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Bipartite knots
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Sergei Duzhin (St. Petersburg) and Mikhail Shkolnikov (Genève)

Abstract. We give a solution to a part of Problem 1.60 in Kirby’s list of open prob-
lems in topology, thus answering in the positive the question raised in 1987 by J. Przytycki.

1. Problem. We will call bipartite a knot that can be represented by
a matched diagram, that is, a diagram whose crossings are split in pairs
of the types depicted in Fig. 1. The pairs in the upper line are said to be
positive, those in the lower line, negative. Note the signs of the pairs do
not change when the orientation on the knot is reversed. Note, moreover,
that if the crossings of an unoriented knot are split into matched unoriented
pairs, then, introducing any orientation, we always get counter-directed pairs
shown in Fig. 1.

Fig. 1. Matched pairs

Examples. 1. Any rational knot has a matched diagram, because any
rational number can be represented by a continued fraction with even
(positive or negative) denominators (see the proof of Corollary 6 in [Prz],
or [DS]).
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2. The standard diagram of the knot 815 (1) (which is not rational)

can be easily transformed to a matched form:

3. We managed to find matched diagrams for all table knots with up to
8 crossings, save for the knot 818.

The problem raised by Józef Przytycki in 1987 is to investigate which
knots have a matched diagram. This question appears in the well-known col-
lection “Open problems in topology” maintained by Rob Kirby [Kir], as part
of Problem 1.60. More exactly, Conjecture 1(a) therein (belonging to Przy-
tycki [PP]) reads: “There are oriented knots without a matched diagram”.
As the reader understands, the word “oriented” can be here omitted without
any loss of meaning. This conjecture stayed open for 24 years, notwithstand-
ing the effort of several excellent mathematicians, including its author and
J. H. Conway [APR]. We give a positive solution to the conjecture, that is,
demonstrate that some knots, e.g. pretzel knot with parameters (3, 3,−3),
are not bipartite. In the next section, we introduce our main construction,
which also explains the meaning of the word “bipartite” in this context.

2. Chord diagram of a bipartite knot. Consider a matched dia-
gram of a knot K. Replace every matched pair of crossings by two parallel
segments, directed as the knot and joined by a common perpendicular; see
Fig. 2.

Fig. 2. Local transformation of a matched diagram

(1) Here and below, we use Rolfsen’s numbering of knots, which differs from that
adopted in Knotscape [HT].
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The parallel segments are then joined by the remaining fragments of the
knot diagram into a simple closed line on the plane, straightenable into a
circle, whereas the common perpendiculars become chords. An example for
the matched diagram of the knot 815 mentioned above is given in Fig. 3,
where the mutual position of the inner and outer chords is changed: this
leads to turning the knot diagram inside out with respect to some point and
does not alter the isotopy type of the knot.

Fig. 3. Matched diagram → chord diagram

The chord diagrams obtained in this way are rather special: the set of
all chords is split into two parts (inner chords and outer chords), so that the
chords in each part do not intersect one another, and the intersection graph
[CDM] of the whole diagram is bipartite.

This procedure is reversible: from a bipartite signed chord diagram one
can reconstruct the knot diagram in a unique way (see Fig. 4).

Fig. 4. Chord diagram → matched diagram

3. Seifert surfaces. A Seifert surface S of a knot is a compact oriented
surface embedded in R3 so that its boundary is the given knot. Choosing a
basis in H1(S), one can construct a matrix of the bilinear form lk ◦ (id, α),
where lk is the linking number, and α is a small shift in the positive direction
along the normal ofS. This matrix is called a Seifert matrix of the given knot.
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There is a standard procedure to construct a Seifert surface from any
diagram, using Seifert circles. For matched diagrams, there exists a different
construction, which is crucial for our needs: it yields a Seifert matrix of a
special type, which, in turn, produces an Alexander matrix with extraordi-
nary properties.

