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as Bernoulli numbers of the second kind), Cauchy numbers and generalized Bernoulli
numbers. Finally, several estimations and full asymptotics for Gregory’s coefficients,
for Cauchy numbers, for certain generalized Bernoulli numbers and for certain sums
with the Stirling numbers are obtained. In particular, these include sharp bounds
for Gregory’s coefficients and for the Cauchy numbers of the second kind.
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1. Introduction
1.1. Motivation of the study

Numerous are expansions of the logarithm of the I'-function and of polygamma functions into various
series. For instance
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which are respectively known as Stirling’s series,! Weierstrass’ series,” Guderman’s series,” Malmsten—
Kummer’s series,” Legendre’s series,” Binet’s series® and Burnside’s formula’ for the logarithm of the
I'-function.® Usually, coefficients of such expansions are either highly transcendental, or seriously suspected
to be so. Expansions into the series with rational coeflicients are much less investigated, and especially
for the gamma and polygamma functions of “exotic” arguments, such as, for example, 7—!, logarithms or
complex values.

In one of our preceding works, in exercises n® 39-49 [13, Sect. 4], we have evaluated several curious
integrals containing inverse circular and hyperbolic functions, which led to the gamma and polygamma
functions at rational multiple of 7=1. It appears that some of these integrals are particularly suitable for
power series expansions. In this paper, we derive two series expansions for the logarithm of the I'-function,
as well as their respective analogs for the polygamma functions, by making use of such a kind of integrals.
These expansions are not simple and cannot be explicitly written in powers of z up to a given order, but
they contain rational coefficients for any argument of the form z = %n + ar~ !, where « is positive rational
greater than %’N and n is integer, and therefore, may be of interest in certain situations. As examples, we

1 This series expansion is one of the oldest and was known to Gauss [48, p. 33], Euler [44, part II, Chapter VI, § 159, p. 466],
Stirling [145, p. 135] and De Moivre [42], who originated it. Note that this series should be used with care because for N — oo, as
was remarked by De Moivre himself, it diverges. For more information, see [17, p. 329], [111, p. 111], [155, § 12-33], [72, § 15-05], [78,
p. 5301, [39, p. 1], [85], [114, § 4.1, pp. 293-294], [45], [50, pp. 286-288], [1, n° 6.1.40-6.1.41], [103], [23, pp. 43-50], [47,65,16,91,138],
[37, p. 267], [104,101,9,115].

2 This series follows straightforwardly from the well-known Weierstrass’ infinite product for the I'-function [53, p. 10], [109, p. 12],
[7, p. 14], [157, p. 236], [23, p. 20], [85], [90, pp. 21-22].

3 See e.g. [111, p. 111], [61, p. 76, n° 661].

4 This series is usually referred to as Kummer’s series for the logarithm of the I'-function, see, e.g., [8, vol. I, § 1.9.1], [157,139].
However, it was comparatively recently that we discovered that it was first obtained by Carl Malmsten and not by Ernst Kummer,
see [13, Sect. 2.2].

5 See e.g. [8, vol. I, eq. 1.17(2)], [161, eq. (21)].

6 See e.g. [8, vol. I, p. 48, Eq. (10)]. To Binet are also due several other series which we discuss on p. 428.

7 See e.g. [20,160,103], [8, vol. I, p. 48, Eq. (11)]. Note that in the latter reference, there are two errors related to Burnside’s
formula, i.e. to our formula (7).

8 Some other series expansions for InI'(z) may be also found in [12, pp. 335-339], [134, p. 1076, Eq. (6)], [8, vol. I, § 1.17], [111,
pp. 240-251], see also a remark on p. 428. For further information on the I'-function, see [53,109], [157, Chapt. XII|, [7,23], [8,
vol. I, Chapt. I], [41].
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provide explicit expansions into the series with rational coefficients for InT'(7~!), InT'(27 1), InI'(5 +7 1),
U(r1), U(3 +71) and ¥y (7 1). Coefficients of discovered expansions involve the Stirling numbers of the
first kind, which often appear in combinatorics, as well as in various “exotic” series expansions, such as, for
example

251 19 19087 751 107001
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which is probably due to Arthur Cayley who gave it in 1859,” or a very similar expansion converging to
Euler’s constant
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which was given by Lorenzo Mascheroni in 1790 [97, p. 23] and was subsequently rediscovered several times
(in particular, by Ernst Schroder in 1879 [133, p. 115, Eq. (25a)], by Niels E. Ngrlund in 1923 [111, p. 244],
by Jan C. Kluyver in 1924 [77], by Charles Jordan in 1929 [73, p. 148], by Kenter in 1999 [76], by Victor
Kowalenko in 2008 [82,81]).'” At large n and moderate values of argument z, discovered series converge
approximately at the same rate as > (nIn"" n)~2, where m = 1 for InT'(2) and ¥(2), m = 2 for ¥;(z) and
Uy(z), m = 3 for ¥3(z) and Uy(z), etc. At the same time, first partial sums of the series may behave quite
irregularly, and the sign of its general term changes in a complex pattern. However, in all cases, including
small and moderate values of n, the absolute value of the nth general term remains bounded by an~2, where
«a does not depend on n. Finally, in the manuscript, we also obtain a number of other series expansions
containing Stirling numbers, Gregory’s coefficients (logarithmic numbers, also known as Bernoulli numbers
of the second kind), Cauchy numbers, ordinary and generalized Bernoulli numbers, binomial coefficients
and harmonic numbers, as well as provide the convergence analysis for some of them.

1.2. Notations

Throughout the manuscript, following abbreviated notations are used: v = 0.5772156649 . .. for Euler’s
constant, (fl) denotes the binomial coefficient C', B,, stands for the nth Bernoulli number,'! |z] for the
integer part of x, tg z for the tangent of z, ctg z for the cotangent of z, ch z for the hyperbolic cosine of z, sh z
for the hyperbolic sine of z, th z for the hyperbolic tangent of z, cth z for the hyperbolic cotangent of z. In

9 Cayley [30] did not present the formula in the same form as we did, he only gave first six coefficients for formula (17) from
p- 410. He noticed that the law for the formation of these coefficients “is a very complicated one” and that they are related in
some way to Stirling numbers. The exact relationship between series (8) and Stirling’s polynomials (and, hence, Stirling numbers)
was established later by Niels Nielsen [109, p. 76], [110, p. 36, eq. (8)], see also [8, vol. III, p. 257, eqgs. 19.7(58)-19.7(63)]. By
the way, coefficients of this particular series are also strongly correlated with Cauchy numbers of the second kind, see (16), (18),
footnote 23 and (51).

10 The series itself was given by Gregorio Fontana, who, however, failed to find a constant to which it converges (he only proved
that it should be lesser than 1). Mascheroni identified this Fontana’s constant and showed that it equals Euler’s constant [97,
pp. 21-23]. Taking into account that both Fontana and Mascheroni did practically the equal work, series (9) is called throughout
the paper Fontana—Mascheroni’s series. Coefficients of this series are usually written in terms of Gregory’s coefficients, see (15),
(18) and footnote 22.

