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Abstract

In a recent issue of the Bulletin of the Korean Mathematical Society, Qi and Zhang
discovered an interesting integral representation for the Bernoulli numbers of the second
kind (also known as Gregory’s coefficients, Cauchy numbers of the first kind, and the
reciprocal logarithmic numbers). The same representation also appears in many other
sources, either with no references to its author, or with references to various modern
researchers. In this short note, we show that this representation is a rediscovery of
an old result obtained in the 19th century by Ernst Schröder. We also demonstrate
that the same integral representation may be readily derived by means of complex
integration. Moreover, we discovered that the asymptotics of these numbers were also
the subject of several rediscoveries, including very recent ones. In particular, the first-
order asymptotics, which are usually (and erroneously) credited to Johan F. Steffensen,
actually date back to the mid-19th century, and probably were known even earlier.
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1 Rediscovery of Schröder’s integral formula

In a recent article in the Bulletin of the Korean Mathematical Society [10], several results
concerning the Bernoulli numbers of the second kind were presented.

We recall that these numbers (OEIS A002206 and A002207), which we denote below by
Gn, are rational
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and were introduced by the Scottish mathematician and astronomer James Gregory in 1670
in the context of area’s interpolation formula. Subsequently, they were rediscovered by
many famous mathematicians, including Gregorio Fontana, Lorenzo Mascheroni, Pierre-
Simon Laplace, Augustin-Louis Cauchy, Jacques Binet, Ernst Schröder, Oskar Schlömilch,
Charles Hermite and many others. Because of numerous rediscoveries these numbers do not
have a standard name, and in the literature they are also referred to as Gregory’s coeffi-
cients, (reciprocal) logarithmic numbers, Bernoulli numbers of the second kind, normalized

generalized Bernoulli numbers B
(n−1)
n and normalized Cauchy numbers of the first kind C1,n.

Usually, these numbers are defined either via their generating function
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or explicitly
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It is well known that Gn are alternating Gn = (−1)n−1|Gn| and decreasing in absolute

value; they behave as
(

n ln2 n
)

−1
at n → ∞ and may be bounded from below and from

above accordingly to formulas (55)–(56) from [3]. For more information about these impor-
tant numbers, see [3, pp. 410–415], [2, p. 379], and the literature given therein (nearly 50
references).

Now, the first main result of [10, p. 987] is Theorem 1.1 It states: the Bernoulli numbers
of the second kind may be represented as follows

Gn = (−1)n+1

∞
ˆ

1

dt
(

ln2(t− 1) + π2
)

tn
, n ∈ N . (2)

1Our Gn are exactly bn from [10] and
c
(1)
n,1

n!
from [4, Sect. 5]. Despite a venerable history, these numbers

still lack a standard notation and various authors may use different notation for them.

2

http://oeis.org/A002206
http://oeis.org/A002207


The first arXiv preprint of this article (arXiv:1612.03292) has been published on December 10 2016.

The final journal version is available at https://cs.uwaterloo.ca/journals/JIS/VOL20/Blagouchine/blag5.html

Figure 1: A fragment of p. 112 from Schröder’s paper [11]. Schröder’s C
(−1)
n are exactly our

Gn.

The same representation appears in a slightly different form2

Gn = (−1)n+1

∞
ˆ

0

du
(

ln2 u+ π2
)

(u+ 1)n
, n ∈ N , (3)

in [5, pp. 473–474] and [4, Sect. 5], and is called Knessl’s representation and the Qi inte-
gral representation respectively. Furthermore, various internet sources provide the same (or
equivalent) formula, either with no references to its author or with references to different
modern writers and/or their papers. However, the integral representation in question is not
novel and is not due to Knessl nor to Qi and Zhang; in fact, this representation is a rediscov-
ery of an old result. In a little-known paper of the German mathematician Ernst Schröder
[11], written in 1879, one may easily find exactly the same integral representation on p. 112;
see Fig. 1. Moreover, since this result is not difficult to obtain, it is possible that the same
integral representation was obtained even earlier.

2 Simple derivation of Schröder’s integral formula by

means of the complex integration

Schröder’s integral formula [11, p. 112] may, of course, be derived in various ways. Below,
we propose a simple derivation of this formula based on the method of contour integration.

If we set u = −z − 1, then equality (1) may be written as

z + 1

ln z − πi
= −1 +

∞
∑
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∣
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∣
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Now considering the following line integral along a contour C (see Fig. 2), where n ∈ N, and

2Put t = 1 + u.
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Figure 2: Integration contour C (r and R are radii of the small and big circles respectively,
where r ≪ 1 and R ≫ 1).

then letting R → ∞ , r → 0, we have by the residue theorem
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and because at z = −1 the integrand of the contour integral has a pole of the (n + 1)th
order. This completes the proof. Note that above derivations are valid only for n ≥ 1, and
so is Schröder’s integral formula, which may also be regarded as one of the generalizations
of Gn to the continuous values of n.
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Figure 3: A fragment of p. 115 from Schröder’s paper [11].

3 Several remarks on the asymptotics for the Bernoulli

numbers of the second kind

The first-order asymptotics |Gn| ∼
(

n ln2 n
)

−1
at n → ∞ are usually credited to Johan F.

Steffensen [12, pp. 2–4], [13, pp. 106–107], [9, p. 29], [7, p. 14, Eq. (14)], [8], who found it in
1924.3 However, in our recent work [3, p. 415] we noted that exactly the same result appears
in Schröder’s work written 45 years earlier, see Fig. 3, and the order of the magnitude of the
closely related numbers is contained in a work of Jacques Binet dating back to 1839 [1].4 In
1957 Davis [7, p. 14, Eq. (14)] improved this first-order approximation slightly by showing

that |Gn| ∼ Γ(1+ ξ)
(

n ln2 n+nπ2
)

−1
at n → ∞ for some ξ ∈ [0, 1] , without noticing that

7 years earlier S. C. Van Veen had already obtained the complete asymptotics for them [14,
p. 336], [9, p. 29]. Equivalent complete asymptotics were recently rediscovered in slightly
different forms by Charles Knessl [5, p. 473], and later by Gergő Nemes [8]. An alternative
demonstration of the same result was also presented by the author [3, p. 414].
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