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1. Introduction and notations

1.1. Introduction

The ζ-functions are one of more important special functions in modern analysis and 
theory of functions. The most known and frequently encountered ζ-functions are Rie-
mann and Hurwitz ζ-functions. They are classically introduced as the following series

ζ(s) =
∞∑

n=1

1
ns

, ζ(s, v) =
∞∑

n=0

1
(n + v)s , v �= 0,−1,−2, . . .

convergent for Re s > 1, and may be extended to other domains of s by the principle 
of analytic continuation. It is well known that ζ(s) and ζ(s, v) are meromorphic on the 
entire complex s-plane and that their only pole is a simple pole at s = 1 with residue 
1. They can be, therefore, expanded in the Laurent series in a neighborhood of s = 1 in 
the following way

ζ(s) = 1
s− 1 +

∞∑
n=0

(−1)n(s− 1)n

n! γn, s �= 1, (1)

and

ζ(s, v) = 1
s− 1 +

∞∑
n=0

(−1)n(s− 1)n

n! γn(v), s �= 1, (2)

respectively. Coefficients γn appearing in the regular part of expansion (1) are called 
Stieltjes constants or generalized Euler’s constants, while those appearing in the regular 
part of (2), γn(v), are called generalized Stieltjes constants. It is obvious that γn(1) = γn
since ζ(s, 1) = ζ(s).

The study of these coefficients is an interesting subject and may be traced back to 
the works of Thomas Stieltjes and Charles Hermite [25, vol. I, letter 71 and following]. 
In 1885, first Stieltjes and then Hermite, proved that

γn = lim
m→∞

{
m∑

k=1

lnn k

k
− lnn+1 m

n + 1

}
, n = 0, 1, 2, . . . (3)

Later, this formula was also obtained or simply stated in works of Johan Jensen [47,
50], Jørgen Gram [37], Godfrey Hardy [42], Srinivasa Ramanujan [19] and many others. 
From (3), it is visible that γ0 is Euler’s constant γ. However, the study of other Stieltjes 
constants revealed to be more difficult and, at the same time, interesting. In 1895 Franel 
[33], by using contour integration techniques, showed that1

1 There was a priority dispute between Jensen, Kluyver and Franel related to this formula [33,50]. In fact, 
it can be straightforwardly deduced from the first integral formula for the ζ-function (88) which was first 
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γn = 1
2δn,0 + 1

i

∞∫
0

dx

e2πx − 1

{
lnn(1 − ix)

1 − ix
− lnn(1 + ix)

1 + ix

}
, n = 0, 1, 2, . . . (4)

Ninety years later this integral formula was discovered independently by Ainsworth and 
Howell who also provided a very detailed proof of it [4]. Following Franel’s line of rea-
soning, one can also obtain these formulae2

γn = − π

2(n + 1)

+∞∫
−∞

lnn+1( 1
2 ± ix

)
ch2 πx

dx , n = 0, 1, 2, . . . (5)

and

γ1 = −
[
γ − ln 2

2

]
ln 2 + i

∞∫
0

dx

eπx + 1

{
ln(1 − ix)

1 − ix
− ln(1 + ix)

1 + ix

}

γ2 = −
[
2γ1 + γ ln 2 − ln2 2

3

]
ln 2 + i

∞∫
0

dx

eπx + 1

{
ln2(1 − ix)

1 − ix
− ln2(1 + ix)

1 + ix

}

γ3 = −
[
3γ2 + 3γ1 ln 2 + γ ln2 2 − ln3 2

4

]
ln 2 + i

∞∫
0

dx

eπx + 1

{
ln3(1 − ix)

1 − ix
− ln3(1 + ix)

1 + ix

}
. . . (6)

first of which is particularly simple.3 Other important results concerning the Stieltjes 
constants lie in the field of rational expressions of natural numbers, as well as in the 
closely related field of integer parts of functions. In 1790 Lorenzo Mascheroni [69, p. 23], 
by using some previous findings of Gregorio Fontana, showed that4

γ =
∞∑
k=1

|ak|
k

, where z

ln(1 + z) = 1 +
∞∑
k=1

akz
k, |z| < 1 (7)

i.e. ak are coefficients in the Maclaurin expansion of z/ ln(1 + z) and are usually referred 
to as (reciprocal) logarithmic numbers or Gregory’s coefficients (in particular a1 = 1

2 , 

obtained by Jensen in 1893 [49]. By the way, we corrected the original Franel’s formula which was not valid 
for n = 0 [this correction comes from (13) and (14) here after].
2 The proof is analogous to that given for the formula (13) here after, except that the Hermite represen-

tation should be replaced by the third and second Jensen’s formulae for ζ(s) (88) respectively.
3 Despite the surprising simplicity of these formulae, we have not found them in the literature devoted 

to Stieltjes constants. In contrast, formula (5) seems to be known; at least its variant for the generalized 
Stieltjes constant may be found in [17].
4 The series itself was given by Fontana, who, however, failed to find a constant to which it converges 

(he only proved that it should be lesser than 1). Mascheroni identified this Fontana’s constant and showed 
that it equals Euler’s constant [69, pp. 21–23]. Taking into account that both Fontana and Mascheroni did 
practically the equal work, we propose to call (7) Fontana–Mascheroni’s series for Euler’s constant.
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a2 = − 1
12 , a3 = 1

24 , a4 = − 19
720 , a5 = 3

160 , a6 = − 863
60 480 , . . . ).5 Fontana–Mascheroni’s 

series (7) seems to be the first known series representation for Euler’s constant containing 
rational coefficients only and was subsequently rediscovered several times, in particular 
by Kluyver in 1924 [52], by Kenter in 1999 [51] and by Kowalenko in 2008 [55] (this list 
is far from exhaustive, see e.g. [56]). In 1897 Niels Nielsen [73, Eq. (6)] showed that

γ = 1 −
∞∑
k=1

2k−1∑
l=2k−1

k

(2l + 1)(2l + 2) (8)

This formula was also the subject of several rediscoveries, e.g. by Addison in 1967 [3]
and by Gerst in 1969 [35].6 In 1906 Ernst Jacobsthal [48, Eq. (9)] and in 1910 Giovanni 
Vacca [84], apparently independently, derived a closely related series

γ =
∞∑
k=2

(−1)k

k
�log2 k� (9)

which was also rediscovered in numerous occasions, in particular by H.F. Sandham in 
1949 [76], by D.F. Barrow, M.S. Klamkin and N. Miller in 1951 [6] or by Gerst in 1969 
[35].7 In 1910 James Glaisher [36] proposed yet another proof of the same result and 
derived a number of other series with rational terms for γ. In 1912 Hardy [42] extended 
(9) to the first Stieltjes constant

γ1 = ln 2
2

∞∑
k=2

(−1)k

k
�log2 k� ·

(
2 log2 k − �log2 2k�

)
(10)

However, this expression is not a full generalization of (9) since it also contains irrational 
coefficients. In 1924 Jan Kluyver [52] generalized Jacobsthal–Vacca’s series (9) in the 
another direction and showed that

γ =
∞∑

k=m

βk

k
�logm k�, βk =

{
m− 1, k = multiple of m
−1, k �= multiple of m

(11)

5 These coefficients have a venerable history and were named after James Gregory who gave first six of 
them in November 1670 in a letter to John Collins [83, vol. 1, p. 46] (although in the fifth coefficient there is 
an error or misprint: 3

164 should be replaced by 3
160 ). Coefficients ak are also closely related to the Cauchy 

numbers of the first kind C1,k, to the generalized Bernoulli numbers, to the Stirling polynomials and to 
the signed Stirling numbers of the first kind S1(k, l). In particular, ak = C1,k

k! = 1
k!

∑ S1(k,l)
l+1 , where the 

summation extends over l = [1, k], see e.g. [26], [20, pp. 293–294], [7, vol. III, p. 257], [39, p. 45, no 370], 
[56], [13].
6 The actual Addison’s formula [3] is slightly different, but it straightforwardly reduces to (8) by partial 

fraction decomposition. In [3], we also find a misprint: the upper bound in the second sum on p. 823 should 
be the same as in (8). As regards Gerst’s formula [35], it is exactly the same as (8).
7 Series (9), thanks to the error of Glaisher, Hardy and Kluyver, was long-time attributed to Giovanni 

Vacca and is widely known as Vacca’s series, see e.g. [36,42,52]. It was only in 1993 that Stefan Krämer 
found that this series was first obtained by Jacobsthal in 1906. Besides, Krämer also showed that Nielsen’s 
series (8) and Jacobsthal–Vacca’s series (9) are closely related and can be derived one from another via a 
simple geometrical progression 1

2 = 1
4 + 1

8 + 1
16 + . . . [56].
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where m is an arbitrary chosen positive integer.8 In 1924–1927 Kluyver [53,54] also tried 
to obtain series with rational coefficients for higher Stieltjes constants, but these attempts 
were not successful. Currently, apart from γ0, no closed-form expressions are known for 
γn. However, there are works devoted to their estimations and to the asymptotic series 
representations for them [8,46,58,60,81]. Besides, there are also works devoted to the 
behavior of their sign [11,71]. In particular, Briggs in 1955 [11] demonstrated that there 
are infinitely many changes of sign for them. Finally, aspects related to the computation 
of Stieltjes constants were considered in [4,37,57,64].

As regards generalized Stieltjes constants, they are much less studied than the usual 
Stieltjes constants. In 1972 Berndt, by employing the Euler–Maclaurin summation for-
mula and by proceeding analogously to Lammel [58], showed that γn(v) can be given by 
an asymptotic representation of the same kind as (3)

γn(v) = lim
m→∞

{
m∑

k=0

lnn(k + v)
k + v

− lnn+1(m + v)
n + 1

}
,

n = 0, 1, 2, . . .

v �= 0,−1,−2, . . .
(12)

see [8].9 Similarly to Franel’s method of the derivation of (4), one may also derive the 
following integral representation for the nth generalized Stieltjes constant

γn(v) =
[

1
2v − ln v

n + 1

]
lnn v − i

∞∫
0

dx

e2πx − 1

{
lnn(v − ix)

v − ix
− lnn(v + ix)

v + ix

}
(13)

n = 0, 1, 2, . . . , Re v > 0.10 This formula was rediscovered several times, for example, by 
Mark Coffey in 2009 [17,24]. From both latter formulae, it follows that γ0(v) = −Ψ(v). 
Consider, for instance, (13) and put n = 0. Then, the latter equation takes the form

γ0(v) = 1
2v − ln v + 2

∞∫
0

x dx

(e2πx − 1)(v2 + x2)︸ ︷︷ ︸
− 1

4v + 1
2 ln v− 1

2Ψ(v)

= −Ψ(v) (14)

where the last integral was first calculated by Legendre.11 The demonstration of the 
same result from formula (12) may be found, for example, in [72]. For rational v, the 0th 
Stieltjes constant may be, therefore, expressed by means of Euler’s constant γ and a finite 

8 For example, if m = 2 then βk = 1.
9 We, however, note that Wilton, by using Vallée–Poussin’s expansion of the Hurwitz ζ-function, provided 

a similar formula already in 1927 [88].
10 This formula follows straightforwardly from the well-known Hermite representation for ζ(s, v), see 
e.g. [44, p. 66], [65, p. 106], [7, vol. I, p. 26, Eq. 1.10(7)]. First, recall that 2(v2 +x2)−s/2 sin[s arctg(x/v)] =
−i[(v − ix)−s − (v + ix)−s], and then, expand 1

2v
−s + (s − 1)−1v1−s into the Laurent series about s = 1. 

Performing the term-by-term comparison of the derived expansion with the Laurent series (2) yields (13).
11 And not by Binet as stated in [7, vol. I, p. 18, Eq. 1.7.2(27)], see [61, tome II, p. 190] and [10, p. 83, 
no 40, Eq. (55)].
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combination of elementary functions [thanks to the Gauss’ Digamma theorem (B.4)(a, 
b)]. However, things are much more complicated for higher generalized Stieltjes con-
stants; currently, no closed-form expressions are known for them and little is known as 
to their arithmetical properties. Basic properties, such as the multiplication theorem

n−1∑
l=0

γp

(
v + l

n

)
= (−1)pn

[
lnn

p + 1 − Ψ(nv)
]

lnp n + n

p−1∑
r=0

(−1)rCr
pγp−r(nv) · lnr n,

n = 2, 3, 4, . . . , where Cr
p denotes the binomial coefficient Cr

p = p!
r!(p−r)! , and the recurrent 

relationship

γp(v + 1) = γp(v) −
lnp v

v
,

p = 1, 2, 3, . . .

v �= 0,−1,−2, . . .
(15)

may be both straightforwardly derived from those for the Hurwitz ζ-function, see e.g. [10, 
pp. 101–102].12 In attempt to obtain other properties, several summation relations involv-
ing single and double infinite series were quite recently obtained in [15,16]. Also, many 
important aspects regarding the Stieltjes constants were considered by Donal Connon 
[21,23,24].

Let now focus our attention on the first generalized Stieltjes constant. The most 
strong and pertinent results in the field of its closed-form evaluation is the formula for 
the difference between the first generalized Stieltjes constant at rational argument and 
its reflected version

γ1

(
m

n

)
− γ1

(
1 − m

n

)
= 2π

n−1∑
l=1

sin 2πml

n
· ln Γ

(
l

n

)
− π(γ + ln 2πn) ctg mπ

n
(16)

In the literature devoted to Stieltjes constants this result is usually attributed to Almkvist 
and Meurman who obtained it by deriving the functional equation for ζ(s, v), Eq. (33), 
with respect to s at rational v, see e.g. [2], [5, p. 261, §12.9], [70, Eq. (6)]. However, 
it was comparatively recently that we discovered that this formula, albeit in a slightly 
different form, was obtained by Carl Malmsten already in 1846. On pp. 20 and 38 [67], 
we, inter alia, find the following expression

∞∑
l=0

{
ln[(2l + 1)n−m]

(2l + 1)n−m
− ln[(2l + 1)n + m]

(2l + 1)n + m

}
=

12 As regards the multiplication theorem, see e.g. [23, Eq. (6.6)] or [10, p. 101]. We can also find its 
particular case for v = 1/n in [18, p. 1830, Eq. (3.28)].
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−π(γ + ln 2π)
2n

tg πm

2n
− π

n
·
n−1∑
l=1

(−1)l−1 sin πml

n
· ln

{
Γ
(
n+l
2n

)
Γ
(

l
2n
) }

if m + n is odd,

−π(γ + ln π)
2n tg πm

2n − π

n
·
� 1

2 (n−1)�∑
l=1

(−1)l−1 sin πml

n
· ln

{
Γ
(
n−l
n

)
Γ
(
l
n

) }
if m + n is even,

(17)

where m and n are integers such that m < n.13 It is visible that the left part of this 
equality contains the difference of two first-order derivatives of ζ(s, v) at s → 1 and 
v = 1

2 ± m
2n . Putting 2m − n instead of m and using the Laurent series expansion (2)

yields, after some algebra, formula (16). A somewhat different way to get (16) is to 
directly apply the Mittag–Leffler theorem to one of Malmsten’s integrals at rational 
points; we developed such a method in our preceding study [10, pp. 97–98, no 63 and 
pp. 106–107, no 67].

Recently, Coffey [18] derived several formulae for the linear combination of the first 
generalized Stieltjes constants at some rational arguments. From these expressions, one 
may conjecture that in some cases (author gave only two examples of such cases [18, 
p. 1821, Eqs. (3.33)–(3.34)]), not only the Γ-function, but also the second-order derivative 
of the Hurwitz ζ-function could be related, in some way, to the first generalized Stieltjes 
constant. However, these preliminary findings do not permit to precisely identify their 
roles in the general problem of the closed-form evaluation of the first Stieltjes constant at 
any rational argument (the problem which we come to solve here).

Very recently, it has been conjectured in [10, p. 103] that similarly to the Digamma 
theorem for γ0(v), the first generalized Stieltjes constant γ1(v) at rational v may be ex-
pressed by means of the Euler’s constant γ, the first Stieltjes constant γ1, the Γ-function 
and some “relatively simple” function. For seven rational values of v in the range (0, 1), 
namely for 1

6 , 1
4 , 1

3 , 1
2 , 2

3 , 3
4 and 5

6 , we showed in [10, pp. 98–101, no 64] that this “rel-
atively simple” function is elementary.14 In this manuscript, we extend these preceding 
researches by providing a theorem which allows to evaluate the first generalized Stieltjes 
constant at any rational argument in a closed-form by precisely identifying this “relatively 
simple” function. The latter consists of elementary functions containing the Euler’s con-
stant γ and of the reflected sum of two second-order derivatives of the Hurwitz ζ-function 
at zero ζ ′′(0, p) +ζ ′′(0, 1 −p), parameter p being rational in the range (0, 1). A close study 
of this reflected sum reveals that it has several important integral and series represen-

13 Unfortunately, this Malmsten’s work contains a huge quantity of misprints in formulae. We already 
corrected many of them in our previous work [10, Sections 2.1 & 2.3]. As regards the above-referenced 
Malmsten’s original equation (55), case m + n even, note that Γ(n−i

2n ) should be replaced by Γ(n−i
n ). 

