Bipartite Dimer Model:

Gaussian Free Field

on Lorentz-minimal Surfaces

Dmitry Chelkak (ENS)
[recent/in progress joint works w/
Benoît Laslier, Sanjay Ramassamy, Marianna Russkikh]
Horowitz seminar
TAU@Zoom, 01.06.20

Outline of the talk:

- Running illustration: Aztec diamonds (w/ Ramassamy, arXiv:2002.07540).
\triangleright Intro: Thurston's height functions, conv. to GFF in a non-trivial metric.
\triangleright Long[!]-term motivation:
$\triangleright T$-embeddings: basic concepts and a priori regularity estimates (w/ Laslier and Russkikh, arXiv:2001.11871).
\triangleright Perfect t-embeddings and Lorentzminimal surfaces. Main theorem (w/ Laslier and Russkikh, arXiv:20**.**).
\triangleright (Some) open questions/perspectives.

Illustration:

(homogeneous) Aztec diamonds $A_{n} \subset n^{-1} \mathbb{Z}^{2}$

Theorem: [Ch. - Laslier - Russkikh] [arXiv:2001.11871 + 20**.**]
Let $\mathcal{G}^{\delta}, \delta \rightarrow 0$, be finite weighted bipartite planar graphs. Assume that

- \mathcal{T}^{δ} are perfect t-embeddings of $\left(\mathcal{G}^{\delta}\right)^{*}$ [satisfying assumption Exp-FAT (δ)];
- as $\delta \rightarrow 0$, the images of \mathcal{T}^{δ} converge to a domain $\mathrm{D}_{\xi}\left[\xi \in \operatorname{Lip}_{1}(\mathbb{T}),|\xi|<\frac{\pi}{2}\right]$;
- origami maps $\left(\mathcal{T}^{\delta}, \mathcal{O}^{\delta}\right)$ converge to a Lorentz-minimal surface $\mathrm{S}_{\xi} \subset \mathrm{D}_{\xi} \times \mathbb{R}$. Then, height functions fluctuations in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $\mathrm{S}_{\xi} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration:

(homogeneous) Aztec diamonds $A_{n} \subset n^{-1} \mathbb{Z}^{2}$

Theorem: [Ch. - Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]
Let $\mathcal{G}^{\delta}, \delta \rightarrow 0$, be finite weighted bipartite planar graphs. Assume that

- \mathcal{T}^{δ} are perfect t-embeddings of $\left(\mathcal{G}^{\delta}\right)^{*}$ [satisfying assumption Exp-FAT (δ)];
- as $\delta \rightarrow 0$, the images of \mathcal{T}^{δ} converge to a domain $\mathrm{D}_{\xi}\left[\xi \in \operatorname{Lip}_{1}(\mathbb{T}),|\xi|<\frac{\pi}{2}\right]$;
- origami maps $\left(\mathcal{T}^{\delta}, \mathcal{O}^{\delta}\right)$ converge to a Lorentz-minimal surface $\mathrm{S}_{\xi} \subset \mathrm{D}_{\xi} \times \mathbb{R}$. Then, height functions fluctuations in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $\mathrm{S}_{\xi} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.
- Domains D_{ξ}, surfaces S_{ξ} :
- 1-Lipschitz function $|\xi(\phi)|<\frac{\pi}{2}$ on \mathbb{T};
- D_{ξ} : inside of $z(\phi)=e^{i \phi} / \cos (\xi(\phi))$;
- S_{ξ} spans $\mathrm{L}_{\xi}:=(z(\phi), \tan (\xi(\phi)))_{\phi \in \mathbb{T}}$
$\mathrm{L}_{\xi} \subset\left\{x \in \mathbb{R}^{2+1}:\|x\|^{2}=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=1\right\}$.
Aztec case $\left(\mathrm{D}_{\xi}, \mathrm{S}_{\xi}\right)$:

Bipartite dimer model: basics

- $\left(\mathcal{G}, \nu_{b w}\right)$ - finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_{e}$.
(Very) particular example:
[Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^{2}$]

Bipartite dimer model: basics

- $\left(\mathcal{G}, \nu_{b w}\right)$ - finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_{e}$.
- In Temperleyan domains, random walks and discrete harmonic functions with 'nice' boundary conditions naturally appear. This is a very special case.
(Very) particular example:
[Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^{2}$]

Temperley bijection: dimers on \mathcal{G}_{T} \leftrightarrow spanning trees on another graph. This procedure is highly sensitive to the microscopic structure of the boundary.