1 In particular BO =+1,B1=—-%,Bo=+4%,B3=0,Bs=—25,B5=0,Bs =+45, Br =0, Bs = —25, B =0, Bio = +&,
Bi1 =0, Bia = — 2L etc., see [1 Tﬁb 23.2, p. 810], [89, p. 5] or [50, p. 258] for further values. Note also that some authors may

230
use slightly different deﬁn1t10n§ for the Bernoulli numbers, see e.g. [61, p. 19, n® 138] or [6, pp. 3-6].
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order to avoid any confusion between compositional inverse and multiplicative inverse, inverse trigonometric
and hyperbolic functions are denoted as arccos, arcsin, arctg, ... and not as cos™!, sin™!, tg™!,.... Writings
I'(z), ©(2), U1(2), ¥a(2), ¥3(z), Pa(z), ((2) and {(z,v) denote respectively the gamma, the digamma, the
trigamma, the tetragamma, the pentagamma, the hexagamma, the Riemann zeta and the Hurwitz zeta
functions of argument z. The Pochhammer symbol (z),, which is also known as the generalized factorial
function, is defined as the rising factorial (2), = 2(z + 1)(z +2)--- (2 +n — 1) = I'(z + n)/T'(2).*%** For
sufficiently large n, not necessarily integer, the latter can be given by this useful approximation

() = n"t =321 {1 . 622 —6z+1 362% — 12023 + 12022 — 36z + 1

-3
T(z)en 2n 28812 +0(n )}

n*-T'(n) {1+ z(z2; 1) n z(z — 1)(;4—75)(32—1) +O(n_3)}

which follows from the Stirling formula for the I'-function.'* Writing S; (k,n) stands for the signed Stirling

(10)

numbers of the first kind (see Sect. 2.1). Kronecker symbol (Kronecker delta) of arguments [ and k is
denoted by 6, 4: 6, =1if [ = k and §;,, = 0 if [ # k. Rez and Im z denote respectively real and imaginary
parts of z. Natural numbers are defined in a traditional way as a set of positive integers, which is denoted
by N. Letter 4 is never used as index and is v/—1. Finally, by the relative error between the quantity A and
its approximated value B, we mean either (A — B)/A, or |A — B|/|A|, depending on the context. Other
notations are standard.

2. Stirling numbers and their role in various expansions
2.1. General information in brief

Stirling numbers were introduced by the Scottish mathematician James Stirling in his famous trea-
tise [145, pp. 1-11], and were subsequently rediscovered in various forms by numerous authors, including
Christian Kramp, Pierre-Simon Laplace, Andreas von Ettingshausen, Ludwig Schlaffli, Oskar Schlémilch,
Paul Appel, Arthur Cayley, George Boole, James Glaisher, Leonard Carlitz and many others [67,84], [93,
Book I, part I, [152,127-129], [130, pp. 186-187], [131, vol. IT, pp. 23-31], [5,29-31,15,52], [25, p. 129], [109,
pp. 67-78], [75, p. 1], [56,79].'> Traditionally, Stirling numbers are divided in two different “kinds”: Stirling

numbers of the first kind and those of the second kind, albeit there really is only one “kind” of Stirling

16

numbers [see footnote 18].'° The Stirling numbers of the first kind appear in numerous occasions in com-

binatorics, in calculus of finite differences, in numerical analysis, in number theory and even in calculus of
variations. In combinatorics, Stirling numbers of the first kind, denoted |S1(n, )|, are defined as the number
of ways to arrange n objects into I cycles or cyclic arrangements (|S1(n,1)| is often verbalized “n cycle 7).
These numbers are also called unsigned (or signless) Stirling numbers, as opposed to Si(n,l), which are
called signed Stirling numbers and which are related to the former as Sj(n,l) = (—1)"*!|S;(n,1)|. In the

12 For nonpositive and complex n, only the latter definition (2), = I'(z + n)/I'(z) holds.

13 Note that some writers (mostly German-speaking) call such a function faculté analytique or Facultit, see e.g. [129], [130,
p. 186], [131, vol. II, p. 12], [62, p. 119], [84]. Other names and notations for (z), are briefly discussed in [75, pp. 45-47] and in
[58, pp. 47-48].

14 A simpler variant of the above formula may be found in [148,85].

15 Although it is largely accepted that these numbers were introduced by James Stirling in his famous treatise [145] published in
1730, Donald E. Knuth [79, p. 416] rightly remarks that these numbers may be much older. In particular, the above-mentioned
writer found them in an old unpublished manuscript of Thomas Harriot, dating about 1600.

16 Within the framework of our study we are not concerned with the Stirling numbers of the second kind; we, therefore, will not
treat them here. By the way, it is interesting that Stirling himself, first, introduced numbers of the second kind [145, p. 8], and
then, those of the first kind [145, p. 11].
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analysis and related disciplines, the unsigned/signed Stirling numbers of the first kind are usually defined
as the coefficients in the expansion of rising/falling factorial

i
L

(2 k) = () = ”” Z|51 (n,1)] (a)
k=0 (11)
n—1 FZ+1 n
IIG—8 = (-nsn, =m g (b)

where z € C and n > 1. Stirling numbers of the first kind are also often introduced via their generating

functions
> S n7l) n lnl 1—=2
Z| 151! [ o _ (_1)l¥7 1=0,1,2,... (a)
l (12)
e In*(1
251(7”:,1)an M, 1=0,1,2,... (b)
n! I

n=l

both series on the left being uniformly and absolutely convergent on the disk |z| < 1.!7 Signed Stirling
numbers of the first kind may be calculated explicitly via the following formula

n—l1 k
(2n —1)! 1 (—1)rpntth
lell
(1-1 kz_()(n+k)(n—l—k)!(nfl+k)!zo ri(k —r)t 7 € [Lnl
) = - = 1
Silml) =, n=0,1-0 @

0, otherwise

where S;1(0,0) = 1 by convention.'® From the above definitions, it is visible that numbers S;(n,l) are

necessarily integers: S1(1,1) = +1, S1(2,1) = —1, 51(2,2) = +1, S1(3,1) = +2, 51(3,2) = =3, 51(3,3) =
+1, ..., .51(8,5) = —1960, ..., S1(9,3) = +118 124, etec.

Stirling numbers of the first kind were studied in a large number of works and have many various properties
which we cannot describe in a small article. These numbers are of great utility, especially, for the summation
of series, the fact which was noticed primarily by Stirling in his marvellous treatise [145] and which was
later emphasized by numerous writers. In particular, Charles Jordan, who worked a lot on Stirling numbers,
see e.g. [75,73,74], remarked that these numbers may be even more important than Bernoulli numbers. In
what follows we give only a small amount of the information necessary for the understanding of the rest
of our work. Readers interested in a more deep study of these numbers are kindly invited to refer to the
above-cited historical references, as well as to the following specialized literature: [75, Chapt. IV], [73,74,
108], [109, pp. 67-78], [110,150], [58, Sect. 6.1], [79, pp. 410-422], [37, Chapt. V], [43], [116, Chapt. 4, § 3,
n° 196-210], [62, p. 60 et seq.], [107], [121, p. 70 et seq.], [141, vol. 1], [11], [33, Chapt. 8], [1, n°®24.1.3,
p. 824], [80, Sect. 21.5-1, p. 824], [8, vol. III, § 19.7], [111,144], [38, pp. 91-94], [156, pp. 2862-2865],
[6, Chapt. 2], [100,55,57,56,154,25,27], [113, p. 642], [125,51,159,102,10,158,146,68,22,21,71,2,147,59,95,135,
136,126,122,123,64,83]. Note that many writers discovered these numbers independently, without realizing

17 Remark that formally, in (12), the summation may be started not only from n = I, but from any n in the range [0,! — 1],
because Si(n,l) = 0 for such n.