Formula (56) also has an error: Γ(n+i
n ) should be replaced by Γ(n−i

n ).
14 Further to remarks we received after the publication of [10], we note that similar closed-form expressions 
for γ(1/4), γ(3/4) and γ(1/3) were also obtained in [21, pp. 17–18].
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tations, one of which is quite similar to an integral representation for the logarithm of 
the Γ-function at rational argument (see Section 2.5 and Appendix C). Moreover, the 
derived theorem represents also the finite Fourier series for the first generalized Stieltjes 
constant, so that classic Fourier analysis tools may be used at their full strength. With 
the help of the latter, we derive several summation formulae including summation with 
trigonometric functions, summation with square, summation with the Digamma func-
tion and summation giving the first-order moment (see Section 2.4). Obviously, the same 
method can be applied to other discrete functions allowing similar representations. In 
particular, its application to a variant of Gauss’ Digamma theorem yields several beau-
tiful summation formulae for the Digamma function which are derived in Appendix B. 
We also derive, in passing [in Appendix C, Eq. (C.4)], an interesting integral represen-
tation for the logarithm of the Γ-function at rational argument. Finally, in Section 3,
we discuss extensions of the derived theorem to the higher Stieltjes constants and pro-
vide closed-form expressions for the second generalized Stieltjes constant at rational 
arguments.

1.2. Notations

Throughout the manuscript, the following abbreviated notations are used: γ =
0.5772156649 . . . for Euler’s constant, γn for the nth Stieltjes constant, γn(p) for the nth 
generalized Stieltjes constant at point p, �x� for the integer part of x, tg z for the tangent 
of z, ctg z for the cotangent of z, ch z for the hyperbolic cosine of z, sh z for the hyperbolic 
sine of z, thz for the hyperbolic tangent of z.15 In order to avoid any confusion between 
compositional inverse and multiplicative inverse, inverse trigonometric and hyperbolic 
functions are denoted as arccos, arcsin, arctg, . . . and not as cos−1, sin−1, tg−1, . . . . Writ-
ings Γ(z), Ψ(z), ζ(s) and ζ(s, v) denote respectively the Γ-function, the Ψ-function (or 
Digamma function), the Riemann ζ-function and the Hurwitz ζ-function. When refer-
ring to the derivatives of the Hurwitz ζ-function, we always refer to the derivative with 
respect to its first argument s (unless otherwise specified). Re z and Im z denote, respec-
tively, real and imaginary parts of z. Natural numbers are defined in a traditional way as 
a set of positive integers, which is denoted by N. Kronecker symbol of arguments l and 
k is denoted by δl,k. Letter i is never used as index and is 

√
−1. The writing resz=a f(z)

stands for the residue of the function f(z) at the point z = a. By Malmsten’s integral 
we mean any integral of the form

∞∫
0

R(sh px, ch px) · ln x

R(sh x, ch x) dx

15 Most of these notations come from Latin, e.g. “ch” stands for cosinus hyperbolicus, “sh” stands for sinus 
hyperbolicus, etc.
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where R denotes a rational function and the parameter p is such that the convergence 
is guaranteed. Other notations are standard.

2. Evaluation of the first generalized Stieltjes constant at rational argument

2.1. Generalized Stieltjes constants and their relationships to Malmsten’s integrals

Formula (16) provides a closed-form expression for the difference of two first Stielt-
jes constants at rational arguments. It should be therefore interesting to investigate if 
there could be some expressions containing other combinations of Stieltjes constants. 
In our previous work [10, pp. 97–107], we already demonstrated that some Malmsten’s 
integrals are connected with the first generalized Stieltjes constants. This connection 
was quite fruitful and permitted not only to prove by another method formula (16), but 
also to evaluate the first generalized Stieltjes constant γ1(p) at p = 1

2 , 
1
3 , 

1
4 , 

1
6 , 

2
3 , 

3
4 , 

5
6 by 

means of elementary functions, Euler’s constant γ, the first Stieltjes constant γ1 and the 
Γ-function, see for more details [10, pp. 98–101, no 64]. Taking into account that afore-
mentioned manuscript was quite long, many results and theorems were given as exercises 
with hints and without rigorous proofs. Below, we provide several useful proofs and un-
published results (given as lemmas and corollaries) showing that Malmsten’s integrals 
of the first and second orders may be expressed by means of the first generalized Stielt-
jes constants. This connection between Malmsten’s integrals and Stieltjes constants is 
crucial and plays the central role in the proof of the main theorem of this manuscript.

Lemma 1. For any | Re p| < 1 and Re a > −1,

∞∫
0

xa−1(ch px− 1)
sh x

dx = Γ(a)
2a

{
ζ

(
a,

1
2 − p

2

)
+ ζ

(
a,

1
2 + p

2

)
− 2

(
2a − 1

)
ζ(a)

}
(18)

Proof. From elementary analysis it is well-known that sh−1 x, for Rex > 0, may be 
represented by the following geometric series

1
sh x

= 2
∞∑

n=0
e−(2n+1)x, Rex > 0.

This series, being uniformly convergent, can be integrated term-by-term. Hence

∞∫
0

xa−1(ch px− 1)
sh x

dx =
∞∑

n=0

∞∫
0

xa−1{e−(2n+1−p)x + e−(2n+1+p)x − 2e−(2n+1)x} dx
= Γ(a)

∞∑{
1

(2n + 1 − p)a + 1
(2n + 1 + p)a − 2

(2n + 1)a

}
=

n=0
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= Γ(a)
2a

{
ζ

(
a,

1
2
− p

2

)
+ ζ

(
a,

1
2

+ p

2

)
− 2ζ

(
a,

1
2

)}
,

where the integral on the left converges if | Re p| < 1 and Re a > −1. In order to obtain 
(18), it suffices to notice that ζ(a, 12 ) = (2a − 1)ζ(a). �
Corollary 1. For any p lying in the strip | Re p| < 1, we always have

∞∫
0

(ch px− 1) ln x

sh x
dx = (γ + ln 2) ·

{
Ψ
(

1
2 + p

2

)
+ ln 2 − π

2 tg πp

2

}

+ γ2 + γ1 −
1
2γ1

(
1
2 + p

2

)
− 1

2γ1

(
1
2 − p

2

)
. (19)

This result is straightforwardly obtained from Lemma 1 by differentiating (18) with respect 
to a, and then by making a → 1. In order to evaluate the limit in the right-hand side, 
we make use of Laurent series (1) and (2).

Another Malmsten’s integral of the first order which also contains Stieltjes con-
stants appear in the next lemma.

Lemma 2. For any | Re p| < 1 and Re a > −1,

∞∫
0

xa−1 sh px

ch x
dx = Γ(a)

2a

{
ζ

(
a,

1
2 + p

2

)
− ζ

(
a,

1
2 − p

2

)

− 21−aζ

(
a,

1
4 + p

4

)
+ 21−aζ

(
a,

1
4 − p

4

)}
Proof. Analogous to that of Lemma 1. �
Corollary 2. For any | Re p| < 1,

∞∫
0

sh px · ln x

ch x
dx = 1

2

{
π(γ + ln 2) tg πp

2 − (γ + 2 ln 2)
[
Ψ
(

1
4 + p

4

)
− Ψ

(
1
4 − p

4

)]

+ γ1

(
1
2 − p

2

)
− γ1

(
1
2 + p

2

)
− γ1

(
1
4 − p

4

)
+ γ1

(
1
4 + p

4

)}
.

This result can be shown in the same way as that in Corollary 1.

By the same line of argument, one may also prove that following logarithmic integrals 
may be expressed in terms of first generalized Stieltjes constants.
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∞∫
0

sh px · ln x

sh x
dx = 1

2

{
γ1

(
1
2 + p

2

)
− γ1

(
1
2 − p

2

)
− π(γ + ln 2) tg πp

2

}
∞∫
0

ch px · ln x

ch x
dx = 1

2

{
γ1

(
1
2 + p

2

)
+ γ1

(
1
2 − p

2

)
− γ1

(
1
4 + p

4

)
− γ1

(
1
4 − p

4

)}

− 1
2 ln2 2 + ln 2 · Ψ

(
1
2 + p

2

)
+ π

2 (γ + ln 2) tg πp

2

− π

2 (γ + 2 ln 2) ctg
(
π

4 − πp

4

)
∞∫
0

sh2 px · ln x

sh2 x
dx = 1

2
{
ln π − ln sin πp + p

[
γ1(p) − γ1(1 − p)

]
− (γ + ln 2)(1 − πp ctg πp)

}
∞∫
0

ch px · ln x

ch2 x
dx = p

2

{
γ1

(
p

2

)
− γ1

(
1 − p

2

)
− γ1

(
p

4

)
+ γ1

(
1 − p

4

)}

+ ln tg πp

4 − πp

2

{
(γ + 2 ln 2) csc πp

2 + ln 2 · ctg πp

2

}
(20)

where parameter p should be such that | Re p| < 1 in the first three integrals and 
|Re p| < 2 in the fourth one. Interestingly, higher Malmsten’s integrals seem to not 
contain higher Stieltjes constants, but rather other ζ-function related constants. For 
instance, the evaluation of the third-order Malmsten’s integral by the same method 
yields:

∞∫
0

sh3 px · ln x

sh3 x
dx = 1

4

{
3ζ ′

(
−1, 1

2 + p

2

)
− 3ζ ′

(
−1, 1

2 − p

2

)
− ζ ′

(
−1, 1

2 + 3p
2

)

+ ζ ′
(
−1, 1

2 − 3p
2

)}
+ 3(1 − p2)

16

{
γ1

(
1
2 + p

2

)
− γ1

(
1
2 − p

2

)}
− 1 − 9p2

16

{
γ1

(
1
2 + 3p

2

)
− γ1

(
1
2 − 3p

2

)}
− 3p

4 ln(2 cosπp− 1)

+ π(γ + ln 2)
16

{
3
(
p2 − 1

)
tg πp

2 −
(
9p2 − 1

)
tg 3πp

2

}
(21)

in the strip | Re p| < 1. In contrast, the evaluation of Malmsten’s integrals containing 
higher powers of the logarithm in the numerator of the integrand16 leads precisely to 

16 We propose to call such integrals generalized Malmsten’s integrals.
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higher Stieltjes constants. In fact, differentiating twice (18) with respect to a, and then 
making a → 1, yields

∞∫
0

(ch px− 1) ln2 x

sh x
dx = −γ2 + 1

2

{
γ2

(
1
2 + p

2

)
+ γ2

(
1
2 − p

2

)}
− 2γ1(γ − ln 2)

+ (γ + ln 2) ·
{
γ1

(
1
2 + p

2

)
+ γ1

(
1
2 − p

2

)}
− γ3 − γ

6
(
π2 + 6 ln2 2

)
−
[
(γ + ln 2)2 + π2

6

]
·
{

Ψ
(

1
2 + p

2

)
− π

2 tg πp

2

}
− ln 2

3
(
π2 + 2 ln2 2

)
(22)

where | Re p| < 1. More generally, the same integral containing lnn x instead of ln2 x will 
lead to the nth Stieltjes constants.

Nota Bene. As showed in [10, pp. 51–60, Sect. 4, no 3, 6, 11, 13], integrals (20)–(21)
for rational p ∈ (0, 1) may be reduced to the Γ-function and its logarithmic derivatives. 
Besides, integral (21), for any | Re p| < 1, may be written in terms of antiderivatives of 
ln Γ(z) instead of ζ ′(−1, z). We, however, noticed that currently there is no agree about 
the exact definition of Ψ−2(z) ≡

∫
ln Γ(z) dz. From the well-known identity ζ ′(0, z) =

ln Γ(z) − 1
2 ln 2π and the fact that ∂ζ(s, z)/∂z = −sζ(s + 1, z), it clearly follows that

Ψ−2(z) = ζ ′(−1, z) − z2

2 + z

2(1 + ln 2π) + C (23)

where C is the constant of integration.17 Notwithstanding, we found that Maple 12 uses 
a different definition

Ψ−2(z) = ζ ′(−1, z) − z2

2 + z

2 − 1
12

Yet, we remarked that Wolfram Alpha Pro employs another expression, which numeri-
cally corresponds to18

Ψ−2(z) = z ln Γ(z) − z2

2 ln z + z2

4 + z

2 + ln 2π
12 − 1 − γ

12 − ζ ′(2)
2π2 +

∞∫
0

x ln(x2 + z2)
e2πx − 1 dx

These three definitions are all different, but it may be easily seen that first definition 
(23) differs from the last one only by a constant of integration, while Maple’s definition 
is really different.

17 The Hurwitz ζ-function whose first argument is a negative integer may be trivially expressed in terms 
of Bernoulli polynomials. In particular ζ(−1, z) = − 1

2 z
2 + 1

2 z − 1
12 .

18 Wolfram Alpha Pro does not explain how Ψ−2(z) is evaluated. Expression given below is derived by 
the author by calculating the antiderivative of Binet’s integral formula for the logarithm of the Γ-function 
subject to the initial condition Ψ−2(0) = 0 (for Binet’s formula for ln Γ(z), see e.g. [9, pp. 335–336], [86, 
pp. 250–251], [7, vol. I, p. 22, Eq. 1.9(9)], [10, p. 83, Eq. (54)]).
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2.2. Malmsten’s series and Hurwitz’s reflection formula

We now show that the integral from Lemma 1 may be also evaluated via a trigono-
metric series.

Lemma 3. In the vertical strip | Re a| < 1, the following equality holds

∞∫
0

xa−1(ch px− 1)
sh x

dx = πa sec πa

2

∞∑
n=1

(−1)n cos pπn− 1
n1−a

(24)

for −1 < p < +1.

Proof. The Mittag–Leffler theorem is a fundamental theorem in the theory of func-
tions of a complex variable and allows to expand meromorphic functions into a series 
accordingly to its poles.19 Application of this theorem to the meromorphic function 
(ch pz − 1)/ sh z, p ∈ (−1, +1), having only first-order poles at z = πni, n ∈ Z, with 
residue (−1)n(cosπpn − 1), leads to the following expansion

ch pz − 1
sh z

= 2z
∞∑

n=1
(−1)n cos pπn− 1

z2 + π2n2 , z ∈ C, z �= πni, n ∈ Z,

which is uniformly convergent on the entire complex z-plane except discs |z − πin| < ε, 
n ∈ Z, where the positive parameter ε can be made as small as we please. Therefore

∞∫
0

xa−1(ch px− 1)
sh x

dx = 2
∞∑

n=1
(−1)n(cos pπn− 1)

∞∫
0

xa

x2 + π2n2 dx

︸ ︷︷ ︸
1
2π

ana−1 sec 1
2πa

= πa sec πa

2

∞∑
n=1

(−1)n cos pπn− 1
n1−a

(25)

which holds only for −1 < p < +1 and | Re a| < 1 (the elementary integral in the 
middle, whose evaluation is due to Euler, is convergent only in the strip | Rea| < 1, see 
e.g. [85, p. 126, no 880], [28, p. 197, no 856.2], [1, p. 256, no 6.1.17], [39, p. 67, no 587], 
[65, p. 51]). However, the above equality can be analytically continued for other values 
of a: the integral is the analytic continuation of the sum for Re a � +1, while the 
sum analytically continues the integral for Re a � −1. We obviously have to expect 
trouble with the right-hand part at a = ±1, ±3, ±5, . . . because of the secant. Since when 
a = −1, −3, −5, . . . the sum in the right-hand side converges, these points are poles of the 

19 For more details, see [68], [85, pp. 147–148, no 994–1002], [32, Chap. V, §27, no 27.10-2], [79, Chap. VII, 
p. 175], [65].
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first order for the analytic continuation of integral (25). In contrast, for a = 1, 3, 5, . . . , the 
integral on the left remains bounded, and thus, these points are removable singularities 
for the right-hand side of (25). In other words, formally 

∑
(−1)n(cos pπn− 1)na−1, n � 1, 

must vanish identically for any odd positive a (exactly as η(1 − a), the result which has 
been derived by Euler, see e.g. [30, p. 85]). These matters are treated in detail in the 
next corollary. �
Corollary 3. For 0 < p < 1⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞∑
n=1

cos 2πpn
n1−a

= Γ(a)(2π)−a cos πa2
{
ζ(a, p) + ζ(a, 1 − p)

}
(a)

∞∑
n=1

sin 2πpn
n1−a

= Γ(a)(2π)−a sin πa

2
{
ζ(a, p) − ζ(a, 1 − p)

}
(b)

(26)

where both series on the left-hand side are uniformly convergent in Rea < 1 and are 
absolutely convergent in the half-plane Rea < 0. These important formulae seem to be 
obtained for the first time by Malmsten in 1846.