Lemma 1. Any bipartite knot has a Seifert surface such that its Seifert
matrix has the form

(
E 0
I F ), where I, 0, E, F are square matrices of the

same size, I is the unit matrix, 0 is the zero matrix, and E and F are both
symmetric integer matrices.

Proof. Consider a bipartite knot K and its plane diagram, construct
the chord diagram as indicated above. Start constructing the Seifert surface
from the inner circle of the chord diagram, out of which we cut out every
chord together with a small open neighborhood and glue instead a double
twisted band, so that the direction of the twists corresponds to the sign of
the chord (see Fig. 5).

+1

Fig. 5. Construction of a Seifert surface: inner chords

So far the surface remains orientable, and its boundary follows the knot
as much as it can. Now we must add the bands along the outer chords.
Here one must be cautious, because simply connecting the ends of the two
half-chords by two half-twisted bands results in an unorientable surface. We
will proceed as follows: first we attach a band along each outer chord, then,
around the middle of that band, we attach a perpendicular small band which
is twice twisted according to the sign of the chord.

Fig. 6. Construction of a Seifert surface: outer chords

We show this procedure in Fig. 6 for one chord on big scale and in Fig. 7
for the whole Seifert surface of a certain knot. In the latter picture, the
narrow twice-twisted bands on the left and on the right should be thought
of as lying above the surface of the corresponding perpendicular wide bands.
The thick solid lines indicate the boundary of the Seifert surface; the four
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small dashed segments show parts of the visible contour of the surface which
do not belong to its boundary. The two sides of the Seifert surface (which
is two-sided by definition) are indicated by different shades of gray.

Fig. 7. Seifert surface for a matched diagram of the knot 815

Let n be the number of outer chords (if this number is greater than
the number of inner chords, we can turn the chord diagram inside out to
simplify computations). Then, as a basis of H1(S), one can take the set
e1, . . . , en, f1, . . . , fn corresponding to the outer chords and shown in Fig. 8.

Fig. 8. Cycles ek (left) and fk (right)

It follows that the Seifert matrix for this Seifert surface (see [Lik]) has
the form

M =

(
E 0

I F

)
,

where 0, I, E, F are matrices of size n × n, I is the unit matrix, 0 is the
zero matrix, and Fi,j = lk(fi, f

+
j ), Ei,j = lk(ei, e

+
j ). It is clear that E is a

diagonal matrix with numbers ±1 on the diagonal (the sign is inverse to the
sign of the outer chord number k). The cycles fi and fj can be chosen not to
have common points if i 6= j, therefore lk(fi, f

+
j ) = lk(fi, fj) = lk(fj , fi) =

lk(fj , f
+
i ) and thus the matrix F is symmetric.

This construction shows that, on a practical side, it is advisable to turn
the diagram inside out if the number of outer chords is greater than that of
inner chords—as we did before for the example knot 815.

4. Alexander matrices. The determinant of the Alexander matrix
A = tM −M> is equal to the Alexander polynomial of the knot K; it is
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an element of the ring of Laurent polynomials Z[t, t−1], determined up to
multiplication by invertible elements of the ring, that is, monomials ±tm.
The Alexander matrix is not determined by the knot uniquely; in fact, to
any knot there corresponds a big family of Alexander matrices related to
one another by a set of equivalence transformations which is well known
(see [Lik]). In particular, even the size of the matrix A is not invariant.
What is invariant, however, is the sequence of Alexander ideals, the mth
ideal being defined as the ideal in Z[t, t−1] generated by all minors of an
arbitrary Alexander matrix of size n−m+1, where n is the smallest among
the number of columns and rows in A (see [Lik]).

It is well known that the Alexander polynomial can be rewritten in terms
of the Conway variable z2 = t + t−1 − 2; in general, this is no longer true
about the generators of all Alexander ideals. In the case of bipartite knots,
we can prove a stronger assertion.

Lemma 2. If the knot K is bipartite, then there exists a square integer
matrix B such that I+z2B is an Alexander matrix for K (here I is the unit
matrix).

