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Introduction: On arithmetical zeta functions

A zeta function in Arithmetic is generally speaking a generating function for an
arithmetical problem written in the form of Dirichlet series. A right zeta function
must have at least two principal features: an Euler product factorization and an
analytic continuation over whole complex plane satisfying functional equations. The
first reflects relations between the global arithmetical problem and its localizations,
while the second provides a kind of reciprocity between the localizations.

Let us illustrate it on examples:
1. The Riemann zeta function,

ζ(s) =
∞∑

n=1

1
ns
, (<s > 1),

is the generating function for the numbers of ideals of given norm in the ring Z of
rational integers. It has Euler product factorization of the form

ζ(s) =
∏
p

(
1− 1

ps

)−1

, (<s > 1),

the product being over all rational prime numbers p.
It was B.Riemann, who proved in the middle of nineteenth century that ζ(s)

has analytic continuation over whole complex s-plane, is holomorphic, except for
a simple pole of residue 1 at s = 1, and satisfies the functional equation that
the function π−s/2Γ(s/2)ζ(s), where Γ is the gamma function, is invariant under
s 7→ 1 − s. He also discovered that the problem of distribution of prime numbers
closely connected with location of complex zeroes of the zeta function in the vertical
strip 0 ≤ <s ≤ 1. At the end of the century J.Hadamard and Ch.de la Vallee
Poussin have proved that ζ(s) has no zeroes on the line <s = 1, which implied the
famous asymptotic formula for the number π(x) of prime numbers not exceeding
x,

π(x) ∼ x

log x
, (x→∞).

2. A global zeta function of a nonsingular algebraic variety V over the field Q
of rational numbers is defined by an Euler product

ζ∗ (V, s) =
∏
p

ζ
(
Vp, p

−s
)

of local zeta functions ζ(Vp, p
−s), where p runs over all prime numbers such that

V has a good reduction Vp modulo p, i.e. the good and, in particular, nonsingular
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variety Vp over the finite field F(p) of p elements obtained by replacing of equations
defining V by corresponding congruences modulo p; the local zeta function is the
zeta function of Vp defined by

ζ (Vp, t) = exp

( ∞∑
δ=1

N(pδ)tδ/δ

)

where N(pδ) is the number of points of Vp with coordinates in the finite field
F(pδ) of pδ elements. According to B.Dwork, the local zeta functions ζ (Vp, t) of
nonsingular varieties Vp are rational fractions in t. It follows that the global zeta
function ζ∗ (V, s) can be written as a Dirichlet series convergent in a right half-plane
of the complex variable s. It is generally believed that the zeta function can be
analytically continued over whole s–plane as a meromorphic function and satisfies
a functional equation, but it is doubtful that a human being living now will see a
complete proof.

Nevertheless even particular cases present considerable interest. Let us consider
a (projective) elliptic curve

E : y2z = x3 + axz2 + bz3, (a, b ∈ Z).

The points on E with coordinates in Q form an Abelian group, which we denote
by EQ; the theorem of Mordell tells us that the group EQ is finitely generated, i.e.
is a product of a finite group by a lattice of a finite rank g. A principal problem
of the theory is to determine the group EQ, and, in particular, to determine the
rank g. In the mid-sixtieth B.J.Birch and H.P.F.Swinnerton-Dyer had put forward
revolutionary conjectures connecting the group EQ with the zeta function ζ∗ (E, s)
of the curve. Let us recall some details.

A prime number p is said to be good, if it does not divide 6(27b2 + 4a3) . For
such a prime p, the reduction

Ep : y2z ≡ x3 + axz2 + bz3 (mod p)

of E modulo p, is an elliptic curve over F(p). It is well known that the zeta function
of Ep over F(p) has the form

ζ (Ep, t) =
1− (1 + p−N(p))t+ pt2

(1− t)(1− pt)
.

Then we may define an L–function of E by

L∗(E, s) =
∏
p

(
1− (1 + p−N(p))p−s + p1−2s

)−1
,
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where the product is taken over all good primes. It converges for <s > 3/2. Then
the main Birch–Swinnerton-Dyer conjecture says that L∗(E, s) has a zero of order
g at s = 1. Generally it is still open.

3. Despite clear importance of zeta functions of algebraic varieties, algebraic
geometry provides no means for their investigation. The only hope is to relate
them with techniques coming from an analytical background, probably, with zeta
functions of automorphic forms, which, on the contrary, have usually vast means
for analytical investigation, but often lack clear arithmetical motivation.

Let us consider the simplest case of zeta functions of modular forms of integral
weights for congruence subgroups K of the modular group SL2(Z). Let us recall
the corresponding definitions.

A function F on the upper half-plane H = {x + iy ∈ C
∣∣ y > 0} is said to be a

modular cusp form of weight k for the group K, if it is holomorphic on H, equals
zero at all cusps of K, and satisfies

(cz + d)−kF

(
az + b

ac+ d

)
= F (z) for each

(
a b
c d

)
∈ K.

All such functions form a finite dimensional space N = Nk(K) over the field C of

complex numbers. If the group K contains the matrix
(

1 1
0 1

)
, then every F ∈ N

can be presented by an absolutely convergent on H Fourier series of the form

F (z) =
∞∑

m=1

φ(m) exp(2πimz)

with constant Fourier coefficients φ(m). A zeta function of F can be defined then
by the Dirichlet series

Z(F, s) =
∞∑

m=1

φ(m)
ns

.

The series absolutely converges in a right half-plane of the variable s, and can be
presented there by means of a Mellin integral

Φ(s) = Φ(F, s) =
∫ ∞

0

F (iy)ys−1dy = (2π)−sΓ(s)Z(F, s).

Suppose that the group K satisfies(
0 −1
q 0

)−1

K

(
0 −1
q 0

)
= K
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for an positive integer q. Then it is easy to check that, for each cusp form F ∈ N,
the function

(F
∣∣ ω)(z) = q−k/2z−kF (−1/qz)

again belongs to N and satisfies F
∣∣ ω ∣∣ ω = (−1)kF . It follows that we can write

a direct sum decomposition

N = N+ + N−, where, for F ∈ N±, F
∣∣ ω = ±ikF.

Exercise. Prove the above assertions.

If F ∈ N±, then

F (i/qy) = ±(−1)kqk/2ykF (iy), (y > 0),

and we can write, for <s sufficiently large,

Φ(s) =
∫ q−1/2

0

F (iy)ys−1dy +
∫ ∞

q−1/2
F (iy)ys−1dy

=
∫ ∞

q−1/2
F (i/qy)(1/qy)s−1(1/qy2)dy +

∫ ∞

q−1/2
F (iy)ys−1dy

= ±(−1)kqk/2−s

∫ ∞

q−1/2
F (iy)yk−s−1dy +

∫ ∞

q−1/2
F (iy)ys−1dy.

The both of the last integrals are holomorphic for all s, and so is the function φ(s).
Besides, the last expression implies that

Φ(k − s) = ±(−1)kqs−k/2Φ(s),

which is the functional equation for the zeta function Z(F, s).
Note that the simplest of the groups K satisfying the cited conditions is the

group

Γ0(q) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 (mod q)
}
.

The problem of Euler product factorization of zeta functions corresponding to mod-
ular forms of integral weights for the groups of type Γ0(q) was essentially solved by
E.Hecke in 1937 and completed by A.O.L.Atkin and J.Lehner in 1970. In particular,
it was found that, although the zeta function of a cusp form not necessarily have
an Euler product factorization, but the space of cusp forms has a basis consisting
of forms with zeta functions decomposable into Euler products. Such forms can
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be characterized as eigenfunctions of certain rings of linear operators, the Hecke
operators, acting on the space.

Since the nineteenth century the main arithmetical application of modular forms
was the analytical theory of integral quadratic forms. The reason is that the gene-
rating Fourier series with coefficients equal to numbers of integral representations
of positive integers by a positive definite integral quadratic form is a modular (not
cusp) form. But in the middle of the twentieth century G.Shimura and Y.Taniyama
proposed famous conjectures relating modular forms and elliptic curves over Q. The
Shimura–Taniyama conjecture includes conjecture that the L–function L∗(E, s) of
any elliptic curve E over Q completed by appropriate p-factors for bad primes is,
in fact, the zeta function of a cusp form of weight 2 for the group Γ0(q), where q is
the product of some degrees of bad primes. In 1985 G.Frey made the remarkable
observation that this conjecture would imply Fermat’s Last Theorem. The precise
relation of the two was established by K.A.Ribet in 1986, which allowed A.Wiles
in 1995 to prove the Fermat’s Last Theorem, one of the brightest achievements of
mathematics of the twentieth century.

One can hardly doubt that the relation between zeta functions of elliptic curves
and zeta functions of modular forms in one variable described by Shimura–Taniya-
ma conjecture is only a particular case of some general links of global zeta functions
of algebraic varieties and zeta functions of automorphic forms. Speaking on Abelian
varieties in place of elliptic curves, one can expect that modular forms in one
variable should be replaced by Siegel modular forms for congruence subgroups of
the symplectic modular group Γn = Spn(Z), which expectation is supported by
numerical evidences.

Contents. The main objective of this course is to give an introduction to
arithmetical theory of Siegel modular forms, Hecke operators, and zeta functions.
In the case of several variables we are trying to be so precise but short as was
Andrew Ogg in his excellent course Modular Forms and Dirichlet series, published
in 1969 by W.A.Benjamin, INC.

In Chapter 1 we give a compressed exposition of essential features of the theory of
Siegel modular forms of integral weights for congruence subgroups of the symplectic
modular group Spn(Z). Chapter 2 treats analytical properties of radial Dirichlet
series corresponding to modular forms of genuses 1 and 2. Chapter 3 is devoted to
the theory of Hecke–Shimura rings and Hecke operators on Siegel modular forms of
arbitrary genus. In Chapter 4 we consider applications of Hecke operators to Euler
product factorization of the radial Dirichlet series, which leads us to Andrianov zeta
functions of Siegel modular forms. The course contains a number of exercises which
usually indicate some interesting points not included into the main text, partly for
the reasons of volume and partly because of their incompleteness.

Sources. We try to expose the proofs in full, whenever it is reasonable and
possible. The omitted details can be mainly found in the books Andrianov,A.N.:
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Quadratic forms and Hecke operators, Springer-Verlag, Berlin, Heidelberg, ..., 1987,
374 p. (Grundlehren Math. Wiss., Bd. 286 ), cited below as the Source, or Andri-
anov,A.N.; Zhuravlev,V.G.: Modular forms and Hecke operators, Nauka, Moskow,
1990, 447 p. (in Russian). The English edition: AMS, Providence, Rhode Island,
Transl. of Math. Monographs, vol.145, 1995, 334 p.. The Notes at the end of the
book contain essential references. The main text contains no references exept for
general references on the Source.

Notation. We reserve the letters N, Z, Q, R, and C for the set of positive
rational integers, the ring of rational integers, the field of rational numbers, the
field of real numbers, and the field of complex numbers, respectively.