18 In the above, we always supposed that n and | are nonnegative, although, this, strictly speaking, is not necessary. In fact, for
negative arguments n and [, Stirling numbers of the first kind reduce to those of the second kind and vice versa, see e.g. [79,
p. 412], [57, p. 116], [62, p. 60 et seq.].



Ia.V. Blagouchine / J. Math. Anal. Appl. 442 (2016) 404434 409

that they deal with the Stirling numbers. For this reason, in many sources, these numbers may appear under
different names, different notations and even slightly different definitions. Actually, only in the beginning
of the XXth century, the name “Stirling numbers” appeared in mathematical literature (mainly, thanks to
Thorvald N. Thiele and Niels Nielsen [108,150], [79, p. 416]). Other names for these numbers include: factorial
coefficients, faculty’s coefficients (Facultitencoefficienten, coefficients de la faculté analytique), differences
of zero and even differential coefficients of nothing. The Stirling numbers are also closely connected to the
generalized Bernoulli numbers BT(LS), also known as Bernoulli numbers of higher order, see e.g. [25, p. 129],
[55, p. 449], [57, p. 116], [8, vol. III, § 19.7], [162,19,18]; many of their properties may be, therefore, deduced
from those of BS”. As concerns notations, there exist more than 50 notations for them, see e.g. [57], [75,
pp. vii-viii, 142, 168], [79, pp. 410-422], [58, Sect. 6.1], and we do not insist on our particular notation, which
may seem for certain not properly chosen. Lastly, we remark that there also are several slightly different
definitions of the Stirling numbers of the first kind; our definitions (11)—(13) agree with those adopted by
Jordan [75, Chapt. IV], [73,74], Riordan [121, p. 70 et seq.], Mitrinovié¢ [100], Abramowitz & Stegun [1,
n°24.1.3, p. 824] and many others.!” A quick analysis of several alternative definitions may be found in
[57,56], [75, pp. vii—viii and Chapt. IV], [79, pp. 410-422].

2.2. MacLaurin series expansions of certain composite functions and some other series with Stirling
numbers

Let’s now focus our attention on expansions (12). An appropriate use of these series provides numerous
fascinating formulee, and especially, the series expansions of the MacLaurin—Taylor type for the composite
functions involving logarithms and inverse trigonometric and hyperbolic functions. The technique is based
of the summation over [ of (12), on the fact that Sj(n,l) vanishes for I ¢ [1,n] and on the interchanging the
order of summation.?’ For example, writing in (12b) 2I for [, and summing the result with respect to [ from
I =1 tol = co yields immediately for the right-hand side of (12b) the MacLaurin expansion of ch1n(1 + z);
equating both sides we obtain

[e%s) o0 LQ”J

chin(l +z2) = 1+Z Zslnmfuz . J2l<1 (14)

where the sum in the middle may be truncated at [ = L%nj thanks to (13), and where at the final stage we
used a known property of the Stirling numbers.?! By the same line of reasoning, if we divide the right-hand
side of (12b) by I+ 1 and sum it over [ € [1,00), then we get

i 1 W'l+2) 1 N e
— I+1 Coln(l+z) &= (1)
1 1(1+) z
= —— |0+ _ (1 -1 = ————1
In(1+ z) [e n(l+2) } In(1+ z)

Applying the same operation to the left-hand side of (12b) and comparing both sides yields

19 Modern CAS, such as Maple or Mathematica, also share these definitions; in particular Stirlingi(n,1) in the former and
StirlingS1[n,1] in the latter correspond to our Si(n,!).

20 Series in question being absolutely convergent.

21 This particular expansion may be obtained more easily if we remark that ch In(l1+2) = %(1 + z 4+ H%) Similarly may be
proved Eq. (21).
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" Sl(nal) -
—1 §: R T 1 15
1(1+ + ’1:1 I+1 LA 2l <1, (15)
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the equality, which is more known as the generating equation for the Gregory’s coefficients G, (in particular,
Gi=+3,Ga=—3, Gy =451, G4 = =55, G5 = +155, Go = —gooss, ... ).>* Analogously, performance
of same procedures with (12a), written for —z instead of z, results in

z B > ~ |S1(n, )| > C’2n n
(1+z)ln(1+z B g Z 1+1 - g Z, |Z|<17 (16)

=1

Can

which is also known as the generating series for the Cauchy numbers of the second kind Cs ,, (in particular,
Coy=73,0C20=2Ca3="9 Cou=2L Co5="10, Coe =132 ...).% Dividing by 2, integrating and
determining the constant of integration yields another interesting series

,6 84

n-n! l+1 n!

Inln(1+2) = lnz—i—z 1"z .Z|Sl(n’l)| = +Z = 02",2”, 2| <1, (17)
=1

which is an “almost MacLaurin series” for InIn(1 + z). Asymptotic studies of general terms in series (15)
and (17) reveal that for n — oo both terms decrease logarithmically:

Sl(’fl l) (_1)n—1 Con 1 |Sl n, l 1
G, = d = 18
n'l - l+1 nln’n an n-n! n'z I+1  nlhn (18)

respectively (see p. 414), and hence, series (15) and (17) converge not only in |z| < 1, but also at z = +1 at
z = 1 respectively. Thus, putting z = 1 into (15), we have

1 Slnl >
—_1 =1 1
- +Zn, T +;Gn (19)

while setting z = 1 into (17) gives a series for Inln 2, see (8). Moreover, application of Abel’s theorem on

power’s series to (15) at z — —17F yields Fontana’s series®*

= ", Si(n,l)
-y — Z»Gnl (20)

n=1 ! =1

n 1 (n—1)
22 Coefficients G, = % Z (" b — (1_1‘) J(—z)n dz = _(TBLIW = % are also called (reciprocal) logarithmic numbers,
=1 0

Bernoulli numbers of the second kind, normalized generalized Bernoulli numbers B;"il), Cauchy numbers and normalized
Cauchy numbers of the first kind Cp . They were introduced by James Gregory in 1670 in the context of area’s interpolation
formula (which is known nowadays as Gregory’s interpolation formula) and were subsequently rediscovered in various contexts by
many famous mathematicians, including Gregorio Fontana, Lorenzo Mascheroni, Pierre-Simon Laplace, Augustin-Louis Cauchy,
Jacques Binet, Ernst Schréder, Oskar Schlémilch, Charles Hermite, Jan C. Kluyver and Joseph Ser [120, vol. II, pp. 208-209], [149,
vol. 1, p. 46, letter written on November 23, 1670 to John Collins], [72, pp. 266—267, 284], [54, pp. 75-78], [32, pp. 395-396], [97,
pp. 21-23], [92, T. IV, pp. 205-207], [15, pp. 53-55], [151], [54, pp. 192-194], [94,154,133,132], [66, pp. 65, 69], [77,134]. For more
information about these important coefficients, see [111, pp. 240-251], [112], [73, p. 132, Eq. (6), p. 138], [74, p. 258, Eq. (14)],
[75, pp. 266-267, 277-280], [109,110,142,143], [144, pp. 106-107], [40], [156, p. 190], [61, p. 45, n® 370], [8, vol. ITI, pp. 257-259],
[140], [89, p. 229], [117, n® 600, p. 87], [78, p. 216, n® 75-a] [37, pp. 293-294, n° 13], [26,70,163,3,165,24], [99, Eq. (3)], [98,105],
[4, pp. 128-129], [6, Chapt. 4} [83].

