterparts 〈...〉bΩ as δ → 0.



Stress-energy tensor [ Ch.–Glazman–Smirnov, arXiv:1604.06339 ]

• There exist several ways to introduce a stress-energy tensor as a
local field (function of several nearby spins) in the 2D Ising model.
Presumably, the first was suggested by Kadanoff and Ceva in 1970.

• As δ → 0, correlations of these different local fields should have
the same scaling limits: CFT correlations of (components of) the
holomorphic Tz and anti-holomorphic T z defined on a given Ω.
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• There exist several ways to introduce a stress-energy tensor as a
local field (function of several nearby spins) in the 2D Ising model.
Presumably, the first was suggested by Kadanoff and Ceva in 1970.

• As δ → 0, correlations of these different local fields should have
the same scaling limits: CFT correlations of (components of) the
holomorphic Tz and anti-holomorphic T z defined on a given Ω.

• We would like to have a definition of Tz in discrete, which

◦ “geometrically” describes a perturbation of the metric,
◦ satisfies (at least, a part of) Cauchy-Riemann equations,
◦ resembles the “free fermion” formula T

z

=−1
2
:ψ

z

∂ψ
z

: ,
◦ and leads to the correct scaling limits of correlations.



Stress-energy tensor [ Ch.–Glazman–Smirnov, arXiv:1604.06339 ]

• There exist several ways to introduce a stress-energy tensor as a
local field (function of several nearby spins) in the 2D Ising model.
Presumably, the first was suggested by Kadanoff and Ceva in 1970.

• As δ → 0, correlations of these different local fields should have
the same scaling limits: CFT correlations of (components of) the
holomorphic Tz and anti-holomorphic T z defined on a given Ω.

• We would like to have a definition of Tz in discrete, which

◦ “geometrically” describes a perturbation of the metric,
◦ satisfies (at least, a part of) Cauchy-Riemann equations,
◦ resembles the “free fermion” formula T

z

=−1
2
:ψ

z

∂ψ
z

: ,
◦ and hen
e leads to the correct scaling limits of correlations.

Remark: in continuum, all the standard properties of Tz

(holomorphicity, Schwarzian covariance under conformal
maps φ : Ω → Ω′, standard OPEs for TT , Tσ, Tε) can
be deduced from the expression of Tz via fermions.



Stress-energy tensor [ Ch.–Glazman–Smirnov, arXiv:1604.06339 ]

• Ising model on faces of (a part of) the honeycomb lattice can be
equivalently thought of as the loop O(1) model on a discrete
domain glued from equilateral triangles ⇐⇒ “standard lozenges”.

• One can consistently define the loop O(n) model on any
(possible, non-flat) discrete domain glued from rhombi and
equilateral triangles using the Nienhuis’ “integrable” weights.

• Consistency: x=u1(
π
3 ), x2=u2(

π
3 )=v(π3 )=w1(

π
3 ), w2(

π
3 )=0.



Stress-energy tensor [ Ch.–Glazman–Smirnov, arXiv:1604.06339 ]

• Ising model on faces of (a part of) the honeycomb lattice can be
equivalently thought of as the loop O(1) model on a discrete
domain glued from equilateral triangles ⇐⇒ “standard lozenges”.

• One can consistently define the loop O(n) model on any
(possible, non-flat) discrete domain glued from rhombi and
equilateral triangles using the Nienhuis’ “integrable” weights.

• Consistency: x=u1(
π
3 ), x2=u2(

π
3 )=v(π3 )=w1(

π
3 ), w2(

π
3 )=0;

wrt re-gluing of “flat” vertices:



Stress-energy tensor [ Ch.–Glazman–Smirnov, arXiv:1604.06339 ]

• Definition: Let m be a midline of some hexagon in a discrete
domain Ωδ. We deform the lattice by gluing an additional tiny
rhombus of angle θ → 0 along m, denote the new partition function
by ZΩδ

(m, θ), and define TΩδ
(m) := 
st+ d

dθ
logZΩδ

(m, θ)
∣

∣

θ=0

• In fact, one can work with pictures drawn on the original lattice:

weighted by d1:=u′1(0), d2:=u′2(0), d3:=v ′(0), d4:=w ′
1(0), d5:=w ′

2(0).
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• Definition: Let m be a midline of some hexagon in a discrete
domain Ωδ. We deform the lattice by gluing an additional tiny
rhombus of angle θ → 0 along m, denote the new partition function
by ZΩδ

(m, θ), and define TΩδ
(m) := 
st+ d

dθ
logZΩδ

(m, θ)
∣

∣

θ=0

• In fact, one can work with pictures drawn on the original lattice:

weighted by d1:=u′1(0), d2:=u′2(0), d3:=v ′(0), d4:=w ′
1(0), d5:=w ′

2(0).

• For the loop O(1) model, one has d4 + d5 = 2d1 = −2d3. This
allows one to rewrite all these sums via fermions and leads to the
cancelation of main terms in all contributions except of type d2.
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• Definition: Let m be a midline of some hexagon in a discrete
domain Ωδ. We deform the lattice by gluing an additional tiny
rhombus of angle θ → 0 along m, denote the new partition function
by ZΩδ

(m, θ), and define TΩδ
(m) := 
st+ d

dθ
logZΩδ

(m, θ)
∣

∣

θ=0

• At the same time, T (m) can be thought of as a local field:
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• Definition: Let m be a midline of some hexagon in a discrete
domain Ωδ. We deform the lattice by gluing an additional tiny
rhombus of angle θ → 0 along m, denote the new partition function
by ZΩδ

(m, θ), and define TΩδ
(m) := 
st+ d

dθ
logZΩδ

(m, θ)
∣

∣

θ=0

• At the same time, T (m) can be thought of as a local field:

• Theorem: Let Ωδ → Ω and mδ be a midline of a hexagon
wδ → w ∈ Ω oriented in the direction τ . Then

δ−2
E
+
Ωδ

[T(mδ)] → Re[ τ 2〈T
w

〉+Ω ].

• Since the question is essentially reduced to the convergence of
fermions, similar results can be proved for multi-point correlations.



Some research routes and open questions

• Better understanding of “geometric” observables at criticality:
e.g., probability distributions on topological classes of domain walls.

• Near-critical (massive) regime x − xcrit = m · δ: convergence
of correlations, massive SLE3 curves and loop ensembles.

• Super-critical regime: e.g., convergence of interfaces to SLE6

curves for any fixed x > xcrit [ known only for x=1 (percolation) ]

x = xcrit

• Renormalization

fixed x>xcrit, δ→0

−−−−−−−−→
(x−xcrit) · δ−1 → ∞

x = 1
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• Better understanding of “geometric” observables at criticality:
e.g., probability distributions on topological classes of domain walls.

• Near-critical (massive) regime x − xcrit = m · δ: convergence
of correlations, massive SLE3 curves and loop ensembles.

• Super-critical regime: e.g., convergence of interfaces to SLE6

curves for any fixed x > xcrit [ known only for x=1 (percolation) ]

x = xcrit

• Renormalization

fixed x>xcrit, δ→0

−−−−−−−−→
(x−xcrit) · δ−1 → ∞

x = 1

Thank you!