Am
n is the set of all m × n-matrices with entries in a set A, An = An

1 , and
An = A1

n.
If M is a matrix, tM always denotes the transpose of M . If M is a square matrix,

σ(M) usually stands for the trace of M . For a matrix M over C, M is the matrix
with complex conjugate entries. If Y is a real symmetric matrix, Y > 0 (resp.,
Y = 0) means that Y is positive definite (resp., positive semidefinite). For two
matrices A and B we write

A[B] = tABA

if the product on the right is defined.
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Chapter 1. Modular form

§1.1. Symplectic group and upper half-plane.

A matrix M ∈ C2n
2n is said to be symplectic if it satisfies the relation

(1.0) tMJM = µ(M)J, with J = Jn =
(

0 1n

−1n 0

)
,

with a nonzero scalar µ(M) called the multiplier of M . It is clear that product of
two symplectic matrices of the same order is again a symplectic matrix, and the
multiplier of the product is the product of multipliers of factors.

Lemma 1.1. Let M =
(
A B
C D

)
, where the blocks A, B, C, and D are complex

square matrices of order n, and let µ be a nonzero complex number. Then the
following conditions are equivalent:

(1) M is symplectic with the multiplier µ(M) = µ;
(2) tM is symplectic with the multiplier µ(tM) = µ;
(3) M is invertible, and

(1.1) µM−1 =
(

tD −tB
−tC tA

)
;

(4) The blocks A, B, C, and D satisfy the conditions

(1.2) tAC = tCA, tBD = tDB, and tAD −tCB = µE

or the conditions

(1.3) A tB = B tA, C tD = D tC, and A tD −B tC = µE.

Proof. It is an easy exercise on multiplication of block-matrices.4

Exercise 1.2. Prove the lemma.

In the course of our arithmetical considerations we shall be interested in discrete
subgroups and subsemigroups of the general real positive symplectic group of genus
n consisting of all real symplectic matrices of order 2n with positive multipliers:

(1.4) G = Gn = GSp+
n (R) =

{
M ∈ R2n

2n

∣∣∣ tMJM = µ(M)J, µ(M) > 0
}
.
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The group G is a real Lie group acting as a group of analytic automorphisms on
the n(n+ 1)/2-dimensional open complex variety

(1.5) H = Hn =
{
Z = X + iY ∈ Cn

n

∣∣∣ tZ = Z, Y > 0
}
,

the upper half-plane of genus n, by the rule

(1.6) G 3M =
(
A B
C D

)
: Z 7→M〈Z〉 = (AZ +B)(CZ +D)−1, (Z ∈ H).

In order to verify it, we have to check that the mapping (1.6) is always defined,
maps the upper half-plane into itself, and satisfies

(1.7) (MM ′)〈Z〉 = M〈M ′〈Z〉〉, (M, M ′ ∈ G, Z ∈ H).

The relations (1.7) follow from definition by the formal comparison of both parts,
provided that the both parts are defined. So it would be sufficient to prove the
following two lemmas.

Lemma 1.3. For every matrices M =
(
A B
C D

)
∈ G and Z ∈ H, the matrices

(1.8) J(M, Z) = CZ +D

are nonsingular and satisfy the rule

(1.9) J(MM ′, Z) = J(M, M ′〈Z〉)J(M ′, Z), (M,M ′ ∈ G, Z ∈ H).

Proof. The relation (1.9) formally follows from definitions, if the matrix J(M ′, Z)
is nonsingular.

First, note that the matrix (1.8) is nonsingular for every M =
(
A B
C D

)
∈ G

and Z = iE. Otherwise the matrix

(Ci+D) t(Ci+D) = C tC +D tD + i(C tD −D tC) = C tC +D tD

(see (1.3)) is singular, and so, since it is symmetric and semi-definite, there is a
nonzero real n-column T such that tT (C tC + D tD)T = 0, whence tTC tCT = 0
and tTD tDT = 0, and so tTC =t TD = 0. The last relations imply that the rank
of the matrix (C, D) is less than n, which is impossible, since the matrix M is
nonsingular.

Then, note that each matrix Z = X + iY ∈ H can be written in the form

Z = M ′〈iE〉 with a matrix M ′ ∈ G. It is sufficient to take M ′ =
(
A1 X tA−1

1

0 tA−1
1

)
,

if Y = A1
tA1.

Finally, by (1.9) with Z = iE, we get

J(MM ′, iE) = J(M, M ′〈iE〉)J(M ′, iE) = J(M, Z)J(M ′, iE),

which implies that J(M, Z) is nonsingular. 4
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Lemma 1.4. Let M =
(
A B
C D

)
∈ G and Z = X + iY ∈ H, then the matrix

Z ′ = X ′ + iY ′ = M〈Z〉 is symmetric, and

(1.10) Y ′ = µ(M) t(CZ +D)−1Y (CZ +D)−1.

In particular, Z ′ ∈ H.

Proof. As it easily follows from the relations (1.2), the matrix

t(CZ+D)M〈Z〉(CZ+D) = (Z tC+ tD)(AZ+B) = Z tCAZ+ tDAZ+Z tCB+ tDB

is symmetric and so the matrix Z ′ = M〈Z〉 is symmetric too.
Further, by (1.2), we have

t(CZ +D)(Z ′ − Z ′)(CZ +D) = (Z tC + tD)(AZ +B)− (Z tA+ tB)(CZ +D)

= Z(tCA−tAC)Z + (tDA−tBC)Z + Z(tCB −tAD) = µ(M)(Z − Z).

The formula (1.10) and the lemma follow.4

Finally, we shall find an G-invariant element of volume on H. The upper half-
plane H is clearly an open subset of the n(n+ 1)-dimensional real affine space, and
we can consider the Euclidean element of volume on H,

(1.11) dZ =
∏

1≤α≤β≤n

dxαβdyαβ (Z = (xαβ + iyαβ) ∈ H).

Lemma 1.5. For each matrix M =
(
A B
C D

)
∈ G, the element of volume (1.11)

satisfies the relation

dM〈Z〉 = µ(M)n(n+1)|det(CZ +D)|−2n−2dZ.

Proof. For Z = (zαβ) = (xαβ+iyαβ) ∈ H, we set Z ′ = (z′γδ) = (x′γδ+iy
′
γδ) = M〈Z〉.

We have to compute the absolute value of the Jacobian of the variables x′γδ, y
′
γδ

with respect to the variables xαβ , yαβ . First, we shall consider the transformation
of the differentials of the complex variables zαβ . For Z1, Z2 ∈ H, since Z ′2 is
symmetric, we get

Z ′2 − Z ′1 = (Z2
tC + tD)−1(Z2

tA+ tB)− (AZ1 +B)(CZ1 +D)−1

= µ(M)(Z2
tC + tD)−1(Z2 − Z1)(CZ1 +D)−1,
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where we have also used the relations (1.2). It follows that

DDDZ ′ = µ(M)(Z tC + tD)−1DDDZ(CZ +D)−1,

where DDDZ = (dzαβ) and DDDZ ′ = (dz′γδ) are the matrix of differentials of the
variables zαβ and z′γδ, respectively. Note that if ρ(U) with U ∈ GLn(C) is the
transformation (vαβ) 7→ U(vαβ) tU of variables vαβ = vβα with 1 ≤ α, β ≤ n,
then det ρ(U) = (detU)n+1. This can be easily checked by ordering the variables
vαβ lexicographically and replacing U by an upper triangular matrix of the form
W−1UW . Let dddZ and dddZ ′ be the columns with entries dzαβ (1 ≤ α, β ≤ n) and
dz′γδ (1 ≤ γ, ≤ δ ≤ n) arranged in a fixed order. Then the above considerations
imply the relation

dddZ ′ = ρ(
√
µ(M) t(CZ +D)−1)dddZ.

Taking dddZ = dddX + idddY , dddZ ′ = dddX ′ + idddY ′, and ρ(
√
µ(M) t(CZ +D)−1) = R+ iS,

we obtain that
dddX ′ = RdddX − SdddY, dddY ′ = SdddX +RdddY.

Thus, the Jacobian equals

det
(
R −S
S R

)
= det

((
E iE
0 E

)(
R −S
S R

)(
E −iE
0 E

))

= det
(
R+ iS 0

0 R− iS

)
= µ(M)n(n+1)|det(CZ +D)|−2n−2.

4

By combining the above lemma and formula (1.10), we get

Proposition 1.6. The element of volume on H given by

(1.12) d∗Z = detY −(n+1)dZ, (Z = X + iY ∈ H),

where dZ = dXdY is the Euclidean element of volume (1.11), is invariant under
all transformations of the group G:

d∗M〈Z〉 = d∗Z, (M ∈ G).

It is easy to see that two matrices M , M ′ of G have the same action (1.6) on
an open subset of H if and only if M ′ = λM with λ in the set R× of nonzero real
numbers. It follows that the group of all transformations of the upper half-plane of
the form (1.6) is isomorphic to the factor groups

G/{R×12n} ' S/{±12n},
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where

(1.13) S = Sn = Spn(R) =
{
M ∈ Gn

∣∣∣ µ(M) = 1
}

is the (real) symplectic group of genus n. We have already seen in the proof of
Lemma 1.3 that each matrix Z ∈ H can be written in the form Z = M〈iE〉
with a matrix M ∈ S. Therefore, the upper half-plane can be identified with the
homogeneous space of the symplectic group by the stabilizer U of the point iE in
S. More precisely, we have the following lemma:

Lemma 1.7. The map M 7→M〈iE〉 defines one-to-one correspondence S/U↔ H,
which is compatible with the actions of the group S, where on the left side it acts by
multiplication from the left; the stabilizer U has the form

U = Un =
{(

A B
−B A

)
∈ Sn

}
;

the map
(

A B
−B A

)
7→ A+ iB is an isomorphism of U onto the unitary group of

order n; in particular, the group U is compact.

Exercise 1.8. Prove the lemma and preceding assertions.

Exercise 1.9. Show that the Cayley mapping

Z 7→W = (Z − iE)(Z + iE)−1, (Z ∈ H),

is an analytical isomorphism of H onto the bounded domain{
W ∈ Cn

n

∣∣∣ tW = W, WW < E
}
,

where the inequality is understood in the sense of Hermitian matrices. Show that
the inverse mapping is given by

W 7→ Z = i(E +W )(E −W )−1.

§1.2 Fundamental domains for modular group and related groups.

The modular (symplectic) group or the Siegel modular group of genus n, i.e. the
group of all integral symplectic matrices of order 2n with unit multiplier,

(1.14) Γ = Γn = Spn(Z) = Sn
⋂

Z2n
2n,
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is clearly a discrete subgroup of the symplectic group S. The same is true for each
subgroup S of S commensurable with the group Γ, i.e. such that the intersection
S∩Γ is of finite index both in S and Γ. The lemma 1.7 implies then that each such
group S discretely acts on the upper half-plane.