23 These numbers Cs , Z M = f(:c) dx = \B(") |, called by some authors signless generalized Bernoulli numbers |B(")|
0

and signless Ngriund numbers are much less famous than Gregory’s coefficients G,,, but their study is also very interesting, see
e.g. [111, pp. 150-151], [112], [8, vol. III, pp. 257-259], [37, pp. 293294, n° 13], [69,3,165,119].
24 This series appears in a letter of Gregorio Fontana to which Lorenzo Mascheroni refers in [97, pp. 21-23].
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converging at the same rate as Y. n =" In"?n, see (18).

411

The use of the same and of similar techniques allows to readily obtain power series for even more

complicated functions. Further examples demonstrate better than words the powerfulness of the method:

o] o L37] 1 oo
shin(1 + 2) :nZl ZSanZ—I— —z—ig(—l)"z", |z] <1
cosln(l+2z2) =1 —&—;m ~;(—1)l51(n, 21), |z] <1
[e%e) Z” L%"J
sinln(1+z) = Zm (—=1)"S1(n, 214+ 1) |z] <1
n=1 =0
[e9) o n—1
m[l+n(1+2)] =Y = (=D Si(n,l+1), |zl <1-e1~0.63
n=1 1=0
0 n+1
1 1 1 z" n(l+1)
= < +- -5 1,1 1
m?(1 + 2) 22+z+z(n+2 Z l+1)(l+2) L, <
1 1 m—1 1
In™(1+ 2) z kz:; k- In™ %1+ 2)
1 e Ut S Slnl m=2,3,4,...
Jr
m!-z 7;1 n! ; I+ |z < 1
m e _1\n =
In™(1+z2) _ 1yt 3 (-1) |Sl(n+1,m+1)y - m=0,1,2,...
1+2 = n! 2| <1
arctgln(1+2) =Y = > (D' Si(n,20+1),  |2] < 2sin5 ~0.96
s 2
arcthln(1+ z) = ZH ST S (n,20+1), |zl<1-e1~0.63

n=1 =0
areth™ = _ §~ o (n o) 2 S
ZZ Z(l—1>'*’ m=123,..., 2| < 1
l=m
© Lan) o
n 2 +1 22l+2 —1)-|B .S 921 1
ey =3 5 5 S AR, i ron
n=1 1=0
G L3n] 21
n 2+122l+2_1'B S 2l 1
thin(l1+2) = ZZ_' . 1) ( ) l|+2i+2| 1(n, 21+ 1) _
L
= A+l X2 LAnt2 O LAn+4
:Z( 1) 922n _Z(_l) 92n+1 + (—1) W’ |Z| <\/§~ 1.41
n=0 n=0 n—=0

(21)

(22)

(29)

(30)

(32)

Derived expansions coincide with the corresponding MacLaurin/Laurent series, converge everywhere where

expanded functions are analytic?® and contain rational coefficients only. The main advantage of this tech-

25 The radius of convergence of such series r is conditioned by the singularities of expanded functions. For instance, In[1+1n(1+42)]
is analytic on the entire complex z-plane except points at which 1 4+ z = 0 and 1 + In(1 4 z) = 0, which are both branch points.
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nique is that we do not need to “mechanically” compute the nth derivative of the composite function, which
often may be a very laborious task.?%:27

Generating equations for Stirling numbers of the first kind may be also successfully used for the derivation
of more complicated and quite unexpected results. For instance, it is known that

C(k+1) Z'Slnk , k=1,2,3,... (33)

n-n!

see e.g. Jordan’s book [75, pp. 166, 194-195].% This result was recently rediscovered by several modern
writers, e.g. by Shen [135] and Sato [126]; however, their proofs are exceedingly long. Using (12) the whole
procedure takes only a few lines:

1 1
|S1(n, k)| |51 (n, k I = [S1(n, k)|, dx )k lnk 1—x)
Z - Z " tdx Zin[ x Pl dx
0 o n=k 0
l/n see (12) (34)
1)k 7 1 Tk
dt = dt = ((k+1
/etl—e t) F(k—l—l)/et—l Ck+1)
0 0

where in last integrals we made a change of variable z = 1 — e~!. The above formula may be readily
generalized to

g(k+1,v)22%, E=1,2,3,..., Rev >0, (35)
n==k n

where at large n

|S1(n, k)| Lv) In""'n
n-(v), (k—1)! novtl”’

n— 0o, (36)
in virtue of (10) and a known asymptotics for the Stirling numbers [74, p. 261], [75, p. 161], [1, n®24.1.3,

p. 824], [158, p. 348, Eq. (8)]. Moreover, by a slight modification of the above technique, we may also obtain
the following results:

S LS Sl = SO+ ).

n=1 Ci=1 =1
(37)
X (_1\n—1 n >
Z(l)% . % D FOSin ) = Y (=D H+ DO+ 2),
n=1 C=1 =1

From the former we conclude that the radius of convergence cannot be greater than 1, and from the latter, it follows that it cannot
exceed 1 — e~ ! which is even lesser than 1. Hence r = 1 — e~ & 0.63.

26 Some other power series expansions involving Stirling numbers are also given in works of Wilf [159], Kruchinin [86,88,87] and
Rzadkowski [124]. Moreover, series expansions of certain composite functions, not necessarily containing Stirling numbers, may be
found in [78, Chapt. VIJ, [61, p. 20 & 63], [63] and [118, vol. I] (in the third reference, the author also provides a list of related
references).

27 Since these expansions are not particularly difficult to obtain and also may be derived by other techniques, it is possible that
some of them could appear in earlier works. The same remark also concerns formulea (37)—(46). For instance, formula (41) may be
found in other sources as well, see e.g. [82, p. 431, Eq. (76)], [4, p. 128, Eq. (7.3.11)], [164, p. 4006] (the same series also appears in
[35, p. 14, Eq. (2.39)], but the result is incorrect). Series (44) is also known, see e.g. [163, p. 2952, Eq. (1.3)], [35, p. 20, Eq. (3.6)],
[24, p. 307, Eq. for Fy(2)].

