
0016–2663/07/4103–0001 c©2007 Springer Science+Business Media, Inc. 1

Functional Analysis and Its Applications, Vol. 41, No. 3, pp. ??–??, 2007

Translated from Funktsional ′nyi Analiz i Ego Prilozheniya, Vol. 41, No. 3, pp. 48–59, 2007

Original Russian Text Copyright c© by S. V. Duzhin and M. V. Karev

Detecting the Orientation of String Links by Finite Type Invariants∗

S. V. Duzhin and M. V. Karev

Received October 11, 2005

Abstract. We prove the existence of a degree 7 Vassiliev invariant of long (string) links with two
numbered components which is not preserved under orientation reversal. The proof is based on the
study of a weight system with values in the tensor square of the universal enveloping algebra for
the Lie algebra glN .
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1. Introduction

It is well known that classical knot polynomials (Jones polynomials, HOMFLY polynomials,
etc.), as well as quantum knot invariants in general, take equal values on a knot and its inverse.
The class of Vassiliev invariants is strictly wider [16], and the problem as to whether they can be
used to tell a knot from its inverse is so far open. In the present paper, we discuss the counterpart
of this problem for links with more than one component.

Let S1
p be the disjoint union of p numbered copies of an oriented circle, R1

p the disjoint union
of p numbered copies of an oriented real line, and I1

p the disjoint union of p numbered copies of an
oriented interval [0, 1].

Definition. A p-component closed link is a smooth embedding of S1
p in oriented 3-space R3 ,

considered up to a component-preserving isotopy.
A p-component long link is a smooth embedding of R1

p in oriented 3-space R3 with fixed
asymptotics xi(t) = [i, 0, t] for |t| > C at infinity, considered up to isotopies identical outside
sufficiently large balls and Euclidean motions of space.

A p-component string link is a smooth embedding of I1
p in the strip R2 × [0, 1] ⊂ R3 with

fixed endpoints xi(t) = [i, 0, t], t = 0, 1, considered up to isotopies identical at the boundary and
Euclidean motions of the strip.

A closed link A long link A string link

It is immediately clear that the theories of long and string links are equivalent. In the case of
knots (p = 1), they are also equivalent to the theory of closed links; this is not true for p > 1.

The invertibility problem is stated as follows. Given a link L, let L′ be the inverse link, i.e., the
same link with orientation of all components reversed. L is said to be invertible if L′ is equivalent
to L. Do noninvertible links exist? If yes, what invariants can be used to detect noninvertibility?

For knots, the problem had been open for a long time until Trotter [14] proved in 1964 that
some knots (e.g., the (3, 5, 7) pretzel knot) are noninvertible. The simplest noninvertible knot is
817 [8]. The invariants used in [14], [8], etc. when proving the nonequivalence of a knot to the inverse
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knot are rather complicated, and it is unknown yet if some pair of mutually inverse knots can be
distinguished by finite type invariants.

In the case of links, the only published result is a theorem of Lin [11] claiming that Vassiliev
invariants distinguish closed links with at least 6 components from their inverses. There are also
several papers having only indirect relation to this problem. For example, Bar-Natan [2] studies
homotopy invariants of string links, while Lin [10] and Fiedler [7] use classes of invariants different
from classical finite type invariants.

The present text deals with the problem of detecting the orientation by finite type invariants
for string (or long) links. The restatement of the problem in terms of chord diagrams readily shows
that this is possible for p > 2. In the case of 2-component links (p = 2), the problem is nontrivial;
below we give a proof of the following theorem.

Theorem. There exists a Vassiliev invariant f of degree � 7 and a 2-component string link L
such that f(L′) �= f(L).

We give two proofs of this theorem, both of which are based on straightforward computations.
The first proof (Proposition 1) uses chord diagrams and requires computer calculations. The second
one (Proposition 2) uses Jacobi diagrams and can be done by hand. Frankly speaking, both proofs
refer to invariants of framed links. In Sec. 6 we explain why they also imply the same result in the
unframed case.

The invertibility problem for p-component string links is closely related to the question as to
whether the algebra A (p) of chord diagrams on p strings is commutative. Namely, the noncommu-
tativity of A (p) implies the existence of elements that are not invariant under orientation reversal.
Indeed, the operation τ of orientation reversal (see below) is an antiautomorphism. If all elements
of A (p) were symmetric, then we would have xy = τ(xy) = τ(y)τ(x) = yx for all x, y ∈ A (p).
(We thank the referee, who has drawn our attention to this argument.)