Automorphic forms for subgroups S of the symplectic group, which we are going
to consider in this chapter, are functions on the upper half-plane with certain
analytical properties satisfying functional equations, which connect its values at
points of each S-orbit

S〈Z〉 =
{
M〈Z〉

∣∣∣M ∈ S} , (Z ∈ H)

on H, so that such a function is uniquely determined by its restriction to any subset
of H, which meets each S-orbit.

We shall remind that a closed subset D of a topological space X is called a funda-
mental domain for a discrete transformation group G acting on X, if it meets each
of the G-orbits G(x) = {g(x)|g ∈ G} with x ∈ X and has no distinct inner points
belonging to the same orbit. It follows from the definition that the decomposition

(1.15) X =
⋃

g∈G/G′

g(D) with G′ = {g ∈ G|g(x) = x, ∀x ∈ X}

holds, and its components have pairwise no common inner points. Fundamenal
domains are not necessarily exist.

The construction of fundamental domains for modular symplectic group is essen-
tially based on the Minkowski reduction theory of positive definite quadratic forms.
In the matrix language the problem of reduction of positive definite quadratic forms
relative to unimodular equivalence is that of construction of a fundamental domain
for the unimodular group

(1.16) Λ = Λn = GLn(Z)

acting on the cone

(1.17) PPP = PPPn =
{
Y ∈ Rn

n

∣∣∣ tY = Y, Y > 0
}
,

of real positive definite matrices of order n by

Λ 3 V : Y 7→ Y [V ] = tV Y V.

The columns of a matrix U ∈ Λ will be denoted by uuu1, . . . ,uuun, so that U =
(uuu1, . . . ,uuun). In order to choose a special representative Y [U ] of the orbit

Λ(Y ) =
{
Y [V ]

∣∣∣ V ∈ Λ
}
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of a point Y ∈ PPP , we determine the matrix U column by column with help of some
minimal conditions. Let

Λr = Λn
r =

{
(uuu1, . . . ,uuur) ∈ Zn

r

∣∣∣ (uuu1, . . . ,uuur, ∗, . . . , ∗) ∈ Λ
}

be the set of all integral n× r-matrices composed of the first r columns of matrices
in Λ. For a given Y ∈ PPP , we choose uuu1 ∈ Λ1 so that the value Y [uuu1] = tuuu1Y uuu1 of the
quadratic form with the matrix Y on the column uuu1 is minimal; this can be done,
since the form is positive definite. Next, we determine uuu2 so that (uuu1,uuu2) ∈ Λ2 and
the value Y [uuu2] is minimal. On replacing uuu2 by −uuu2, if necessary, one may assume
that tuuu1Y uuu2 ≥ 0. Proceeding in the same way, at the r-th step we choose uuur so
that (uuu1, . . . ,uuur) ∈ Λr, Y [uuur] is minimal, and tuuur−1Y uuur ≥ 0. Finally, when r = n,
we get an unimodular matrix U = (uuu1, . . . ,uuun)) ∈ Λ and a matrix T = (tαβ) =
Y [U ] ∈ Λ(Y ), which is called Minkowski reduced, or just reduced.

Let us determine the conditions for a positive definite matrix to be reduced in the
terms of its entries. First of all, by induction on n based on Euclidean algorithm,
one can easily prove the following

Lemma 1.10. An integral n-column uuu belongs to Λ1 if and only if its entries are
coprime.

Also, as an easy exercise on multiplication of block matrices, we get

Lemma 1.11. Two matrices U , U ′ of Λn have the same first r columns if and
only if

U ′ = U

(
Er B
0 D

)
with D ∈ Λn−r and b ∈ Zn−r

r .

Let U = (uuu1, . . . ,uuun) ∈ Λn. By Lemma 1.11, the set of all r-th columns of all
matrices U ′ ∈ Λn with the first columns uuu1, . . . ,uuur−1 coincides with the set of the
columns of the form Uvvv, where vvv is an integral n-column, whose last n − r + 1
entries vr, . . . , vn form the first column of a matrix D ∈ Λn−r+1. By Lemma
1.10, the last condition means that the numbers vr, . . . , vn are coprime. Thus, if
U = (uuu1, . . . ,uuun) ∈ Λn and 1 ≤ r ≤ n, then

(1.18)
{
uuu ∈ Zn

∣∣∣ (uuu1, . . . ,uuur−1,uuu) ∈ Λn
r

}
= UVVV r,n,

where
VVV r,n =

{
vvv =t (v1, . . . , vn) ∈ Zn

∣∣∣ gcd(vr, . . . , vn) = 1
}
.

By the definition and (1.18), we conclude that a matrix T = (tαβ) = Y [U ] is
reduced if and only if it satisfies the conditions

Y [Uvvv] ≥ Y [uuur], for all vvv ∈ VVV r, n and 1 ≤ r ≤ n,
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and
tuuur−1Y uuur ≥ 0, for 1 < r ≤ n,

where U = (uuu1, . . . ,uuun). Since Y [U ] = T = (tαβ), we have Y [uuur] = trr and
tuuur−1Y uuur = tr−1,r. Hence, the above conditions means exactly that T belongs to
the set

(1.19) MMM =MMMn = {T = (tαβ) ∈ PPPn

∣∣∣ trr ≤ T [vvv]∀vvv ∈ VVV r,n (1 ≤ r ≤ n);

tr−1,r ≥ 0 (1 < r ≤ n)},

called the Minkowski reduction domain.

Theorem 1.12. Every orbit Λ(Y ) of the group Λ on PPP contains at least one and
not more than finitely many points of the Minkowski domain MMM . If T , T ′ are two
inner points of MMM , and T ′ = T [U ] with U ∈ Λ, then U = ±E; in particular,
no different inner points of MMM belong to the same orbit. In other words, MMM is a
fundamental domain of Λ on PPP .

Proof. The above consideration shows that, for a given Y ∈ PPP , there exists U ∈ Λ
such that Y [U ] ∈MMM , and every column of such U can be chosen in finitely many
ways.

Let us set

MMM ′ =MMM ′
n = {T ∈ PPPn

∣∣∣ trr < T [vvv], vvv ∈ VVV r,n, vvv 6= ±eeer (1 ≤ r ≤ n);

tr−1,r > 0 (1 < r ≤ n)},

where eee1, . . . , eeen are the columns of the unit matrix E = En. It is clear that
MMM ′ ∈MMM and each inner point ofMMM is contained inMMM ′. If T = (tαβ) and T ′ = (t′αβ)
belong to MMM ′ and T ′ = T [U ] with U = (uuu1, . . . ,uuun) ∈ Λ, then uuu1 ∈ VVV 1, n, whence
t′11 = T [uuu1] ≥ t11 and, similarly, t11 ≥ t′11. It follows that t11 = t′11 = T [uuu1] and so
uuu1 = ±eee1. Then uuu2 ∈ VVV 2, n, and in the same way we conclude that uuu2 = ±eee2. By
repeating the same arguments, we see that uuur = ±eeer for all r = 1, . . . , n. Now the
conditions

tr−1, r > 0, t′r−1, r = tuuur−1Tuuur > 0 (1 < r ≤ n)

imply that uuur = eeer or uuur = −eeer for r = 1, . . . , n, and T = T ′. 4

The entries of reduced matrices T = (tαβ) satisfy some useful inequalities. First
of all, since trr ≤ T [eeer+1] = tr+1,r+1, it follows that

(1.20) t11 ≤ t22 ≤ . . . ≤ tnn.

Then, by tll ≤ T [eeer ± eeel] = trr ± 2trl + tll, where 1 ≤ r < l ≤ n, we obtain

(1.21) |2trl| ≤ trr, if r 6= l.
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Finally, Minkowski have proved a deeper inequality for reduced matrices, which we
cite without proof (for the proof see, for example, Sources):

(1.22) t11t22 . . . tnn ≤ cn detT, (T = (tαβ) ∈MMMn),

where cn is a positive constant depending only on n. The Minkowski inequality
imply that every T = (tαβ) ∈MMMn satisfies the inequality

(1.23) T ≥ 1
nn−1cn

diag(t11, t22, . . . , tnn).

Really, let ρ1, . . . , ρn be the characteristic values of the matrix

T ′ = T [diag(t−1/2
11 , t

−1/2
22 , . . . , t−1/2

nn )],

then ρ1 + . . .+ ρn = n and, by (1.22),

ρ1 . . . ρn = (t11t22 . . . tnn)−1 detT ≥ 1/cn;

it follows that ρα ≤ n and ρα ≥ 1/nn−1cn for α = 1, . . . , n, which implies (1.23).

Exercise 1.13. Show that

MMM2 =
{(

t11 t12
t12 t22

)
∈ PPP 2

∣∣∣ 0 ≤ 2t12 ≤ t11 ≤ t22
}

;

Show that in the inequalities (1.22) one can take c1 = 1 and c2 = 4/3, and the
values are minimal.

[Hint: For minimality of c2, consider T =
(

1 1/2
1/2 1

)
].

Exercise 1.14. Two binary quadratic forms f(x, y) and f ‘(x, y) are said to be

equivalent if f ′(x, y) = f(αx + βy, γx + δy) with
(
α β
γ δ

)
∈ Λ2. Show that the

number of classes of equivalent positive definite quadratic forms f(x, y) = ax2 +
bxy + cy2 with integral coefficients a, b, c and a fixed discriminant d = b2 − 4ac is
finite.

Let us come back to the action of the modular group (1.14) on the upper half-
plane. We consider orbits Γ〈Z〉 of the modular group on H. For Z = X + iY ∈
H = Hn, we shall call the positive real number detY the height of the point Z and
denote it by h(Z). By (1.10), we have

(1.24) h(M〈Z〉) = |det(CZ +D)|−2h(Z),
(
Z ∈ H, M =

(
A B
C D

)
∈ Γ
)
.
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Lemma 1.15. Each orbit of the group Γ on H contains points Z of maximal height.
The points can be characterized by the inequalities

|det(CZ +D)| ≥ 1 for every
(
∗ ∗
C D

)
∈ Γ.

Proof. In view of (1.24) we have to show that |det(CZ +D)| assumes a minimum

on each orbit. Note that, for any M =
(
A B
C D

)
∈ Γ and V ∈ Λ = Λn, the

product (
tV −1 0

0 V

)
M =

(
tV −1A tV −1B
V C V D

)
also belongs to Γ. It follows that if (C, D) is the ”second row” of a matrix of Λ,
then so is (V C, V D). Replacing of M in

M〈X + iY 〉 = X ′ + iY ′

by the above product does not change the value |det(CZ + B)| and replaces the
matrix (Y ′)−1 by the matrix tV (Y ′)−1V . Therefore, we may assume that the
positive definite matrix (Y ′)−1 is Minkowski reduced.