28 Jordan derives this formula and remarks that particular cases of it were certainly known to Stirling [145] (see also [108, p. 302,
Eq. (36bis)], [150, p. 10], and compare it to formulae from [145, p. 11]).
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where f(I) is an arbitrary function ensuring the convergence and H,, is the nth harmonic number;

Z oo Si(n,l) Z(—l)l- ¢() 1 In 27 n %4—

— = -
—~ nl l+k — l+k-1 kE—1 k
L3 (k—1)] l3k]-1 (38)
@n!-¢'@2r)  F k=1 (2D)!-¢(20+1)
ASYE TS A -1 ASYE A\ )
*Z (21-1) I (2 +;( U o 2 (2%
where k = 2,3,4,... and where the series on the left converges as Y. n=2 In~*1n; for k = 1,2,3,...
> (—1)nt Si(n,l) X2 |G| 1 & k
_— = = — 1™ 1 1) =
Z n—|—k’ n'Z I+1 Zn—kk k+z( ) (m> a(m+1)
n=1 =1 n=1 m=1
1
= — +A*F1
: + n(z)| _ (39)
U L Sind) |Gl
— n n! — I+1 = n
ZLL M:Z’ ”| :71+1n2ﬂ-71 (41)
n—1 n! [+1 n—1 2 2 2
n=2 =1 n=2
X/ 1\yn—1 n |G /
DL AT ot (G R ol L1 S W ) )
n—2 n! I+1 n—2 8 12 272
n=3 =1 n=3
(=Dt 1 & Si(n) 2| Gy 1 In2r  ¢'(2)  <(3)
_— _— = = —— — —_— 4
2 n—3 n! ~ 1+1 ;n—B 16Jr 24 47r2+87r2 (43)

where A* is the kth finite difference, see e.g. [153, p. 270, Eq. (14.17)], and where all series on the left

converges as y_(nInn)~?;

o yp—1 n o Gn Hn 2
Zw'i Si(n,1) :Z\ | =T (44)
Pt n n! I+1 — n 6
[ele] (_1)n—1Hn 1 n Sl(n,l) 7T2

A ) m S St AR 4
2 M TNy 1) )
— (_1)n_1Hn 1 - Sl(n’l) 7T2 1 2l

A e N 2T D o2 4
Z n n!z(lJrl)( +3) 18+2nﬂ- 2 1o

3
Il
-
~
Il
-

which all converge as Y n~?2 In"'n, and even this beautiful alternating series

Zn nlzsllfll Z——Ellﬂ) = 1i(2) -, (47)

n=1 n=1

where Ei(-) and li(-) denote exponential integral and logarithmic integral functions respectively.?’ Finally,
Stirling numbers of the first kind may also appear in the evaluation of certain integrals, which, at first sight,
have nothing to do with Stirling numbers. For instance, if k is positive integer and Res > k — 1, then

29 Numbers G,, are strictly alternating: G,, = (—1)”71|Gn‘. The left side of (47) is, therefore, the alternating variant of Fontana—
Mascheroni’s series (9), (40), and from various pomts of view the constant 1i(2) — v = 0.4679481152... may be regarded as the

alternating Euler’s constant, by analogy to In 4 +» which was earlier proposed as such by Jonathan Sondow in [137].
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C(s+1), k=1
¢(s), k=2
/ln‘“’(lffﬂ) de = DV T D) J s =1)+¢(s), k=3
xk (k—1)!

0 C(s—=2)+3¢(s—1)+2¢(s), k=4

k—1 r r
Sl(k—l,r)Z(m>(k—2)’"m((s+1—m), k>3

r=1 m=0

(48)

The proofs of some of these results being quite long, we, accordingly to the remarks of the reviewer and
of the associated editor, placed them in Appendix A of the arXiv version of the paper arXiv:1408.3902.3°
In Appendix B of the same arXiv version, the reader will also find several full asymptotics for the sums
involving Stirling numbers of the first kind, such as, for example,

11 (n, )| = (1)t [ 1 k—l+7
N _ _ 49
n'z I+ k lnnJr;hl“rl [ I'(z)],.;, Inn Inn * (49)
672 +12y(k — 1) — 72 +6(k?> — 3k + 2 1 k=1,2,3,...
Ll y(k—1) u ( ) 10 3
61n°n In*n n — 00

or

"G (n) () s [k 1 & (<) [am W
ﬁ I+k n Z <m) (=1) {lnn +Zlnl+1n' [F(x)] = (50)

=1 m=0 =1 =1
_ (—1)"1{ k! fy(k—|—1)!+0( 1 )} k=1,2,3,...
B n In**n In**2n In**3n ’ n— oo,

or the full asymptotics for the Cauchy numbers of the second kind

Com | n)| |Slnl 1 (—1)! 1 1O 1
T —an SRR TIPS [m] +O<—2): (51)

= In o=1 nln‘n
1 2 _ 6y2 1
= - Z T 37 —|—O< T ), n — 00,
Inn  In°n 6In°n In*n

as well as that of Gregory’s coefficients G,

Sin,l)  (~1)n 7t & (=1)F [1—a]® 1 B
Gn = n'Z I+1 n ;ml“n I'(x) $:1+O n2lnn | (52)

—1)n1t 1 2 2 672 1 ,
= (=1) { 5 — ;)Y _T 47 —|—O< = >}, n—oo. 5!
n In“n In°n 21In"n In°n

30 Mostly, these formulz are derived in the manner analogous to (34), except for (48). The latter may be derived as follows. By dif-

ferentiating k times the well-known expansion (1—y)~! = Y y™ and by using (11), we get (1—y) *71k! = 3 Z Si(k,r)n "y "k
n=k r=1
in |y| < 1. Putting k& — 1 instead of k and « = 1 — y yields, after some algebra similar to (34), equality (48).
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In Appendix B, we also obtained accurate upper and lower bounds for the Cauchy numbers of the second
kind

1 B 1 1 < Con 1y
In(n+1)  W’n+1) (+D)*r+1)  n " Inn  In’n (53)
53
20—9) , 2—v  20—-9)
- + + ) n 2 27
In®n nln’n nln®n
which also imply that
- S— S - ; =3, o4
Inn In’n n! Inn In’n " (54)
as well as those for Gregory’s coefficients
1 2 1 2 1 2
2 3 2 5 S ’Gn| S 2 o FY?, o
nln“n nln°n n?ln“n n?ln’n (n—=1)In*(n—1) (n—1)In°(n—1)
(55)
B 6(1—7) 1—~ 2(3—7) n 12(1—7)
(n—1)In*(n — 1) n(n —1)In*(n — 1) n(n —1)In®*(n — 1) n(n —1)In*(n — 1)
where n > 3. The latter also imply a weaker relation
1 2 1 27y
nln’n nin’n ’ | nln’n nin®n (56)

which may be sufficient in many applications and which is also very accurate. Corresponding figures illustrate
the quality of the bounds.??