The noncommutativity of the algebra A (p) is obvious for p > 2 and folklore for p = 2, although
it was never proved for the latter case in any published text. Proposition 1 of the present paper in
particular contains the first rigorous proof of this fact.

2. Reduction to Chord Diagrams

Finite type invariants for various types of links are defined in the same way as in the classical
case of (closed) knots; see [1], [6].

Let F be a field of characteristic 0, e.g., Q or C. Denote the vector space of F-valued Vassiliev
invariants for p-component long links of degree no greater than n by Vn(p), the space spanned
by chord diagrams of degree n on p strings modulo 4-term relations ([6], [13]) by An(p), and the
corresponding space of weight systems by Wn(p) = A ∗

n (p) = HomQ(An(p), F). Then there exists a
linear map σp

n : Vn(p) → Wn(p) (taking the symbol of a Vassiliev invariant) whose kernel coincides
with Vn−1(p) and whose image consists of all weight systems that vanish on chord diagrams with
isolated chords. (For framed links, the image is equal to the entire Wn(p).) Denote the direct sum
of vector spaces An(p) for all n � 0 by A (p); this is a graded algebra with multiplication defined
as concatenation of chord diagrams.

As before, we denote the inverse of a link L by L′ . By setting τV (f)(L) = f(L′) for f ∈ V ,
we obtain an involution τV on the space of Vassiliev invariants. In terms of chord diagrams, the
corresponding operation τA acts as follows:

τA : �−→ = ;

i.e. it changes the orientation of all the strings of a chord diagram, or, which is the same, reflects
the plane picture of the diagram in a horizontal line, assuming that the support is drawn vertically
(and preserves its orientation).
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The same space A (p) can be spanned by all generalized chord diagrams, i.e. 1-3-valent graphs
whose univalent vertices are identified with points on the manifold R1

p , with a cyclic order of edges
specified at every 3-valent vertex.

Generalized chord diagrams can be treated as linear combinations of ordinary chord diagrams.
These linear combinations are obtained by iterative application of the STU relations of the following
form (see [1] for more detail):

�−→ −

(Here and below, we use the blackboard convention: edges around trivalent vertices for every diagram
drawn on paper are always ordered counterclockwise.)

For generalized diagrams, one should be more cautious with the definition of the involution τA .
In fact, the extension of τA to generalized chord diagrams by STU relations results in the following
rule:

τA : �−→ − = ;

i.e., one should either change the orientation of all strings and multiply the result by ±1 depending
on the parity of the number of trivalent vertices or, which is the same, simply reflect the plane
picture of the diagram in a horizontal line, preserving the orientations.

Lemma 1. The involution τA is the graded counterpart of the involution τV ; i.e., the following
square commutes :

Vn(p)
σp

n ��

τV

��

Wn(p)

τ∗
A

��
Vn(p)

σp
n �� Wn(p)

Proof. For usual chord diagrams, this readily follows from the definition of σ ([1], [6]). The
extension to generalized chord diagrams is carried out as was explained above.

By using finite type invariants, one can reduce the problem of the existence of noninvertible
string links to the following problem: does there exist a chord diagram on p strings nonequivalent
to its inverse modulo 4-terms relations? If p � 3, then there is a straightforward example:

τA : �−→ �=

For n = 2, the problem is nontrivial, because, as one can check, chord diagrams of small degrees
(e.g., the diagrams in the first map in this section) are all τA-invariant. In the next section, we
indicate a diagram that is not τA-invariant.

3. First Proof of the Theorem

To prove that some element of the space A (p) is nonzero, one can use weight systems, i.e., linear
functionals on these spaces. A powerful weight system is provided by Kontsevich’s homomorphism
ϕ = ϕg : A (p) → U(g)⊗p for a metrized Lie algebra g (see [9], [6]). In fact, ϕ ranges in the
g-invariant subalgebra U(p) = [U(g)⊗p]g. We give an explicit description for the case g = glN ,
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using the basis eij (matrix with 1 at position (i, j) and 0 elsewhere) and the metric defined by the
conjugation rule e∗ij = eji .

Lemma 2. Let D ∈ A (p) be a (generalized) chord diagram on p strings. The element ϕ(D) ∈
U(glN )⊗p can be obtained as follows. Consider the alternating sum of all resolutions [1] of the inner
triple points of the diagram D . For each resolution, label the connected components of the resulting
diagram by distinct independent indices ; then replace each pair of adjacent indices by eij and take
the sum over all indices from 1 to N . (Closed components, if any, turn into multiplication by N .)

