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Abstract. The Magnus expansion is a universal finite type invariant of
pure braids with values in the space of horizontal chord diagrams. The
Conway polynomial composed with the short-circuit map from braids to
knots gives rise to a series of finite type invariants of pure braids and thus
factors through the Magnus map. We describe explicitly the resulting map-
ping from horizontal chord diagrams on 3 strands to univariate polynomials
and evaluate it on the Drinfeld associator obtaining, conjecturally, a beau-
tiful generating function whose coefficients are alternating sums of multiple
zeta values.

1. Introduction

We assume that the reader is familiar with fundamentals of knot theory,
braid groups and finite type (Vassiliev) invariants. All these preliminaries can
be found, for instance, in [15].

The short-circuit closure of pure braids [10] induces a map from pure braids
onto the set of (topological types of) oriented knots. Any Vassiliev invariant of
knots thus becomes a finite-type invariant of pure braids. There is a universal
finite type invariant of pure braids given by the Magnus expansion. In this
paper, we will explicitly describe the map from horizontal chord diagrams on
3 strands obtained by factoring the Conway polynomial pulled back to pure
3-braids through Magnus expansion. The result is described by a peculiar com-
binatorial map from ordered partitions of an integer into non-ordered partitions
of the same integer.

In Section 2 we say introductory words about the group of pure braids and
give the construction of the Magnus expansion. Section 3 is devoted to the
construction of the short-circuit closure relating braids to knots. In Section 4
we speak about the Conway polynomial of braids transferred from knots via
short-circuit closure and state the main theorem, whose proof is given in Section
5. In Section 6 we try to evaluate the mapping obtained in the main theorem,
on the Drinfeld associator and state the results of our computer calculations
and the corresponding conjecture. Finally, Section 7 lists some open problems
related to the material of the paper.

Supported by grants RFBR 08-01-00379-a, NSh 709.2008.1, JSPS S-09018.
1



2 S.V.DUZHIN

I am indebted to Jacob Mostovoy who read the first version of the paper
and made numerous useful remarks.

2. Pure braids and Magnus expansion

Let Pm be the group of pure braids on m enumerated vertical strands with
multiplication defined as the concatenation from top to bottom. It is generated
by the elements xij , 1 ≤ i < j ≤ m, representing one full positive twist between
the i-th and the j-th strands with all the remaining strands of the braid being
strictly vertical and placed behind these two:

xij = . . . . . .

i

i j

j

Defining relation between these generators can be found, for instance, in [2, 4];
we will not need them here.

There is a semi-direct decomposition [2]

Pm
∼= Fm−1 ⋉ . . . F2 ⋉ F1,

where Fk is a free group on k generators, implemented in our case as the sub-
group of Pm generated by the set x1,k+1, x2,k+1, . . . , xk,k+1. This decomposition
assures that any pure braid can be uniquely written in the combed form

∏
s xas

isjs

with j1 ≥ j2 ≥ . . . . where as are arbitrary nonzero integers and in this product
no two identical generators follow each other (that is, the word is reduced).

The Magnus expansion is a map from Pm into the Z-algebra of formal power
series in

(
m
2

)
non-commuting variables tij , 1 ≤ i < j ≤ m, defined by

µm(β) =
∏

s

(1 + tisjs
)as ,

if
∏

s xas

isjs
is the combed form of the braid β. Here the negative powers are

understood as usual, according to the rule (1 + t)−1 = 1− t + t2 − t3 + . . . , —
this is why we need power series, not just polynomials, in the construction of
µm.

Example. To compute the value µ3(x12x23), we first find the combed form
of this braid

x12x23 = x13x23x
−1
13 x12

and then write:

µ3(x12x23) = (1 + t13)(1 + t23)(1 − t13 + t213 − . . . )(1 + t12)

= 1 + t12 + t23 + t13t23 − t23t13 + t23t12 + ...
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From a broader perspective, it makes sense to consider the codomain of the
mapping µm as the completed quotient of the algebra Z[{tij}1≤i<j≤m] over the

ideal generated by the elements [tij , tkl] and [tij , tik + tjk] where all indices are
supposed to be distinct and tpq is understood as tqp if p > q. We denote
this algebra by Ah(m) and view its generating monomials as horizontal chord
diagrams on m vertical strands (each variable tij represents a chord connecting
the i-th and j-th strands; the product of variables is understood as vertical
concatenation from top to bottom). Example:

t13t
2
23t12 = .