Historical remark. The first-order asymptotics for Cs ,, the second formulae in (18), was probably known
to Binet as early as 1839 (see the final remark on p. 428) and may be also found in a later work of
Comtet [37, p. 294]. As regards the higher-order terms given in (51), as well as upper and lower bounds
given in (53), we have not found them in previously published literature. The first-order approximation
for Gregory’s coefficients G,, at n — oo, the first formulee in (18), was found by Ernst Schroder in 1879
[133, p. 115, Eq. (25a)]. It was rediscovered by Johan Steffensen in 1924 [143, pp. 2-4], [144, pp. 106-107],
and was slightly bettered in 1957 by Davis [40, p. 14, Eq. (14)]. Higher-order terms of this asymptotics
were obtained by S.C. Van Veen in 1950 [151, p. 336], [112, p. 29], Gergd Nemes in 2011 [105] and the
author in 2014. S.C. Van Veen and Gergd Nemes used different methods to derive their results and obtained

31 All these asymptotics are derived in a similar manner. For instance, formula (49) is obtained as follows. First, proceeding

nT k-1

) dx when

n 1 1
analogously to (34) and using Stirling approximation (10), we have > Isul(+7nkl)\ = 2" N@)pdz ~ (n— 1)
=1 0 0
"
n — oo. Using the MacLaurin series (70) and performing the term-by-term integration yields (49). Similarly, 121 % =

1 1 )
(=) [zF N (=z)pdz ~ (=1)" " (n — 1)!f%152)A dz at m — oo. Using binomial expansion for (1 — z)* and proceeding
0 0

analogously to the previous case yields (50). Setting k = 1, we obtain asymptotics (51) and (52). Readers interested in a more
deep study of asymptotical methods might also wish to consult the following literature: [46, Chapt. I, § 4], [45,114,43].
32 In brief, bounds (53)—(56) are obtained as follows. First, we use the integral formulee from footnotes 23 and 22 to show that

1 1
Ca., = g% dxr and G,n! = (—1)”71{% dz, both integrands being strictly nonnegative. Then, for each of

the D-functions, we use two inequalities: first (n + 1) 'n! < T(z +n) < n® 'n! where 0 < ¢ < 1, n =1,2,3,..., see [49,
Eqgs. (6)-(7), Fig. 2], and second, = < ﬁ < (y—=1)22 + (2 —7)z for 0 < z < 1, see Appendix B for more information on the

latter bounds. This yields bounds (53) and (55), and, after a little algebra, (54) and (56).
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different expressions; however, one can show that their formulse are equivalent. The former employed an
elegant contour integration method, while the latter used Watson’s lemma. Our formula (52) differs from
both Van Veen’s result and Nemes’ result, but it is also equivalent to them. Note also that many researchers
(e.g. Ngrlund [112, p. 29], Davis [40, p. 14, Eq. (14)], Nemes [105]) incorrectly attribute the first-order
asymptotics of G,, to Steffensen, who only rediscovered it. The same first-order asymptotics also appears in
the well-known monograph [37, p. 294], but Comtet did not specify the source of the formula. As regards the
bounds for G,,, in 1922 Steffensen found that ﬁ < |G| < == for n > 2, see [142, p. 198, Eq. (27)],
(143, p. 2, Eq. (3)], [144, p. 106, Eq. (9)]. A stronger result (at large n) was stated by Kluyver in 1924
(77, p. 144]: |G| < with n > 2. In 2010, Rubinstein [122, p. 30, Theorem 1.1] found a bound for
more general numbers, from which it inter alia follows that*® |G,,| < M for n > 1; this bound is
nevertheless much weaker than both preceding bounds. In another recent paper [36, p. 473], Coffey remarked

1
nlnn

that numerical simulations suggest that |G,,| should be lesser than ? for all » > 2, but that the proof
of this result was missing.** Inequalities (56) include the missing proof. By the way, as far as we know, our
bounds (55) are currently the best bounds for Gregory’s coefficients.

2.8. An inspiring example for the derivation of the series for InT'(z)

Let’s now consider the example which was originally our inspiration for this work. In exercise n° 39-b in
[13, Sect. 4] we established that

1
tg arcth 1 11\ 1
/dezﬂ (=) —InT(=+ =) — ~lnw s = 1.025760510... (57)
T s 2 T 2
0

The arctangent of the hyperbolic arctangent is analytic in the whole disk |z| < 1, and therefore, can be
expanded into the MacLaurin series.?” The coefficients of such an expansion require a careful watching, the
law for their formation being difficult to derive by inductive or semi-inductive methods. So we resort again
to the method employing Stirling numbers:

arcth2l+1 n—1\2* 2 20 Sq(k, 20+ 1
arctgarcthz = E (-4 T O g E ( ) E :(_Ul' ) 212§+1 ) =
k=

=0 n=1 =0
2n+1 n
L Sy (k, 2+ 1) _ 1 1
_ 2n+1 l 1 5 7
=S ([ )k.z N
=
An

64 o 71 4, 5209 5 2203328 .

<1
9835  4725° ' 405405° ' 212837625 ’ =l <1,

+

where we used result (30), as well as the oddness of the expanded function.®® Inserting this expansion into
(57) and performing the term-by-term integration, we obtain the following series for the difference of first
two terms in curly brackets in (57)

Rubinstein’s oy, (s) at s = 0 are our —|G,,|.

Note that Coffey’s p,+1 are our |G, | (Coffey’s notation are probably borrowed from Ser’s paper [134]).

Function arctgarcth z has branch points at x = +1 and z = +itgl ~ +1.561.

Note that although the MacLaurin series for the arctangent is valid only in the unit circle, i.e. formally only for such z
that |arcthz| < 1, the above expansion holds uniformly in the whole disk |z| < 1 (in virtue of the Cauchy’s theorem on the
representation of analytic functions by power series, as well as of the principle of analytic continuation). Moreover, an advanced
study of this series, analogous to that performed in the next section, shows that it also converges for x = 1.

36
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Fig. 1. Relative error of series expansion (58), logarithmic scale.
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(58)
71 5209 2203328 132313
151975 T 5270265 T 3192564375 253127875 |

} = 0.8988746544 . ..

with A, defined in the preceding equation. The derived series does not converge rapidly, see Fig. 1, but
the most remarkable is that it contains rational coefficients only, which is quite unusual, especially for the
arguments related to 7!, This suggests that there might be some more general series similar in nature to
(58), which allows to expand the logarithm of the I-function at certain points related to 7! into the series
with rational coefficients only. Such series expansions are the subject of our study in the next section.

3. Series expansions for the logarithm of the I'-function and polygamma functions
3.1. First series expansion for the logarithm of the I'-function
8.1.1. Derivation of the series expansion

Consider the general form of the second Binet’s integral formula for the logarithm of the I'-function

ooarctgaaj T b 1 b s b

———dr = —InT'(— —|1—-In— —Iln——
/ebx—l R (27Ta)+ 2a< n27ra)+ % " 4r2a (59)
0

a > 0 and Reb > 0, see e.g. [118, vol. I, n® 2.7.5-6], [12, pp. 335-336], [157, pp. 250-251], [8, vol. I, p. 22,
Eq. 1.9(9)] or [13, Sect. 4, exercise n° 40]. The general idea of the method consists in finding such a change
of variable that reduces the integrand in the left-hand side of (59) to a function (probably, a composite
function) which may be “easily” expanded into the MacLaurin series. In our case, this change of variable
may be easily found by requiring, for example, that