Proof. In view of the fact the alternating ζ-function η(s) may be reduced to the ordinary 
ζ-function and by making use of Euler–Riemann’s reflection formula for the ζ-function 
ζ(1 − s) = 2ζ(s)Γ(s)(2π)−s cos 1

2πs, we may continue (25) as follows

πa sec πa

2

∞∑
n=1

(−1)n cos pπn− 1
n1−a

= πa sec πa

2

{ ∞∑
n=1

(−1)n cos pπn
n1−a

−
(
2a − 1

)
ζ(1 − a)

}

= πa sec πa

2

∞∑
n=1

(−1)n cos pπn
n1−a

− 2
(
1 − 2−a

)
Γ(a)ζ(a)

Comparing the latter expression to the result of Lemma 1 gives

∞∑
n=1

(−1)n cos pπn
n1−a

= Γ(a)(2π)−a cos πa2

{
ζ

(
a,

1
2 + p

2

)
+ ζ

(
a,

1
2 − p

2

)}

Writing in this expression 2p −1 instead of p yields immediately (26)(a). Now, by partially 
differentiating (26)(a) with respect to p and by remarking that aΓ(a) = Γ(a + 1), and 
then, by writing a instead of a + 1, we arrive at (26)(b). Note also that both sums 
(26)(a, b) may be analytically continued to other domains of a by means of expressions 
in corresponding right parts. �

Interestingly, nowadays, formulae (26)(a, b) seem to be not particularly well-known 
(for instance, advanced calculators such as Wolfram Alpha Pro expresses both series 
in terms of polylogarithms). Notwithstanding, Eq. (26)(b) can be found in an old 
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Malmsten’s work published as early as 1849 [67, p. 17, Eq. (48)], and (26)(a) is a straight-
forward consequence of (26)(b).

Corollary 4. If we notice that

Γ(a) = π

sin πa · Γ(1 − a) = π

2 sin 1
2πa · cos 1

2πa · Γ(1 − a)

then, the sum of (26)(a) with (26)(b) leads to an important formula

ζ(a, p) = 2Γ(1 − a)
(2π)1−a

[
sin πa

2

∞∑
n=1

cos 2πpn
n1−a

+ cos πa2

∞∑
n=1

sin 2πpn
n1−a

]
, (27)

with 0 < p � 1 and Re a < 1, which is usually attributed to Adolf Hurwitz who derived 
it in 1881, see [45, p. 93],20 [86, p. 269], [65, p. 107], [82, p. 37], [8, p. 156], [7, vol. I, 
p. 26, Eq. 1.10(6)].21 Sometimes, it is written in a complex form

ζ(a, p) = iΓ(1 − a)
(2π)1−a

[
e−

1
2πia

∞∑
n=1

e−2πipn

n1−a
− e+ 1

2πia
∞∑

n=1

e+2πipn

n1−a

]
,

0 < p � 1, Re a < 1, see e.g. [14, p. 87], which is completely equivalent to (27).

Nota Bene. It is quite rarely emphasized that latter representations coincide with the 
trigonometric Fourier series for ζ(a, p). Remarking this permits to immediately derive 
several integral formulae, whose demonstration by other means is more difficult

20 Hurwitz derived all his results for the function f(s, a) which is related to the modern Hurwitz ζ-function 
as f(s, a) ≡ fm(s, a) = m−sζ(s, a/m), see [45, p. 89]. By the way, this famous Hurwitz’s paper begins with 
several factual errors. The reflection formula for the L-function, which he attributed to Oscar Schlömilch 
[45, p. 86, first two formulae for f(s)], was first deduced by mathematical induction by Leonhard Euler in 
1749 [30, p. 105]. Then, it was rigorously proved by two different methods by Malmsten in 1842 [66] and 
in 1846 [67]. As regards Schlömilch’s contribution, he gave the same formula only in 1849 [77], and this, 
without the proof (the proof [78] was published 9 years later). Similarly, Hurwitz erroneously attributed 
the reflection formula for the ζ-function to Bernhard Riemann, although it was first given also by Euler 
[30, p. 94], albeit in a slightly form, and Riemann’s contribution consists mainly in the more rigorous proof 
of it [75]. Further information about the history of these two important formulae may be found in [87], [43, 
p. 23], [27, p. 861], [10, pp. 35–37].
21 There is a slight error in this formula in the latter reference: it remains valid not only for Re a < 0, but 
also for Re a < 1.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1∫
0

ζ(a, p) dp = 0

1∫
0

ζ(a, p) cos 2πpn dp = Γ(1 − a)(2πn)a−1 sin πa

2

1∫
0

ζ(a, p) sin 2πpn dp = Γ(1 − a)(2πn)a−1 cos πa2

Re a < 1 (28)

for n = 1, 2, 3, . . . . Furthermore, in virtue of Parseval’s theorem, we also have

1∫
0

ζ2(a, p)dp = 2Γ2(1 − a)(2π)2a−2ζ(2 − 2a), Re a < 1, a �= 1
2 (29)

Differentiating this formula with respect to a and then setting a = 0, yields:

2
1∫

0

(
1
2 − p

)
︸ ︷︷ ︸

ζ(0,p)

·
(

ln Γ(p) − 1
2 ln 2π

)
︸ ︷︷ ︸

ζ′(0,p)

dp = γ + ln 2π
6 − ζ ′(2)

π2

Whence, accounting for the well-known result22

1∫
0

ln Γ(p) dp = 1
2 ln 2π (30)

we obtain

1∫
0

p ln Γ(p) dp = ζ ′(2)
2π2 − γ − 2 ln 2π

12

Integration by parts of the latter expression leads to the antiderivatives of ln Γ(x) which 
are currently not well-studied yet (see the Nota Bene on p. 548). Similarly, differentiating 
twice (29) with respect to a at a = 0, and accounting for21

22 The value of integral (30), as well as that of (31), may be both straightforwardly deduced from a similar 
Fourier series expansion for the logarithm of the Γ-function, see e.g. [7, vol. I, pp. 23–24, §1.9.1] or [80, 
p. 17, Eq. (36)]. This expansion, attributed erroneously to Ernst Kummer, was first derived by Malmsten 
and colleagues from the Uppsala University in 1842. This interesting historical question is discussed in 
details in [10, Sect. 2.2, Fig. 2 and exercise no 20 on pp. 66–68]. By the way, the evaluation of integral (31)
may be also found in several modern works, see e.g. [29, p. 177, Eq. (7.3)], [22, p. 14, Eq. (3.19)].
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1∫
0

ln2 Γ(p) dp = γ2

12 + π2

48 + γ ln 2π
6 + ln2 2π

3 − (γ + ln 2π)ζ ′(2)
π2 + ζ ′′(2)

2π2

= 1
6 + π2

36 + ln2 2π
4 − 2ζ ′(−1) − ζ ′′(−1) (31)

yields another integral

1∫
0

pζ ′′(0, p) dp = π2

144 − γ2

12 − γ ln 2π
6 − ln2 2π

12 + (γ + ln 2π)ζ ′(2)
π2 − ζ ′′(2)

2π2

= −1
6 + 2ζ ′(−1) + ζ ′′(−1)

Some further results related to the Fourier series expansion of the Hurwitz ζ-function 
are provided in [29].22

Corollary 5. In (27), the index n may be represented as n = mk + l, where for each 
k = 0, 1, 2, . . . , ∞, the index l runs over [1, 2, . . . , m] and where m is some positive 
integer. Then, (27) may be written in the form:

ζ(a, p) = 2Γ(1 − a)
(2π)1−a

[
sin πa

2

m∑
l=1

∞∑
k=0

cos 2πp(mk + l)
(mk + l)1−a

+ cos πa2

m∑
l=1

∞∑
k=0

sin 2πp(mk + l)
(mk + l)1−a

]

Now, let p be a rational part of m, i.e. p = r/m, where r and m are positive integers such 
that r � m. Then cos[2πp(mk + l)] = cos(2πrl/m), and similarly for the sine. Hence, 
for positive rational p not greater than 1, the previous formula takes the form

ζ

(
a,

r

m

)
= 2Γ(1 − a)

(2π)1−a

[
sin πa

2

m∑
l=1

cos 2πrl
m

∞∑
k=0

1
(mk + l)1−a︸ ︷︷ ︸

ma−1ζ(1−a,l/m)

+ cos πa2

m∑
l=1

sin 2πrl
m

∞∑
k=0

1
(mk + l)1−a

]

= 2Γ(1 − a)
(2πm)1−a

m∑
l=1

sin
(

2πrl
m

+ πa

2

)
· ζ
(

1 − a,
l

m

)
, r = 1, 2, . . . ,m. (32)

This equality holds in the entire complex a-plane for any positive integer m � 2. Fur-
thermore, by putting in the latter formula 1 − a instead of a, it may be rewritten as

22 However, in many formulae domains of validity remain unspecified, and sometimes, are incorrect 
(e.g. compare [29, Eqs. (1.26) and (3.5)] with (28) and (29) respectively).
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ζ

(
1 − a,

r

m

)
= 2Γ(a)

(2πm)a
m∑
l=1

cos
(

2πrl
m

− πa

2

)
· ζ
(
a,

l

m

)
, r = 1, 2, . . . ,m. (33)

In the case r = m, the above formulae reduce to Euler–Riemann’s reflection formulae 
for the ζ-function (simply use the multiplication theorem for the Hurwitz ζ-function, see 
e.g. [10, p. 101]). Formulae (32) and (33) are known as functional equations for the 
Hurwitz ζ-function and were both obtained by Hurwitz in the same article [45, p. 93]
in 1881. By the way, the above demonstration also shows that they can be elementary 
derived from Malmsten’s results (26)(a, b) obtained as early as 1840s.

Nota Bene. Malmsten’s series (26)(a, b) are actually particular cases of a more general 
series

f(s) ≡
∞∑

n=1

an
ns

, an ∈ C, |an| � 1, (34)

which is uniformly and absolutely convergent in the region Re s > 1 (it may also converge, 
albeit non-absolutely, in the half-plane Re s > 0).23 Such a series is known as the Dirichlet 
series. Let now focus our attention on a particular case of this series in which coefficients
an are m-periodic, i.e. an = an+m = an+2m = . . . (period m being natural).24 The 
first important consequence of such a particular case is that f(s) may be reduced to a 
linear combination of Hurwitz ζ-functions at rational argument. Representing again the 
summation’s index n = mk + l yields

f(s) =
m∑
l=1

∞∑
k=0

amk+l

(mk + l)s =
m∑
l=1

al

∞∑
k=0

1
(mk + l)s = 1

ms

m∑
l=1

alζ

(
s,

l

m

)
(35)

The right-hand side continues f(s) to the entire complex s-plane, except possibly the 
point s = 1.25 In order to identify the character of the point s = 1, we evaluate the 
corresponding residue

res
s=1

f(s) = lim
s→1

[
(s− 1)f(s)

]
= 1

m

m∑
l=1

al lim
s→1

[
(s− 1)ζ

(
s,

l

m

)]
= 1

m

m∑
l=1

al

Therefore, if the coefficients a1, a2, . . . , am are chosen so that the latter sum vanishes, 
then f(s) is holomorphic; otherwise f(s) is a meromorphic function with a unique pole 
at s = 1. Typical examples of cases when f(s) is regular everywhere are Malmsten’s
series (26)(a, b) at rational p because

23 Indeed ∑ |ann
−s| � ∑

|n−s| = ζ
(
Re s

)
, the latter being uniformly and absolutely convergent in 

Re s > 1.
24 If an is a character, the above series may be, in turn, an example of the Dirichlet L-function.
25 This is the unique point where the Hurwitz ζ-function is not regular.
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m∑
l=1

al =
m∑
l=1

sin 2πrl
m

= 0 and
m∑
l=1

cos 2πrl
m

= 0 , r = 1, 2, . . . ,m− 1.

As to the reflection formula for the Dirichlet series f(s), it may be easily deduced 
with the help of (33). Writing in (35) 1 − s for s, and then, using (33), yields

f(1 − s) = 1
m1−s

m∑
l=1

alζ

(
1 − s,

l

m

)
= 2Γ(s)

m(2π)s
m∑
l=1

al

m∑
k=1

cos
(

2πlk
m

− πs

2

)
· ζ
(
s,

k

m

)

= 2Γ(s)
m(2π)s

[
sin πs

2

m∑
k=1

αkζ

(
s,

k

m

)
+ cos πs2

m∑
k=1

βkζ

(
s,

k

m

)]
(36)

where

αk =
m∑
l=1

al sin
2πlk
m

and βk =
m∑
l=1

al cos 2πlk
m

holding in the entire complex s-plane except at points s = 1, 0, −1, −2, . . . . This formula 
is also very useful in that the expression on the right represents the analytic continuation 
for f(1 − s) to the domains where the series (34) does not converge. Finally, remark that 
the latter formula may be also written in a complex form

f(1 − s) = Γ(s)
m(2π)s

[
e+ 1

2πis
m∑

k=1

α̃kζ

(
s,

k

m

)
+ e−

1
2πis

m∑
k=1

β̃kζ

(
s,

k

m

)]

s �= 1, 0, −1, −2, . . . , where

α̃k =
m∑
l=1

ale
−2πilk/m and β̃k =

m∑
l=1

ale
+2πilk/m

and some authors precisely prefer this form, see e.g. [14, pp. 88–91]. This form is more 
appropriated if one wishes to emphasize the Fourier series aspect (coefficients α̃k and β̃k

may be regarded as m-points Fourier transforms of coefficients al).

2.3. Closed-form evaluation of the first generalized Stieltjes constant at rational 
argument

We now state the main result of this manuscript allowing to evaluate in a closed-form 
the first generalized Stieltjes constant at any rational argument.

Theorem 1. The first generalized Stieltjes constant of any rational argument in the range 
(0, 1) may be expressed in a closed form via a finite combination of logarithms of the 
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Γ-function, of second-order derivatives of the Hurwitz ζ-function at zero, of Euler’s con-
stant γ, of the first Stieltjes constant γ1 and of elementary functions:

γ1

(
r

m

)
= γ1 − γ ln 2m− π

2
(γ + ln 2πm) ctg πr

m
− ln2 2 − ln 2 · ln πm

− 1
2 ln2 m− (−1)r

4
[
1 − (−1)m+1] · (3 ln 2 + 2 ln π) ln 2

− π ln π · csc πr

m
· sin

(
πr

m

⌊
m + 1

2

⌋)
· sin

(
πr

m

⌊
m− 1

2

⌋)

+ 2(γ + ln 2πm) ·
� 1

2 (m−1)�∑
l=1

cos 2πrl
m

· ln sin πl

m

+ π

� 1
2 (m−1)�∑

l=1

sin 2πrl
m

· ln sin πl

m
+ 2π

� 1
2 (m−1)�∑

l=1

sin 2πrl
m

· ln Γ
(

l

m

)

+
� 1

2 (m−1)�∑
l=1

cos 2πrl
m

·
{
ζ ′′
(

0, l

m

)
+ ζ ′′

(
0, 1 − l

m

)}
(37)

This elegant formula holds for any r = 1, 2, 3, . . . , m − 1, where m is positive integer 
greater than 1. The Stieltjes constants for other “periods” may be obtained from the 
recurrent relationship:

γ1(v + 1) = γ1(v) −
ln v

v
, v �= 0, (38)

see, e.g. [10, p. 102, Eq. (64)]. The above theorem is an equivalent of Gauss’ Digamma 
theorem for the 0th Stieltjes constant γ0(r/m) = −Ψ(r/m). Three alternative forms of 
the same theorem are given in Eqs. (50), (53) and (55) respectively.