Bipartite dimer model: basics

- $\left(\mathcal{G}, \nu_{b w}\right)$ - finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_{e}$.
- Random height function h (on \mathcal{G}^{*}): fix \mathcal{D}_{0}, view $\mathcal{D} \cup \mathcal{D}_{0}$ as a topographic map.
- Height fluctuations $\hbar:=h-\mathbb{E}[h]$ do not depend on the choice of \mathcal{D}_{0}.
(Very) particular example:
[Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^{2}$]

Bipartite dimer model: basics

- $\left(\mathcal{G}, \nu_{b w}\right)$ - finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_{e}$.
- Random height function h (on \mathcal{G}^{*}): fix \mathcal{D}_{0}, view $\mathcal{D} \cup \mathcal{D}_{0}$ as a topographic map.
- Height fluctuations $\hbar:=h-\mathbb{E}[h]$ do not depend on the choice of \mathcal{D}_{0}.
- Gaussian Free Field: $\mathbb{E}[\hbar(z)]=0$, $\mathbb{E}[\hbar(z) \hbar(w)]=G_{\Omega}(z, w)=-\Delta_{\Omega}^{-1}(z, w)$.
(Very) particular example:
[Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^{2}$]

Theorem [Kenyon'00]:
$\delta \mathbb{Z}^{2} \supset \mathcal{G}_{\mathbf{T}}^{\delta} \rightarrow \Omega \subset \mathbb{C}$
$\Rightarrow \hbar^{\delta} \rightarrow \pi^{-\frac{1}{2}} \operatorname{GFF}(\Omega)$

Bipartite dimer model: basics

- $\left(\mathcal{G}, \nu_{b w}\right)$ - finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_{e}$.
- Random height function h (on \mathcal{G}^{*}): fix \mathcal{D}_{0}, view $\mathcal{D} \cup \mathcal{D}_{0}$ as a topographic map.
- Height fluctuations $\hbar:=h-\mathbb{E}[h]$ do not depend on the choice of \mathcal{D}_{0}.
[!!!] Still, the limit of \hbar^{δ} as $\delta \rightarrow 0$ heavily depends on the limit of (deterministic) boundary profiles of $\delta \boldsymbol{h}^{\delta}$.

Examples (on Hex*) [(c) Kenyon]:

Bipartite dimer model: basics

- $\left(\mathcal{G}, \nu_{b w}\right)$ - finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_{e}$.
- Random height function h (on \mathcal{G}^{*}): fix \mathcal{D}_{0}, view $\mathcal{D} \cup \mathcal{D}_{0}$ as a topographic map.
- Height fluctuations $\hbar:=h-\mathbb{E}[h]$ do not depend on the choice of \mathcal{D}_{0}.
[!!!] Still, the limit of \hbar^{δ} as $\delta \rightarrow 0$ heavily depends on the limit of (deterministic) boundary profiles of $\delta \boldsymbol{h}^{\delta}$.

Examples (on Hex*) [(c) Kenyon]:

On periodic lattices:

- [Cohn-Kenyon-Propp'00] the random profile δh^{δ} concentrates near a surface maximizing certain entropy functional.
- Prediction: [Kenyon-Okounkov'06]
$\hbar^{\delta} \rightarrow$ GFF in a profile-dependent metric.
- Problematic beyond periodic case.

Bipartite dimer model: basics

- $\left(\mathcal{G}, \nu_{b w}\right)$ - finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_{e}$.
- Random height function h (on \mathcal{G}^{*}): fix \mathcal{D}_{0}, view $\mathcal{D} \cup \mathcal{D}_{0}$ as a topographic map.
- Height fluctuations $\hbar:=h-\mathbb{E}[h]$ do not depend on the choice of \mathcal{D}_{0}.
[!!!] Still, the limit of \hbar^{δ} as $\delta \rightarrow 0$ heavily depends on the limit of (deterministic) boundary profiles of $\delta \boldsymbol{h}^{\delta}$.
(Very) particular example:
[Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^{2}$]

Remark: If G_{T}^{δ} are Temperleyan, then the boundary profiles of δh^{δ} are 'flat'. The converse is (by far) false: e.g., domains composed of 2×2 blocks are 'flat'.