We will denote the completion of Ah(m), that is the corresponding algebra of

formal series, by Âh(m).
Call a horizontal chord diagram descending, if it is represented by a monomial∏
s tas

isjs
satisfying j1 ≥ j2 ≥ . . . By definition, the set of descending diagrams is

in one-to-one correspondence with the set of positive combed braids P+
m (braids

whose combed form contains only positive powers of the generators xij). The
set of descending chord diagrams forms a basis of the free abelian group Ah(m)
(see [11], Sec. 3-2)1, therefore we have a module isomorphism ZP+

m
∼= Ah(m).

By an invariant of braids, we understand any mapping from the braid group
Pm into an arbitrary set — we are interested only in its invariance under the
braid isotopy, tacitly assumed in the definition of Pm, and not in the invariance
under the renumbering of strands etc. For pure braids, just like in the classical
case of knots, one can define the notion of finite type (Vassiliev) invariants, see
[1, 11, 3]. It turns out that the Magnus expansion truncated to any degree n
is a Vassiliev invariant of order n. Moreover, the following theorem holds:

Theorem. ([11, 13, 3]) The mapping µm : Pm → Âh(m) is a universal finite
type invariant of pure braids in the sense that for any degree n invariant f :
Pm → Z there exists a map g : Âh(m) → Z vanishing on all monomials of
degree greater than n and such that f = g ◦ µm.

Remark. In fact, one may define a universal finite type invariant of pure
braids by sending each xij in the combed form into 1 + cijtij + Tij where cij

are any nonzero constants and Tij are arbitrary series starting with degree
greater than one. A remarkable instance of this construction (with values in

Âh(m)⊗C) is provided by the Kontsevich integral ([1, 3]). Its advantage over

1In a more general setting, this fact easily follows from Theorem 3.1 of [13]. It can also
be proved by using non-commutative Gröbner bases (I thank A. Khoroshkin for teaching me
the idea of this proof). Closely related formulations are scattered in the works by T.Kohno,
V. Drinfeld, An. Kirillov, S. Yuzvinsky etc.
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the usual Magnus expansion consists in multiplicativity; however, the definition
of the Kontsevich integral is much more involved and its computation much
more difficult; moreover, its value depends on the placement of the endpoints
of the braid. For example, the Kontsevich integrals of the generating braids
of the group P3, where the strand endpoints are collinear and equidistant, are
infinite series with the following terms up to degree 2:

I(x12) = 1 − A +
1

2
A2 −

i ln 2

2π
[B, C] + . . . ,

I(x13) = 1 − C +
1

2
C2 +

1

2
[A, B] + . . . ,

I(x23) = 1 − B +
1

2
B2 +

i ln 2

2π
[C, A] + . . . ,

where A = t12, B = t23, C = t13 and we remind that [A, B] = [B, C] = [C, A]

according to the definition of Âh(3). The reader may wish, by way of exercise,
to check that these relations agree with the commutation relations in the group
P3 (expressed by the fact that the element x12x13x23 is central, see [4]).

3. Short-circuit closure

Alongside with the ordinary (Artin) closure which turns braids into links,
there is another operation of closing pure braids into oriented knots, called
short-circuit closure, see [10, 3]. It is defined by connecting pairwise by short
arcs the upper endpoints number 2i and 2i+1 and the lower endpoints number
2i − 1 and 2i thus obtaining a long knot with two loose endpoints. Attaching
an additional arc, one obtains a conventional compact knot. Orientation is
chosen so that the leftmost strand of the braid is oriented downwards. For
example:

7−→ 7−→ .

(The non-oriented version of this operation, called plat closure, was studied
earlier, see e.g. [2].)

It is easy to see that the short-circuit closures of braids with different number
of strands are consistent with the inclusions Pm → Pm+1 (adding a vertical
strand on the right), so that we obtain a well-defined map κ from the group
P∞ := ∪m≥1Pm to the set of oriented knots K. A theorem of Mostovoy and
Stanford asserts that this map is onto and that it identifies K with double
cosets of the group P∞ over two special subgroups, see [10].
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In the particular case m = 3, the image of κ3 = κ |P3
coincides with the

set of all 2-bridge (rational) knots (see [12] for an introduction to rational

knots). Indeed, the short-circuit closure of the braid xa1

13x
b1
23 . . . xak

13x
bk

23, respec-

tively xa1

13x
b1
23 . . . xak

13x
bk

23x
ak+1

13 , where all ai, bi are non-zero integers, is the rational
knot corresponding to the continued fraction with denominators

(2a1,−2b1, ..., 2ak,−2bk + 1),

respectively,
(2a1,−2b1, ..., 2ak,−2bk, 2ak + 1).