The proof reproduces that for the special case p = 1, which can be found in [1] and [6]. We
only give an example:

�−→
j
i

j
k k

l

l

i

−
j
i

l

i

l
k

j
k − k

k

ll

i
j j

i + k
l

i
j j

i
k

l

Therefore, the image of this diagram under ϕ is
N∑

i,j,k,l=1

(eijejk ⊗ eliekl − eijekl ⊗ eliejk − eijekl ⊗ ejkeli + eijeki ⊗ ejlelk).

Note that the order of the factors eij agrees with the orientation of each component of the support,
but the order of the two subscripts (i, j) in each factor follows a go-round pattern, in our case
bottom-to-top for the left line and top-to-bottom for the right line.

Let τU be the operator in U(glN )⊗p that rewrites each monomial backwards and transposes the
subscripts on each generator eij ; e.g., τU (e12e23 ⊗ e13e24) = e32e21 ⊗ e42e31 . This is an involution
that preserves the ad-invariant subspace U(p) = [U(glN )⊗p]g.

The construction of ϕ shows that the following assertion holds.
Lemma 3. The square

A (p)
ϕ ��

τA

��

U(p)

τU

��
A (p)

ϕ �� U(p)

commutes.
It follows that the noninvertibility of a chord diagram can be checked on the level of the universal

enveloping algebra: if the ϕ-image of a diagram is not τU -invariant, then the diagram itself is not
invariant under τA . Therefore, the following proposition gives the first proof of the theorem stated
in Sec. 1.

Proposition 1. Each of the following diagrams is not equivalent to its image under the invo-
lution τA :

, .

Proof. A computer calculation of the ϕ-images of each diagram and its inverse shows that
they are distinct for the Lie algebra gl4 (and hence for any glN with n � 4). The calculations are
organized as follows: we fix a lexicographical ordering of the basic elements eij and transform the
expression for ϕ(D) obtained by the above algorithm using the commutator relations between the
generators in order to rewrite each monomial lexicographically. The programs, as well as input and
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output files, are available at [5]. For example, the result for the left diagram is a polynomial consist-
ing of 58378 terms; its calculation requires several hours on a reasonably fast modern PC. Since this
diagram is the product of two τ -symmetric diagrams, we have also proved the noncommutativity
of the algebra A (2).

4. Reduction to Jacobi Diagrams

Another, yet simpler restatement of the invertibility problem can be given in terms of colored
Jacobi diagrams. A colored Jacobi diagram is the same thing as a Chinese character as defined in
[1] except that its univalent vertices are labeled by p colors. The space of colored Jacobi diagrams
B(p) is defined as the vector space formally generated by all p-colored Jacobi diagrams modulo
two sets of relations, antisymmetry and IHX (see [1], [6]).

By analogy with Theorem 8 in [1], one can prove that the symmetrization map χ : B(p) → A (p)
is a linear isomorphism between the two spaces (see also [12]).

The map χ is defined as follows—we explain that in the case p = 2. Let D be a Jacobi diagram
with k “legs” of color 1 and l “legs” of color 2; then χ(D) is the average of all the k!l! ways to
attach 1-colored legs to the first support line and 2-colored legs to the second support line; e.g.,

2

11
2
1

1 2

2

1 2

Colored Jacobi diagrams can be viewed as symmetric elements of the space A (p), much in
the same way as commutative polynomials over a Lie algebra g can be identified with symmetric
elements of the universal enveloping algebra U(g) by the PBW theorem.

The isomorphism χ is very important for our needs, because the involution τA takes an espe-
cially simple form when transferred to B(p) via this isomorphism. In fact, the following assertion
holds.

Lemma 4. Let τB : B(p) → B(p) be the linear operator defined as identity on each Jacobi
diagram with even number of legs and as multiplication by −1 on each Jacobi diagram with odd
number of legs. Then the square

B(p)
χ ��

τB

��

A (p)

τA

��
B(p)

χ �� A (p)

commutes.

Proof. The proof obviously follows from the definitions of τA and τB given above. A simple
illustration might be helpful to understand how it goes. Let

D =
1

2

2
.

Then, by definition,

τB(D) = −
1

2

2
.