Known results: $\delta \mathbb{Z}^{2} \supset \mathcal{G}_{\mathbf{T}}^{\delta} \rightarrow \Omega \subset \mathbb{C}$

- $\hbar^{\delta} \rightarrow \pi^{-1 / 2} \cdot \operatorname{GFF}(\Omega)$ [Kenyon'00]
- Non-flat case: $\mathrm{GFF}_{\mu}(\boldsymbol{\Omega})$
\triangleright Temperleyan-type domains $\subset \mathrm{Hex}^{*}$ coming from T-graphs [Kenyon'04]
- 'polygons' via 'integrable probability' and (rather hard) asymptotic analysis [Petrov, Bufetov-Gorin, ... '12+]
\triangleright thorough analysis of concrete setups (e.g., Aztec diamonds) w/ interesting behavior
 [Chhita-Johansson-Young, ... '12+]

Aztec diamonds

$$
A_{n} \subset n^{-1} \mathbb{Z}^{2}
$$

[Elkies-Kuperberg-
Larsen - Propp '92, ...]
[(c) A. \& M. Borodin, S. Chhita]

Known results: $\delta \mathbb{Z}^{2} \supset \mathcal{G}_{\mathbf{T}}^{\delta} \rightarrow \Omega \subset \mathbb{C}$

- $\hbar^{\delta} \rightarrow \pi^{-1 / 2} \cdot \operatorname{GFF}(\Omega)$ [Kenyon'00]
- Non-flat case: $\mathrm{GFF}_{\mu}(\Omega)$
\triangleright Temperleyan-type domains \subset Hex* * coming from T-graphs [Kenyon'04]
- 'polygons' via 'integrable probability' and (rather hard) asymptotic analysis [Petrov, Bufetov-Gorin, ... '12+]
\triangleright thorough analysis of concrete setups (e.g., Aztec diamonds) w/ interesting behavior
 [Chhita-Johansson-Young, ... '12+]
- Known tools: problematic to apply $\downarrow[?] \quad$ to generic graphs (\mathcal{G}, ν) - Long[!]-term goal: attack random maps carrying the bipartite dimer [or the critical Ising] model.

"Bosonization": [Dubédat'11, ...]:

Known results: $\delta \mathbb{Z}^{2} \supset \mathcal{G}_{\mathrm{T}}^{\delta} \rightarrow \Omega \subset \mathbb{C}$

- $\hbar^{\delta} \rightarrow \pi^{-1 / 2} \cdot \operatorname{GFF}(\Omega)$ [Kenyon'00]
- Non-flat case: $\mathrm{GFF}_{\mu}(\Omega)$
\triangleright Temperleyan-type domains \subset Hex * coming from T-graphs [Kenyon'04]
- 'polygons' via 'integrable probability' and (rather hard) asymptotic analysis [Petrov, Bufetov-Gorin, ... '12+]
\triangleright thorough analysis of concrete setups (e.g., Aztec diamonds) w/ interesting behavior
 [Chhita-Johansson-Young, ... '12+]
- Known tools: problematic to apply \downarrow [?] to generic graphs (\mathcal{G}, ν) - Long[!]-term goal: attack random maps carrying the bipartite dimer [or the critical Ising] model.

- Wanted: special embeddings of abstract weighted bipartite planar graphs + 'discrete complex analysis' techniques on such embeddings
\rightsquigarrow complex structure in the limit.

Theorem: [Ch.-Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]
Let $\mathcal{G}^{\delta}, \delta \rightarrow 0$, be finite weighted bipartite planar graphs. Assume that

- \mathcal{T}^{δ} are perfect t-embeddings of $\left(\mathcal{G}^{\delta}\right)^{*}$ [satisfying assumption Exp-FAT (δ)];
- as $\delta \rightarrow 0$, the images of \mathcal{T}^{δ} converge to a domain $\mathrm{D}_{\xi}\left[\xi \in \operatorname{Lip}_{1}(\mathbb{T}),|\xi|<\frac{\pi}{2}\right]$;
- origami maps $\left(\mathcal{T}^{\delta}, \mathcal{O}^{\delta}\right)$ converge to a Lorentz-minimal surface $\mathrm{S}_{\xi} \subset \mathrm{D}_{\xi} \times \mathbb{R}$. Then, height functions fluctuations in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $\mathrm{S}_{\xi} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration:

Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

Theorem: [Ch. - Laslier - Russkikh] [arXiv:2001.11871 + 20**.**]
Let $\mathcal{G}^{\delta}, \delta \rightarrow 0$, be finite weighted bipartite planar graphs. Assume that