Let us denote by cccr and dddr (r = 1, . . . , n) the columns of the matrices tC and
X tC + tD, respectively, and by t1, . . . , tn the diagonal elements of (Y ′)−1. Then,
by (1.10), we can write

(Y ′)−1 = (CZ +D)Y −1(Z tC + tD) = (CX +D)Y −1(X tC + tD) + CY tC,

whence, for r = 1, . . . , n, we get

(1.25) tr = Y −1[dddr] + Y [cccr] ≥
{

Y [cccr]
Y −1[dddr].

If, for some r, the columns cccr and dddr are both zero, then the r-th column of the
matrix (C D) is also zero, which is impossible, since M is nonsingular. Since Y > 0,
the value Y [cccr] assumes a positive minimum when Z is fixed and cccr is arbitrary
nonzero integral column. On the other hand, if cccr = 0, then dddr is the r-th column
of tD and so is a nonzero integral column. Since Y −1 > 0, the value Y −1[dddr]
also assumes a positive minimum. It follows then from (1.25) that the numbers
u1, . . . , un have a positive lower bound independent of M . The relations (1.22) and
(1.24) imply the inequality

t1t2 . . . tn ≤ cn(detY ′)−1 = cn(detY )−1|det(CZ +D)|2.
If we now assume that a condition |det(CZ +D)| ≤ h is satisfied for an arbitrary
large number h, then it implies upper bounds for t1, t2, . . . , tn. Then from (1.25) we
obtain upper bounds for entries of the columns cccr and dddr and hence for the entries
of the matrices C and D. Therefore, the condition is satisfied only for finitely many
pairs (C, D) if Z is fixed and h is a given large number. This proves the lemma.4
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Theorem 1.16. LetDDD =DDDn be the subset of matrices Z = X+iY ∈ Hn satisfying
the following conditions:

(1). |det(CZ +D)| ≥ 1 for every
(
∗ ∗
C D

)
∈ Γ = Γn;

(2). Y ∈MMMn, where MMMn is the Minkowski reduction domain (1.19);
(3). X ∈XXXn =

{
X = (xαβ) ∈ Rn

n)
∣∣∣ tX = X, |xαβ | ≤ 1/2 (1 ≤ α, β ≤ n)

}
.

ThenDDD meets each Λ-orbit on H, and Z ′ = M〈Z〉 for two inner points Z, Z ′ ∈DDD
with M ∈ Γ if and only if M = ±E, i.e. DDD is a fundamental domain of Γ on H.

If Z = X = iY ∈DDD, then

(1.26) Y ≥ bnE and σ(Y −1) ≤ n/bn,

where bn is a positive constant depending only on n.
The volume of DDD with respect to the invariant element of volume (1.12) is finite.

Proof. Let us consider the orbit Γ〈Z ′′〉 of a point Z ′′ ∈ H. By Lemma 1.15, the
orbit contains a point Z ′ = X ′ + iY ′ of maximal height, and the point satisfies the
condition (1). Every transformation of the form

Z ′ 7→
(

tV SV −1

0 V −1

)
= tV Z ′V + S = X ′[V ] + S + iY ′[V ]

with V ∈ Λ = Λn and S ∈ SSSn(Z) corresponds to a matrix of Γ and does not
change the height of Z ′. By Theorem 1.12, there is a matrix V ∈ Λ such that
the matrix Y = Y ′[V ] belongs to MMMn. Also, clearly, there is S ∈ SSSn(Z) such that
X ′[V ] + S ∈XXXn. Then

Z = X + iY ∈ Γ〈Z ′〉
⋂
DDD.

Suppose now that Z ′ = M〈Z〉 for two points Z, Z ′ ∈DDD with M =
(
A B
C D

)
∈

Γ. Then h(Z ′) = h(Z), by Lemma 1.15. It follows from (1.24) that |det(CZ+D)| =
1. On the other hand, since Z = M−1〈Z ′〉, we conclude that |det(− tCZ ′+ tA)| = 1
(see (1.1)). If C 6= 0, then the equations are nontrivial, and so the points Z, Z ′

belong to the boundary of D. If C = 0, then M has the form

M =
(

tV SV −1

0 V −1

)
with V ∈ Λ and S = tS ∈ Zn

n.

So we have

Z ′ = X ′ + iY ′ = X[V ] + S + iY [V ], where X + iY = Z,
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in particular, Y ′ = Y [V ]. Since Y and Y ′ are both in MMMn, it follows from Theorem
1.12 that Y and Y ′ are boundary points of MMMn or V = ±E. In the last case we
have X ′ = X + S, whence S = 0, unless X and X ′ belong to the boundary of XXXn.
We conclude that M = ±12n, unless Z and Z ′ are boundary points of DDD.

Let Z = (zαβ) = (xαβ + iyαβ) ∈ DDD. the inequality |det(CZ + D)| ≥ 1 for the
pair

(C, D) =
((

1 0
0 0

)
,

(
0 0
0 1n−1

))
implies the inequality |z11| =

√
x2

11 + y2
11 ≥ 1. Since |x11| ≤ 1/2, it follows that

y2
11 ≥ 3/4, i.e. y11 ≥

√
3/2. The last inequality and the inequalities (1.20) imply

that yαα ≥
√

3/2 for α = 1, . . . , n. The first inequality of (1.26) follows then from
(1.23) with bn =

√
3/2nn−1cn. The inequality implies that each characteristic value

of Y −1 not greater than 1/b, which proves the second inequality.
Finally, by (1.12), Theorem 1.16, and (1.26) we have

v(DDDn) =
∫

DDDn

(detY )−n−1d(detY )−n−1dY xdY ≤
∫

Y ∈MMMn,Y≥bnE

(detY )−n−1dY,

which, by (1.20), (1.21), and (1.22), can be estimated as

≤
∫

bn≤y11≤y22≤...≤ynn;
|2yαβ |≤yαα (α6=β)

(c−1
n y11y22 . . . ynn)−n−1dY

≤
∫

y11,y22,...,ynn≥bn

(c−1
n y11y22 . . . ynn)−n−1

(
n∏

α=1

yn−α
αα

)
dy11dy22 . . . dynn

= c′
n∏

α=1

∫ ∞

cn

y−α−1dyαα <∞.

4

Exercise 1.17. Prove that DDD1 is the so-called modular triangle,

DDD1 =
{
z = x+ iy ∈ H

∣∣∣ |x| ≤ 1
2
, |z| = x2 + y2 ≥ 1

}
,

and one can take b1 =
√

3
2 . Draw the modular triangle.
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Exercise 1.18. Two binary quadratic forms

Q(x, y) = q11x
2 + q12xy + q22y

2 and Q′(x, y) = q′11x
2 + q′12xy + q′22y

2

are said to be properly equivalent ( over Z) if

(1.27) Q′(x, y) = Q(ax+ by, cx+ dy) with
(
a b
c d

)
∈ Γ1 = SL2(Z).

Show that any real positive definite quadratic form Q is properly equivalent to a
form Q′, whose coefficients satisfy the inequalities |q′12| ≤ q′11 ≤ q′22. Show that the
cone given by the inequalities in the space of the coefficients of the form contains
no distinct inner points corresponding to properly equivalent forms

[Hint: Let ω and ω′ are the roots belonging to H of the equations Q(x, 1) = 0
and Q′(x, 1) = 0, respectively. Show that (1.26) is equivalent with the conditions

(q′12)
2 − 4q′11q

′
22 = (q12)2 − 4q11q22 and ω′ = M−1〈ω〉 with

(
a b
c d

)
∈ Λ;

then use Theorem 1.16 and Exercise 1.17.]

Theorem 1.19. Each subgroup of the symplectic group S = Sn of the form SM =
M−1SM , where S is a subgroup of finite index in the modular group Γ = Γn, and
M belongs to the general symplectic group G = Gn, has a fundamental domain
DDD(SM ) on H = Hn, and one can take

(1.28) DDD(SM ) =
⋃

Mα∈(−12n)S∪S\Γ

(M−1Mα)〈DDD〉,

where DDD = DDD(Γ) is a fundamental domain of Γ, and Mα ranges over a system of
representatives of different left cosets of Γ modulo the subgroup (−12n)S ∪ S.

The invariant volume of the fundamental domain is finite.

Proof. First of all, the set (1.28) is closed, as a finite union of closed subsets. Next,
if M−1Mα〈Z〉 and M−1Mα〈Z ′〉 are two inner points of the set belonging to the
same orbit of SM , i.e.

(M−1Mα)〈Z〉 = (M−1NM)〈(M−1Mβ)〈Z ′〉〉 = (M−1NMβ)〈Z ′〉 (N ∈ S),

one can assume that Z, and Z ′ are inner points of DDD. Then, by (1.7), Mα〈Z〉 =
(NMβ)〈Z ′〉, and so Z = Z ′, and Mα = ±NMβ , by the definition of DDD, which
implies that α = β and N = ±12n. Finally, since DDD meets each Γ-orbit, we have

H =
⋃

N∈Γ/{±12n}

N〈DDD〉 =
⋃

N∈(−12nS)∪S/{±12n}

⋃
Mα∈(−12nS)∪S\Γ

(NMα)〈DDD〉,
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whence

H = M−1〈H〉 =
⋃

N∈(−12nS)∪S/{±12n}

⋃
Mα∈(−12nS)∪S\Γ

((M−1NM)M−1Mα)〈DDD〉.

The decomposition (1.14) follows, whence the set DDD(SM ) meets each SM -orbit.
Let us take DDD(S′) in the form (1.17) . Then we get

v(DDD(SM )) =
∫

DDD(SM )

d∗Z =
∑

Mα∈(−12n)S∪S\Γ

∫
(M−1Mα)〈DDD〉

d∗Z

=
∑

Mα∈(−12n)S∪S\Γ

∫
DDD

d∗Z = [Γ : (−12n)S ∪ S] v(DDD) <∞,

by the last part of Theorem 1.16. 4

§1.3. Modular forms.

Acting on the upper half-plane H = Hn, the general symplectic group G = Gn

operates also on complex-valued functions F on H by Petersson operators of integral
weights k,

(1.29) G 3M : F 7→ F |kM = µ(M)nk−n(n+1)
2 j(M, Z)−kF (M 〈Z〉),

where

(1.30) j(M, Z) = det J(M, Z),

and the matrix J(M, Z) was defined by (1.8). It follows from (1.7) and (1.9) that
the Petersson operators satisfy the rules

F |kMM ′ = (µ(M)µ(M ′))nk−n(n+1)
2 (j(M, M ′〈Z〉)j(M ′, Z))−kF (M〈M ′〈Z〉〉)

= µ(M ′)nk−n(n+1)
2 j(M ′, Z)−k(F |kM)(M ′〈Z〉)

= (F |kM)|kM ′ (M,M ′ ∈ Gn).(1.31)

Let S be a subgroup of G commensurable with the modular group Γ = Γn, χ a
character of S, that is a multiplicative homomorphism of S into nonzero complex
numbers with the kernel of finite index in S, and k an integral number. A complex-
valued function F on H is called a (Siegel) modular form of weight k and character
χ for the group S, if the following conditions are satisfied:

(i) F is a holomorphic function in n(n+ 1)/2 complex variables on H;
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(ii) For every matrix M ∈ S, the function F satisfies the functional equation

(1.32) F |kM = χ(M)F,

where |k is the Petersson operator of weight k;
(iii) If n = 1, then every function F |kM with M ∈ Γ1 is bounded on each subset

of H1 of the form H1
ε = {x+ iy ∈ H1|y ≥ ε} with ε > 0.