Now

χ(D) =
1
2

+
1
2
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and hence

τA(χ(D)) = −1
2

− 1
2

= −1
2

− 1
2

= χ(τB(D)). �

The invertibility problem for 2-component string links can now be restated as follows: Is there a
nonzero 2-colored Jacobi diagram with odd number of legs? In the next section, we give an example
of such a diagram.

5. Second Proof of the Theorem

Take a metrized Lie algebra g and denote the symmetric algebra of the vector space g by
S(g). The weight system B(1) → S(g) described in [1], [6] has an immediate generalization to an
arbitrary value of p giving a homomorphism ψ : B(p) → S(g)⊗p whose image lies in the g-invariant
subalgebra S(p) = [S(g)⊗p]g.

Lemma 5. The mapping ψ fits into the commutative diagram

B(p)
ψ ��

χ

��

S(p)

π

��
A (p)

ϕ �� U(p)

where χ is the isomorphism defined in the previous section, ϕ is the Kontsevich weight system
for the algebra A (p), and π is the Poincaré–Birkhoff–Witt isomorphism raised to the pth tensor
power.

Proof. The proof reproduces that for the case p = 1 word for word.
For the Lie algebra g = glN , there exists a pictorial algorithm for the calculation of ψ, similar

to the procedure for ϕ described in Sec. 3. The only difference is that now the basic elements eij

commute, so we do not have to bother about the order of factors in the monomials. Here is a simple
example:

ψ :

2

21

�−→
2

ij

j
k

i
1

2

k

−
ij

j

2

1
k
i

k
2

�−→
N∑

i,j,k=1

(ejk ⊗ eijeki − eki ⊗ eijejk) = 0.

An advantage of ψ is that the g-invariant part of S(glN )⊗p has a more transparent structure
than U(glN )⊗p . A p-colored necklace of degree n is a combinatorial object defined as a sequence
of n numbers between 1 and p considered up to cyclic permutations; it can be best viewed as a
circular arrangement of n p-colored beads. To every necklace one can assign an ad-invariant element
of S(glN )⊗p as follows. Assign distinct variable indices (i, j , etc.) to all arcs of the necklace; every
bead transforms into eij where i is the index on the incoming arc and j is the index on the outgoing
arc; put this element eij into the tensor factor whose number is the color of the bead and take the
sum over all indices from 1 to N . For example,

[1212] = �−→
ij

k l

�−→
N∑

i,j,k,l=1

(eijekl ⊗ ejkeli) =: x1212 .

We denote such necklace elements of S(glN )⊗p by xµ , where µ is the lexicographically smallest
color sequence corresponding to the given necklace.
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Lemma 6. For the Lie algebra g = glN , the g-invariant part of S(g)⊗p coincides with algebra
generated by all necklace elements. Algebraic relations between necklace elements of a given degree
may exist for small N but disappear as N → ∞.

Proof. Statements close to this lemma are proved in [17] and [15]. Our assertion is an easy
consequence.

Remark. A weight system ranging in the necklace algebra can be defined directly, without
resorting to Lie algebras. This will be discussed elsewhere.

In the algebra generated by necklaces, there is an involution τS that reverses the orientation of
each necklace. For p = 2, in small degrees, up to 5, it is identical; the minimal necklace that is not
invariant under τS is x112122 . It turns out that the operation τS agrees with all other inversions
denoted by τ with various subscripts in this paper.

Lemma 7. The orientation-reversing involutions in the spaces A (p), B(p), S(p), U(p) com-
mute with the four arrows of the diagram in Lemma 5. More precisely, one has the commutative
cube

B(p)
ψ ��

τB

�����
��

��
��

χ

��

S(p)
τS

����������

π

��

B(p)
ψ ��

χ

��

S(p)

π

��

A (p)
τA

�����
��

��
��

ϕ �� U(p)
τU

����������

A (p)
ϕ �� U(p)

.

(Recall that g = glN , S(p) = [S(g)⊗p]g, and U(p) = [U(g)⊗p]g. All maps were defined in the text
above; in particular, π is the Poincaré–Birkhoff–Witt isomorphism.)

Proof. The only thing not proved yet is the commutativity of the top face of the cube. Since
all vertical arrows are isomorphisms, this fact follows from the commutativity of the remaining five
faces, which has been proved earlier at various places of this paper.