Proof. Consider the integral (18). Put 2p −1 instead of p and denote the resulting integral 
via Ja(p):

Ja(p) ≡
∞∫
0

xa−1(ch [(2p− 1)x] − 1)
sh x

dx

= Γ(a)
2a

{
ζ(a, p) + ζ(a, 1 − p) − 2

(
2a − 1

)
ζ(a)

}
(39)

converging in the strip 0 < Re p < 1. Let now p be rational p = r/m, where r and m are 
positive integers such that r < m. Then, the preceding equation becomes

Ja

(
r
)

= Γ(a)
a

{
ζ

(
a,

r
)

+ ζ

(
a, 1 − r

)
− 2

(
2a − 1

)
ζ(a)

}
(40)
m 2 m m
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The sum of first two terms in curly brackets may be evaluated via Hurwitz’s reflection 
formula (32):

ζ

(
a,

r

m

)
+ ζ

(
a, 1 − r

m

)
=

= 2Γ(1 − a)
(2πm)1−a

m∑
l=1

[
sin

(
2πrl
m

+ πa

2

)
+ sin

(
2π(m− r)l

m
+ πa

2

)]
ζ

(
1 − a,

l

m

)

= 4Γ(1 − a)
(2πm)1−a

sin πa

2 ·
m∑
l=1

cos 2πrl
m

· ζ
(

1 − a,
l

m

)

Thus, by noticing that Γ(a)Γ(1 − a) = 1
2π csc 1

2πa · sec 1
2πa, the integral Ja(r/m) takes 

the form:

Ja

(
r

m

)
= π

(πm)1−a
sec πa

2︸ ︷︷ ︸
f1

·
m∑
l=1

cos 2πrl
m

· ζ
(

1 − a,
l

m

)
︸ ︷︷ ︸

f2

− Γ(a)(2a − 1)ζ(a)
2a−1︸ ︷︷ ︸
f3

(41)

which is third expression for the integral Ja, other two expressions being given by (18)
and (24). Let now study each term of the right part, denoted for brevity f1, f2 and f3
respectively, in a neighborhood of a = 1. The first and the third terms have poles of 
the first order at this point, while the second term f2 is analytic at a = 1. Thus, in a 
neighborhood of a = 1, terms f1 and f3 may be expanded in the Laurent series as follows

f1 = − 2
a− 1 − 2 ln πm−

(
π2

12 + ln2 πm

)
· (a− 1) + O(a− 1)2 (42)

and

f3 = 1
a− 1 + ln 2 +

(
π2

12 − ln2 2
2 − γ2

2 − γ1

)
· (a− 1) + O(a− 1)2 (43)

while f2 may be represented by the following Taylor series

f2 =
m∑
l=1

cos 2πrl
m

· ζ
(

0, l

m

)
︸ ︷︷ ︸

1
2−l/m

−(a− 1)
m∑
l=1

cos 2πrl
m

· ζ ′
(

0, l

m

)
︸ ︷︷ ︸

ln Γ(l/m)− 1
2 ln 2π

+

+(a− 1)2

2

m∑
l=1

cos 2πrl
m

· ζ ′′
(

0, l

m

)
+ O(a− 1)3 (44)

= −1
2 − (a− 1)

m∑
cos 2πrl

m
· ln Γ

(
l

m

)
+ (a− 1)2

2

m∑
cos 2πrl

m
· ζ ′′

(
0, l

m

)
+ O(a− 1)3
l=1 l=1
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because

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m∑
l=1

cos 2πrl
m

= 0 r = 1, 2, 3, . . . ,m− 1

m∑
l=1

l · cos 2πrl
m

= m

2 , r = 1, 2, 3, . . . ,m− 1
(45)

In the final analysis, the substitution of (42), (43) and (44) into (41), yields the following 
representation for the integral Ja(r/m) in a neighborhood of a = 1:

Ja

(
r

m

)
= ln πm

2 + 2Am(r) + (a− 1) ·
[
−Bm(r) + 2Am(r) ln πm− π2

24 + ln2 πm

2

+ γ2

2 + ln2 2
2 + γ1

]
+ O(a− 1)2 (46)

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Am(r) ≡

m∑
l=1

cos 2πrl
m

· ln Γ
(

l

m

)

Bm(r) ≡
m∑
l=1

cos 2πrl
m

· ζ ′′
(

0, l

m

)

Now, if we look at the integral Ja(r/m) defined in (39), we see that it is uniformly 
convergent and regular near a = 1, and hence, may be expanded in the following Taylor 
series

Ja(r/m) = J1(r/m) + (a− 1)∂Ja(r/m)
∂a

∣∣∣∣
a=1

+ O(a− 1)2 (47)

Equating right-hand sides of (46) and (47), and then, searching for terms with same 
powers of (a − 1), gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
0

ch [(2p− 1)x] − 1
sh x

dx = ln πm

2 + 2Am(r)

∞∫
0

(ch [(2p− 1)x] − 1) ln x

sh x
dx = γ1 −Bm(r) + 2Am(r) ln πm− π2

24 + ln2 πm

2

+ln2 2 + γ2
2 2
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where p ≡ r/m. Remarking that the reflection formula for the logarithm of the Γ-function 
reduces the sum Am(r) to elementary functions26

Am(r) ≡
m∑
l=1

cos 2πrl
m

· ln Γ
(

l

m

)
= −1

2

{
ln π +

m−1∑
l=1

cos 2πrl
m

· ln sin πl

m

}

yields for the first integral

∞∫
0

ch [(2p− 1)x] − 1
sh x

dx = ln m

2 −
m−1∑
l=1

cos 2πrl
m

· ln sin πl

m
, p ≡ r

m

while the second one reads
∞∫
0

(ch [(2p− 1)x] − 1) ln x

sh x
dx = ln2 2 + ln 2 · ln π + 1

2 ln2 m−
m−1∑
l=1

cos 2πrl
m

· ζ ′′
(

0, l

m

)

− ln πm ·
m−1∑
l=1

cos 2πrl
m

· ln sin πl

m
, p ≡ r

m
(48)

where, at the final stage, we separate the last term in the sum Bm(r) whose value is 
known ζ ′′(0, 1) = ζ ′′(0) = γ1 + 1

2γ
2 − 1

24π
2 − 1

2 ln2 2π. But the integral (48) was also 
evaluated in (19) by means of first generalized Stieltjes constants. Hence, the comparison 
of (19) to (48) yields

γ1

(
r

m

)
+ γ1

(
1 − r

m

)
= 2γ1 − 2γ ln 2m + 2

m−1∑
l=1

cos 2πrl
m

· ζ ′′
(

0, l

m

)
− 2 ln 2 · ln πm

+ 2(γ + ln 2πm)
m−1∑
l=1

cos 2πrl
m

· ln sin πl

m
− 2 ln2 2 − ln2 m (49)

for each r = 1, 2, . . . , m − 1. Adding this to Malmsten’s reflection formula for the first 
generalized Stieltjes constant (16) finally gives

γ1

(
r

m

)
= γ1 − γ ln 2m− π

2 (γ + ln 2πm) ctg πr

m
+

m−1∑
l=1

cos 2πrl
m

· ζ ′′
(

0, l

m

)

+ π

m−1∑
l=1

sin 2πrl
m

· ln Γ
(

l

m

)
+ (γ + ln 2πm)

m−1∑
l=1

cos 2πrl
m

· ln sin πl

m

− ln2 2 − ln 2 · ln πm− 1
2 ln2 m (50)

26 By using Malmsten’s representation for the Digamma function, see (B.4)(c), the sum Am(r) may be 
also written in terms of the Ψ-function and Euler’s constant γ.
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This is the most simple form of the theorem which we are stating here and can be used 
as is. It can be also written in several other forms. For instance, one may notice that 
sums over l ∈ [1, m −1] may be further simplified. Since each pair of terms which occupy 
symmetrical positions relatively to the center (except for l = m/2 when m is even) may 
be grouped together, the first sum may be reduced to

m−1∑
l=1

cos 2πrl
m

· ζ ′′
(

0, l

m

)
= 1

2

m−1∑
l=1

cos 2πrl
m

·
{
ζ ′′
(

0, l

m

)
+ ζ ′′

(
0, 1 − l

m

)}
=

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2 (m−1)∑

l=1

cos 2πrl
m

·
{
ζ ′′
(

0, l

m

)
+ ζ ′′

(
0, 1 − l

m

)}
, if m is odd

1
2m−1∑
l=1

cos 2πrl
m

·
{
ζ ′′
(

0, l

m

)
+ ζ ′′

(
0, 1 − l

m

)}
+ (−1)rζ ′′

(
0, 1

2

)
, if m is even

=
� 1

2 (m−1)�∑
l=1

cos 2πrl
m

·
{
ζ ′′
(

0, l

m

)
+ ζ ′′

(
0, 1 − l

m

)}
−

− (−1)r

4
[
1 − (−1)m+1] · (3 ln 2 + 2 ln π) ln 2 (51)

because ζ ′′
(
0, 12

)
= −3

2 ln2 2 − ln π ln 2, see e.g. [10, p. 72, no 24]. Analogously, the second 
sum may be written as

m−1∑
l=1

sin 2πrl
m

· ln Γ
(

l

m

)
=
� 1

2 (m−1)�∑
l=1

sin 2πrl
m

·
{

ln Γ
(

l

m

)
− ln Γ

(
1 − l

m

)}
︸ ︷︷ ︸

2 ln Γ(l/m)+ln sin(πl/m)−ln π

= 2
� 1

2 (m−1)�∑
l=1

sin 2πrl
m

· ln Γ
(

l

m

)
+
� 1

2 (m−1)�∑
l=1

sin 2πrl
m

· ln sin πl

m
(52)

− ln π · csc πr

m
· sin

(
πr

m

⌊
m + 1

2

⌋)
· sin

(
πr

m

⌊
m− 1

2

⌋)
because for natural n

n∑
l=1

sin(lx) = csc x

2 · sin nx

2 · sin
[
x

2 (n + 1)
]

see e.g. [39, no 58, p. 12]. In like manner

m−1∑
l=1

cos 2πrl
m

· ln sin πl

m
= 2

� 1
2 (m−1)�∑

l=1

cos 2πrl
m

· ln sin πl

m

By using the last three identities, Eq. (50) reduces to (37).
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The theorem may be also written by means of the Digamma function. In fact, by 
recalling that Gauss’ Digamma theorem (B.4)(b) provides a connection between the last 
sum in (50) and the Ψ-function, formula (50) may be also written in the following form:

γ1

(
r

m

)
= γ1 + γ2 + γ ln 2πm + ln 2π · lnm + 1

2 ln2 m + (γ + ln 2πm) · Ψ
(

r

m

)

+ π
m−1∑
l=1

sin 2πrl
m

· ln Γ
(

l

m

)
+

m−1∑
l=1

cos 2πrl
m

· ζ ′′
(

0, l

m

)
(53)

In some cases, it may be more advantageous to have the complete finite Fourier series 
form. For this aim, it suffices to take again (50) and to recall that

m−1∑
l=1

l · sin 2πrl
m

= −m

2 ctg πr

m
, r = 1, 2, . . . ,m− 1. (54)

This yields the following expression

γ1

(
r

m

)
= γ1 − γ ln 2m− ln2 2 − ln 2 · ln πm− 1

2 ln2 m

+ π
m−1∑
l=1

sin 2πrl
m

·
{

ln Γ
(

l

m

)
+ l(γ + ln 2πm)

m

}

+
m−1∑
l=1

cos 2πrl
m

·
{
ζ ′′
(

0, l

m

)
+ (γ + ln 2πm) ln sin πl

m

}
(55)

where r = 1, 2, 3, . . . , m − 1, and m is positive integer greater than 1. �
Formulae (37) (50), (53), (55) and (38) permit to readily obtain closed-form expres-

sions for γ1(v) at any rational v. We, however, remark in passing that in some cases, 
these expressions may be further simplified so that the resulting formulae may not con-
tain at all ζ ′′(0, l/m) +ζ ′′(0, 1 − l/m), or contain only one combination (or transcendent) 
of them. More detailed information related to these two special cases are provided in 
Appendix A.

2.4. Summation formulae with the first generalized Stieltjes constant at rational 
argument

The derived theorem is very useful for many purposes, and in particular, for the 
derivation of summation formulae involving the first generalized Stieltjes constant at 
rational argument.
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Theorem 2. For the first generalized Stieltjes constant at rational argument take place 
following summation formulae⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
r=1

γ1

(
r

m

)
· cos 2πrk

m
= −γ1 + m(γ + ln 2πm) ln

(
2 sin kπ

m

)

+ m

2

{
ζ ′′
(

0, k
m

)
+ ζ ′′

(
0, 1 − k

m

)}
(a)

m−1∑
r=1

γ1

(
r

m

)
· sin 2πrk

m
= π

2 (γ + ln 2πm)(2k −m) − πm

2

{
ln π − ln sin kπ

m

}
+ mπ ln Γ

(
k

m

)
(b)

(56)

for k = 1, 2, 3, . . . , m − 1, where m is natural greater than 1.27

Proof. Formula (55) represents the finite Fourier series of the type (B.1). Comparing 
(55) to (B.1), we immediately identify⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

am(0) = γ1 − γ ln 2m− ln2 2 − ln 2 · ln πm− 1
2 ln2 m,

am(l) = ζ ′′
(

0, l

m

)
+ (γ + ln 2πm) ln sin πl

m
, l = 1, 2, 3, . . . ,m− 1

bm(l) = π

{
ln Γ

(
l

m

)
+ l(γ + ln 2πm)

m

}
, l = 1, 2, 3, . . . ,m− 1

(57)

Thus, in virtue of (B.2), for any k = 1, 2, 3, . . . , m − 1,

m−1∑
r=1

γ1

(
r

m

)
· cos 2πrk

m
= −γ1 + γ ln 2m + ln2 2 + ln 2 · ln πm + 1

2 ln2 m

−
m−1∑
l=1

ζ ′′
(

0, l

m

)
︸ ︷︷ ︸

− 1
2 ln2 m−ln m·ln 2π

+m(γ + ln 2πm)
2

[
ln sin πk

m
+ ln sin π(m− k)

m

]

− (γ + ln 2πm)
m−1∑
l=1

ln sin πl

m︸ ︷︷ ︸
(1−m) ln 2+ln m

+m

2

{
ζ ′′
(

0, k
m

)
+ ζ ′′

(
0, 1 − k

m

)}

= −γ1 + m(γ + ln 2πm) · ln
(

2 sin kπ

m

)
+ m

2

{
ζ ′′
(

0, k
m

)
+ ζ ′′

(
0, 1 − k

m

)}

27 One of these formulae also appears in an unpublished work sent to the author by Donal Conon.
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where we respectively used the multiplication theorem for the Hurwitz ζ-function

m−1∑
l=1

ζ ′′
(

0, l

m

)
= d2

ds2

[(
ns − 1

)
ζ(s)

]∣∣∣∣
s=0

= −1
2 ln2 m− lnm · ln 2π (58)

see e.g. [10, p. 101], and the well-known formula from elementary mathematical analysis

m−1∏
l=1

sin πl

m
= m

2m−1 (59)

which is, by the way, due to Euler [31, tomus I, art. 240, p. 204], [62, tome II, art. 99, 
p. 445] or [74, vol. I, p. 752, no 6.1.2-2]. Analogously, by (B.3), we deduce

m−1∑
r=1

γ1

(
r

m

)
· sin 2πrk

m
= πm

2

{
ln Γ

(
k

m

)
− ln Γ

(
1 − k

m

)
+ γ + ln 2πm

m

[
k − (m− k)

]}

= π

2 (γ + ln 2πm)(2k −m) − πm

2

{
ln π − ln sin πk

m

}
+ mπ ln Γ

(
k

m

)
which holds for k = 1, 2, 3, . . . , m − 1. �
Theorem 3. Parseval’s theorem for the first generalized Stieltjes constant at rational 
argument has the following form

m−1∑
r=1

γ2
1

(
r

m

)
= (m− 1)γ2

1 −mγ1(2γ + lnm) lnm + m

4

m−1∑
l=1

{
ζ ′′
(

0, l

m

)
+ ζ ′′

(
0, 1 − l

m

)}2

+ m(γ + ln 2πm)
m−1∑
l=1

{
ζ ′′
(

0, l

m

)
+ ζ ′′

(
0, 1 − l

m

)}
· ln sin πl

m
+ mπ2

m−1∑
l=1

ln2 Γ
(

l

m

)

+ 2π2(γ + ln 2πm)
m−1∑
l=1

l · ln Γ
(

l

m

)
+ m

4
[
4(γ + ln 2πm)2 − π2]m−1∑

l=1

ln2 sin πl

m
+ Cm

(60)

where, for convenience in writing, by Cm we designated an elementary function depending 
on m and containing Euler’s constant γ

Cm ≡ −m(m− 1) ln4 2 −m(m− 1)(2 lnm + 2γ + 3 ln π) ln3 2 −m(m− 2) ln2 m · ln2 2

+ 1
4m ln4 m + m ln3 m · ln 2 − 2m

[
2(m− 1) ln π + γ(m− 2)

]
lnm · ln2 2

−m(m− 1)
[
3 ln2 π + 4γ ln π + γ2 + 5

π2 + 1
π2
]

ln2 2 −
12 6m
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−m

[(
m− 5

2

)
ln π − 3γ

]
lnm2 · ln 2

+ 2m
[
(1 −m) ln2 π −

(
m− 5

2

)
γ ln π

]
lnm · ln 2

+ 1
12

[((
6π2 + 24γ2)m + 4π2(1 −m2)) lnm

− 4(m− 1)
{

3m ln3 π + 6mγ ln2 π + γπ2(m + 1)

+
((

13
4 π2 + 3γ2

)
m + π2

)
ln π

}]
ln 2 + m

(
γ + 1

2 ln π

)
ln3 m

+ 1
12
{
6m ln2 π + 18γm lnπ + π2m2 +

(
12γ2 + 3π2)m + 2π2} ln2 m

+ 1
12
[
12mγ ln2 π +

((
12γ2 + 9π2)m + 4π2(1 −m2)) ln π + 2π2(2 + m2)γ] lnm

− 1
12(m− 1)

[
2π2(4m + 1) ln2 π + 4γπ2(m + 1) ln π − π2γ2(m− 2)

]
− 1

4m
[
4(γ + ln 2πm)2 − π2] · [(1 −m) ln 2 + lnm

]
ln π

+ m(γ + ln 2πm)
(

1
2 lnm + ln 2π

)
ln π · lnm

and where m is natural greater than 1.