Now, a simple number-theoretic argument shows that any rational number
with odd numerator and denominator has a continued fraction of this kind
(the last number is odd, while all the previous ones are even). Rational knots,
in distinction to links, correspond to rational fractions with odd denominators.
If the numerator of the number p/q happens to be even, then the relevant knot
is equivalent to knot (p ± q)/q (see [12]); our assertion is thus proved.

4. Symbol of the Conway polynomial

By taking composition with the short-circuit closure, any invariant of knots
can be converted into an invariant of braids. For example, the Conway
polynomial of knots ∇ : K → Z[t] induces an invariant of pure braids
∇ ◦ κm : Pm → Z[t] (the Conway polynomial of braids). For every n, the
coefficient of t2n in this polynomial is a Vassiliev invariant of degree 2n. By
the universality of the Magnus expansion, there is a mapping (the “symbol” of

the Conway polynomial) χm : Âh(m) → Z[t] such that ∇◦κm = χm ◦ µm. We
succeeded in finding an explicit description of the symbol only for pure braids
on 3 strands.

The following theorem describes the values of the mapping χ = χ3 on de-
scending chord diagrams (which form a basis of the free abelian group Ah(3)).
Let A = t12, B = t23, C = t13.

Theorem. Any descending chord diagram on three strands is a (positive) word
in the letters A, B, C where all A’s come at the end. We claim that for any
words w, w1, w2

(1) χ(wA) = 0.
(2) χ(Bw) = 0.
(3) χ(w1B

2w2) = 0.
Assertions (1), (2), (3) leave us with just two kinds of words:

Cc1B · . . . · Cck−1BCck

and
Cc1B · . . . · Cck−1BCckB

which we encode respectively by [c1, . . . , ck] and [c1, . . . , ck]
′.
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(4) The values of χ on the elements of the second kind are reduced to its
values on the elements of the first kind:

χ([c1, . . . , ck]
′) = t−2χ([c1, . . . , ck, 1]).

It thus remains to determine χ on the elements [c1, ..., ck].
(5) We have

χ([c1, . . . , ck]) = (−1)k−1
(k−1∏

i=1

p1pci−1

)
· pck

,

where ps = χ([s]) is a sequence of polynomials in t that can be defined recur-
sively by p0 = 1, p1 = t2 and ps+2 = t2(ps + ps+1) for s ≥ 0. In particular, the

value of χ on the empty chord diagram (unit of the algebra Âh(3)) is 1.

Remark 1. Note that the polynomial pk = χ([k]) is equal to tk∇(Tk+1,2)
where the letter T denotes the torus link with given parameters (in the case
when this is a 2-component link, correct orientations of the components must
be chosen) and can be written explicitly as

pk =
∑

k/2≤j≤k

(
j

2j − k

)
t2j .

Remark 2. The image of χ belongs to the commutative algebra generated
by polynomials p1, p2 etc, whose additive basis can be identified with (un-
ordered) partitions. In this setting, the map χ is defined by a transformation
of ordered partitions into unordered partitions according to the rule

[c1, ...ck] 7→ (1k−1, c1 − 1, ..., ck−1 − 1, ck).

Examples.

χ(1) = 1,

χ(B) = 0,

χ(C) = t2,

χ(CB) = −t2,

χ(BC) = 0,

χ(C3BC3) = −p1p2p3 = −t2(t4 + t2)(t6 + 2t4).
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5. Proof of the theorem

We must find a map χ rendering commutative the diagram

P3

µ3
//

κ

��

Âh(3)

χ

��

K
∇

// Z[[t]]

Extend the Magnus expansion linearly to the map ẐP3 → Âh(3) denoted by
the same letter µ3. We will prove the theorem by finding a right inverse of µ3,

that is a mapping ν3 : Âh(3) → ẐP3 such that µ3 ◦ ν3 = id. Indeed, the set of
decreasing chord diagrams on 3 strands is in one-to-one correspondence with
the set of positive braids P+

3 . The correspondence is defined simply by setting
xij ↔ tij . Identifying a word w in xij with the corresponding word in tij , we
see that