The commutativity of the upper face of the cube implies that to prove the non-τB -invariance
of a Jacobi diagram (an element of B(p)) it suffices to prove the non-τS -invariance of its image
under ψ in the necklace algebra. Since the minimal degree of a noninvertible necklace is 6 and we
need to find a noninvertible diagram of an odd degree, the smallest example should be sought for
in degree 7. And indeed it exists, thus providing a second proof of the Theorem.

Proposition 2. The following diagram is nonzero as an element of the space B(2):

H =

1

1

2

1 2

2

2

Proof. A straightforward computation shows that the image of this diagram in the algebra
S(2) (for sufficiently large N ), when expressed via necklaces, is equal to

N(x1121222 − x1122212) + 3x2(x112212 − x112122),
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which is different from zero. The entire expression for ψ(H) involves 128 terms (corresponding to
the 27 resolutions of trivalent vertices), of which only 8 contain nonsymmetric necklaces, e.g.

1

2

2

2

2

1

1

�−→ −x2x112122.

The same result can also be obtained by a computer program available at [5].
Remark 1. The diagram H was first discovered by Bar-Natan [3]: it can be found in the

file table.m posted on his web site and containing bases of various spaces of colored diagrams.
However, the preprint [3], which contains comments on this table, indicates that the program used
to obtain the table is not ready for publication owing to its awkwardness and some drawbacks in
the algorithm.

Remark 2. Bar-Natan’s table also shows that 7 is the smallest degree of a Vassiliev invariant
that can detect the orientation of two-component string links. The computations required to check
this fact can easily be done by hand.

6. Deframing

As was mentioned in the introduction, the proofs given in Secs. 3 and 5 actually refer to the case
of framed links, because 1-term relations were not taken into consideration. Generally speaking,
detecting the orientation of a framed link is easier, because it contains an additional structure,
which, in principle, may not be preserved by the inversion. In this section, we prove that the main
theorem remains valid for conventional (unframed) links.

Indeed, let A ′(2) be the quotient of the space A (2) modulo 1-term relations, i.e., by the ideal
generated by the diagrams a1 (with 1 chord on the first component of the support) and a2 (with
1 chord on the second component of the support): A ′(2) = A (2)/〈a1, a2〉, where angle brackets
denote the 2-sided ideal with given generators. The quotient algebra A ′(2) can also be considered
as a subalgebra of A (2): by the structure theorem for cocommutative Hopf algebras, A (2) is the
universal enveloping algebra of the Lie algebra P of its primitive elements P , so if we take theQ1
subspace of P spanned by all connected diagrams except for a1 and a2 , we obtain an embedding
A ′(2) ⊂ A (2). Since the diagrams displayed in Proposition 1 belong to A ′(2), this means that
noninvertibility holds also for unframed string links.

Now let us show that the second proof (Sec. 5) is valid in the unframed case as well. Let
χ : A (2) → B(2) be the isomorphism defined above.

Lemma 8. The subspace χ−1(A ′(2)) = B′(2) coincides with the subalgebra of B(2) generated
by all connected Jacobi diagrams except for b1 = 1 1 and b2 = 2 2 .

Proof. The assertion is nontrivial, because χ does not preserve the multiplication and the
subalgebras A ′(2) and B′(2) are described by their generators in the sense of different multiplica-
tions. However, it is easily seen by a straightforward argument that the image of a Jacobi diagram
different from b1 and b2 under χ is a linear combination of products of connected chord diagrams
different from a1 and a2 .

The lemma shows that the seven-leg diagram H occurring in Proposition 2 belongs to the
subalgebra B′(2) responsible for the Vassiliev invariants of unframed 2-component long links. Since
it is nonzero, the existence of a degree 7 invariant that can distinguish the orientation again follows.
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7. Open Problems

Question 1. Is there a homomorphism B(1) → B(2) whose image is not contained in the
τ -invariant subspace of B(2)?

Comment. Should such a mapping exist, one could try to apply the technique of this paper
to the invertibility problem for knots. Unfortunately, it is easily seen that the standard doubling
operator ∆: B(1) → B(2) defined in [1] and [12] is no good to this end.

Question 2. Do Vassiliev invariants detect invertibility of closed 2-component links?
Comment. The combinatorial object responsible for finite type invariants of closed links is the

space A (S1
2) of chord diagrams on two circles. There is an obvious epimorphism A (R1

2) → A (S1
2),

whose kernel is spanned by the so called link relations (see [4]). To solve the problem, one should
study the interplay between link relations and orientation reversal.
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