References beginning with S

  1. $ \star$ J. Sawada, A fast algorithm for generating non-isomorphic chord diagrams, SIAM Jour. on Discrete Math., 15-4 (2002) 546-561.

  2. $ \star$ S. F. Sawin, Primitive Vassiliev invariants, MIT preprint, April 1993.

  3. $ \star$ S. F. Sawin, Finite-degree link invariants and connectivity, Jour. of Knot Theory and its Ramifications 5(1) (1996) 117-136.

  4. $ \star$ J. Sawollek, An orientation-sensitive Vassiliev invariant for virtual knots, Universität Dortmund preprint, March 200, arXiv:math.GT/0203123.

  5. $ \star$ J. Sawon, Rozansky-Witten invariants of hyperKähler manifolds, Ph.D. thesis, University of Cambridge, October 1999.

  6. $ \star$ J. Sawon, The Rozansky-Witten invariants of hyperKähler manifolds, Proceedings of the 7th International Conference on Differential Geometry and Applications, Brno, August 1998.

  7. $ \star$ J. Sawon, A new weight system on chord diagrams via hyperkähler geometry, Proceedings of the Second Meeting on Quaternionic Structures in Mathematics and Physics, Roma, September 1999, arXiv:math.DG/0002218.

  8. $ \star$ J. Sawon, Topological quantum field theory and hyperKhler geometry, Proceedings of the 7th Gökova Geometry-Topology Conference and Turk. J. Math. 25 (2001) 169-194, arXiv:math.QA/0009222.

  9. $ \star$ J. Sawon, When is a Lie algebra not a Lie algebra? Proceedings of the IXth Oporto Meeting on Geometry, Topology & Physics, September-October 2000.

  10. $ \star$ R. Schneiderman, Algebraic linking numbers of knots in 3-manifolds, Algebraic and Geometric Topology 3-31 (2003) 921-968, arXiv:math.GT/0202024.

  11. $ \star$ R. Schneiderman, Simple Whitney towers, half-gropes and the Arf invariant of a knot, New York University preprint, October 2003, arXiv:math.GT/0310304.

  12. $ \star$ R. Schneiderman and P. Teichner, Whitney towers and the Kontsevich integral, Proceedings of the Casson fest, Geometry and Topology Monographs 7 101-134, arXiv:math.GT/0401441.

  13. $ \star$ K. Selwat, Niezmienniki Vassilieva krzywych na plaszczyznie, University of Wroclaw Master's thesis, 1995.

  14. $ \star$ K. Selwat, The first order semilocal Vassiliev invariants of plane curves, Jour. of Knot Theory and its Ramifications 7(8) (1998).

  15. $ \star$ N. Shirokova, The space of 3-manifolds and Vassiliev finite-type invariants, University of Chicago preprint, May 1997. See also q-alg/9705008.

  16. $ \star$ N. Shirokova, On the classification of Floer-type theories, arXiv:0704.1330.

  17. $ \star$ A. Shumakovitch, Shadow formula for the Vassiliev invariant of degree two, Topology 36-2 (1997).

  18. $ \star$ D. J. Sinha, The topology of spaces of knots, Brown University preprint, February 2002, arXiv:math.AT/0202287.

  19. $ \star$ D. Sinha, Operads and Knot Spaces, preprint.

  20. $ \star$ S. A. Sirotine, Approximation of knot invariants by Vassiliev invariants, Rice University preprint, April 1995.

  21. $ \star$ C. T. Snydal, Vassiliev knot invariants arising from the Lie superalgebra $ gl(1\mid1)$, University of North Carolina physics undergraduate thesis, May 1995.

  22. $ \star$ E. Soboleva, Vassiliev knot invariants coming from Lie algebras and 4-invariants, Jour. of Knot Theory and its Ramifications 10(1) (2001).

  23. $ \star$ A. B. Sossinsky, Feynman diagrams and Vassiliev invariants, IHES preprint IHES/M/92/13, February 1992.

  24. $ \star$ T. Stanford, Finite type invariants of knots, links, and graphs, Topology 35-4 (1996) 1027-1050.

  25. $ \star$ T. Stanford, Braid commutators and Vassiliev invariants, Pacific Jour. of Math. 174-1 (1996).

  26. $ \star$ T. Stanford, The functoriality of Vassiliev-type invariants of links, braids, and knotted graphs, Jour. of Knot Theory and its Ramifications 3(3) (1994) 247-262.

  27. $ \star$ T. Stanford, Computing Vassiliev's invariants, Topology and its Applications 77-3 (1997). See also programs at

  28. $ \star$ T. Stanford, Vassiliev invariants and knots modulo pure braid subgroups, United States Naval Academy preprint, May 1998, arXiv:math.GT/9805092.

  29. $ \star$ T. Stanford, Four observations on $ n$-triviality and Brunnian links, United States Naval Academy preprint, July 1998. See also math.GT/9807161.