- \mathcal{T}^{δ} are perfect t-embeddings of $\left(\mathcal{G}^{\delta}\right)^{*}$ [satisfying assumption Exp-FAT (δ)];
- as $\delta \rightarrow 0$, the images of \mathcal{T}^{δ} converge to a domain $\mathrm{D}_{\xi}\left[\xi \in \operatorname{Lip}_{1}(\mathbb{T}),|\xi|<\frac{\pi}{2}\right]$;
- origami maps $\left(\mathcal{T}^{\delta}, \mathcal{O}^{\delta}\right)$ converge to a Lorentz-minimal surface $\mathrm{S}_{\xi} \subset \mathrm{D}_{\xi} \times \mathbb{R}$. Then, height functions fluctuations in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $\mathrm{S}_{\xi} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration:

Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

Embeddings of weighted bipartite planar graphs carrying the dimer model

 [and admitting reasonable notions of discrete complex analysis]Coulomb gauges [Kenyon - Lam - Ramassamy - Russkikh, arXiv:1810.05616] I
t-embeddings [Ch.-Laslier-Russkikh, arXiv:2001.11871, arXiv:20**.**]
Particular cases: harmonic/Tutte's embeddings [via the Temperley bijection] Ising model s-embeddings [arXiv:1712.04192, via the bosonization]

Extremely particular case:

Baxter's critical Z-invariant Ising model on rhombic lattices/isoradial graphs
[Ch.-Smirnov, arXiv:0910. 2045
"Universality in the 2D Ising model and conformal invariance of fermionic observables"]

Embeddings of weighted bipartite planar graphs carrying the dimer model

 [and admitting reasonable notions of discrete complex analysis]- t-embeddings $=$ Coulomb gauges: given (\mathcal{G}, ν), find $\mathcal{T}: \mathcal{G}^{*} \rightarrow \mathbb{C}\left[\mathcal{G}^{*}\right.$ - augmented dual] s.t.
\triangleright weights ν_{e} are gauge equivalent to $\chi_{\left(v v^{\prime}\right)^{*}}:=\left|\mathcal{T}\left(v^{\prime}\right)-\mathcal{T}(v)\right|$ (i.e., $\nu_{b w}=g_{b} \chi_{b w} g_{w}$ for some $g: B \cup W \rightarrow \mathbb{R}_{+}$) and \triangleright at each inner vertex $\mathcal{T}(v)$, the sum of black angles $=\pi$.

Embeddings of weighted bipartite planar graphs carrying the dimer model

 [and admitting reasonable notions of discrete complex analysis]- t-embeddings $=$ Coulomb gauges: given (\mathcal{G}, ν), find $\mathcal{T}: \mathcal{G}^{*} \rightarrow \mathbb{C}\left[\mathcal{G}^{*}\right.$ - augmented dual] s.t.
\triangleright weights ν_{e} are gauge equivalent to $\chi_{\left(v v^{\prime}\right)^{*}}:=\left|\mathcal{T}\left(v^{\prime}\right)-\mathcal{T}(v)\right|$ (i.e., $\nu_{b w}=g_{b} \chi_{b w} g_{w}$ for some $g: B \cup W \rightarrow \mathbb{R}_{+}$) and \triangleright at each inner vertex $\mathcal{T}(v)$, the sum of black angles $=\pi$.
- p-embeddings $=$ perfect t-embeddings:
\triangleright outer face is a tangential (possibly, non-convex) polygon, \triangleright edges adjacent to outer vertices are bisectors.
- Warning: for general (\mathcal{G}, ν), the existence of perfect t-embeddings is not known though they do exist in particular cases + the count of $\#$ (degrees of freedom) matches.

Embeddings of weighted bipartite planar graphs carrying the dimer model

 [and admitting reasonable notions of discrete complex analysis]- t-embeddings $=$ Coulomb gauges: given (\mathcal{G}, ν), find $\mathcal{T}: \mathcal{G}^{*} \rightarrow \mathbb{C}\left[\mathcal{G}^{*}\right.$ - augmented dual] s.t.
\triangleright weights ν_{e} are gauge equivalent to $\chi_{\left(v v^{\prime}\right)^{*}}:=\left|\mathcal{T}\left(v^{\prime}\right)-\mathcal{T}(v)\right|$ (i.e., $\nu_{b w}=g_{b} \chi_{b w} g_{w}$ for some $g: B \cup W \rightarrow \mathbb{R}_{+}$) and \triangleright at each inner vertex $\mathcal{T}(v)$, the sum of black angles $=\pi$.
- origami maps $\mathcal{O}: \mathcal{G}^{*} \rightarrow \mathbb{C}$ ["fold \mathbb{C} along segments of \mathcal{T} "]
- T-graphs $\mathcal{T}+\alpha^{2} \mathcal{O},|\alpha|=1$: [GeoGebra]

