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streaming is very important from a scientific and practical 

point of view.  

In this article, the acoustic streaming in a cylindrical 

cavity subjected to the vibration with constant frequency 

✂ and constant amplitude A is investigated. The cavity is 

filled with a perfect viscous gas (air). The side surface of 

the cylinder and its ends are maintained at a constant 

temperature equal to the initial one. The gas motion is 

described using the gas dynamics equations in cylindrical 

coordinates (axisymmetric case). The Clapeyron ideal gas 

law is used as the equation of state. The system of 

equations is solved numerically. The calculations are 

executed with use of the implicit numerical scheme of 

first order of accuracy in both space and time. The 

method used for numerical simulation is described for the 

one-dimensional statement in [2]. The axial and radial 

streaming velocity components are calculated by 

averaging for the period of cavity vibration. 

The results were obtained for three frequencies and 

different amplitudes of vibration. When amplitude 

increases, the nonlinear effects become significant and 

the acoustic streaming is changing. The period average 

temperature in nonlinear case differs substantially from 

the initial temperature. Additional vortices can appear. 

Nonlinear effects also are described in [3] for the case of 

big amplitude of vibration and frequencies much less 

resonance. 
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For about the last twenty years of its scientific career, 

Prof. Antonio Castellanos was deeply interested in the 

connection between the macroscopic behaviour of 

powders and the details of the contact between their 

constituent particles. Although his firsts works in the 

subject were motivated by the need to improve the 

transfer of toner particles, he made the problem of 

connecting the continuum description of granular 

materials to the particle-particle interactions the subject 

of a long term research program in which he investigated, 

among other things, the sources of the adhesion between 

particles, their relationship with the macroscopic 

cohesion, the mutual influence between microstructure 

and stresses in granular media, the stability of the 

fluidized state of granular media and the effect of the 

discrete nature of granular media on sound propagation. 

Many of his findings were reported in previous APM 

Conferences, in which he always enjoyed being a 

participant. This talk makes a summary of his works as a 

tribute to his memory. 
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Materials used in energy conversion and storage devices 

are often subjected to multi-field driving forces 

(electrical, chemical, radiological, thermal, mechanical, 

etc.). In predicting the deformation and failure of these 

materials, conventional mechanics of material theories 

are no longer adequate, because these multi-field driving 

forces are typically coupled and produce synergetic 

effects that are not predicted by the classical theories.  To 

fully understand how the different driving forces interact 

requires theories and models that are capable of 

accounting for the coupling of multi-field interaction 

processes. 

In this talk, a theory for the mechanics of solids will be 

presented that accounts for the coupled effects of 

mechanical, electrical and chemical driving forces.  The 

presentation will begin with an introduction of the 

general framework of the electro-chemo-mechanics [1, 

2], followed by examples of its applications to solid oxide 

fuel cells [3] and Li-ion batteries [4 - 6]. Finally, path-

independent integrals in electro-chemo-mechanics will be 

discussed [7]. 
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Materials with intrinsic micro- or nano-structure may 

show size-dependent material behavior, which is reflected 

by a stiffer elastic response to external forces when the 

size of the material body is reduced. In order to account 

for the so-called size effect strain gradient theories are 

applied, which involve higher gradients of displacements 

[1,2]. The additional introduction of a micro-rotation 

measure, which incorporates second gradients of 

displacements, leads to a Cosserat pseudo-continuum 

description [3,4]. Such a modified strain gradient theory 

of elasticity for isotropic materials [5] is investigated in 

this paper, discussing a higher order model for static 

beam bending. Since the analytical solution for the 

Bernoulli-Euler beam model is already known in the 

context of the modified strain gradient theory [5], we 

apply the Timoshenko beam assumptions [6] in the 

present work. This is useful in context with an inverse 

analysis: The corresponding additional material 

coefficients (a.k.a. material length scale parameters), 

which are involved in strain gradient continua, can be 

identified by means of deflection experiments [7]. These 

were carried out according to the method of size-effect, 

as described in [8]. In contrast to the results of a 

Bernoulli-Euler beam model, the independent rotations of 

the cross-sections of the beam are taken into account. It is 

aimed for an analytical solution of the Timoshenko beam 

model incorporating the terms of the extended theory. A 

system of coupled differential equations for the functions 

of beam deflections and rotations is derived. 

Timoshenko’s shear coefficient and the shear modulus are 

involved. Non-dimensionalization of the functions and 

coefficients is provided and first numerical results are 

discussed. The system of coupled differential equations is 

solved and deflections and rotations are calculated for a 

straight beam with a unified load distribution. 
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