/ de [
ebr —1 U

where u is the new variable and « is some normalizing coefficient, which can be chosen later at our conve-
nience. Other changes of variables, of course, are possible as well (see, e.g., numerous examples in exercises
39 & 45 [13, Sect. 4]), but this one is particularly successful, especially if we set o = 1/b. Thus, putting
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x = —% In(1 — u) and rewriting the result for z = %, Binet’s formula takes the form
h d
u T z
t —1 1-— =7xlnT 1-1 —In —
/arc g n(l—u)|— " mInT'(2) + wz( nz)+ 5 0o (60)
0

where Rez > 0. The integrand on the left may be expanded into the MacLaurin series in powers of u
accordingly to the method described in Section 2. This yields

= l | [2#2 11’1(1 — ):I o
arctg 5 In(1 fu)] = Z(fl) 2n! - ] =
1=0
= s \Sl(n,21+1)| n
- _Z 2772 21+1 Z nl w= (61)
n=2l+1

_ aw & 1 [$1(n,21 4 1)]
- _Z n! Z (272)2+1

In(1 — u)] is analytic. The radius of this
disk r depends on the parameter z and is conditioned by the singularities of the arctangent, which occur at
u=1— exp(+27iz) [branch points|, and by that of the logarithm, which is located at u = 1 [branch point

This expansion converges in the disk |u| < r in which arctg[ 5

as well]. The latter restricts the value of r to 1, and the unit radius of convergence corresponds to such z
that 2cos(2m Re z) = exp(+27Im z). The zone of convergence of series (61) for |u| < 1 consists, therefore,
in the intersection of two zones, each of which lying to the right of curves

1 +1n2 + Incos (QWRGZ)
Imz = — - (62)
2 —In2 —Incos (27 Re z)

respectively, see Fig. 2. Now, a close study of the general term of series (61) reveals that it also converges
for uw = 1. Indeed, from (75), it follows that one can always find such a constant C' > 1 that for sufficiently
large ng, inequality

37
1 20! |S1(n, 21 + 1)| 21z C
-1 ! : < ’ > )
n! g( ) (2mz)2+1 nln’n e

holds. Hence, since series > n~'In"*n converges for a > 1, so does series (61) at u = 1. An interesting
consequence of the latter statement is this curious identity

n

m\»—A

DL 810,20+ 1)
(2m2)2+1 ’

(63)

<1
Z?

which holds in the region of convergence of z. Thus, expansion (61) converges uniformly in each point of
the disk |u| < 1 and can be integrated term-by-term.*” Substituting series (61) into (60) and performing

:O

37 Another way to show that (61) is uniformly convergent is to directly verify that

1 ‘n
/{Z Z( 1y B 1S (2Lt 1)) LSI(;lillJrl)‘ du — 0 as N — oo
A N . ™z

see e.g. [60, pp. 161-162].
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Fig. 2. The region of convergence of series (61) and (64) in the complex z-plane for |u| < 1 is the common part of two zones, each
of which lying to the right of curves ((‘2) [green zone]. Both curves start from the point z = % and have vertical asymptotes in the
complex z-plane at the line Re z = ;. The convergence of the serles in the vertical strip 2 s <Rez< 3 depends therefore, on the
imaginary part of z. On the contrary, in the half-plane Re z both series converge everywhere 1ndcpcndcntly of the imaginary

part of z. (For interpretation of the references to color in this ﬁgure legend, the reader is referred to the web version of this article.)

the indicated term-by-term integration from v = 0 to v = 1, we obtain the following series expansion for
the logarithm of the I'-function

LGJ

1 ' 1S1(n, 2l + 1)
InT(2) < )ln z—2z Jr ln 2 + — Z - n' (@n )21 =
1 1 + 1 2 + 1 + 1 + L L L + L ! ! +
=(z—=|lnz—=2 n — 4+ — [ — = —— — | — - ——
2 T 2mz  8mz 18 \mz  4m323 32 \mz  2mw3z3
L 1 12 35 n 3 n 1 60 225 n 45 n (64)
600 \ 7z 4m3z3 | 4xbz5 4320 \ 72 4m323 | 4755 o

converging in the same region as series (61), see (62) and Fig. 2. In particular, if z is real, it converges for
z > %; on the contrary, if z is complex, then, independently of its imaginary part, it converges everywhere
in the right half-plane Rez > i. A quick analysis of the above series shows that for z rational multiple
of 771, it contains rational coefficients only. Another important observation is that this series, unlike the
classic Stirling series (1), cannot be explicitly written in powers of z. To illustrate this point, we write down
its first 2, 3 and 4 terms respectively:

N 57 |
Z (1) 20! 151 (n, 20+ 1)]
2041

—mn nl :0 (27z2)
1 1 5
L1 _ 5 N =2
2z 8wz 8z
1 1 1 1 1 49 1

D B S e _ _ 7 N=3

27z - 8mz + 18 <7rz 47r3z3> T2rz  T2w323
LS SO N SR U WS S0 NS W W - 17 N
2z 8wz 18 \mz  4m3z3 32 \7mz 27323 ) 2887wz 576m3z3 B
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By the way, as concerns the divergent Stirling series (1), it can be readily derived from (64). By formally in-
terchanging sum signs in (64), which is obviously not permitted because series are not absolutely convergent,
we have

oo
n:l

o] LSi(n, 20+ 1)) & v ! 1S1(n, 20+ 1)]
Z (2m2)2+1 - Z(_ 27rz 21+1 Z n-nl o
=0

=0

¢(2142)
_ i(—l)l_l (21 — 2)! i": 7 By
B = (272)2-1 —20(20 - 1) 20(21 — 1)22-1

where we first used (33) for {(2! 4 2), and then, Euler’s formula

2 . 20 |
C(2l) = (~1)+ (2m)% - By _ (2m)2" - | Bay| ’ 1=1.2.3....

2. (2)! 2. (2)!

Further observations concern the convergence of the derived series and are treated in details in the next

section.

8.1.2. Convergence analysis of the derived series

The complete study of the convergence of (64) is quite long and complicated, that is why we split it in
two stages. First, we obtain the upper bound for the general term of (64), and then, derive an accurate
approximation for it when n becomes sufficiently large. In what follows, we may suppose, without essential
loss of generality, that z is real and positive. The general term of series (64) is given by the finite sum over .
This truncated sum has only odd terms, and hence, by elementary transformations, may be reduced to that
containing both odd and even terms

L3 L5n]
Z(_l)l 20! [S1(n,20+1)] Z(_l)%@lﬂ)f% 2L+ 1) |S1(n, 20 + 1)]
(2mz)2i+1 (204 1) - (2mz)2+1
=0 (65)
1 ~ 1 (l—l)'|51(n l)l

= 5 [ U] S

=0

Now, from Legendre’s integral for the Euler I-function,*® it follows that

(1)t (=1)30-D) . % _ _Z.Z[_;T_xzy e*ﬂ;dz

Hence, expression (65) may be continued as follows

Tl - ] s 2 -

38 Namely, (I 4+ 1)! = [z'T'e™"dz taken over z = [0, 00).
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T 1T 1T e Tdx
e Y = 66
[{(52), -G )
0
- /sh£ o (i I Y (PP R oY (L I ol I | O o
472z 2z 2mz 2mz 2mz 2mz
0
1 7 T _ 1 X 1T
= — sh— e - Im|I'| — | T'(n— — || dx
2m2z 2z 2mz 2mz
0

where at the final stage we, first, replaced Pochhammer symbols by I'-functions, and then, used the well-

known relationship I'(2)['(—z) = —(w/z) cscmz. The last integral in (66) is difficult to evaluate in a closed
form, but its upper bound may be readily obtained. In view of the fact that | ImT'(v)| < |T'(v)| < [T'(Rev)|,
we have