The set Mk(S, χ) of all modular forms of weight k and character χ for the group
S is clearly a linear space over the field C.

For q ∈ N, we shall denote by

(1.33) Γ(q) = Γn(q) =
{
M ∈ Γn

∣∣∣M ≡ 12n (mod q)
}

the principal congruence subgroup of level q of the modular group. Considering
matrices of Γ modulo q, we get a homomorphism of the modular group into the
finite group of symplectic matrices of order 2n over the residue ring Z/qZ. It follows
that Γ(q) is a normal subgroup of finite index of the modular group.

A subgroup S of the symplectic group S, defined by (1.13), is called a congruence
subgroup if it contains a principal congruence subgroup as a subgroup of finite index.
A character of such S is said to be a congruence character if it is trivial on a principal
congruence subgroup contained in S. The following lemma is an easy consequence
of the definitions.

Lemma 1.20. Let S be a congruence subgroup of S, χ a congruence character of
S, and M ∈ G ∩Q2n

2n a matrix of G with rational entries, then the group M−1SM
is again a congruence subgroup of S, and the character

(1.34) M−1SM 3M ′ 7→ χM (M ′) = χ(MM ′M−1)

is a congruence character of the group.

Theorem 1.21. Let S be a congruence subgroup of S, and χ a congruence character
of S. Then each modular form F ∈Mk(S, χ) has an expansion of the form

(1.35) F (Z) =
∑

A∈En, A≥0

f(A)e
πi
q σ(AZ),

with constant coefficients f(A), where

En =
{
A = (aαβ) ∈ Zn

n

∣∣∣ tA = A, a11, a22, . . . , ann ∈ 2Z
}
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is the set of ”even” matrices of order n, σ denotes the trace, and where q = q(S, χ)
is such positive integer that the group S contains a subgroup of the form

(1.36) Tq =
{(

E qB
0 E

) ∣∣∣ B = tB ∈ Zn
n

}
.

The series (1.35) converges absolutely on H and uniformly on each subset of H
of the form

(1.37) Hε = Hn
ε =

{
X + iY ∈ Hn

∣∣∣ Y ≥ ε12n

}
with ε > 0;

in particular, F is bounded on each of the subset.
The coefficients f(A) satisfy the relations

(1.38) f( tV AV ) = (detV )kχ(M)e−
πi
q σ(AV U)f(A), (∀A ∈ En),

for every matrix M of the group S of the form

(1.39) M = M(U, V ) =
(
V −1 U

0 tV

)

The expansion (1.35) is called the Fourier expansion of F , and the numbers f(A)
with A ∈ En, A ≥ 0 are the Fourier coefficients of F .

Proof. The functional equations (1.32) for matrices of the subgroup Tq ⊂ S turns
into

F (Z + qB) = F (Z), (Z = (zαβ) ∈ H, B = tB ∈ Zn
n).

This means that F is periodic of period q in each of the variables zαβ = zβα. Since
F is also holomorphic, it can be expanded in a Fourier series of the form

F (Z) =
∑

eA
f ′(Ã; Y ) exp

2πi
q

∑
1≤α<β≤n

aαβxαβ

 ,

where Z = X+iY with X = (xαβ), and Ã ranges over the set of all upper triangular
matrices of order n with integral entries aαβ , and the series can be differentiated
with respect to all variables. The expansion can be rewritten in the form

F (Z) =
∑
A∈E

f(A; Y )e
πi
q σ(AZ),
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where A = Ã+ tÃ runs through the set E = En of all even matrices of order n, and
where f(A; Y ) = f ′(Ã; Y ) exp

(
−π

q σ(AY )
)
. Since F (Z) is holomorphic in each of

the variables zαβ , it satisfies the Cauchy-Riemann equations with respect to zαβ ,
that is

∂F

∂z̄αβ
= 0, where

∂

∂z̄
=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

Since the last sum can be differentiated term by term, it follows that

∂f(A, Y )
∂z̄αβ

=
i

2
∂f(A, Y )
∂yαβ

= 0, for 1 ≤ α ≤ β ≤ n.

Hence, the coefficients f(A, Y ) = f(A) are independent of Y , and we get the
expansion

(1.40) F (Z) =
∑
A∈E

f(A)e
πi
q σ(AZ)

with constant coefficients.
The last expression can be considered as a Laurent expansion of the holomorphic

function F in the variables tαβ = exp(2πizαβ/q), and so converges absolutely on
H.

The functional equations (1.32) for a matrix M of the form (1.39) give the
relation

(detV )−k
∑
A∈E

f(A)e
πi
q σ(AV −1Z tV −1+AU tV −1) = χ(M)

∑
A∈E

f(A)e
πi
q σ(AZ).

On replacing A by tV AV on the left, and comparing the coefficients, we get the
relations (1.38).

In order to complete the proof, we only have to show that f(A) = 0, unless
A ≥ 0, and that the series converges uniformly on subsets (1.37).

If n = 1, the expansion (1.40) turns into the expansion

F (z) =
∑
a∈2Z

f(a)e
πiaz

q =
∑
a∈2Z

f(a)ta/2,
(
t = e

2πiz
q

)
,

which can be considered as a Laurent expansion of a function in t holomorphic for
|t| < 1, except, possibly, at t = 0. The condition (iii) of the definition of modular
forms for n = 1 implies that F is bounded in the circle and so is holomorphic at
t = 0. Hence, f(a) = 0 if a < 0, and the series converges uniformly on H1

ε with
ε > 0.
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Now let n ≥ 2. Let Λ′ be the group of all matrices V ∈ Λ = SLn(Z) such that
the matrix M(0, V ) of the form (1.39) with U = 0 belongs to the kernel of the
character χ. Since χ is a congruence character, the group Λ′ has finite index in
Λ. By (1.38), we have f( tV AV ) = f(A), for all A ∈ En and V ∈ Λ′. Hence, the
expansion (1.40) can be rewritten in the form

F (Z) =
∑

A∈E/Λ′

f(A)η(Z, {A}),

where the sum is extended over a system of representatives for the classes {A} =
{ tV AV |V ∈ Λ′} of the set E modulo the equivalence A ∼ tV AV with V ∈ Λ′, and
where

η(Z, {A}) =
∑

A′∈{A}

e
πi
q σ(A′Z).

If f(A) 6= 0, then the series f(A)η(Z, {A}) converges absolutely for every Z ∈ H,
because it is a partial sum of an absolutely convergent series; in particular, the
series

η(iE, {A}) =
∑

A′∈{A}

e
−π
q σ(A′)

is convergent. Since the trace σ(A′) of every A′ ∈ {A} is a rational integer, it
follows that the class {A} cannot contain more than a finite number of matrices
A′ with σ(A′) < 0. On the other hand, we shall show that the trace σ(A′) takes
infinitely many negative values on the class {A} of any integral symmetric matrix
A of order n ≥ 2, unless A ≥ 0. If A is not semi-definite, then there is an integral
n-column hhh such that thhhAhhh < 0. For r ∈ Z we set

Vr = E + rH with H = (t1hhh, . . . , tnhhh) ∈ Zn
n,

where t1, . . . , tn are some integers. Since the rank of rH is equal to 1 or 0, it follows
that

detVr = 1 + σ(rH) = 1 + r(t1h1 + · · ·+ tnhn),

where hα are entries of hhh. Since n ≥ 2, there are integers t1, . . . , tn not all equal 0
and such that t1h1 + · · ·+ tnhn = 0. Then we have

Vr ∈ Λ, H2 = ((t1h1 + · · ·+ tnhn)hαtβ) = 0, and Vr = V r
1 .

Since the index of Λ′ in Λ is finite, it follows that matrix Va = V a
1 belongs to Λ′ for

some a ∈ N, and so does the matrices Vab = V b
a for every integer b. Whence, the

matrices tVabAVab belong to the class {A}, and

σ
(

tVabAVab

)
= σ(A) + 2abσ(AH) + a2b2σ( tV AV )
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= σ(A) + 2abσ(AH) + a2b2( thhhAhhh)(t21 + · · ·+ t2n).

The last expression is a polynomial in b of degree 2 with negative leading coefficient.
Hence, it takes infinitely many negative values on Z.

The above consideration show that a coefficient f(A) in (1.30) equals zero, unless
A ≥ 0, which proves the expansion (1.35).

Finally, it is easy to see that the series (1.35) is majorized on each set (1.37) by
a convergent series with nonnegative constant coefficients, and so converges there
uniformly.4

Lemma 1.22. Let F be a modular form of weight k and congruence character χ
for a subgroup S of S commensurable with the modular group Γ, and let M be a
matrix from Γ. Then

(1.41) F ′(Z) = F |kM ∈Mk

(
M−1SM, χM

)
,

where |k is the Petersson operator (1.29) and χM is the character (1.34).

Proof. The function F ′ is clearly holomorphic on H, satisfies, by (1.31) and (1.32),
the functional equations

F ′|k(M−1M ′M) = F |k(MM−1M ′M) = χ(M ′)F |kM = χM (M−1M ′M)F |kM

for all M ′ ∈ S, and, if n = 1, satisfies, together with F , the condition (iii) of the
definition of modular forms. 4

If S is a congruence subgroup and χ is a congruence character of S, then, by
Lemma 1.20 and Theorem 1.21, the function F |kM has a Fourier expansion of the
form

(1.42) (F |kM)(Z) =
∑

A∈En, A≥0

fM (A)e
πi
q σ(AZ)

with a positive integer q depending on S, χ, and M , which converges absolutely on
H and uniformly on the subsets (1.37). The modular form F is called a cusp form,
if coefficients fM (A) of the decomposition (1.42) satisfy the conditions

(1.43) fM (A) = 0 for all M ∈ Γ and A ∈ E with detA = 0.

The subspace of cusp forms of Mk(S, χ) will be denoted by Nk(S, χ).

Proposition 1.23. Let S be a congruence subgroup of S = Sn and χ a congruence
character of S. Then, for each cusp form F ∈ Nk(S, χ) and each matrix M ∈ Γ,
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the function F |kM ∈ Mk

(
M−1SM, χM

)
, where χM is the character (1.34), is a

cusp form with the Fourier expansion of the shape

(1.44) (F |kM)(Z) =
∑

A∈En, A>0

fM (A)e
πi
q σ(AZ).

where q is a positive integer. If k ≥ 0, then each of the forms F |kM satisfies

(1.45) |(F |kM)(X + iY )| ≤ δ(detY )k/2, (X + iY ∈ H),

and its Fourier coefficients satisfy

(1.46) |fM (A)| ≤ δ′(detA)k/2 for all A ∈ E with A > 0,

where δ and δ′ are constant depending only on F .