µ3(w) =
∑

w′⊆w

w′

for any positive word w. It is easy to check that the inverse of this map

ẐP+
3 → Âh(3) is given by the formula

ν3(w) =
∑

w′⊆w

(−1)|w|−|w′|w′,

where the absolute value of a word denotes its length (or total exponent). The
diagram

ẐP3

µ3
//

κ

��

Âh(3)

χ

��

ν3

oo

ẐK
∇

// Z[[t]]

shows that we have χ = ∇ ◦ κ ◦ ν3 and, consequently,

χ(w) =
∑

w′⊆w

(−1)|w|−|w′|∇(κ(w′)),

where w′, a word in the letters tij, is understood, via the mentioned identifica-
tion, as a word in the letters xij , that is, as a positive pure braid.

We will consecutively prove the five assertions of the theorem by applying
this expression for χ and splitting the sum over all 2n subwords w′ ⊆ w into
appropriate subsums of 2, 4, ..., 2k terms.

(1). Split the sum into pairs ±
(
∇(κ(w′A))−∇(κ(w′))

)
and notice that the

knots κ(w′A) and κ(w′) are isotopic.

(2). The same argument for the pairs of knots κ(Bw′) and κ(w′).
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(3). The sum giving χ(w1B
2w2) consists of quadruples defined by a choice

of subwords w′
1 ⊆ w1, w′

2 ⊆ w2:

±
(
∇(κ(w′

1B
2w′

2)) − 2∇(κ(w′
1Bw′

2)) + ∇(κ(w′
1w

′
2))

)
.

We shall prove that any such quadruple sums to zero.
Indeed, the defining skein relation for the Conway polynomial implies that

∇(

w1

w2

’

’

) −∇(

w1

w2
’

’

) = −t∇(

w1

w2

’

’

) = ∇(

w1

w2
’

’

) −∇(

w1

w2

’

’

),

where the braids corresponding to the words w′
1 and w′

2 are depicted as rect-
angular boxes.

Therefore,

∇(

w1

w2

’

’

) − 2∇(

w1

w2
’

’

) + ∇(

w1

w2

’

’

) = 0,

as required.
(4). We will prove that for any word w we have χ(wBC) = t2χ(wB). Indeed,

χ(wB) =
∑

w′⊆w

(−1)|w|−|w′|
(
∇(w′B) −∇(w′)

)
,

χ(wBC) =
∑

w′⊆w

(−1)|w|−|w′|
(
∇(w′BC) −∇(w′B) −∇(w′C) + ∇(w′)

)
.

Now, the needed assertion follows from the identity

∇(w′BC) −∇(w′C) = (t2 + 1)(∇(w′B) −∇(w′)),

which is proved by applying the Conway skein relation:

∇( ) −∇( ) = −t∇( ),
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∇( ) −∇( ) = −t∇( )

and noticing that taking the sum of a link with the trefoil knot (which happens
in the pictures on the right) leads to the multiplication of the corresponding
polynomial by (t2 + 1).

(5). Here we must show that χ(CnBw) = −p1pn−1χ(w) where w is an arbi-
trary word in C and B. Indeed, let us split the alternating sum for χ(CnBw)
into the parts corresponding to a fixed subword w′ ⊆ w:

χ(CnBw) =
∑

w′⊆w

(−1)|w|−|w′|

n∑

l=1

(−1)n−l

(
n

l

)(
∇κ(C lBw′) −∇κ(C lw′)

)
.

Using the Conway skein relations on a proper crossing, we get:

∇κ(C lBw′) −∇κ(C lw′) = −t∇(K(l)),

where K = κ(w′) and K(l) denotes the oriented 2-component link obtained
from the oriented knot K by adding a trivial l-linked component to K according
to the picture (example for l = 3):

Lemma. For any knot K and any natural number l, we have

∇(K(l)) = t(q0 + q1 + ... + ql−1)∇(K),

where qs is the Conway polynomial of the torus knot of type (2, 2s + 1) given
explicitly by

qs =

s∑

j=0

(
s + j

s − j

)
t2j .

