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Motivation

Rotational degrees of freedom of particles in granular materials

may be important for modelling of shear processes, avalanches,

investigation of stability of granular systems, flowability.
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Experimental evidences: A. Corfdir, P. Lerat, and J.-N. Roux.

Translation and rotation of grains within an interface between

granular media and structure. PG2001.

Theoretical and numerical considerations:

L.M. Schwartz, D.L. Johnson, S. Feng (1984, reduced Cosserat

continuum).

Cosserat continuum: I. Vardoulakis and P. Unterreiner (1995);

R. de Borst, A. Suiker, ...

In soils (highly compressed granular materials) and rocks there are

heterogeneities, which may have their proper rotational dynamics

in certain range of frequencies that influences wave propagation
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Effective model for granular materials

We introduce a set of interacting quasi-grains that can mimic

the behaviour of a real granular material.

Background medium resists to the rotation and translation of

each point-body. There is no “rotational spring” keeping rota-

tions of neighbouring grains close =⇒

the stress tensor is not symmetric, but the couple stress is zero

(reduced Cosserat continuum).
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Effective model (rocks)

Rock is a complex material with such wave properties as atten-

uation and dispersion, caused by its microstructure.

R

O

u(R), θ R)(

classical heterogeneous

medium with cracks, pores,

inclusions, layers

enriched homogeneous

medium — reduced Cosserat

continuum with anisotropy

classical wave equation with

inhomogeneous moduli

scattering problems

complex wave equation with

homogeneous moduli
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Equations for the reduced Cosserat continuum

g = ∇u + θ × E — tensor of deformation

The deformation energy of the medium

U =
1

2
(gS · ·C · ·gS +gA · ·Z · · gA+εgS · ·N(a) · · g

A+εgA · ·N(s) · ·g
S)

Constitutive equation:

τ = C · · gS + Z · · gA + ε(N(a) + N(s)) · · g

If N(a) = N(s) = 0 (isotropic case), there is no coupling between

shear and compression wave. Weak anisotropy: ε = o(1),

C = λEE + 2µ(imin)
S(inim)S, Z = 2α(imin)

A(im in)A,

τ = τ
classical + τ

α + εN · · g, (1)

τ classical = λE∇·u+2µ(∇u)S is the classical elastic stress tensor,

τα = 2α(∇u + θ × E)A, N = N(a) + N(s).
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Balance of force and the balance of torque:

∇ · τ + ρK = ρü, τ× + ρL = (I · θ̇)̇.

Equation of motion in displacements for zero external loads:

(λ + µ)∇∇ · u − µ4u + ε∇ · (N(a) · · (θ × E + (∇u)A)

= ρ(ü + ∇× (I · θ̈/2))

2α∇× u + ε(N(s) · · (∇u)S)× − 4α θ = I · θ̈

We shall consider a spheric inertia tensor: I = IE (for simplicity).
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Plane waves for the isotropic case (ε = 0):
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Dispersion curves. The P wave is not

affected; the S wave is strongly fre-

quency dependent and has a “forbid-

den zone” for ω∗ < ω < ω0, where the

wave decays exponentially with depth.

The horizontal line corresponds to the

non-propagating rotational oscillations

of point bodies. c2P = (λ + 2µ)/ρ,

c2Sα = (µ + α)/ρ, c2S = µ/ρ, ω2
0 = 4α/I,

ω2
∗ = ω2

0/(1 + α/µ).

Shear dispersion relation:

k2
S =

ω2

c2S
·
1 − ω2/ω2

0

1 − ω2/ω2
∗

=
ω2

c2S
f2(ω).
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Eigenvectors:

u = 4α(−((λ + µ − α)(1 − ω2/ω2
0) + α)k1k1 · A1ei(k1·r−ωt))+

((λ + 2µ)(1 − ω2/ω2
0)(k

2
s − ω2/c2P )a1−

− ((λ + µ − α)(1 − ω2/ω2
0) + α)ksks · a1+

i2α(1 − ω2/ω2
0)ks × a2)e

i(ks·r−ωt))

θ = ∇∇ · A2(r)e
iω0t+

ei(ks·r−ωt)2α(2(µ + α)(1 − ω2/ω2
0)(k

2
s − ω2/c2Sα)a2−

2αksks · a2 + (λ + 2µ)(k2
s − ω2/c2P )ks × a1)

9



How do the wave forms look like?
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Transmitted shear wave for various propagation distances ∆z

when the seismic frequency range overlaps the “forbidden” zone

ω∗ < ω < ω0 (f0 = ω0/2π). Strong attenuation and dispersion are

observed, even for small values of ∆z.