First we shall prove the following simple lemma.

Lemma 1.24. Let
φ(Y ) =

∑
A∈En, A>0

ϕ(A)e−ησ(AY ),

where Y belongs to the cone PPP = PPPn of positive definite matrices of order n and
η > 0, be a series with nonnegative coefficients η(A) convergent for all Y ∈ PPP .
Then, for every Minkowski reduced matrix Y satisfying Y ≥ dE with d > 0, the
following estimate holds

φ(Y ) ≤ d′e−d′′σ(Y ),

with positive constants d′ and d′′.

Proof of the lemma. If Y = (yαβ) ∈ PPP and A = (aαβ) ∈ E satisfies A > 0 then, by
(1.23),

σ(AY ) ≥ bσ(Adiag(y11, y22, . . . , ynn)) = b
n∑

α=1

aααyαα ≥ 2bσ(Y ),

where b is a positive constant depending only on n. On the other hand, if Y > dE,
then for A = (aαβ) ∈ E with A > 0, we obtain σ(AY ) ≥ dσ(A). (Note that we
have used twice the obvious inequality σ(AR) ≥ σ(BR) valid if matrices A−B and
R are positive semi-definite.) It follows then from the above inequalities that

σ(AY ) ≥ bσ(Y ) +
1
2
dσ(A),
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whence

φ(Y ) ≤
∑

A∈E, A>0

ϕ(A)e−η(bσ(Y )+ 1
2 dσ(A)) = e−ηbσ(Y )φ(

1
2
dE),

which proves the estimate. 4
Proof of Proposition 1.23. The fact that F |kM is a cusp form with the Fourier
expansion (1.44) follows from the definition of cusp forms and Lemma 1.22.

By our assumption, χ is trivial on a principal congruence subgroup Γ(q) of Γ.
Let us consider the function

(1.47) G =
∑

Mα∈Γ(q)\Γ

|F |kMα|.

It follows from (1.31) and (1.32) that G is independent of the choice of representa-
tives in the cosets Γ(q)\Γ and satisfies

(1.48) |G|kM | =
∑

Mα∈Γ(q)\Γ

|F |kMαM | = G for all M ∈ Γ,

because MαM runs through a system of representatives for Γ(q)\Γ, when Mα does.
Hence, by (1.10), we see that the function

(1.49) H(Z) = H(X + iY ) = (detY )k/2
∑

Mα∈Γ(q)\Γ

|F |kMα|

satisfies

(1.50) H(M〈Z〉) = H(Z) for all Z ∈ H and M ∈ Γ.

Since, by Theorem 1.21, each of the functions F |kMα is bounded on the sets Hε

with ε > 0, it follows from (1.26) that the functions are bounded on the fundamental
domain DDD of Γ, defined in Theorem 1.16. Besides,

|F |kM | ≤
∑

A∈E, A>0

|fM (A)|e−
π
q σ(AY ),

and the last series converges on the cone PPP = PPPn . If Z ∈DDD, then Y is Minkowski
reduced and satisfies Y ≥ bnE, hence, by Lemma 1.24, each of the series is domi-
nated by a function of the form d′ exp(−d′′σ(Y )) with constant d′ and d′′ depending
on F and M . Therefore, since k ≥ 0, we obtain

H(X + iY ) ≤ d′[Γ : Γ(q)](detY )k/2 exp(−d′′σ(Y ))

≤ δ
n∏

α=1

yk/2
αα exp(−d′′yαα),
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where yαα are the diagonal entries of Y , and we have also used the following con-
sequence of the Hadamard’s determinant theorem

(1.51) detY ≤ y11y22 · · · ynn (Y ∈ PPPn).

Since the last expression is clearly bounded on PPP , it follows that H is bounded on
DDD. Thus, by (1.50), H is bounded on H, which imply the estimate (1.45). Finally,
for the Fourier coefficients we obtain

q
n(n+1)

2 |fM (A)|

= |
∫
−q/2≤xαβ≤q/2

(F |kM)((xαβ) + iA−1)e−
πi
q σ((xαβ)+iA−1)

∏
1≤α≤β≤n

dxαβ |,

and the estimate (1.46) follows from (1.45). 4

One can prove that the coefficients of the Fourier expansion (1.35) of an arbitrary
modular form of nonnegative weight k and congruence character for a congruence
subgroup of Sn satisfy

(1.52) |f(A)| ≤ c(detA)k, (A ∈ En, A ≥ 0),

where c depends only on the form (see Sources).
The general philosophy of modular forms believes that consideration of arbitrary

modular forms can usually be reduced to the case of cusp forms and the cases of
modular forms of smaller genuses. The reduction is ensured by the Siegel operator
and its iterations. Let F = F (Z) be a modular form of weight k and character
χ for a congruence subgroup S of the symplectic group S = Sn and a congruence
character χ of S. Since the Fourier series (1.25) for F converges uniformly on
subsets of Hn of the form (1.27), the limit

(1.53) (F |Φ)(Z ′) = lim
λ→+∞

F

((
Z ′ 0
0 iλ

))
=

∑
A∈En, A≥O

f(A) lim
λ→+∞

e
πi
q σ(AZ′

λ),

where Z ′λ =
(
Z ′ 0
0 iλ

)
, exists for every Z ′ ∈ Hn−1. If A =

(
A′ ∗
∗ ann

)
, then

σ(AZ ′λ) = σ(A′Z ′) + iλann, whence

lim
λ→+∞

e
πi
q σ(AZ′

λ) = lim
λ→+∞

e−
π
q λanne

πi
q σ(A′Z′) =

{
e

πi
q σ(A′Z′), if ann = 0

0, if ann > 0.
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Since A ≥ 0, the equality ann = 0 implies that A has the form
(
A′ 0
0 0

)
. Thus,

we have

(1.54) (F |Φ)(Z ′) =
∑

A′∈E(n−1), A′≥0

f

((
A′ 0
0 0

))
e

πi
q σ(A′Z′),

for all Z ′ ∈ H(n−1). The last series is a partial series for the Fourier expansion of
F , and so it converges absolutely on H(n−1) and uniformly on H(n−1)

ε with ε > 0.
If n = 1, we set

(1.55) F |Φ = lim
λ→+∞

F (iλ) ∈ C.

As above, the limit exists and is equal to the constant term of the Fourier expansion
of F . The linear operator

(1.56) Φ : F 7→ F |Φ, (F ∈Mk(S, χ)),

is called the Siegel operator.
In order to show that the function F |Φ is a modular form on H(n−1), we shall

need new notation. Let n > 1. For a matrix M ′ =
(
A′ B′

C ′ D′

)
with square blocks

A′, B′, C ′, and D′ of order n− 1, we set

−→
M ′ =

(
A B
C D

)
and φ(

−→
M ′) =

(
A′ B′

C ′ D′

)
,

where

A =
(
A′ 0
0 1

)
, B =

(
B′ 0
0 0

)
, C =

(
C ′ 0
0 0

)
, D =

(
D′ 0
0 1

)
.

If S is a subgroup of Gn, we denote by
←−
S the set of all matrices M ′ =

(
A′ B′

C ′ D′

)
such that the matrix

−→
M ′ belongs to S:

(1.57)
←−
S =

{
M ′ =

(
A′ B′

C ′ D′

)
∈ R2n−2

2n−2

∣∣∣ −→M ′ ∈ S
}
.

Then it is clear that
←−
S is a subgroup of S(n−1), and the map ψ given by

(1.58)
←−
S 3M ′ 7→ ψ(M ′) =

−→
M ′ ∈ S

is a homomorphic embedding of the group
←−
S into S.
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Lemma 1.25. Let S be a congruence subgroup of Sn with n > 1, and χ a congru-
ence character of S. Then the group

←−
S is a congruence subgroup of G(n−1), and

the map ←−χ given by

(1.59)
←−
S 3M ′ 7→ ←−χ (M ′) = χ(

−→
M ′)

is a congruence character of
←−
S .

Proof. By the assumptions, S contains a principal congruence subgroup Γ(q) =
Γn(q) of finite index belonging to the kernel of χ. Then the group

←−−
Γ(q) of the form

(1.57) is clearly a principal congruence subgroup of
←−
S belonging to the kernel of

the character ←−χ . It remains to prove that
←−−
Γ(q) has finite index in

←−
S . Really, if

←−−
Γ(q)M ′

α 6=
←−−
Γ(q)M ′

β , where M ′
α, M ′

β belong to
←−
S , then Γ(q)

−→
M ′

α 6= Γ(q)
−→
M ′

β , since

otherwise we would have
−→
M ′

α(
−→
M ′

β)−1 ∈ Γ(q), and so M ′
α(M ′

β)−1 ∈ ←−Γ (q).4

Now we can prove

Theorem 1.26. Let S be a congruence subgroup of Sn, and χ a congruence char-
acter of S. Then the Siegel operator Φ maps the space Mk(S, χ) into the space
Mk(
←−
S , ←−χ ):

(1.60) Φ : Mk(S, χ) 7→Mk(
←−
S , ←−χ ),

where, for n = 1, we set
Mk(
←−
S , ←−χ ) = C.

Proof. One can assume that n > 1. Let F ∈ Mk(S, χ), Z ′ ∈ Hn−1, M ′ =(
A′ B′

C ′ D′

)
∈ ←−S , Z ′λ =

(
Z ′ 0
0 iλ

)
, and M =

(
A B
C D

)
= ψ(M ′) ∈ S, where

ψ is the embedding (1.58). Then we have

M〈Z ′λ〉 =
(
A′Z ′ +B′ 0

0 iλ

)(
C ′Z ′ +D′ 0

0 1

)−1

= M ′〈Z ′〉λ,

det(CZ ′λ +D) = det(C ′Z ′ +D′), and χ(M) =←−χ (M ′).

It follows that

(1.61) (F |Φ|kM ′)(Z ′) = det(C ′Z ′ +D′)−k lim
λ→+∞

F (M ′〈Z ′〉λ)

= lim
λ→+∞

det(CZλ +D)−kF (M〈Z ′λ〉) = (F |kM |Φ)(Z ′).
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In particular, if M ′ ∈ ←−S , then we have

F |Φ|kM ′ = χ(M)FΦ =←−χ (M ′)F |Φ.

Besides, it follows from (1.54) and (1.61) that the function (F |Φ|kM ′)(Z ′) is holo-
morphic on Hn−1, and is bounded on each subset Hn−1

ε with ε > 0.4

¿From (1.54) and the definition of cusp forms we obtain

Lemma 1.27. Let S be a congruence subgroup of Sn, and χ a congruence character
of S. Then a function F ∈Mk(S, χ) is a cusp form if and only if it satisfies

(F |kM)|Φ = 0 for all M ∈ Γ,

where Φ is the Siegel operator.

We can prove now the following important theorem.