Proof. Inserting Fourier series coefficients (57) into (B.4) and proceeding analogously 
to (B.8)–(B.9), yields, after several pages of careful calculations and simplifications, the 
above result. The unique formula that should be used in addition to those employed in 
derivations (B.8)–(B.9) is

m−1∑
l=1

l · ln sin πl

m
= m

2

m−1∑
l=1

ln sin πl

m
= m[(1 −m) ln 2 + lnm]

2 (61)

Also, the fact that the reflected sum ζ ′′(0, l/m) + ζ ′′(0, 1 − l/m), as well as the function 
ln sin(πl/m), are both invariant with respect to a change of summation’s index l → m − l

greatly helps when simplifying formula (60). �
Analogously, (55) allows us to obtain a number of other interesting summation for-

mulae for the first generalized Stieltjes constant at rational argument. For instance, with 
the help of (B.10), we easily deduce these results
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
r=0

cos (2r + 1)πk
m

· γ1

(
2r + 1
2m

)
= m(γ + ln 4πm) ln tg πk

2m
+ (a)

+ m

2

{
ζ ′′
(

0, k

2m

)
+ ζ ′′

(
0, 1 − k

2m

)}
− m

2

{
ζ ′′
(

0, 1
2

+ k

2m

)
+ ζ ′′

(
0, 1

2
− k

2m

)}
m−1∑
r=0

sin (2r + 1)πk
m

· γ1

(
2r + 1
2m

)
= (b)

= mπ

{
ln Γ

(
k

2m

)
+ ln Γ

(
1
2 − k

2m

)
+ 1

2 ln sin πk

m

}
− πm

2 (3 ln 2π + lnm + γ)

(62)

for k = 1, 2, 3, . . . , m −1, where m is natural greater than 1. By a similar line of argument, 
we also deduce⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
r=1

cos (2k + 1)πr
m

· γ1

(
r

m

)
=

= −π
m−1∑
r=1

sin 2πr
m

cos 2πr
m − cos (2k+1)π

m

{
ln Γ

(
r

m

)
+ r(γ + ln 2πm)

m

}
m−1∑
r=1

sin (2k + 1)πr
m

· γ1

(
r

m

)
=
[
γ1 − γ ln 2m− ln2 2 − ln 2 · ln πm− 1

2 ln2 m

]
×

× ctg (2k + 1)π
2m + (γ + ln 2πm) sin (2k + 1)π

m
·
m−1∑
r=1

1
cos 2πr

m − cos (2k+1)π
m

· ln sin πr

m

+ 1
2 sin (2k + 1)π

m
·
m−1∑
r=1

1
cos 2πr

m − cos (2k+1)π
m

·
{
ζ ′′
(

0, r

m

)
+ ζ ′′

(
0, 1 − r

m

)}

which are valid for any k ∈ Z. By the way, two particular cases of (56)(a) and (62)(b)
may represent some special interest. Thus putting in the former k = m/2 when m is 
even yields

2m−1∑
r=1

(−1)r · γ1

(
r

2m

)
= −γ1 + m(2γ + ln 2 + 2 lnm) ln 2 (63)

However, the same relationship may be also derived from the multiplication theorem for 
the first Stieltjes constant28

28 This is a particular case of the multiplication theorem for the first generalized Stieltjes constant. More 
general case of this theorem and equivalent theorems for higher Stieltjes constants were derived in exercise 
no 64 [10, p. 101, Eqs. (62)–(63)]. Some particular cases of these theorems appear also in [18, Eqs. (3.28), 
(3.54)]; Eq. (3.54) contains, unfortunately, an error (see footnote 42 [10, p. 101]).
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m−1∑
r=1

γ1

(
r

m

)
= (m− 1)γ1 −mγ lnm− m

2
ln2 m (64)

Putting 2m instead of m, and then, treating separately odd and even terms, we have

m−1∑
r=0

γ1

(
2r + 1
2m

)
= m

{
γ1 − γ ln 4m− 1

2 ln2 m− ln2 2 − 2 ln 2 · lnm

}
(65)

Subtracting from the above sum even terms γ1(2r/2m) for r = 1, 2, . . . , m − 1, imme-
diately yields (63). In other words, (63) may be also regarded as a direct consequence 
of the multiplication theorem for the first Stieltjes constant. In contrast, the particular 
case of Eq. (62)(b) corresponding to k = m/2 when m is even

2m−1∑
r=0

(−1)r · γ1

(
2r + 1
4m

)
= m

{
4π ln Γ

(
1
4

)
− π(4 ln 2 + 3 ln π + lnm + γ)

}
(66)

appears to be more interesting and cannot be derived solely from (64). Moreover, we 
can also combine (66) with (65) by putting in the later 2m instead of m. Adding and 
subtracting them respectively yields:

m−1∑
r=0

γ1

(
4r + 1
4m

)
= m

2

{
2γ1 − γ(π + 6 ln 2 + 2 lnm) + 4π ln Γ

(
1
4

)
− 4π ln 2

− 3π ln π − π lnm− 7 ln2 2 − 6 ln 2 · lnm− ln2 m

}
(67a)

m−1∑
r=0

γ1

(
4r + 3
4m

)
= m

2

{
2γ1 + γ(π − 6 ln 2 − 2 lnm) − 4π ln Γ

(
1
4

)
+ 4π ln 2

+ 3π ln π + π lnm− 7 ln2 2 − 6 ln 2 · lnm− ln2 m

}
(67b)

From these equations it follows, inter alia, that sums γ1(1/8) + γ1(5/8) and γ1(1/12) +
γ1(5/12) may be expressed in terms of Γ(1/4), γ1, γ and elementary functions.29 Besides, 
the role of ln Γ(1/4) in three latter identities seems quite intriguing because the logarithm 
of the Γ-function possesses very similar properties

2m−1∑
r=0

(−1)r · ln Γ
(

2r + 1
4m

)
= 2 ln Γ

(
1
4

)
− 1

2(ln 2 + 2 ln π − lnm)

m−1∑
r=0

ln Γ
(

4r + 1
4m

)
= ln Γ

(
1
4

)
+ 1

2(m− 1) ln 2π + 1
4 lnm

29 For the value of γ1(3/4), see [10, p. 100].
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m−1∑
r=0

ln Γ
(

4r + 3
4m

)
= − ln Γ

(
1
4

)
+ m

2
ln 2π + 1

4
ln π2

m

Particular cases of (56)(b) corresponding to k = m/3 and k = m/6 are also interesting. 
Put in (56)(b) 3m instead of m, and then, set k = m. This yields:

γ1

(
1

3m

)
− γ1

(
2

3m

)
+ γ1

(
4

3m

)
− γ1

(
5

3m

)
+ . . . + γ1

(
3m− 2

3m

)
− γ1

(
3m− 1

3m

)

= πm√
3

{
6 ln Γ

(
1
3

)
− γ − 4 ln 2π + 1

2 ln 3 − lnm

}
(68)

But the multiplication theorem (64) rewritten for 3m in place of m gives

γ1

(
1

3m

)
+ γ1

(
2

3m

)
+ γ1

(
4

3m

)
+ γ1

(
5

3m

)
+ . . . + γ1

(
3m− 2

3m

)
+ γ1

(
3m− 1

3m

)
= 2mγ1 −mγ(2 lnm + 3 ln 3) − m

2
(
3 ln2 3 + 6 ln 3 · lnm + 2 ln2 m

)
(69)

and hence

m−1∑
r=0

γ1

(
3r + 1
3m

)
= m

{
γ1 − γ

(
π

2
√

3
+ lnm + 3

2 ln 3
)

+ π
√

3 ln Γ
(

1
3

)

− π

2
√

3

(
4 ln 2π − 1

2 ln 3 + lnm

)
− 1

4
(
3 ln2 3 + 6 ln 3 · lnm + 2 ln2 m

)}
Consider now the particular case of (56)(a) corresponding to k = m/6. Recalling that 
ln Γ

(1
6
)

= 1
2 ln 3 − 1

3 ln 2 − 1
2 ln π + 2 ln Γ

( 1
3
)
, we have

γ1

(
1

6m

)
+ γ1

(
2

6m

)
− γ1

(
4

6m

)
− γ1

(
5

6m

)
+ . . .− γ1

(
3m− 2

6m

)
− γ1

(
3m− 1

6m

)

= 2πm√
3

{
12 ln Γ

(
1
3

)
− 2γ − 9 ln 2 + ln 3 − 8 ln π − 2 lnm

}
(70)

By adding this to (69) rewritten for 2m instead of m, and then, by subtracting (70)
results in another summation relation

m−1∑
r=0

γ1

(
6r + 1
6m

)
= m

{
γ1 − γ

(√
3π
2 + 2 ln 2 + 3

2 ln 3 + lnm

)
+ 3π

√
3 ln Γ

(
1
3

)

− π

2
√

3

(
14 ln 2 − 3

2 ln 3 + 12 lnπ + 3 lnm

)
− ln2 2 − 3

4 ln2 3

− 3 ln 2 · ln 3 − 2 ln 2 · lnm− 3 ln 3 · lnm− 1 ln2 m

}
(71)
2 2
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Previous relationships permit to derive several summation formulae for γ1(. . . /12m). 
Put in (67a) 3m instead of m and then represent the summation index r as 3l+k, where 
the new summation index l runs through 0 to m −1 for each k = 0, 1, 2. Then (67a) may 
be written as a sum of three terms last of which equals (67b). Hence

m−1∑
l=0

γ1

(
12l + 1
12m

)
+

m−1∑
l=0

γ1

(
12l + 5
12m

)
= m

2

{
4γ1 − γ(4π + 12 ln 2 + 6 ln 3 + 4 lnm)

+ 16π ln Γ
(

1
4

)
− π(16 ln 2 + 12 ln π + 3 ln 3 + 4 lnm) − 14 ln2 2

− 3 ln2 3 − 18 ln 2 · ln 3 − 12 ln 2 · lnm− 6 ln 3 · lnm− 2 ln2 m

}
(72)

Similarly, by separately treating odd and even terms in (71) written for 2m instead of 
m, we have

m−1∑
l=0

γ1

(
12l + 1
12m

)
+

m−1∑
l=0

γ1

(
12l + 7
12m

)
= 2m

{
γ1 − γ

(√
3π
2 + 3 ln 2 + 3

2 ln 3 + lnm

)

+ 3π
√

3 ln Γ
(

1
3

)
− π

2
√

3

(
17 ln 2 − 3

2 ln 3 + 12 ln π + 3 lnm

)
− 7

2 ln2 2 − 3
4 ln2 3 − 9

2 ln 2 · ln 3 − 3 ln 2 · lnm− 3
2 ln 3 · lnm− 1

2 ln2 m

}
From these relationships, it appears that the sum γ1(1/12) + γ1(5/12) may be expressed 
in terms of Γ(1/4), γ1, γ and elementary functions, while γ1(1/12) + γ1(7/12) contains 
Γ(1/3) instead of Γ(1/4).30 This is certainly correlated with the fact that Γ(1/12) may 
be written in terms of product Γ(1/3) · Γ(1/4), see e.g. [12, p. 31]. Many particular 
cases of equations from pp. 562–565 will also imply ζ ′′(0, p) + ζ ′′(0, 1 − p) at different 
rational p. For instance, setting in (56)(a) k = m/5 and recalling that cos 2

5π = 1
4 (
√

5−1), 
cos 4

5π = −1
4 (
√

5 + 1) and sin 1
5π = 1

4

√
10 − 2

√
5, as well as using several times the 

multiplication theorem (64), yields

m−1∑
l=0

γ1

(
5l + 1
5m

)
+

m−1∑
l=0

γ1

(
5l + 4
5m

)
= m

2
√

5

{
4γ1

√
5 + 10

[
ζ ′′
(

0, 1
5

)
+ ζ ′′

(
0, 4

5

)]
− γ

(
4
√

5 lnm + 10 ln(1 +
√

5) − 10 ln 2 + 5
√

5 ln 5
)

− 10(ln 2 + ln 5 + ln π + lnm) · ln(1 +
√

5) + 10 ln2 2 − 10
1 +

√
5

ln2 5 − 2
√

5 ln2 m +

30 At the same time, the difference γ1(1/12) − γ1(7/12) may be written as function of Γ(1/4) and 
ζ′′(0, 1/12) + ζ′′(0, 11/12). This follows from the argument developed here later.
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+ 15 ln 2 · ln 5 + 10 ln 2 · ln π + 5 ln 5 · ln π + 10 ln 2 · lnm− 5
√

5 ln 5 · lnm

}
Interestingly, the golden ratio φ seems to play a certain role in the above formula.

Let now consider the case k = m/8, where k should be positive integer. Eq. (56)(b), 
employed together with both Eqs. (67a) and (67b), provides

γ1

(
1

8m

)
+ γ1

(
3

8m

)
− γ1

(
5

8m

)
− γ1

(
7

8m

)
+ . . . + γ1

(
8m− 7

8m

)
+ γ1

(
8m− 5

8m

)

− γ1

(
8m− 3

8m

)
− γ1

(
8m− 1

8m

)
= πm

√
2
{

8 ln Γ
(

1
8

)
− 4 ln Γ

(
1
4

)
− 2γ − 11 ln 2

− 4 ln π − 2 lnm− 2 ln(1 +
√

2)
}

At the same time, Eq. (56)(a) for k = m/8, used together with (63), leads to

γ1

(
1

8m

)
− γ1

(
3

8m

)
− γ1

(
5

8m

)
+ γ1

(
7

8m

)
+ . . . + γ1

(
8m− 7

8m

)
− γ1

(
8m− 5

8m

)

− γ1

(
8m− 3

8m

)
+ γ1

(
8m− 1

8m

)
= m

√
2
{

4
[
ζ ′′
(

0, 1
8

)
+ ζ ′′

(
0, 7

8

)]
− 4(γ + 4 ln 2 + ln π + lnm) · ln(1 +

√
2) + 7 ln2 2 + 2 ln 2 · ln π

}
Adding both equations together results in another summation relation

m−1∑
r=0

γ1

(
8r + 1
8m

)
−

m−1∑
r=0

γ1

(
8r + 5
8m

)
= m√

2

{
4
[
ζ ′′
(

0, 1
8

)
+ ζ ′′

(
0, 7

8

)]
+ 8π ln Γ

(
1
8

)

− 4π ln Γ
(

1
4

)
− 2γ

[
π + 2 ln(1 +

√
2)
]
− 2(π + 8 ln 2 + 2 ln π + 2 lnm) · ln(1 +

√
2)

+ 7 ln2 2 + 2 ln 2 · ln π − π(11 ln 2 + 4 ln π + 2 lnm)
}

Analogous relation with “+” instead of “−” in the left part has much more simple form 
and follows directly from (67a) rewritten for 2m in place of m

m−1∑
r=0

γ1

(
8r + 1
8m

)
+

m−1∑
r=0

γ1

(
8r + 5
8m

)
= m

{
2γ1 − γ(π + 8 ln 2 + 2 lnm) + 4π ln Γ

(
1
4

)