10



−50   50 150

0  

 

 

 

1.0 

Time  (ms)

T
ra

ns
m

itt
ed

 fi
el

d

c
S
 = 1000 m/s

∆ z = 50 m
α/µ = 3

f
0
 =  5  Hz

f
0
 =  10 Hz

−50   50 150

0  

 

 

 

1.0 

Time  (ms)

T
ra

ns
m

itt
ed

 fi
el

d

c
S
 = 1000 m/s

∆ z = 50 m
α/µ = 3

f
0
 =  500 Hz

f
0
 =  200 Hz

Similar to figure 3, but now for the cases when the seismic fre-

quency range is either higher (a) or lower (b) than the frequency

range of the forbidden zone.
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Green functions (ρK = K0eiωtδ(r), ρL = L0eiωtδ(r)):

Localization phenomena at ω∗ 6 ω < ω0:

u =
K0eiωt

4πµ(λ + 2µ)

(

ω2

c2P
+ |ks|

2

)−1(
ω2

ω2
∗
− 1

)−1

·



− e
−i ω

cP
r
(. . . )+

e−|ks|r

(

1

r
E(1 −

ω2

ω2
0

)(λ + 2µ)(
ω2

c2P
+ |ks|

2)

+ ((λ + µ − α)(1 −
ω2

ω2
0

) + α)(−
1

r
|ks|

2r̂̂r + (1 + |ks|r)
E − 3r̂̂r

r3
)

)





+
L0eiωt

8παµ

(

1 −
ω2

ω2
∗

)−1
·
E × r̂

r2
(1 + |ks|r)e

−|ks|r

at ω0 if L0 = 0

u = −K0eiω0t

4πρω2
0

·

(

E−3r̂r̂
r3

− e
−i

ω0
cP

r
(

1
r

ω2
0

c2P
r̂̂r + (1 + iω0

cP
r)E−r̂r̂

r3

))
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θ = eiωte−|ks|r
(

ω2

ω2
∗
− 1

)−1




L0

16πα2µ

(

1 −
ω2

ω2
0

)−1
·

(

1

r
E

(

1−
ω2

ω2
0

)(

ω2

c2sα
+ |ks|

2
)

(µ+α)−
r̂̂r

r
|ks|

2α+
E − 3r̂̂r

r3
(1+ |ks|r)α

)

+
K0

8πµ
·
E × r̂

r2

(

1 + |ks|r

)




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Weak anisotropy

Anisotropic coupling leads to the similar frequency-dependent

phenomena for the P-wave.

Plane wave propagation: u = Uei(k·r−ωt), θ = Θei(k·r−ωt).

−(λ + µ)kk · U + (−µk2 + ρω2)U + iIω2k × Θ/2

+ εik · (N(a) · · (Θ × E + i(kU)A) = 0

(4α − Iω2)Θ = 2iαk × U + εi(E × E) · · (N(s) · · (kU)S)

(A) 4α − Iω2 = O(1). Up to the higher order terms

Θ = i(4α − Iω2)−1(2αk × U + ε(E × E) · · (N(s) · · (kU)S))

[

(ρω2 − (λ + 2µ)k2)k̂k̂ + (ρω2 − (µ + α
ω2

ω2 − ω2
0

)k2)(E − k̂k̂)

− ε
ω2k2

ω2 − ω2
0

k̂ · N · k̂
]

· U = 0
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The equation for the eigenvalues:

fp(ω, k)f2
s (ω, k) − ε2

ω4k4

(ω2 − ω2
0)

2
(ξ223fp(ω, k)

+(ξ212 + ξ213)fs(ω, k)) = 0,

fp(ω, k) = ρω2 − (λ + 2µ)k2,

fs(ω, k) = ρω2 − (µ +
αω2

(ω2 − ω2
0)

2
)k2

e1 = k̂, ξij = (k̂ · N · k̂) · · eiej, ei · ej = δij (2)

Far from the cross-point of dispersion curves for an isotropic

medium (ω̂, k̂) such that fp(ω̂, k̂) = fs(ω̂, k̂) = 0,

ω̂ =
√

α
4(λ+µ)

+
√

α
4(λ+µ)

+ ω2
0 the P-wave changes negligibly:

k =
ω

cp
+

ε2ω5(ξ212 + ξ213)

2(λ + 2µ)c3p(ω
2 − ω2

0)(µc2p(c
2
s − c2p)(ω

2 − ω2
0) − αω2)
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Near the first cross-point (P-wave and shear-rotation wave)

the behaviour of the dispersion curves changes qualitatively:

coupling of compression and shear-rotation waves, a strong dis-

persion; the dispersion curves look like a hyperbola with asymp-

totes coinciding with tangents to the dispersion curves for an

isotropic medium. k k

Ω

Ω

∗

∗

ω

ω

k̂

^
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The dispersion relation in the neighbourhood of the cross-point

of partial curves is given by

ω = ω̂ + ω̃, k = k̂ + k̃, (3)

(ω̃ − k̃(cg1 + cg2)/2)
2 − k̃(cg1 − cg2)

2/4 = b∗, (4)

where cg1 = cp, cg2 are group velocities of the dispersion curves

for the case of isotropic medium in the cross-point, b∗ is deter-

mined by ξij and medium constants.