Theorem 1.28. Let S be a congruence subgroup of Sn, χ a congruence character
of S, and k a nonnegative integer. Then the space Mk(S, χ) of modular forms of
weight k and character χ for the group S is finite-dimensional over the field C.

The proof of the theorem is based on the next key lemma.

Lemma 1.29. Let
F (Z) =

∑
A∈E, A>0

f(A)eπiσ(AZ)

be a cusp form of a nonnegative integral weight k and the unit character χ for
the full modular group Γ = Γn. Suppose that the Fourier coefficient satisfy the
conditions

(1.62) f(A) = 0, if σ(A) ≤ kn

2πbn
,

where bn is the constant of Theorem 1.16. Then F is identically equal to zero.

Proof of the lemma. Similarly to the proof Proposition 1.23, let us consider the
function

H(Z) = H(X + iY ) = (detY )k/2|F (Z)|.

As we have seen, it satisfies H(M〈Z〉) = H(Z) for all Z ∈ H and M ∈ Γ and is
bounded on the fundamental domain DDDn of Γ described in Theorem 1.16. Besides,
it follows from the estimates (1.51) and (1.52) that H(X+ iY )→ 0, when detY →
+∞ remaining in DDDn. It follows from Theorem 1.16 that any subset of DDDn of
the form {X + iY ∈ DDDn|detY ≤ c} with c > 0 is bounded and closed, and
therefore is compact. Hence, the function H(Z) attains its maximum µ at some
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point Z0 = X0 + iY0 of DDDn. Since H is Γ-invariant, we conclude that µ is the
maximum of H on H, that is H(Z) ≤ H(Z0) = µ for all Z ∈ H. Let us set
Zt = Z0 + tE, where t = u+ iv is a complex parameter, and consider the function

h(t) = F (Zt)e−πiλσ(Zt)

=
∑

A∈E, A>0

f(A)eπi(σ(AZ0+tσ(A))−λσ(Z0+tE))

=
∑

A∈E, A>0

f(A)eπi(σ(AZ0−λZ0))eπit(σ(A)−λn)

= h′(w),

where w = eπit, and λ satisfies λn = 1 + [kn/2πbn]. By the assumption of the
lemma, f(A) = 0 if σ(A)−λn < 0, and so the expansion of the function h′(w) does
not contain negative powers of w. If ε > 0 is so small that Zt ∈ H for v ≥ −ε,
then the expansion converges absolutely and uniformly on the half-plane v ≥ −ε,
and so the function h′(w) is holomorphic in the disk |w| ≤ eπε = τ . Since τ > 1,
it follows, by the maximum-modulus principle, that there is a point w0 = eπit0

satisfying |w0| = τ and h′(1) ≤ h′(w0). Coming back to the function h, we can
rewrite the last inequality in the form

|F (Z0)eπλσ(Y0)| ≤ |Ft0 |eπλσ(Y0)eπλnv0 ,

where t0 = u0 + v0, whence

(detY0)−k/2H(Z0) ≤ (detYt0)
−k/2H(Zt0)e

πλnv0 .

Since H(Z0) = µ and H(Zt0) ≤ µ, the last inequality implies the inequality

µ ≤ µ(detY0)k/2(detYt0)
−k/2eπλnv0 = µψ(v0),

where ψ(v) = det(E + vY −1
0 )−k/2eπλnv. We have ψ(0) = 1. Let us show that the

derivative of ψ is positive at v = 0. We can write

ψ(v) = eπλnv
n∏

j=1

(1 + vλj)−k/2,

where λ1, . . . , λn are the characteristic values of Y −1
0 , whence the value of the

derivative at v = 0 is

πλn− k

2
(λ1 + · · ·+ λn) = πλn− k

2
σ(Y −1

0 )

≥ πλn− kn

2bn
= π

(
1 +

[
kn

2πbn

])
− kn

2bn
> 0,
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by (1.26), since X0 + iY0 ∈ DDDn. It follows that, for small ε > 0, we have ψ(v0) =
ψ(−ε) < 1 (we remind that eπε = τ = |eπi(u0+iv0)| = e−πv0). Then the above
inequality shows that µ = 0, and so F is identically equal to zero. 4
Proof of Theorem 1.28. Note, first of all, that if the character χ is trivial on a
principal congruence subgroup Γ(q) = Γn(q) contained in the group S, then the
space Mk(S, χ) is contained into the space M = Mk(Γ(q)) of modular forms of
weight k and the unit character for the group Γ(q). Therefore, it will sufficient
to prove that each of the spaces is finite-dimensional. We remind that Γ(q) is a
normal subgroup of finite index ν = [Γ : Γ(q)] in Γ. Let M1, . . . ,Mν be a system of
representatives for cosets of Γ modulo Γ(q). For a function F ∈M, let us consider
the functions

(1.63) F1 = F |kM1, . . . , Fν = F |kMν .

By (1.31) and (1.32), the functions does not depend on the choice of the repre-
sentatives Mα. Since, for any M ∈ Γ, the set M1M, . . . ,MνM is again a set of
representatives for the cosets, it follows that the functions F1|kM, . . . , Fν |kM co-
incide up to a permutation with the functions (1.63). By Lemma 1.22, each of the
functions (1.63) belongs to M and, by Proposition 1.23, is a cusp form, if F is a
cusp form.

Now, let us derive from Lemma 1.29 its generalization to the subspace N =
Nk(Γ(q)) of cusp forms of M: If

F (Z) =
∑

A∈E, A>0

f(A)eπiσ(AZ) ∈ N,

and the Fourier coefficients f(A) satisfy

(1.64) f(A) = 0, if σ(A) ≤ knqν

2πbn
,

then F is identically equal to zero. For that we shall consider the product

G(Z) =
ν∏

α=1

Fα(Z)

of the functions (1.63). By (1.29) and the above consideration, we have, for every
M ∈ Γ,

G|kνM = j(M, Z)−kνG(M〈Z〉) =
ν∏

α=1

(j(M, Z)−kFα(〈Z〉))

=
ν∏

α=1

Fα|kM =
ν∏

α=1

Fα = G.
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Since G, obviously, satisfies analytical conditions of the definition of cusp forms,
we conclude that G is a cusp forms of weight kν for the group Γ. Let fα(A) be the
Fourier coefficients of the function Fα, so that

Fα =
∑

A∈E, A>0

fα(A)e
πi
q σ(AZ).

Then the Fourier coefficients g(A) of G can be written in the form

g(A) =
∑

A1+...+Aν=qA

f1(A1) · · · fν(Aν).

Let A be a positive definite matrix of E satisfying σ(A) ≤ knν/2πb, where b = bn.
Then the inequality

σ(A) =
1
q
(σ(A1) + · · ·+ σ(Aν)) ≤ kνn

2πb

for positive definite even matrices A1, . . . , Aν implies that σ(Aα) < knqν/2πb for
each α = 1, . . . , ν, since the trace of any positive definite matrix is positive. If,
for example, F1 = F and so f1 = f , then the condition (1.64) implies that each
of the terms of the sum for g(A) has a factor of the form f1(A1) = f(A1) with
σ(A1) < knqν/2πb, which is zero. Then, by Lemma 1.29, G = 0, and so F = 0.

Now, we can prove that the subspace N of cusp forms of M is finite-dimensional.
Since entries of positive semi-definite matrices A = (aαβ) satisfy the inequalities
aαα±2aαβ +aββ ≥ 0, it follows that the number of even positive semi-definite even
matrices A of order n with σ(A) ≤ 2N does not exceed the bound

(1.65) (N + 1)n(2N + 1)n(n−1)/2.

Therefore, the number of positive definite even matrices A satisfying the inequal-
ity in (1.64)is bounded by a number of the form dn(kqν)n(n+1)/2, where dn de-
pends only on n. Taking dn to be integral number, we see that arbitrary d + 1
functions F1, . . . , Fd+1 of N are linearly dependent, since one can always find
complex numbers c1, . . . , cd+1 not all equal zero and such that the function F =
c1F1 + . . .+cd+1Fd+1 satisfies the condition (1.64) and therefore is identically equal
to zero.

Finally, we use induction on n to prove the theorem for the spaces Mn =
Mk(Γn(q)). Let us define for n ≥ 1 the linear map

Φ = Φn : Mn 7→Mn−1 × · · · ×Mn−1︸ ︷︷ ︸
νn times
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by
F |Φ = (F1|Φ, . . . , Fνn

|Φ) , (F ∈Mn),

where νn is the index of Γn(q) in Γn, Φ the Siegel operator (1.56), Fα are the
functions (1.63), and where we set M0 = C. By Lemma 1.27, the kernel of Φn

coincides with the subspace Nn of cusp forms of Mn and so is finite-dimensional.
The image of Φ1 is finite-dimensional, since it is contained in Cν1 , which proves the
theorem for n = 1. If it is already proved for n − 1 ≥ 1, then the image of Φn is
finite-dimensional and so is the space Mn. 4

One can show that M(S, χ) = {0} if k is a negative integer, but we shall not
need the result.

Exercise 1.30. Show that Mk(Γn) = {0} if nk is odd.

Exercise 1.31. Show that the spaces Mk(Γ1) for k = 0, 2, 4, 6, 8, 10 contain no
cusp forms, and there is not more than one linearly independent cusp forms of
weight 12 for Γ1.

[Hint: Use Lemma 1.29 for n = 1 with b1 given in Exercise 1.17.]

Exercise 1.32. Let k > 2 be an integer. Show that the Eisenstein series

Ek(z) =
∑

c,d∈Z;
(c,d) 6=(0,0)

1
(cz + d)k

, (z ∈ H1)

converges absolutely and defines a modular form of weight k for Γ1.

[Hint: If SSS is a compact subset of H1, then |αz+β| ≥ b(|α|+ |β|) for all α, β ∈ R
and z ∈ SSS with a positive constant b. Since there are only 4r pairs of integers (c, d)
with |c|+ |d| = r, it follows Ek(z) is dominated term by term by

b−k
∞∑

r=1

4r
rk
.]

Exercise 1.33. Show that, if k > 2 is even, then the Fourier expansion of Ek(z)
has the form

Ek(z) = 2
∞∑

n=1

1
nk

+ 2
(2πi)k

(k − 1)!

∞∑
n=1

∑
d|n

dk−1

 e2πinz.

[Hint: Show first that∑
d∈Z

1
(z + d)k

=
π2

sin2 πz
=

(2π)2t
(1− t)2

= (2πi)2
∞∑

d=1

dtd,

where t = e2πiz. Then differentiate the both parts k − 2 times.]
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Exercise 1.34. let k be a positive even integer. Show that the Fourier coefficients
of any modular form

F (z) =
∞∑

a=0

f(2a)e2πiaz ∈Mk(Γ1)

satisfy

f(2a) = f(0)ζ(k)−1 (2πi)k

(k − 1)!

∑
d|n

dk−1 + f ′(a), where |f ′(a)| ≤ δFak/2,

where ζ(s) is the Riemann zeta.