−5π ln 2 − 3π ln π − π lnm− 14 ln2 2 − 8 ln 2 · lnm− ln2 m

}
Similarly, one can obtain equations for 

∑
[γ1(8r+3 ) ± γ1(8r+7 )].
8m 8m
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The above summation formulae are not only interesting in themselves, but also may be 
useful for the closed-form determination of certain first Stieltjes constants (expressions 
in Appendix A are obtained precisely by means of such formulae). Besides, summation 
formulae akin to (65), (67a), (70), (71) may be often more easily obtained by the direct 
summation of (50). For the derivation of such a formula, we, first, write in (50) mn for 
m and rn + k for r, where n ∈ N and k = 1, 2, . . . , n − 1. Then, we remark that for 
l = 1, 2, 3, . . . , mn − 1, we have

m−1∑
r=0

cos 2πl(nr + k)
nm

= m cos 2πlk
nm

· {δl,m + δl,2m + δl,3m + . . . + δl,(n−1)m}

m−1∑
r=0

sin 2πl(nr + k)
nm

= m sin 2πlk
nm

· {δl,m + δl,2m + δl,3m + . . . + δl,(n−1)m}

m−1∑
r=0

ctg π(nr + k)
nm

= m ctg πk

n

see e.g. [38, p. 8, no 33], whence

m−1∑
r=0

γ1

(
nr + k

nm

)
= m

(
γ1 − γ ln 2mn− ln2 2 − ln 2 · ln πmn− 1

2 ln2 mn

)

+m

n−1∑
λ=1

cos 2πλk
n

· ζ ′′
(

0, λ
n

)
+ mπ

n−1∑
λ=1

sin 2πλk
n

· ln Γ
(
λ

n

)

−mπ

2 (γ + ln 2πmn) ctg πk

n
+ m(γ + ln 2πmn)

n−1∑
λ=1

cos 2πλk
n

· ln sin πλ

n

Comparing the right-hand side of this equation with the parent equation (50) finally 
yields

1
m

m−1∑
r=0

γ1

(
nr + k

nm

)
= (73)

= γ1

(
k

n

)
−
{
γ + ln 2n + 1

2 lnm + π

2 ctg πk

n
−

n−1∑
λ=1

cos 2πλk
n

· ln sin πλ

n

}
lnm

This relationship represents a special variant of the generalized multiplication theorem 
for the first generalized Stieltjes constant.31

Another summation formula with the first generalized Stieltjes constants may be 
obtained by using respectively (54), (56)(b), (B.9) and (61)

31 This variant may be also obtained from [23, Eq. (6.6)] or [10, p. 101, Eq. (63)] by making use of Gauss’
Digamma theorem (B.4).
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m−1∑
r=1

ctg πr

m
· γ1

(
r

m

)
= π

3

{
(1 −m)(m− 2)γ

2
+
(
m2 − 1

)
ln 2π −

(
m2 + 2

)
lnm

2

}

− 2π
m−1∑
l=1

l · ln Γ
(

l

m

)
(74)

The normalized first-order moment of the first generalized Stieltjes constant may be 
derived from (55) by making use of (B.9), (54), (45), (59), as well as (58). This yields

m−1∑
r=1

r

m
· γ1

(
r

m

)
= 1

2

{
(m− 1)γ1 −mγ lnm− m

2 ln2 m

}
(75)

− π

2m (γ + ln 2πm)
m−1∑
l=1

l · ctg πl

m
− π

2

m−1∑
l=1

ctg πl

m
· ln Γ

(
l

m

)

More complicated summation relations may be obtained if considering other functions. 
For example, the summation formula with the Digamma function reads

m−1∑
r=1

Ψ
(

r

m

)
· γ1

(
r

m

)
=
[
γ(1 −m) −m lnm

]
γ1 + mγ2 lnm +

{
(m− 1)(m− 2)π2

12

−m(m− 1) ln2 2 + 2m ln 2 · lnm + 3m
2 ln2 m

}
γ −m(m− 1) ln3 2 + m

2 ln3 m

−
[
m(m− 2) lnm + m(m− 1) ln π

]
ln2 2 + 3m

2 ln 2 · ln2 m + m ln 2 · ln π · lnm

− (m2 − 1)π2

6 ln 2π + (m2 + 2)π2

12 lnm + m(γ + ln 2πm)
m−1∑
l=1

ln2 sin πl

m

+m

2

m−1∑
l=1

{
ζ ′′
(

0, l

m

)
+ ζ ′′

(
0, 1 − l

m

)}
· ln sin πl

m
+ π2

m−1∑
l=1

l · ln Γ
(

l

m

)
(76)

In order to obtain this expression we start from (50) and we successively employ (B.6), 
(B.11), (58), (59) as well as multiplication theorems for the logarithm of the Γ-function 
and for the Ψ-function

m−1∑
r=1

ln Γ
(

r

m

)
= 1

2(m− 1) ln 2π − 1
2 lnm,

m−1∑
r=1

Ψ
(

r

m

)
= γ(1 −m) −m lnm (77)

Note that, generally, when summing the first generalized Stieltjes constants with an 
odd function, one arrives at the logarithm of the Γ-function, while summing with an 
even function leads to a reflected sum of two second-order derivatives of the Hurwitz 
ζ-function. The latter sum is the subject of a more detailed study presented in the next 
section.
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2.5. Several remarks related to the sum ζ ′′(0, p) + ζ ′′(0, 1 − p)

From the above formulae it appears that the sum of ζ ′′(0, p) with its reflected version 
ζ ′′(0, 1 − p), at positive rational p less than 1, plays the fundamental role for the first 
generalized Stieltjes constant at rational argument. We do not know which is the tran-
scendence of such a sum, but it is not unreasonable to expect that it is lower than that of 
solely ζ ′′(0, p). Furthermore, in our previous work [10, pp. 66–71], we demonstrated that 
this sum has several comparatively simple integral and series representations; below, we 
briefly present some of them. In exercises no 20–21, we dealt with integral Φ(ϕ), which 
we, unfortunately, could not reduce to elementary functions (despite of its simple and 
naive appearance). Written in terms of this integral, the above sum reads32

ζ ′′(0, p) + ζ ′′(0, 1 − p) = π ctg 2πp ·
{
2 ln Γ(p) + ln sin πp + (2p− 1) ln 2π − ln π

}
− 2 ln 2π · ln(2 sin πp) +

∞∫
0

e−x ln x

ch x− cos 2πp dx (78)

where parameter p should lie within the strip 0 < Re p < 1. By a simple change of 
variable, the last integral may be rewritten in a variety of other forms. For instance,

∞∫
0

e−x ln x

ch x− cos 2πp dx = 2
1∫

0

x ln ln 1
x

x2 − 2x cos 2πp + 1 dx = 2
∞∫
1

ln ln x

x(x2 − 2x cos 2πp + 1) dx

= ±2
sin 2πp Im

∞∫
0

ln x

ex − e±2πip dx = ±2
sin 2πp Im

1∫
0

x ln ln 1
x

x− e±2πip dx

= ±2
sin 2πp Im

∞∫
1

ln ln x

x(x− e±2πip) dx (79)

The latter forms are particularly simple and display the close connection to the polylog-
arithms. Let now focus our attention on the last integral from the first line. By partial 
fraction decomposition it may be written in terms of three other integrals

∞∫
1

ln ln x

xn(x2 − 2x cos 2πp + 1) dx,

∞∫
1

ln ln x

xk
dx and

∞∫
1

ln ln x

x2 − 2x cos 2πp + 1 dx (80)

32 Put in [10, p. 69, Eq. 49] ϕ = π(2p − 1).
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where n and k are positive integers greater than 1. The values of the last two integrals, 
thanks to Euler, Legendre and Malmsten, are known,33 so that the problem of the 
evaluation of (78) may be reduced to the first integral. We, however, note that the success 
of this technique depends on the appropriate choice of p and n. Indeed, by expanding 
the integrand of the first integral in (80) into partial fractions, we have

1
xn(x2 − 2x cos 2πp + 1) = a0

x(x2 − 2x cos 2πp + 1) + a1

x2 − 2x cos 2πp + 1 +
n∑

l=2

al
xl

(81)

with coefficients al given by

a0 = sin 2πpn
sin 2πp , a1 = −sin 2πp(n− 1)

sin 2πp , a2 = +sin 2πp(n− 1)
sin 2πp , . . . ,

al = sin 2πp(n− l + 1)
sin 2πp , . . . , an−1 = 2 cos 2πp, an = 1.

But if parameter p is such that a0 = 0, the wanted integral cannot be collared. The 
most unpleasant is that this situation occurs precisely when p = k/n, where k is positive 
integer or demi-integer not greater than n. We, in turn, are able to evaluate

∞∫
1

ln ln x

xn(x2 − 2x cos 2πp + 1) dx (82)

only for those p which may be written as k/n, in which case it can be expressed in terms 
of ln Γ(k/n) [see Appendix C]. Thus, the evaluation of the integral

∞∫
0

e−nx · ln x

ch x− cos 2πk
m

dx = 2
1∫

0

xn ln ln 1
x

x2 − 2x cos 2πk
m + 1

dx = 2
∞∫
1

ln ln x

xn
(
x2 − 2x cos 2πk

m + 1
) dx

(83)

with n = 2, 3, 4, . . . , number m being positive integer such that m �= 2kn/l for l =
±1, ±2, ±3, . . . , could bring the solution to our problem, but currently we do not know 
if this integral can be evaluated in terms of lower transcendental functions. However, it 
should be noted that integrals closely related to (83) and (C.3) were a subject of several 
investigations appeared already in the XIXth century. The most significant contribution 
seems to belong to Malmsten who showed in 1842 that

sin a

Γ(s)

1∫
0

xy · lns−1 1
x

x2 + 2x cos a + 1 dx =
∞∫
0

sh ax

sh πx
·
cos

(
s arctg x

y

)
(x2 + y2)s/2

dx =
∞∑
l=1

(−1)l−1 sin al

(y + l)s (84)

33 See [67, p. 24], [10, Sect. 4, no 2, 29-h, 30]) or (C.5) in Appendix C.
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y, s ∈ C, −π < a < +π, see [66, pp. 20–25] and [67, p. 12]. He studied these integrals for 
different values of parameters y, s and a, and evaluated some of them in a closed form. 
The above equality permitted to Malmsten to derive numerous fascinating results, such 
as, for example, formulae (17) and (26)(b). Furthermore, his investigations devoted to the 
cases y = 0, a = π/2 and y = 0, a = π/3 resulted in two important reflection formulae for 
the L- and M -functions respectively [66, p. 23, Eq. (36)], [67, pp. 17–18, Eqs. (51)–(52)], 
[10, pp. 35–36, Eq. (21), Fig. 3] (these formulae are similar to Euler–Riemann’s reflection 
formula for the ζ-function, see also footnote 20). Notwithstanding, Malmsten failed to 
show that more generally, when a is a rational multiple of π, one has

∞∑
l=1

(−1)l−1 sin al

(y + l)s = 1
(2n)s

2n−1∑
l=1

(−1)l−1 sin πml

n
· ζ
(
s,

y + l

2n

)
, a ≡ mπ

n
(85)

m = 1, 2, 3, . . . , n − 1, which may be obtained by applying Hurwitz’s method used in 
(27),(28),(30)–(35) to series (84).34,35 Now, Malmsten’s integrals from (84) are related 
to ours from (79) as follows

1∫
0

x ln ln 1
x

x2 − 2x cos 2πp + 1 dx = lim
s→1

{
∂

∂s

1∫
0

x · lns−1 1
x

x2 − 2x cos 2πp + 1 dx

}
(86)

Therefore, by (84) we have

1∫
0

x · lns−1 1
x

x2 − 2x cos 2πp + 1 dx = − Γ(s)
sin 2πp

∞∫
0

sh[π(2p− 1)x]
sh πx

· cos(s arctg x)
(x2 + 1)s/2

dx

= − Γ(s)
2 sin 2πp

+∞∫
−∞

sh[π(2p− 1)x]
sh πx

· dx

(1 ± ix)s , Re s > 0.

(87)

Integrals appearing on the right-hand side are also quite similar to Jensen’s formulae for 
ζ(s) derived between 1893 and 1895 by contour integration methods, see [49] and [50]. 
Taking into account that these references are hard to find and that the same formu-
lae were later reprinted with misprints,36 we find it useful to reproduce them here as 
well

34 Actually, Malmsten also studied the case a = mπ/n, but quite superficially and mainly for y = 0.
35 Note that for s = 1, 2, 3, . . . the right part of (85) reduces to polygamma functions, see e.g. [10, pp. 71–72, 
no 23].
36 In the well-known monograph [7, vol. I], in formula (13) on p. 33, “(e2πt + 1)−t” should be replaced by 
“(eπt + 1)−t”.
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ζ(s) = 1
s− 1 + 1

2 + 2
π/2∫
0

(cos θ)s−2 sin sθ

e2π tg θ − 1 dθ = 1
s− 1 + 1

2 + 2
∞∫
0

sin(s arctg x) dx
(e2πx − 1)(x2 + 1)s/2

ζ(s) = 2s−1

s− 1 + i2s−1
∞∫
0

(1 + ix)s − (1 − ix)s

(eπx + 1)(x2 + 1)s dx = 2s−1

s− 1 − 2s
∞∫
0

sin(s arctg x) dx
(eπx + 1)(x2 + 1)s/2

ζ(s) = π

2(s− 1)

+∞∫
−∞

1
ch2 πx

· dx

(1
2 + ix)s−1 = π2s−2

s− 1

∞∫
0

cos[(s− 1) arctg x]
(x2 + 1)(s−1)/2 ch2 1

2πx
dx

(88)

s ∈ C, s �= 1, where final simplifications were done later by Lindelöf [65, p. 103] who also 
gave details of their derivation.37 Application of contour integration methods to integrals 
(87) seems quite attractive as well (especially if p is rational), but the branch point at 
±i is really annoying.

Other representations for ζ ′′(0, p) + ζ ′′(0, 1 − p) may also involve integrals

∞∫
0

ln(x2 + p2) · arctg(x/p)
e2πx − 1 dx or

∞∫
0

ln2(ip + x) − ln2(ip− x)
e2πx − 1 dx

which directly follow from the well-known Hermite representation for the Hurwitz 
ζ-function [44, p. 66], [65, p. 106], [7, vol. I, p. 26, Eq. 1.10(7)].

The sum ζ ′′(0, p) + ζ ′′(0, 1 − p) may be also reduced to an important logarithmic–
trigonometric series

ζ ′′(0, p) + ζ ′′(0, 1 − p) = −2(γ + ln 2π) ln(2 sin πp) + 2
∞∑

n=1

cos 2πpn · lnn

n

see [10, p. 69, no 22]. This series, unlike the similar sine-series, is not known to be re-
ducible to any elementary or classical function of analysis; however, it was remarked by 
Landau [59, pp. 180–182] that it has some common properties with the logarithm of the 
Γ-function. Besides, it also appeared in works of Lerch [63] and Gut [40].

Another way to treat the problem could be to use the antiderivatives of the first 
generalized Stieltjes constant Γ1(p). In [10, p. 69, no 22], we showed that the sum 
ζ ′′(0, p) + ζ ′′(0, 1 − p) may be also written in terms of such functions

ζ ′′(0, p) + ζ ′′(0, 1 − p) = −(3 ln 2 + 2 ln π) ln 2 − 4Γ1(1/2) + 2Γ1(p) + 2Γ1(1 − p)

37 Jensen did not provide proofs for these formulae; he only stated that he had found them in his notes,38
and added that they can be easily derived by Cauchy’s residue theorem. By the way, the first of these three 
formulae was also obtained by Franel [33,49,50].
38 Je trouve encore, dans mes notes, entre autres, les formules. . . [50].
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The latter formula, inserted into (50), gives an equation which is in some way analogous 
to Malmsten’s representation for the Digamma function (B.4)(c) [in the sense that for 
rational arguments it provides a connection between the function and its derivative].

Finally, note that almost all above expressions remain valid everywhere in the strip 
0 < Re p < 1, so it is not impossible that for rational p they could be further simplified or 
reduced to less transcendental forms. Thus, the question of the possibility to express any 
first generalized Stieltjes constant of a rational argument not only via the Γ-function, 
γ1, γ and some “relatively simple” function, but solely via the Γ-function, γ1, γ and 
elementary functions remains open and is directly connected to the transcendence of the 
reflected sum ζ ′′(0, p) + ζ ′′(0, 1 − p) at rational p, which is currently not sufficiently well 
studied.