  30. $ \star$ T. Stanford, Braid commutators and delta finite-type invariants, United States Naval Academy preprint, July 1999. See also math.GT/9907071.

  31. $ \star$ T. Stanford, Some computational results on mod 2 finite-type invariants of knots and string links, Invariants of knots and 3-manifolds (Kyoto 2001), Geometry and Topology Monographs 4 363-376.

  32. $ \star$ T. Stanford and R. Trapp, On knot invariants which are not of finite type, United States Naval Academy and California State University (San Bernardino) preprint, March 1999. See also math.GT/9903057.

  33. $ \star$ A. Stoimenow, On Harrison cohomology and a conjecture by Drinfel'd, diploma thesis, Humboldt University, Berlin, 1995 (also available in German as Über Harrison-kohomologie und die Drinfel'd-vermutung).

  34. $ \star$ A. Stoimenow, Stirling numbers, Eulerian idempotents and a diagram complex, version 27/07/2005, published in J. Of Knot Theory and Its Ram. 7(2) (1998), 231-256.

  35. $ \star$ A. Stoimenow, On the number of chord diagrams, Discr. Math. 218 (2000), 209-233. (based on a preprint, January 1996).

  36. $ \star$ A. Stoimenow, Enumeration of chord diagrams and an upper bound for Vassiliev invariants, Jour. of Knot Theory and its Ramifications 7(1) (1998) 94-114.

  37. $ \star$ A. Stoimenow, On enumeration of chord diagrams and asymptotics of Vassiliev invariants, PhD thesis, Humboldt University, Berlin, 1999.

  38. $ \star$ A. Stoimenow, Positive knots, closed braids and the Jones polynomial, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2(2) (2003), 237-285. (previous versions: Humboldt University preprint, May 1997, and math.GT/9805078).

  39. $ \star$ A. Stoimenow, Gauss sum invariants, Vassiliev invariants and braiding sequences, J. Of Knot Theory and Its Ram. 9(2) (2000), 221-269 (first appeared as a preprint, Humboldt University, May 1997).

  40. $ \star$ A. Stoimenow, The braid index and the growth of Vassiliev invariants Jour. of Knot Theory and its Ramifications, 8(6) (1999), 799-813.

  41. $ \star$ A. Stoimenow, Vassiliev invariants on fibered and mutually obverse knots, Jour. of Knot Theory and its Ramifications 8(4) (1999) 511-519.

  42. $ \star$ A. Stoimenow, On finiteness of Vassiliev invariants and a proof of the Lin-Wang conjecture via braiding polynomials, J. Of Knot Theory and Its Ram. 10(5) (2001), special volume for the proceedings of the International Conference on Knot Theory `Knots in Hellas, 98'', 769-780.

  43. $ \star$ A. Stoimenow, Genera of knots and Vassiliev invariants, Jour. of Knot Theory and its Ramifications 8(2) (1999) 253-259.

  44. $ \star$ A. Stoimenow, Gauss sums on almost positive knots, math.GT/9803073. Compositio Mathematica 140(1) (2004), 228-254.

  45. $ \star$ A. Stoimenow, Mutant links distinguished by degree 3 Gauss sums, (online version: 27/04/1998), Proceedings of the International Conference on Knot Theory "Knots in Hellas, 98", Series on Knots and Everything 24, World Scientific, 2000.

  46. $ \star$ A. Stoimenow, Some minimal degree Vassiliev invariants not realizable by the HOMFLY and Kauffman polynomial, math.GT/9807076. C. R. Acad. Bulgare Sci. 54(4) (2001), 9-14.

  47. $ \star$ A. Stoimenow, Knots of genus one, Proc. Amer. Math. Soc. 129(7) (2001), 2141-2156 (first appeared as a preprint, Munich, 1998).

  48. $ \star$ A. Stoimenow, A survey on Vassiliev invariants for knots, Mathematics and Education in Mathematics, Proceedings of 27th Spring Conference of the Union of Bulgarian Mathematicians, Pleven 1998.

  49. $ \star$ A. Stoimenow, Vassiliev invariants and rational knots of unknotting number one, math.GT/9909050. Topology 42(1) (2003), 227-241.

  50. $ \star$ A. Stoimenow, Polynomial and polynomially growing knot invariants, Preprint, current version 28/06/2005.

  51. $ \star$ A. Stoimenow, The Conway Vassiliev invariants on twist knots, Kobe J. Math. 16(2) (1999), 189-193.

  52. $ \star$ A. Stoimenow, On cabled knots and Vassiliev invariants (not) contained in knot polynomials, to appear in Canadian J. Math.

  53. $ \star$ A. Stoimenow, Some applications of Tristram-Levine signatures, Advances in Mathematics 194(2) (2005), 463-484.

  54. $ \star$ Y. Suetsugu, Kontsevich invariant for links in a donut and links of satellite form, Osaka J. of Math. 33 (1996) 823-828.

Sergei DUZHIN 2013-07-04