Embeddings of weighted bipartite planar graphs carrying the dimer model

 [and admitting reasonable notions of discrete complex analysis]- "Regular" case: triangular grids [Kenyon'04 + Laslier'13]

- T-graphs $\mathcal{T}+\alpha^{2} \mathcal{O},|\alpha|=1$: [GeoGebra]
- t-holomorphic functions $F^{\circ}: W \rightarrow \mathbb{C}$ $\bar{\alpha} \cdot\left\{\right.$ gradients of harmonic on $\left.\mathcal{T}+\alpha^{2} \mathcal{O}\right\}$ [this notion does not depend on α]

Embeddings of weighted bipartite planar graphs carrying the dimer model

 [and admitting reasonable notions of discrete complex analysis]A priori regularity theory [arXiv:2001.11871]

- \mathcal{T}^{δ} satisfies $\operatorname{LIP}(\kappa, \delta)$ for $\kappa<1$ and $\delta>0$ if

$$
\left|z^{\prime}-z\right| \geq \delta \quad \Rightarrow \quad\left|\mathcal{O}^{\delta}\left(z^{\prime}\right)-\mathcal{O}^{\delta}(z)\right| \leq \kappa \cdot\left|z^{\prime}-z\right|
$$

- (triangulations) \mathcal{T}^{δ} satisfy Exp-FAT (δ) as $\delta \rightarrow 0$ if for each $\beta>0$, if one removes all $\operatorname{~} \exp \left(-\beta \delta^{-1}\right)$-fat' triangles from \mathcal{T}^{δ}, then the size of remaining vertexconnected components tends to zero as $\delta \rightarrow 0$.

Results: • Hölder regularity of t-holomorphic functions,

- Lipschitz regularity of harmonic functions on $\mathcal{T}^{\delta}+\alpha^{2} \mathcal{O}^{\delta}$.

- What can be said on subsequential limits?

Embeddings of weighted bipartite planar graphs carrying the dimer model

 [and admitting reasonable notions of discrete complex analysis]A priori regularity theory [arXiv:2001.11871]

- Assume that $\mathcal{O}^{\delta}(z) \rightarrow \vartheta(z), \delta \rightarrow 0$. Then, limits of harmonic functions on $\mathcal{T}^{\delta}+\alpha^{2} \mathcal{O}^{\delta}$ are martingales wrt to a certain diffusion whose coefficients depend on ϑ, α.

Results: • Hölder regularity of t-holomorphic functions,

- Lipschitz regularity of harmonic functions on $\mathcal{T}^{\delta}+\alpha^{2} \mathcal{O}^{\delta}$.

- What can be said on subsequential limits?

Embeddings of weighted bipartite planar graphs carrying the dimer model [and admitting reasonable notions of discrete complex analysis]
A priori regularity theory [arXiv:2001.11871]

- \mathcal{T}^{δ} satisfy $\operatorname{Lip}(\kappa, \delta)$ and Exp-FAT (δ) as $\delta \rightarrow 0$.

Results: • Hölder reg. of t-holomorphic functions, - Lipschitz reg. of harmonic functions on $\mathcal{T}^{\delta}+\alpha^{2} \mathcal{O}^{\delta}$.

- Assume that $\mathcal{O}^{\delta}(z) \rightarrow \vartheta(z), z \in \mathrm{D}, \delta \rightarrow 0$ and that
- $\{(z, \vartheta(z))\}_{z \in \mathrm{D}} \subset \mathbb{R}^{2+2}$ is a Lorentz-minimal surface.

- Let a parametrization ζ be conformal $z_{\zeta} \bar{z}_{\zeta}=\vartheta_{\zeta} \bar{\vartheta}_{\zeta}$ and harmonic $z_{\zeta \bar{\zeta}}=\vartheta_{\zeta \bar{\zeta}}=0$.
- Then, subsequential limits of harmonic functions on all T-graphs $\mathcal{T}^{\delta}+\alpha^{2} \mathcal{O}^{\delta},|\alpha|=1$, and, moreover, all limits of dimer height functions correlations are harmonic in ζ.