Proof. Consider the Seifert matrixM from Lemma 1. Put A = tM−M>,
multiply the left block column by t−1, the second by −1, then interchange
both columns. Using the symmetry of E and F , we get

A = tM −M> ∼

(
(t− 1)E −I

tI (t− 1)F

)
∼

(
I (1− t−1)E

(1− t)F I

)
.

By a sequence of elementary transformations, we can make zero the upper
right block of this matrix, using its lower right block: In doing so, we will
be always adding polynomials (1− t)a(1− t−1)b = −z2ab to the elements of
the upper left block. In the end, the matrix will become(

I + z2B 0

(1− t)F I

)
∼

(
I + z2B 0

0 I

)
∼ I + z2B.

To achieve our goal, it suffices to prove one technical proposition.

Lemma 3. Let p1(x), . . . , pn(x) ∈ Z[x] be a set of ordinary polynomials,
and I = 〈p1(z2), . . . , pn(z2)〉 be the corresponding ideal in Z[t, t−1]. Suppose
that I contains the binomial 1 + t. Then the ideal I is trivial: I = Z[t, t−1].

Proof. It is clear that (t + 1)(1 + t−1) = z2 + 4 ∈ I. Then division
gives pk(z2) = p0k(z2)(z2 + 4) + ak, where ak ∈ Z are some integers. So our
ideal coincides with I = 〈z2 + 4, a〉, where a = (a1, . . . , an) is the greatest
common divisor of all ai’s. Expand the element 1 + t in the new generators:
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1 + t = t−1(t+ 1)2q1(t) + aq2(t). Then aq2(t) is divisible by 1 + t. Therefore,

1 = (t+ 1)t−1q1(t) + a
q2(t)

t+ 1
∈ I,

and the ideal is trivial.

5. Main result. The last lemmas show that the Alexander ideals of
bipartite knots cannot be arbitrary. In particular, they are always generated
by polynomials in z2.

Theorem. Let K be a bipartite knot. If the Alexander ideal Im(K) is
nontrivial, then it cannot contain the polynomial 1 + t.

Proof. This is a direct consequence of Lemmas 2 and 3.

This condition immediately gives a series of knots which are not bipartite.

Corollary. The Rolfsen table knots 935, 937, 941, 946, 947, 948, 949, 1074,
1075, 10103, 10155, 10157 are not bipartite.

Proof. For the knot 946, also known as the pretzel knot with parameters
(3, 3,−3), a detailed calculation of the second Alexander ideal is available
from [Lik]. For the other knots from the given list, we borrowed the result
from computer generated tables of the Knot Atlas [KnA].

6. From under the carpet. Contrary to the universal tradition, we
allow ourselves to raise the carpet and explain how we actually arrived at
this solution.

It was clear to us from the beginning that the rational knots are all bi-
partite. Then we designed a procedure to very quickly compute the Conway
polynomial of a bipartite graph, starting from the corresponding signed in-
tersection graph (see [Du]). Looking through the table of all knots with ≤ 8
crossings, we managed to find the bipartite graphs that would give the same
Conway polynomials, and after one or two tries, using Knotscape [HT] and
Knotinfo [Liv], we obtained a bipartite representation for the correspond-
ing knots. This worked for all knots, save for 818. Now, this is the only knot
up to 8 crossings with nontrivial second Alexander ideal. We looked at other
knots with nontrivial second Alexander ideal and found some that cannot be
expressed through the Conway variable z2. On the other hand, we devised
a procedure to represent the Alexander matrix of a bipartite graph in terms
of z2.

After this work was finished, the second author (M. Sh.) invented another
argument showing that a knot with second Alexander ideal 〈3, t2 + 1〉, e.g.
the table knot 10122, cannot be bipartite. A separate publication is being
prepared in this connection.
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To summarize, we have presented a sufficient condition for a knot not
to have any matched diagram. We do not know, however, of any reasonable
necessary condition in terms of Alexander ideals. The simplest knot which
still stands our efforts is 818.
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