Second cross-point: ω = ω0, k = 0 — shear-rotation curve and

proper rotation line. We have to remake an asymptotic analysis,

since

(B) 4α − Iω2 = O(ε). The result:

ω = ω0 + εω̃, k2 = (ω − ω0)
2ρω0

α

Third cross-point: ω̂ = ω0, k̂ = c−1
1 ω0 — compression line and

proper rotation line: in progress, but the result is similar to the

one for the first-cross point. Again (B) 4α − Iω2 = O(ε).
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Even a weak anisotropy

in elastic constants

changes qualitatively

plane wave propa-

gation, causing the

dispersive behaviour

of the compression

wave and its coupling

with shear and rotation

waves

ω

k

ω
0
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Theoretical results

• The reduced Cosserat theory has been developed for mod-

elling of the rock with inclusions possessing proper rotational

dynamics (cracks, pores, heterogeneities), where the stress

tensor is asymmetric.

• Plane wave solutions have been investigated. The dispersive

behaviour and attenuation, similar to the ones observed in

scattering problems, have been predicted for the shear wave

propagation in a certain domain of frequencies. Wave polar-

ization also appears in the model.

• Reaction of the system to a dynamic point source has been

investigated, dynamic Green functions have been obtained.

They change essentially their character depending on the

source frequency. In a certain domain of frequency, local-

ization phenomena are observed.

• Weak anisotropy coupling P- and S-waves, combined with ro-

tational dynamics of medium particles, leads to similar effects

for the P-wave
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Robust conclusions for practical purposes (based on both

models):

• there is a special frequency range where proper rotational dy-

namics of heterogeneities plays a role. This range is charac-

terized by high dispersion, attenuation, and wave polarization

• there is a special frequency where we may expect very peculiar

wave phenomena: localization, resonances, etc. The devel-

oped models indicate, but do not describe possible structural

changes of a real medium subjected to the acoustical stimu-

lation by (shear) wave at this frequency
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Possible applications - ideas

• application of the developed theory for characterization of

some soils, granular materials and fine powders: rotational

fluidization
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Plans

• To consider the inhomogeneous reduced Cosserat medium

and to describe it in terms of an effective medium

• to make a good comparison with scattering problems

• to estimate medium constants via microstructural approach

(in collaboration with S. Luding)

• laboratory experiments - verification of the model?
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Appendix

Separated equations of motion (Sandru representation):

�1(�2�3 + 4α24)Φ1 = −ρK,

�3(�2�3 + 4α24)Φ2 = −ρL.

�1 = (λ+2µ)(4− c−2
P ∂ 2

t ), �2 = (µ+α)(4− c−2
Sα∂ 2

t ), ω2
0 = 4α/I,

�3 = −4α(1 + ω−2
0 ∂ 2

t ),

Translational and angular displacements via Φ1,Φ2:

u = �1�3Φ1 − ((λ + µ − α)�3 − 4α2)∇∇ · Φ1 − 2α�3∇× Φ2

θ = �2�3Φ2 + 4α2∇∇ · Φ2 − 2α�1∇× Φ1
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Green functions (ρK = K0eiωtδ(r), ρL = L0eiωtδ(r)):

Φ1 = f0eiωt(e−iωr/cP − e−iωf(ω)r/cS)/r,

Φ2 = l0eiωte−iωf(ω)r/cS/r,

u = −
K0eiωt

4πµ(λ + 2µ)

(

ω2

c2P
−

ω2f2(ω)

c2S

)−1(

1 −
ω2

ω2
∗

)−1

·



− e
−i ω

cP
r
((λ+µ−α)(1−

ω2

ω2
0

)+α)

(

1

r

ω2

c2P
r̂̂r+(1+ i

ω

cP
r)

E − 3r̂r̂

r3

)

+

e
−iωf(ω)

cS
r
(

1

r
E(1 −

ω2

ω2
0

)(λ + 2µ)(
ω2

c2P
−

ω2f2(ω)

c2S
)

+((λ+µ−α)(1−
ω2

ω2
0

)+α)(
1

r

ω2f2(ω)

c2S
r̂̂r+(1+i

ωf(ω)

cS
r)

E − 3r̂̂r

r3
)

)





+
L0eiωt

8παµ

(

1 −
ω2

ω2
∗

)−1
·
E × r̂

r2
(1 + i

ωf(ω)

cS
r)e

−iωf(ω)
cS

r
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θ = e
i(ωt−ωf(ω)

cS
r)
(

1 −
ω2

ω2
∗

)−1


−
L0

16πα2µ

(

1 −
ω2

ω2
0

)−1
·

(

1

r
E

(

1 −
ω2

ω2
0

)(

ω2

c2sα
−

ω2f2(ω)

c2S

)

(µ + α) +
1

r
r̂̂r

ω2f2(ω)

c2S
α

+
1

r3
(1 + i

ωf(ω)

cS
r)(E − 3r̂̂r)α

)

−
K0

8πµ
·
E × r̂

r2

(

1 + i
ωf(ω)

cS
r

)




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