[Hint: Show first that the function F (z) − f(0)(2ζ(k))−1Ek(z) is a cusp form.
Then use Exercise 1.33 and (1.46).]

Exercise 1.35. Show that the spaces Mk(Γ1) for k = 0, 4, 6, 8, 10 are spanned
respectively by 1, E4, E6, E8, and E10.

Exercise 1.36. Show that the function

∆′(z) = ((2ζ(4))−1E4(z))3 − ((2ζ(6))−1E6(z))2

is a nonzero cusp form of space M12(Γ1) and together with E12(z) span the space.

§1.4. Petersson scalar product.

Every space Nk(S, χ) of cusp forms of an integral weight k and a congruence
character χ for a congruence subgroup S of the symplectic group can be endowed
with structure of a Hilbert space by means of the Petersson scalar product. For
two functions F and F ′ on H = Hn, we consider the differential form on H defined
by

(1.66) ωk(F, F ′) = F (Z)F ′(Z)h(Z)kd∗Z,

where h(Z) = h(X+ iY ) = detY is the height of Z, d∗Z is the invariant element of
volume (1.12), and, us usual, bar means the complex conjugation. It follows from

Lemma 1.4 and Proposition 1.6 that, for each matrix M =
(
A B
C D

)
∈ G = Gn,

the form satisfies the relation

ωk(F, F ′)(M〈Z〉) = F (M〈Z〉)detF ′(M〈Z〉)h(M〈Z〉)kd∗M〈Z〉
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= µ(M)nk det(CZ +D)−kF (M〈Z〉)det(CZ +D)
−k
F ′(M〈Z〉)h(Z)kd∗Z

= µ(M)−nk+n(n+1) (F |kM) (Z)(F ′|kM) (Z)h(Z)kd∗Z

(1.67) = µ(M)n(n+1−k)ωk (F |kM, F ′|kM) (Z),

where |kM is the Petersson operator (1.29) of weight k. In particular, if F, F ′ ∈
Mk(S, χ) and M ∈ S, then, by (1.32), we have

(1.68) ωk(F, F ′)(M〈Z〉) = ωk(χ(M)F, χ(M)F ′)(Z) = ωk(F, F ′)(Z).

It follows that the integral

(1.69)
∫

D(S)

ωk(F, F ′)(Z)

on a fundamental domain D(S) of S on H does not depend on the choice of the
fundamental domain, provided that it converges absolutely.

Lemma 1.37. Let S be a congruence subgroup of S = Sn, χ a congruence character
of S, and k an integer. Suppose that at least one of the forms F, F ′ ∈Mk(S, χ) is
a cusp form. Then the integral (1.69) converges absolutely.

Proof. By increasing the space Mk(S, χ), one may assume that S is a subgroup of
finite index in Γ and the character χ is trivial on S. Let us take then as D(S) a
fundamental domain of the form (1.28) with M = 12n, that is a finite union of the
sets Mα〈DDD〉 with Mα ∈ Γ, whereDDD =DDDn is the fundamental domain of Γ described
in Theorem 1.16. Then, by (1.67), it is sufficient to show that each integral∫

M〈DDD〉
ωk(F, F ′)(Z) =

∫
DDD

ωk (F |kM, F ′|kM) (Z) with M ∈ Γ

converges absolutely. Assuming that F ′ is a cusp form, by (1.42) and (1.43), we
can write absolutely convergent Fourier expansions

F |kM =
∑

A∈E,A≥0

fM (A)e
πi
q σ(AZ),

F ′|kM =
∑

A∈E,A>.0

f ′M (A)e
πi
q σ(AZ),

where E = En and q is such that Γn(q) ⊂ S. It follows that

|(F |k)(Z)(F ′|kM)(Z)| ≤
∑

A∈E,A>0

c(A)e−
π
q σ(AZ),
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where Z = X+ iY , with nonnegative coefficients c(A), and the last series converges
on H. Then, by Theorem 1.16 and Lemma 1.24, we get the inequality

|(F |k)(Z)(F ′|kM)(Z)| ≤ d′e−d′′σ(Y ), (Z = X + iY ∈DDD),

with positive constants d′ and d′′. Thus, to prove the lemma it suffices to show
that the integral ∫

DDD

e−dσ(Y )(detY )k−n−1
∏

1≤α≤β≤n

dxαβdyαβ

with d > 0 converges. If (xαβ) + i(yαβ) ∈ DDD, then it follows from the definition of
DDD and (1.22) that |xαβ | ≤ 1/2 for 1 ≤ α, β ≤ n and yαβ ≤ yαα/2 for α 6= β. In the
proof of Theorem 1.16 we have seen that yαα ≥

√
3/2 for α = 1, . . . , n. Then the

inequality (1.22), if k < n, and the inequality (1.51), if k ≥ n + 1, imply that the
last integral is majorized by

c

∫
|xαβ |≤1/2,yαα≥

√
3/2,

|yαβ |≤yαα/2(α6=β)

n∏
α=1

yk−n−1
αα e−δyαα

∏
1≤α≤β≤n

dxαβdyαβ

= c
∞∏

α=1

∫ ∞

√
3/2

yk−n−1+n−α
αα e−δyααdyαα <∞.

4

The above lemma justifies the following definition. For two modular forms
F, F ′ ∈ M(S, χ) of an integral weight k and a congruence character χ for a con-
gruence subgroup S ⊂ S, such that at least one of the forms is a cusp form, the
integral

(1.70) (F, F ′) = ν(K ′)−1

∫
D(K)

ωk(F, F ′)(Z),

where K is a congruence subgroup of Γ contained in S, K ′ = K ∪ (−12n)K, ν(K ′)
the index of K ′ in Γ, and D(K) a fundamental domain of K on H, is called the
(Petersson) scalar product of these forms.

Theorem 1.38. Under the assumptions of the definition, the scalar product has
the following properties:

(1) It converges absolutely and does not depend on the choice of fundamental
domain D(K);
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(2) The scalar product is independent of the choice of the subgroup K of Γ con-
tained in S;

(3) It is linear in F and conjugate linear in F ′;
(4) (F, F ′) = (F ′, F );
(5) If F is a cusp form, then (F, F ) ≥ 0, and (F, F ) = 0 only if F = 0;
(6) If M ∈ Gn ∩Q2n

2n is a symplectic matrix with positive multiplier and entries
in the field Q of rational numbers, then

(1.71) (F |kM, F ′|kM) = µ(M)n(k−n−1)(F, F ′),

where the functions F |kM and F ′|kM are considered as elements of the space
Mk

(
M−1SM, χM

)
with the character χM defined by (1.34).

Proof. The first property follows from (1.68) and Lemma 1.37.
In order to prove the second property, let us assume that K1 is another con-

gruence subgroup of Γ contained in S. Then on replacing K1 by K1 ∩K, one can
assume that K1 ⊂ K. Let

Γ =
⋃
α

K ′Mα and K ′ =
⋃
β

K ′
1Nβwith K ′

1 = K1 ∪ (−12n)K1

be decompositions into different left cosets. Then we have

Γ =
⋃
α,β

K ′
1NβMα,

and the left cosets are pairwise distinct. It follows from Theorem 1.19 that one can
take

D(K1) =
⋃
α,β

NβMα〈DDDn〉,

whence we obtain

ν(K ′
1)
−1

∫
D(K1)

ωk(F, F ′)(Z) = ν(K ′
1)
−1
∑
α

∑
β

∫
Nβ〈Mα〈DDDn〉〉

ωk(F, F ′)(Z)

= ν(K ′
1)
−1[K ′ : K ′

1]
∑
α

∫
Mα〈DDDn〉

ωk(F, F ′)(Z),

where we have also used relations (1.68). Again by Theorem 1.19, the last expression
is equal to

ν(K ′
1)
−1

∫
D(K)

ωk(F, F ′)(Z),



MODULAR FORMS 41

that proves the property (2).
The properties (3), (4), and (5) follow directly from the definition.
In order to prove (1.71), we note that, since all entries of M are rational, the

group M−1SM is again a congruence subgroup of S, and so the groups

KM = Γ
⋂
M−1KM and K(M) = K

⋂
KM = K

⋂
M−1KM

are both congruence subgroups of Γ and therefore are both of finite index in Γ. It
follows from Lemma 1.20, the part (2), and (1.67) that

(F |kM, F ′|kM) = ν
(
K ′

(M)

)−1
∫

D(K(M))

ωk (F |kM, F ′|kM) (Z)

= µ(M)n(k−n−1)ν
(
K ′

(M)

)−1
∫

D(K(M))

ωk(F, F ′) (M〈Z〉)

= µ(M)n(k−n−1)ν
(
K ′

(M)

)−1
∫

M〈D(K(M))〉
ωk(F, F ′)(Z),

where K ′
(M) = K(M) ∪ (−12n)K(M) and D

(
K(M)

)
is a fundamental domain for

K(M). It is clear that the set M〈D
(
K(M)

)
〉 is a fundamental domain for the group

MK(M)M
−1 = MKM−1 ∩ K = K(M)−1 . Hence, again by property (2), we can

rewrite the last expression in the form

µ(M)n(k−n−1)ν
(
K ′

(M)

)−1

ν
(
K ′

(M−1)

)
ν
(
K ′

(M−1)

)−1
∫

D〈(K(M)−1)〉
ωk(F, F ′)(Z)

= µ(M)n(k−n−1)ν
(
K ′

(M)

)−1

ν
(
K ′

(M−1)

)
(F, F ′),

where K ′
(M−1) = K(M−1) ∪ (−12n)K(M−1). In order to prove the relation (1.71), it

is sufficient to prove that ν
(
K ′

(M)

)
= ν

(
K ′

(M−1)

)
, or that

(1.72)
[
K : K(M)

]
=
[
K : K(M−1)

]
for every matrix M of G with rational entries. Let D be a fundamental domain
for the group K(M). Since K(M−1) = MK(M)M

−1, it follows that one can take the
set M〈D〉 as a fundamental domain for K(M−1). Then Theorem 1.19 implies the
following relations for the invariant volumes of the domains D and M〈D〉:

v(D) =
[
K : K(M)

]
v(D(K)), v(M〈D〉) =

[
K : K(M−1)

]
v(D(K)),

which inplies (1.72), since v(D) = v(M〈D〉). 4
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Exercise 1.39. Show that the Eisenstein series Ek(z) defined in Exercise 1.32 is
orthogonal to the space Nk(Γ1) of cusp forms of weight k for Γ1.

[Hint: Note that

Ek(z) = (1 + (−1)k)ζ(k)
∑

M∈Γ1
0\Γ1

j(M, z)−k,

where j(M, z) is defined by (1.30) and Γ1
0 =

{(
a b
0 d

)
∈ Γ1

}
, which allows one to

rewrite the scalar product of Ek(z) on a cusp form as integral over a fundamental
domain for the group Γ1

0, say, {z = x+ iy ∈ H1
∣∣∣ −1/2 ≤ x ≤ 1/2}.]