3. Extensions of the theorem to the second and higher Stieltjes constants

It can be reasonably expected that similar theorems could be derived for the higher 
Stieltjes constants. Such a demonstration could be carried out again with the help of 
Ja(p) and integral (19) where ln x is replaced with lnn x [see below how integral (22)
is used for the determination of the second Stieltjes constant]. As regards the equation 
for the difference between generalized Stieltjes constants, which is also necessary, it is 
simply sufficient to note that from (2) and (32) it follows that

γn

(
r

m

)
− γn

(
1 − r

m

)
= (−1)n lim

a→1

{
ζ(n)

(
a,

r

m

)
− ζ(n)

(
a, 1 − r

m

)}
=

= 4(−1)n lim
a→1

∂n

∂an

{
Γ(1 − a)
(2πm)1−a

cos πa2 ·
m−1∑
l=1

sin 2πrl
m

· ζ
(

1 − a,
l

m

)}

n = 1, 2, 3, . . . and where r and m are positive integers such that r < m. In particular, 
for the second generalized Stieltjes constant, the latter formula takes the form39

γ2

(
r

m

)
− γ2

(
1 − r

m

)
= 2π

m−1∑
l=1

sin 2πrl
m

· ζ ′′
(

0, l

m

)
+ π

[
π2

12 + (γ + ln 2πm)2
]

ctg πr

m

− 4π(γ + ln 2πm)
m−1∑
l=1

sin 2πrl
m

· ln Γ
(

l

m

)
(89)

In order to obtain a formula for γ2(r/m), we take again expansion (46) and write down 
its terms up to O(a − 1)3. Hence

∞∫
0

(ch [(2p− 1)x] − 1) ln2 x

sh x
dx = 2

3Cm(r) − 2Bm(r) ln πm +
{

2 ln2 πm + π2

6

}
Am(r) −

39 This formula also appears in an unpublished work sent to the author by Donal Connon.
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− 2γ1(γ − ln 2) + 2
3ζ(3) − 2

3γ
3 − γ2 +

(
γ2 − π2

6

)
ln 2

+ π2

12 ln πm + ln π · lnm · ln πm + 1
3
(
ln3 π + ln3 m− ln3 2

)
where p ≡ r/m and

Cm(r) ≡
m∑
l=1

cos 2πrl
m

· ζ ′′′
(

0, l

m

)
=

m−1∑
l=1

cos 2πrl
m

· ζ ′′′
(

0, l

m

)
+ 3

2γ2 + γ3 − ζ(3)

+ 3γ1γ − 1
2 ln3 2π +

{
3γ1 + 3

2γ
2 − π2

8

}
ln 2π

Comparing the latter integral to (22) and then using (49), we obtain

γ2

(
r

m

)
+ γ2

(
1 − r

m

)
= 2γ2 − 4γ1 lnm + 2γ2 ln 2 + 4

3

m−1∑
l=1

cos 2πrl
m

· ζ ′′′
(

0, l

m

)

− 4(γ + ln 2πm)
m−1∑
l=1

cos 2πrl
m

· ζ ′′
(

0, l

m

)
+ 2

[
π2

12 − (γ + ln 2πm)2
]

×
m−1∑
l=1

cos 2πrl
m

· ln sin πl

m
− π2

6 ln 2 + 2γ
(
ln2 m + 2 ln2 2 + 2 ln 2 · ln πm

)
+ 2

(
ln2 2 + ln2 m + ln2 π + 2 ln π lnm + 2 ln 2 ln πm

)
ln 2 + 2

3 ln3 m

which, being added to (89), finally yields

γ2

(
r

m

)
= γ2 + 2

3

m−1∑
l=1

cos 2πrl
m

· ζ ′′′
(

0, l

m

)
− 2(γ + ln 2πm)

m−1∑
l=1

cos 2πrl
m

· ζ ′′
(

0, l

m

)

+ π

m−1∑
l=1

sin 2πrl
m

· ζ ′′
(

0, l

m

)
− 2π(γ + ln 2πm)

m−1∑
l=1

sin 2πrl
m

· ln Γ
(

l

m

)

+
[
π2

12 − (γ + ln 2πm)2
]
·
m−1∑
l=1

cos 2πrl
m

· ln sin πl

m
+ γ2 ln 2 − 2γ1 lnm

+
[
π2

12 + (γ + ln 2πm)2
]
· π2 ctg πr

m
+ γ

(
ln2 m + 2 ln2 2 + 2 ln 2 · ln πm

)
− π2

12 ln 2 +
(
ln2 2 + ln2 m + ln2 π + 2 ln π lnm + 2 ln 2 ln πm

)
ln 2

+ 1 ln3 m (90)
3
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This formula is an analog of (50) for the second generalized Stieltjes constant. It can be 
also reduced to other forms if necessary. For instance, similarly to (53), we may rewrite 
it in the form containing the Ψ-function

γ2

(
r

m

)
= γ2 + 2

3

m−1∑
l=1

cos 2πrl
m

· ζ ′′′
(

0, l

m

)
− 2(γ + ln 2πm)

m−1∑
l=1

cos 2πrl
m

· ζ ′′
(

0, l

m

)

+ π

m−1∑
l=1

sin 2πrl
m

· ζ ′′
(

0, l

m

)
− 2π(γ + ln 2πm)

m−1∑
l=1

sin 2πrl
m

· ln Γ
(

l

m

)

− 2γ1 lnm− γ3 −
[
(γ + ln 2πm)2 − π2

12

]
· Ψ

(
r

m

)
− γ2 ln

(
4π2m3)

+ π3

12 ctg πr

m
+ π2

12 (γ + lnm) − γ
(
ln2 2π + 4 lnm · ln 2π + 2 ln2 m

)
−
{

ln2 2π + 2 ln 2π · lnm + 2
3 ln2 m

}
lnm

Thus, corresponding expressions for higher generalized Stieltjes constants at rational 
points are expected to be quite long and to contain higher derivatives of the Hurwitz 
zeta-function at zero at rational points ζ(n)(0, l/m) whose properties are currently little 
studied.
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Appendix A. Closed-form expressions for some Stieltjes constants

In this first supplementary part of our work, we provide some information about par-
ticular values of γ1(v) which are free from ζ ′′(0, l/m) + ζ ′′(0, 1 − l/m) or which contain 
only one combination of it. The value of γ1(1/2) has been long-time known and may 
be found in numerous works. The values of γ1(1/4), γ1(3/4) and γ1(1/3) were indepen-
dently obtained by Donal Connon in [21, pp. 17–18] and by the author in [10, p. 100]. 
Closed-form expressions for γ1(2/3), γ1(1/6) and γ1(5/6) were given by the author in 
[10, pp. 100–101]. All these values do not contain the Hurwitz ζ-function. Below, we 

40 Private communication.
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provide some further values which may be of interest and which may be reduced to only 
one transcendent ζ ′′(0, l/m) + ζ ′′(0, 1 − l/m).

γ1

(
1
5

)
= γ1 +

√
5

2

{
ζ ′′
(

0, 1
5

)
+ ζ ′′

(
0, 4

5

)}

+ π
√

10 + 2
√

5
2 ln Γ

(
1
5

)
+ π

√
10 − 2

√
5

2 ln Γ
(

2
5

)

+
{√

5
2 ln 2 −

√
5

2 ln(1 +
√

5) − 5
4 ln 5 − π

√
25 + 10

√
5

10

}
· γ

−
√

5
2

{
ln 2 + ln 5 + ln π + π

√
25 − 10

√
5

10

}
· ln(1 +

√
5)

+
√

5
2 ln2 2 +

√
5(1 −

√
5)

8 ln2 5 + 3
√

5
4 ln 2 · ln 5 +

√
5

2 ln 2 · ln π +

+
√

5
4 ln 5 · ln π − π(2

√
25 + 10

√
5 + 5

√
25 + 2

√
5)

20 ln 2

− π(4
√

25 + 10
√

5 − 5
√

5 + 2
√

5)
40 ln 5

− π(5
√

5 + 2
√

5 +
√

25 + 10
√

5)
10 ln π

= −8.030205511 . . .

Stieltjes constants γ1(2/5), γ1(3/5) and γ1(4/5) may be similarly expressed in terms of 
ζ ′′(0, 1/5) + ζ ′′(0, 4/5), Γ(1/5), Γ(2/5), γ1, γ and elementary functions, which, by the 
way, contain the golden ratio φ.

γ1

(
1
8

)
= γ1 +

√
2
{
ζ ′′
(

0, 1
8

)
+ ζ ′′

(
0, 7

8

)}
+ 2π

√
2 ln Γ

(
1
8

)
− π

√
2(1 −

√
2) ln Γ

(
1
4

)

−
{

1 +
√

2
2 π + 4 ln 2 +

√
2 ln(1 +

√
2)
}
· γ

− 1√
2
(π + 8 ln 2 + 2 ln π) · ln(1 +

√
2) − 7(4 −

√
2)

4 ln2 2

+ 1√
2

ln 2 · ln π − π(10 + 11
√

2)
4 ln 2 − π(3 + 2

√
2)

2 ln π

= −16.64171976 . . .
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γ1

(
3
8

)
= γ1 −

√
2
{
ζ ′′
(

0, 1
8

)
+ ζ ′′

(
0, 7

8

)}
+ 2π

√
2 ln Γ

(
1
8

)
− π

√
2(1 +

√
2) ln Γ

(
1
4

)
+
{

1 −
√

2
2 π − 4 ln 2 +

√
2 ln(1 +

√
2)
}
· γ

− 1√
2
(π − 8 ln 2 − 2 ln π) · ln(1 +

√
2) − 7(4 +

√
2)

4 ln2 2

− 1√
2

ln 2 · ln π + π(10 − 11
√

2)
4 ln 2 + π(3 − 2

√
2)

2 ln π

= −2.577714402 . . .

γ1

(
5
8

)
= γ1 −

√
2
{
ζ ′′
(

0, 1
8

)
+ ζ ′′

(
0, 7

8

)}
− 2π

√
2 ln Γ

(
1
8

)
+ π

√
2(1 +

√
2) ln Γ

(
1
4

)
−
{

1 −
√

2
2 π + 4 ln 2 −

√
2 ln(1 +

√
2)
}
· γ

+ 1√
2
(π + 8 ln 2 + 2 lnπ) · ln(1 +

√
2) − 7(4 +

√
2)

4 ln2 2

− 1√
2

ln 2 · ln π − π(10 − 11
√

2)
4 ln 2 − π(3 − 2

√
2)

2 ln π

= −0.7353809459 . . .

γ1

(
7
8

)
= γ1 +

√
2
{
ζ ′′
(

0, 1
8

)
+ ζ ′′

(
0, 7

8

)}
− 2π

√
2 ln Γ

(
1
8

)
+ π

√
2(1 −

√
2) ln Γ

(
1
4

)
+
{

1 +
√

2
2 π − 4 ln 2 −

√
2 ln(1 +

√
2)
}
· γ

+ 1√
2
(π − 8 ln 2 − 2 ln π) · ln(1 +

√
2) − 7(4 −

√
2)

4 ln2 2

+ 1√
2

ln 2 · ln π + π(10 + 11
√

2)
4 ln 2 + π(3 + 2

√
2)

2 ln π

= −0.1906592305 . . .
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γ1

(
1
12

)
= γ1 +

√
3
{
ζ ′′
(

0, 1
12

)
+ ζ ′′

(
0, 11

12

)}
+ 4π ln Γ

(
1
4

)
+ 3π

√
3 ln Γ

(
1
3

)
−
{

2 +
√

3
2 π + 3

2 ln 3 −
√

3(1 −
√

3) ln 2 + 2
√

3 ln(1 +
√

3)
}
· γ

− 2
√

3(3 ln 2 + ln 3 + ln π) · ln(1 +
√

3) − 7 − 6
√

3
2 ln2 2 − 3

4 ln2 3

+ 3
√

3(1 −
√

3)
2 ln 3 · ln 2 +

√
3 ln 2 · ln π − π(17 + 8

√
3)

2
√

3
ln 2

+ π(1 −
√

3)
√

3
4 ln 3 − π

√
3(2 +

√
3) ln π = −29.84287823 . . .

γ1

(
7
12

)
= γ1 −

√
3
{
ζ ′′
(

0, 1
12

)
+ ζ ′′

(
0, 11

12

)}
− 4π ln Γ

(
1
4

)
+ 3π

√
3 ln Γ

(
1
3

)
−
{
−2 +

√
3

2 π + 3
2 ln 3 +

√
3(1 +

√
3) ln 2 − 2

√
3 ln(1 +

√
3)
}
· γ

+ 2
√

3(3 ln 2 + ln 3 + ln π) · ln(1 +
√

3) − 7 + 6
√

3
2 ln2 2 − 3

4 ln2 3

− 3
√

3(1 +
√

3)
2 ln 3 · ln 2 −

√
3 ln 2 · ln π − π(17 − 8

√
3)

2
√

3
ln 2

+ π(1 +
√

3)
√

3
4 ln 3 − π

√
3(2 −

√
3) ln π = −0.900932495 . . .

Expressions for Stieltjes constants γ1(5/12) and γ1(11/12) may be similarly written in 
terms of ζ ′′(0, 1/12) + ζ ′′(0, 11/12), Γ(1/3), Γ(1/4), γ1, γ and elementary functions, see 
e.g. (72).

Appendix B. Some results from the theory of finite Fourier series. Applications to 
certain summations involving the Ψ-function and the Hurwitz ζ-function

B.1. Theoretical part

Finite Fourier series are well-known and widely used in discrete mathematics, numer-
ical analysis, engineering sciences (especially in signal and image processing) and in a lot 
of related disciplines. Unlike usual Fourier series, which are essentially variants or par-
ticular cases of the same formula, finite Fourier series may take quite different forms and 
expressions. For instance, in engineering sciences, one usually deals with the following 
2m-points Fourier series

fm(r) = am(0)
2 +

m−1∑(
am(l) cos πrl

m
+ bm(l) sin πrl

m

)
+ (−1)r am(m)

2

l=1
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with r = 0, 1, 2, . . . , 2m −1 and m ∈ N. Thanks to the orthogonality properties of circular 
functions, one may determine the coefficients in this expansion:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
am(k) = 1

m

2m−1∑
r=1

fm(r) cos πrk
m

, k = 0, 1, 2, . . . ,m

bm(k) = 1
m

2m−1∑
r=1

fm(r) sin πrk

m
, k = 1, 2, 3, . . . ,m− 1

as well as derive Parseval’s theorem

1
m

2m−1∑
r=1

f2
m(r) = a2

m(0)
2 +

m−1∑
l=1

(
a2
m(l) + b2m(l)

)
+ a2

m(m)
2 ,

see for more details [41, Chapter 6].
In contrast, in our researches, we encounter the following (m −1)-points finite Fourier 

series

fm(r) = am(0) +
m−1∑
l=1

(
am(l) cos 2πrl

m
+ bm(l) sin 2πrl

m

)
(B.1)

r = 1, 2, 3, . . . , m − 1, m ∈ N, for which inversion formulae and Parseval’s theorem are 
quite different. Let, first, derive the inversion formulae for the coefficients of this series. 
Multiplying both sides by cos(2πrk/m), where k = 1, 2, 3, . . . , m − 1, and summing over 
r ∈ [1, m − 1], gives

m−1∑
r=1

fm(r) cos 2πrk
m

=
m−1∑
r=1

[
am(0) +

m−1∑
l=1

am(l) cos 2πrl
m

+
m−1∑
l=1

bm(l) sin 2πrl
m

]
cos 2πrk

m

= am(0)
m−1∑
r=1

cos 2πrk
m︸ ︷︷ ︸

−1

+
m−1∑
l=1

am(l)
m−1∑
r=1

cos 2πrl
m

· cos 2πrk
m︸ ︷︷ ︸

1
2m(δl,k+δl,m−k)−1

+
m−1∑
l=1

bm(l)
m−1∑
r=1

sin 2πrl
m

· cos 2πrk
m︸ ︷︷ ︸

0

= −am(0) −
m−1∑
l=1

am(l) + m

2
{
am(k) + am(m− k)

}
(B.2)

Similarly, multiplying both sides of (B.1) by sin(2πrk/m), where k = 1, 2, 3, . . . , m − 1, 
and summing over r ∈ [1, m − 1], yields
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m−1∑
r=1

fm(r) sin 2πrk
m

=
m−1∑
r=1

[
am(0) +

m−1∑
l=1

am(l) cos 2πrl
m

+
m−1∑
l=1

bm(l) sin 2πrl
m

]
sin 2πrk

m

= am(0)
m−1∑
r=1

sin 2πrk
m︸ ︷︷ ︸

0

+
m−1∑
l=1

am(l)
m−1∑
r=1

cos 2πrl
m

· sin 2πrk
m︸ ︷︷ ︸

0

+
m−1∑
l=1

bm(l)
m−1∑
r=1

sin 2πrl
m

· sin 2πrk
m︸ ︷︷ ︸

1
2m(δl,k−δl,m−k)

= m

2
{
bm(k) − bm(m− k)