Theorem: [Ch.-Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]
Let $\mathcal{G}^{\delta}, \delta \rightarrow 0$, be finite weighted bipartite planar graphs. Assume that

- \mathcal{T}^{δ} are perfect t-embeddings of $\left(\mathcal{G}^{\delta}\right)^{*}$ [satisfying assumption Exp-FAT (δ)];
- as $\delta \rightarrow 0$, the images of \mathcal{T}^{δ} converge to a domain $\mathrm{D}_{\xi}\left[\xi \in \operatorname{Lip}_{1}(\mathbb{T}),|\xi|<\frac{\pi}{2}\right]$;
- origami maps $\left(\mathcal{T}^{\delta}, \mathcal{O}^{\delta}\right)$ converge to a Lorentz-minimal surface $\mathrm{S}_{\xi} \subset \mathrm{D}_{\xi} \times \mathbb{R}$. Then, height functions fluctuations in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $\mathrm{S}_{\xi} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration:

Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

Theorem: [Ch. - Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]
Let $\mathcal{G}^{\delta}, \delta \rightarrow 0$, be finite weighted bipartite planar graphs. Assume that

- \mathcal{T}^{δ} are perfect t-embeddings of $\left(\mathcal{G}^{\delta}\right)^{*}$ [satisfying assumption Exp-FAT (δ)];
- as $\delta \rightarrow 0$, the images of \mathcal{T}^{δ} converge to a domain $\mathrm{D}_{\xi}\left[\xi \in \operatorname{Lip}_{1}(\mathbb{T}),|\xi|<\frac{\pi}{2}\right]$;
- origami maps $\left(\mathcal{T}^{\delta}, \mathcal{O}^{\delta}\right)$ converge to a Lorentz-minimal surface $\mathrm{S}_{\xi} \subset \mathrm{D}_{\xi} \times \mathbb{R}$. Then, height functions fluctuations in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $\mathrm{S}_{\xi} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration:

Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

Open questions, perspectives [general (\mathcal{G}, ν)]

- Existence of perfect t-embeddings

p-embeddings $=$ perfect t-embeddings:
\triangleright outer face is a tangential (non-convex) polygon, \triangleright edges adjacent to outer vertices are bisectors.

$\triangleright \operatorname{deg} f_{\text {out }}=4:$ OK [KLRR]

- \# (degrees of freedom): OK

Open questions, perspectives [general (\mathcal{G}, ν)]

- Existence of perfect t-embeddings
p-embeddings $=$ perfect t-embeddings:
\triangleright outer face is a tangential (non-convex) polygon, \triangleright edges adjacent to outer vertices are bisectors.
- Why does Lorentz geometry appear?

Another example: annulus-type graphs \rightsquigarrow Lorentz-minimal cusp (z, arcsinh $|z|$).
[?] P-embeddings $\rightsquigarrow \rightsquigarrow$ more algebraic viewpoints: embeddings to the Klein/Plücker quadric?

Open questions, perspectives [general (\mathcal{G}, ν)]

- Existence of perfect t-embeddings

p-embeddings $=$ perfect t-embeddings:
\triangleright outer face is a tangential (non-convex) polygon, \triangleright edges adjacent to outer vertices are bisectors.

- Why does Lorentz geometry appear?

Another example: annulus-type graphs \rightsquigarrow Lorentz-minimal cusp (z, arcsinh $|z|$).
[?] P-embeddings $\rightsquigarrow>$ more algebraic viewpoints: embeddings to the Klein/Plücker quadric?
[...] Eventually, what about embeddings of random maps weighted by the Ising model? Liouville CFT?

Open questions, perspectives [general (\mathcal{G}, ν)]

- Existence of perfect t-embeddings

p-embeddings $=$ perfect t-embeddings:
\triangleright outer face is a tangential (non-convex) polygon, \triangleright edges adjacent to outer vertices are bisectors.

- Why does Lorentz geometry appear?

Another example: annulus-type graphs
\rightsquigarrow Lorentz-minimal cusp (z, arcsinh $|z|$).
[?] P-embeddings $\rightsquigarrow \rightsquigarrow$ more algebraic viewpoints: embeddings to the Klein/Plücker quadric?
[...] Eventually, what about embeddings of random maps weighted by the Ising model? Liouville CFT?

Thank you!