This equality is proved, as usual, by recursively applying the Conway skein
relation. Substituting it into the previous formula for χ(CnBw), we get

−t2 ·

n∑

l=1

(−1)n−l

(
n

l

) l−1∑

s=0

qs ·
∑

w′⊆w

(−1)|w|−|w′|∇(κ(w′)),
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and it remains to show that the middle term of this product is equal to pn−1.
Indeed, it is easily transformed to the form

n−1∑

s=0

(−1)n−1−s

(
n − 1

s

)
qs

or, recalling the expression for qs, to

n−1∑

s=0

s∑

j=0

(−1)n−1−s

(
n − 1

s

)(
s + j

s − j

)
t2j .

Changing the order of summation, this can be rewritten as

(−1)n−1
n−1∑

j=0

[n−1∑

s=j

(−1)s

(
n − 1

s

)(
s + j

2j

)]
t2j .

An application of the product summation formula (5.24) from [7] to the
sum over s inside the brackets gives (−1)n−1

(
j

2j−n+1

)
thus proving the required

assertion.

Remark. The coefficients of the polynomials pn and qn can be read off the
Pascal triangle in this way:

q0

p0

q1

q2

q3

q4

q5

q6

p1

p2

p3

p4

p5

p6 .    .    .    .    .    .    .    .    .    .    .    .    .    .    .    .    .

152015

1010

1

1

1

1

1

1

1

1

2

3

4

5

6

6

3

1

1

4 1

15

6 1

6. Evaluation on the associator

The Drinfeld associator [4, 9] is a remarkable element of the algebra Âh(3),
given by an infinite series in the (non-commuting) variables a = A/(2πi),
b = B/(2πi) with coefficients in the algebra of multiple zeta values (MZV, see
[8]):

Φ = 1 − ζ2[a, b] − ζ3([a, [a, b]] + [b, [a, b]])

− ζ4[a, [a, [a, b]]] − ζ3,1[b, [a, [a, b]]] − ζ2,1,1[b, [b, [a, b]]] +
1

2
ζ2
2 [a, b]2...

(see [5] for an explicit expansion of Φ up to degree 12).
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Taking the value of the complexified mapping χC : Âh(3)⊗C → C[t] on this
element Φ, we obtain the following result:

Conjecture.

χC(Φ) = −ζ2T
2 + (−ζ3 + ζ2,2)T

4 + (−ζ4 + ζ2,3 + ζ3,2 − ζ2,2,2)T
6 + ...

=

∞∑

n=1

( n∑

k=1

(−1)kζ
(k)
n+k

)
T 2n,

where T = t/(2πi), the numbers ζl1,...,lk = ζ(l1, ..., lk) are multiple zeta values

and ζ
(k)
m is the short-hand notation for the sum of all ζl1,...,lk where li ≥ 2 for

i = 1, ..., k and l1 + l2 + ... + lk = m.

We have checked this formula by computer up to T 10 (see [5]) using the table
of relations between MZV’s provided in [14]. It is an interesting remark that,
when evaluated numerically, the coefficients of this polynomial:

−1.644934 T 2 − 0.390314 T 4 − 0.332698 T 6 − 0.312405 T 8

−0.303958 T 10 − 0.300153 T 12 − 0.298365 T 14 − 0.297505 T 16 + . . .

seem to tend to a limit whose nature remains unclear.

7. Open problems

(1) For what triples of reduced rational fractions p1/q1, p2/q2, p3/q3 where
both numerators and denominators form arithmetical progressions, the
values of the Conway polynomial on the corresponding rational knots
also form an arithmetical progression? Our proof of assertion 3 of the
main theorem (see page 8) gives an abnormally big number of such
triples, for instance, ( 3

11
, 13

31
, 23

51
), ( 5

11
, 9

19
, 13

27
), ( 5

17
, 11

41
, 17

65
), (13

75
, 19

111
, 25

147
),

yet the claim about arithmetical progressions is not true in general.
(2) Generalize the main theorem (Section 4) in two directions: (A) to pure

braids with an arbitrary number of strands, (B) to the HOMFLY poly-
nomial which is a generalization of the Conway polynomial.

(3) This is related to the Remark on page 3. Describe all (or some) triples

of formal series P, Q, R in Âh(3) ⊗ C starting with terms of degree
higher than one, such that the correspondence x12 7→ 1 + t12 + P ,
x23 7→ 1 + t23 + Q, x13 7→ 1 + t13 + R defines a group homomorphism.

(4) Prove the conjecture from Section 6. Find similar facts for other hori-
zontal associators and relate them to the action of the Grothendieck–
Teichmüller group (see [4, 6]).
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