}
(B.3)

Finally, Parseval’s equality for the finite series (B.1) reads:

m−1∑
r=1

f2
m(r) =

m−1∑
r=1

[
am(0) +

m−1∑
l=1

am(l) cos 2πrl
m

+
m−1∑
l=1

bm(l) sin 2πrl
m

]2

=

=
m−1∑
r=1

a2
m(0) + 2am(0)

m−1∑
l=1

am(l)
m−1∑
r=1

cos 2πrl
m︸ ︷︷ ︸

−1

+2am(0)
m−1∑
l=1

bm(l)
m−1∑
r=1

sin 2πrl
m︸ ︷︷ ︸

0

+2
m−1∑
l=1

m−1∑
n=1

am(l)bm(n)
m−1∑
r=1

cos 2πrl
m

· sin 2πrn
m︸ ︷︷ ︸

0

+
m−1∑
l=1

m−1∑
n=1

am(l)am(n)
m−1∑
r=1

cos 2πrl
m

· cos 2πrn
m︸ ︷︷ ︸

1
2m(δl,n+δl,m−n)−1

+
m−1∑
l=1

m−1∑
n=1

bm(l)bm(n)
m−1∑
r=1

sin 2πrl
m

· sin 2πrn
m︸ ︷︷ ︸

1
2m(δl,n−δl,m−n)

= (m− 1)a2
m(0) − 2am(0)

m−1∑
l=1

am(l) −
[
m−1∑
l=1

am(l)
]2

+m

2

m−1∑
l=1

[
a2
m(l) + am(l)am(m− l) + b2m(l) − bm(l)bm(m− l)

]
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B.2. Some applications

The finite Fourier series may be successfully used for the finite-length summations in a 
variety of problems and contexts. Consider, for example, the Gauss’ Digamma theorem, 
which is usually written in one of three equivalent forms⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ
(

r

m

)
= −γ − ln 2m− π

2 ctg πr

m
+ 2
� 1

2 (m−1)�∑
l=1

cos 2πrl
m

· ln sin πl

m
(a)

Ψ
(

r

m

)
= −γ − ln 2m− π

2 ctg πr

m
+

m−1∑
l=1

cos 2πrl
m

· ln sin πl

m
(b)

Ψ
(

r

m

)
= −γ − ln 2πm− π

2 ctg πr

m
− 2

m−1∑
l=1

cos 2πrl
m

· ln Γ
(

l

m

)
(c)

(B.4)

r = 1, 2, . . . , m −1, m ∈ N�2, first and second of which are due to Gauss41 [12, pp. 35–38], 
[7, vol. I, p. 19, §1.7.3], while the third one is due to Malmsten [66, p. 57, Eq. (70)], [10, 
p. 37, Eq. (23)]. Remarking that the cotangent may be represented by (54), two latter 
equations take the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ψ
(

r

m

)
= −γ − ln 2m + π

m

m−1∑
l=1

sin 2πrl
m

· l +
m−1∑
l=1

cos 2πrl
m

· ln sin πl

m

Ψ
(

r

m

)
= −γ − ln 2πm + π

m

m−1∑
l=1

sin 2πrl
m

· l − 2
m−1∑
l=1

cos 2πrl
m

· ln Γ
(

l

m

) (B.5)

r = 1, 2, . . . , m − 1, m ∈ N�2, which represent complete finite Fourier series of the same 
type as (B.1). Hence, the application of (B.2)–(B.4) straightforwardly yields the following
important summation formulae⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
r=1

Ψ
(

r

m

)
· cos 2πrk

m
= m ln

(
2 sin kπ

m

)
+ γ, k = 1, 2, . . . ,m− 1

m−1∑
r=1

Ψ
(

r

m

)
· sin 2πrk

m
= π

2 (2k −m), k = 1, 2, . . . ,m− 1

m−1∑
r=1

Ψ2
(

r

m

)
= (m− 1)γ2 + m(2γ + ln 4m) lnm−m(m− 1) ln2 2

+ π2(m2 − 3m + 2)
12 + m

m−1∑
l=1

ln2 sin πl

m

(B.6)

41 Strictly speaking, Gauss wrote them in a slightly different manner, see [34, p. 39].
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where the last sum, due to the symmetry of ln sin(πl/m) about l = m/2, may be also 
written as

m−1∑
l=1

ln2 sin πl

m
= 2

� 1
2 (m−1)�∑

l=1

ln2 sin πl

m

For the purpose of demonstration, we take Malmsten’s representation for the
Ψ-function.42 Inserting expressions for coefficients am(0) = −γ − ln 2πm, am(l) =
−2 ln Γ(l/m) and bm(l) = πl/m into (B.2), yields for the first sum:

m−1∑
r=1

Ψ
(

r

m

)
· cos 2πrk

m
= γ + ln 2πm−m

[
ln Γ

(
k

m

)
+ ln Γ

(
1 − k

m

)]
︸ ︷︷ ︸

ln π−ln sin(πk/m)

+ 2
m−1∑
l=1

ln Γ
(

l

m

)
= γ + m ln

(
2 sin kπ

m

)

where the final simplification is performed with the help of the reflection formula and 
Gauss’ multiplication theorem for the logarithm of the Γ-function (77). Analogously, 
using (B.3) yields for the second sum:

m−1∑
r=1

Ψ
(

r

m

)
· sin 2πrk

m
= m

2

[
πk

m
− π(m− k)

m

]
= π

2 (2k −m)

By taking advantage of this opportunity, we would like to remark that a formula of the 
similar nature appears also in [12, p. 39] and [80, p. 19, Eq. (49)]. Sadly, the formula 
given in the former source contains two errors; the correct variant of the formula is

m∑
r=1

Ψ
(

r

m

)
· exp 2πrki

m
= m ln

(
1 − exp 2πki

m

)
, k ∈ Z, m ∈ N, k �= m.

Finally, by (B.4), we derive Parseval’s theorem for the Ψ-function of a discrete argu-
ment

m−1∑
r=1

Ψ2
(

r

m

)
= (m− 1)(γ + ln 2πm)2 − 4(γ + ln 2πm)

m−1∑
l=1

ln Γ
(

l

m

)
︸ ︷︷ ︸

1
2 (m−1) ln 2π− 1

2 ln m

− 4
[
m−1∑
l=1

ln Γ
(

l

m

)]2

+ 2m
m−1∑
l=1

ln Γ
(

l

m

)
·
[
ln Γ

(
l

m

)
+ ln Γ

(
1 − l

m

)]
+

42 The reader may perform the same procedure with the more usual Gauss’ representation as an exercise.
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+ π2

m
·
m−1∑
l=1

l2 − π2

2
·
m−1∑
l=1

l = (m− 1)γ2 + m(2γ + ln 4m) lnm

−m(m− 1) ln2 2 + π2(m2 − 3m + 2)
12 + 2m

� 1
2 (m−1)�∑

l=1

ln2 sin πl

m
(B.7)

where the sum from the third line, thanks to the symmetry of ln sin(πl/m) about l = m/2
and to the fact that ln sin(πl/m) = 0 for l = m/2, could be simplified as follows

m−1∑
l=1

ln Γ
(

l

m

)
·
[
ln Γ

(
l

m

)
+ ln Γ

(
1 − l

m

)]
=

m−1∑
l=1

ln Γ
(

l

m

)
·
[
ln π − ln sin πl

m

]

= ln π

2
[
(m− 1) ln 2π − lnm

]
−

m−1∑
l=1

ln Γ
(

l

m

)
· ln sin πl

m

= ln π

2
[
(m− 1) ln 2π − lnm

]
−
� 1

2 (m−1)�∑
l=1

[
ln π − ln sin πl

m

]
ln sin πl

m

= ln π

2
[
(m− 1) ln 2π − lnm

]
− ln π ·

� 1
2 (m−1)�∑

l=1

ln sin πl

m

+
� 1

2 (m−1)�∑
l=1

ln2 sin πl

m
= ln π

2
[
(m− 1) ln 4π − 2 lnm

]
+
� 1

2 (m−1)�∑
l=1

ln2 sin πl

m
(B.8)

because

� 1
2 (m−1)�∑

l=1

ln sin πl

m
= ln

� 1
2 (m−1)�∏

l=1

sin πl

m
= 1 −m

2 ln 2 + 1
2 lnm

and where

m−1∑
l=1

l2 = m(m− 1)(2m− 1)
6 and

m−1∑
l=1

l = m(m− 1)
2 (B.9)

respectively, which completes the evaluation of the third formula in (B.6).
In like manner, we may also derive similar summation formulae for the Hurwitz 

ζ-function. Rewriting Hurwitz’s functional equation (32) in the form analogous to (B.1)

ζ

(
a,

r

m

)
= ma−1ζ(a) + 2Γ(1 − a)

(2πm)1−a

[
sin πa

2

m−1∑
l=1

cos 2πrl
m

· ζ
(

1 − a,
l

m

)

+ cos πa2

m−1∑
sin 2πrl

m
· ζ
(

1 − a,
l

m

)]

l=1
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yields

m−1∑
r=1

ζ

(
a,

r

m

)
· cos 2πrk

m
= mΓ(1 − a)

(2πm)1−a
sin πa

2 ·
{
ζ

(
1 − a,

k

m

)
+ ζ

(
1 − a, 1 − k

m

)}
− ζ(a)

m−1∑
r=1

ζ

(
a,

r

m

)
· sin 2πrk

m
= mΓ(1 − a)

(2πm)1−a
cos πa2 ·

{
ζ

(
1 − a,

k

m

)
− ζ

(
1 − a, 1 − k

m

)}
m−1∑
r=1

ζ2
(
a,

r

m

)
=
(
m2a−1 − 1

)
ζ2(a) +

+2mΓ2(1 − a)
(2πm)2−2a

m−1∑
l=1

{
ζ

(
1 − a,

l

m

)
− cosπa · ζ

(
1 − a, 1 − l

m

)}
· ζ
(

1 − a,
l

m

)

which hold for any r = 1, 2, 3, . . . , m − 1 and k = 1, 2, 3, . . . , m − 1, where m is positive 
integer.

By the way, there are many other functions which are orthogonal or semi-orthogonal 
over some discrete interval. For instance, by considering another set of circular functions 
and their properties

m−1∑
r=0

cos (2r + 1)kπ
m

=
m−1∑
r=0

sin (2r + 1)kπ
m

= 0, k = 1, 2, . . . ,m− 1

m−1∑
r=0

cos (2r + 1)kπ
m

· sin (2r + 1)lπ
m

= 0, k, l = 1, 2, . . . ,m− 1

m−1∑
r=0

cos (2r + 1)kπ
m

· cos (2r + 1)lπ
m

= n

2 (δk,l − δk,m−l − δk,m+l + δk,2m−l)

m−1∑
r=0

sin (2r + 1)kπ
m

· sin (2r + 1)lπ
m

= n

2 (δk,l + δk,m−l − δk,m+l − δk,2m−l) (B.10)

where in last two formulae k, l = 1, 2, . . . , 2m − 1, as well as (B.5), one may easily prove 
that ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m−1∑
r=0

Ψ
(

2r + 1
2m

)
· cos (2r + 1)kπ

m
= m ln tg πk

2m, k = 1, 2, . . . ,m− 1

m−1∑
r=0

Ψ
(

2r + 1
2m

)
· sin (2r + 1)kπ

m
= −πm

2 , k = 1, 2, . . . ,m− 1

By a similar line of reasoning, we also derive
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2m−1∑
r=1

(−1)r · Ψ
(

r

2m

)
= 2m ln 2 + γ

2m−1∑
r=0

(−1)r · Ψ
(

2r + 1
4m

)
= −πm

m−1∑
r=1

ctg πr

m
· Ψ

(
r

m

)
= −π(m− 1)(m− 2)

6

m−1∑
r=1

r

m
· Ψ

(
r

m

)
= −γ

2 (m− 1) − m

2 lnm− π

2

m−1∑
r=1

r

m
· ctg πr

m

m−1∑
r=1

cos (2l + 1)πr
m

· Ψ
(

r

m

)
= − π

m
·
m−1∑
r=1

r · sin 2πr
m

cos 2πr
m − cos (2l+1)π

m

m−1∑
r=1

sin (2l + 1)πr
m

· Ψ
(

r

m

)
= −(γ + ln 2m) ctg (2l + 1)π

2m

+ sin (2l + 1)π
m

·
m−1∑
r=1

ln sin πr
m

cos 2πr
m − cos (2l+1)π

m

(B.11)

where the last two formulae remain valid for any l ∈ Z.

Appendix C. An integral formula for the logarithm of the Γ-function at rational 
arguments

In this part, we evaluate integral (82) for p = k/n and show that it reduces to the 
logarithm of the Γ-function at rational argument, Euler’s constant γ and elementary 
functions.

From a simple algebraic argument, it follows that

n−1∑
r=1

sh rx · sin 2πrk
n

= −1
2 ·

shnx · sin 2πk
n

ch x− cos 2πk
n

, x ∈ C, k ∈ Z.

Then, for p = k/n, where k and n are positive integers such that k does not exceed n, 
the denominator of integrand (82) may be replaced by the above identity and hence

∞∫
0

e−nx · ln x

ch x− cos 2πk
n

dx = −4 csc 2πk
n

n−1∑
r=1

sin 2πrk
n

·
∞∫
0

sh rx · ln x

e2nx − 1 dx (C.1)

The latter integral was already evaluated in our previous work, see [10, p. 73, no 25]. By 
setting in exercise no 25-a b = n, m = r, and then by rewriting the result for 2n instead 
of n, we get
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∞∫
0

sh rx · ln x

e2nx − 1 dx = − π

4n ctg rπ

2n · ln 2π − γ + ln r

2r + π

2n

2n−1∑
l=1

sin πrl

n
· ln Γ

(
l

2n

)
(C.2)

By inserting the above formula into (C.1) and by recalling that for k = 1, 2, 3, . . . , n − 1
and l = 1, 2, 3, . . . , 2n − 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n−1∑
r=1

sin 2πrk
n

· ctg πr

2n = n− 2k

n−1∑
r=1

sin 2πrk
n

· sin πrl

n
= n

2 {δk, l
2
− δk,n− l

2
}

the expression for integral (82) at p = k/n takes its final form

∞∫
0

e−nx · ln x

ch x− cos 2πk
n

dx = 2
1∫

0

xn ln ln 1
x

x2 − 2x cos 2πk
n + 1

dx = 2
∞∫
1

ln ln x

xn(x2 − 2x cos 2πk
n + 1)

dx

=
{
π(n− 2k) ln 2π

n
− 2π ln Γ

(
k

n

)
+ π ln π − π ln sin πk

n
+ 2

n−1∑
r=1

γ + ln r

r
· sin 2πrk

n

}

× csc 2πk
n

, k = 1, 2, 3, . . . , n− 1 , k �= n

2 (C.3)

Whence

ln Γ
(
k

n

)
= (n− 2k) ln 2π

2n + 1
2

{
ln π − ln sin πk

n

}
+ 1

π

n−1∑
r=1

γ + ln r

r
· sin 2πrk

n

− 1
2π sin 2πk

n
·
∞∫
0

e−nx · ln x

ch x− cos 2πk
n

dx , k = 1, 2, 3, . . . , n− 1, (C.4)

k �= n/2. By the way, (C.3)–(C.4) may be proven by other methods as well. For instance, 
one may directly employ (81) because a0 = 0 for p = k/n and all remaining integrals in 
the right-hand side are known. Yet, (C.3)–(C.4) may be also obtained with the aid of 
previously derived results in exercises no 60 and 58 in [10, Sect. 4], as well as Malmsten’s
representation for the logarithm of the Γ-function

ln Γ(z) = 1
2 ln π − 1

2 ln sin πz − 2z − 1
2 ln 2π − sin 2πz

2π

∞∫
0

ln x

chx− cos 2πz dx (C.5)

where 0 < Re z < 1, see exercises no 2, 29-h, 30 [10, Sect. 4].
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Note that references [96], [97], [94], [89], [98], [99], [90], [93], [91], [92] are new and 
were not mentioned in the article. We decided to add them, because they represent 
important contributions in the their fields. At the same time, we would like to remark 
that in a small article it is, of course, difficult to encompass all works devoted to Stieltjes 
constants. Moreover, some authors do not call them Stieltjes constants nor generalized 
Euler’s constants; instead, they simply call them Laurent series coefficients of ζ(s) or 
MacLaurin coefficients of (s − 1)ζ(s) or ζ(s) − (s − 1)−1, and such works may be very 
hard to find. Finally, there are numerous general works in which Stieltjes constants are 
simply mentioned or briefly discussed, e.g. [39, no 388, p. 48], [56], [95].
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