T(n) [ ; —
gﬂ/shﬁ.e—x_p iz g~ (1 /—x Shﬁ dz
272z 2z 2nz VT
0

Whence, by making a change of variable in the latter integral x = 2zt, we have for any positive integer n
(not necessarily large)

L[Sy (n,20 + 1) 1 1 [ [sht _,.,
Z G| S qE g e T (68)
0

=0

where the latter integral converges uniformly in the half-plane z which lies to the right of the line Re z = i
(imaginary part of z contributes only to the bounded oscillations of the integrand). Consequently, series
(64) converges at least in Rez > %, and this at the same rate or better than Euler’s series Y n =2
Numerical simulations show, however, that the greater n, the greater the relative difference between the
upper bound and the left-hand side in (68), see Fig. 3, and thus, this upper bound is relatively rough.*’
A more accurate description of the behavior of sum (65) at large n may be obtained by seeking its asymp-

totics. In order to find it, we proceed as follows. We first rewrite the second line of (66) as

J2) @) )] e

Now, it is well-known that the function 1/T'(2) is regular on the entire complex z-plane, and therefore, may

be expanded into the MacLaurin series

1 2 7 TN Nk
T(2) =247z +(?_ﬁ A S :ZZ ag , 2| < o0, (70)

39 The error is mainly due to the use of inequality | Im I'(v)| < |T'(v)].
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Fig. 3. Relative error between the upper bound and the left-hand side in (68) as a function of n for three different values of
argument z, logarithmic scale.

where

ap = % [ﬁ} (Zk_)o: % [Sinﬁx-F(m)]ZZl (71)

the last representation for coefficients ay, which follows from the reflection formula for the I'-function, being

often more suitable for computational purposes.*’ Using approximation (10) for the Pochhammer symbol
and the above MacLaurin series for 1/T'(z), we have for sufficiently large n

iz EE= -T'(n) rlnn . zlnn) iz \F
2T o [ i : (25 | =
m {(2712)”} m | = (=) 1 (n—1)!Im l(cos 5, T isin—o— ) ;ak (2772) 1

2k+1 rlnn & x \2k
i S ()
) +sin 2mz ;( ) a2 2mz ]

(72)

rlnn o T
= (n—1)! |cos ~Z(—1)ka2k+1 (

21z

=
Il
=]

the error due to considering only the first term in (10) being negligible with respect to logarithmic terms
which will appear later. Inserting this expression into (69), performing the term-by-term integration and
taking into account that®*!

r r
/:rsfle*” cosux dr = % - cos {s arctg E}
0 (@ + ) :
- (73)
r
2 le ™ sinux de = & - sin |sarctg v
(22 +u2)s/2 z
0

yield

40 On the computation of ay, see also [1, p. 256, n° 6.1.34], [158, pp. 344 & 349], [65].
41 These equalities are valid wherever the integrals on the left converge, see e.g. [28, p. 130], [96, p. 12], [85].
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T COs arc lIl_’I’L
Jim () ] 8 ~ - e o o+ tgmh

) 21z ), T P (2mz)2k+1 n2n k+3
422
Inn
oo sin |2k arctg —
(2k —1)! [ 2772}
+ (=1 (=1)*ag .
Z (272)2k [1 1n2n r

ES
Il
—

422
whence, the required asymptotics is

“”J 1|81 (n, 20 + 1))

n- n' (2mz)2l+1

1< (=1)*
s (2k + 1) (47222 + lngn)H%

Inn | 7@K+
- COoS [(Qk + 1) arctg 27&:} . {} + (74)

1 & —1)k 1 1 ] 1
+— (=1) o - sin [Qk arctg ﬂ] . {—} + O(—3>
ne o 2k (4222 +1n2n) 2rz I'(@) ], n

for sufficiently large n. Retaining first few terms, we have

in
1 J( 1y 20! [S1(n,20+1)] 27wz { 1 2yInn }+
Tl o 2041 - T2 2 2
n-nl (27z) n Ar222 +1In"n (47222 + In’n) (75)
+ O( ! ) —
|, n — 00
n2In*n
Thus, for moderate values of z, series (64) converges approximately at the same rate as >.(nlnn)~2, i.e. at

the same rate as, for example, Fontana—Mascheroni’s series (9), (40), see asymptotics (18).
8.1.8. Some important particular cases of the derived series

Let’s now consider some applications of the formula (64). In the first instance, it is natural to obtain a
series expansion for

1 1 11 1 1 (20)! - 81 (n, 20 + 1)
mr(=) = (1= 2) mmr—= -2+ — . _1)! ’ -
. (w) ( 7r) oLty +27r;n-n! {Z( ) 22

1=0 (76)
N, 1+112+11+1+1+1+1 S S I
= _—— - In _—— — 1n —_— _— —_— _— —_— —_— —_—
) BT TR o 4 32 75 ' 144 ' 2880 ' 46080

The graphical illustration of the convergence of this series is given in Fig. 4. With equal ease, we derive

mF(i) _< i) 1M,2+ 1“”*271 - {LZHJ 1)1(21)!.|512(Z,21+1)}_

=0

:<—g> 1n7r———|— ln2—|— (77)
m
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Fig. 4. Relative error of the series expansion for In F(7r ) given by (76), logarithmic scale.
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Many other similar expansions may be derived analogously. Let’s now see how the series behaves outside
the region of convergence. For this aim, we take z = %ﬂ'_l. Formula (64) yields

lnI‘i 2 1—i ~11127r—i
2T 2T 2T

100
Il

L3n]
- {D—l)l(w |Sy(n. 20+ 1>|} _

=0 (78)

11 1 17 101

In2m — — +

summation of its first 3 terms gives the value 1.764207893...
6.6 x 1074, that of 18 terms gives 1.765525087 ...
first 32 terms yields 1.765392783. ..

further numerical simulations, see Fig.

(%)

At first sight, it might seem that this alternating series slowly converges to InT'( %71'_

Lo 1
2r om 4 16

300

144

630 T 5760

s
102060

1) ~ 1.765383194: the

which corresponds to the relative accuracy

3.2. Second series expansion for the logarithm of the I'-function

Rewrite formula (64
duplication formula for the I'-function InT'(2z) =

lnI‘< —|—z) =zlnz—z+ — 1n27r——z

=zlnz—z+ —

L1
600

42 We do not count the third term which is zero.

6

Tz

5, leave no doubts: this series is divergent.

, i.e. the relative accuracy 8.0 x 107°, the summation of
which corresponds to the relative error 5.4 x 1076.42 Notwithstanding,

) for 2z instead of z, and subtract the result from (64). In virtue of Legendre’s

1
1n27r1{ 1
2

245

drz

93

167z

1

1

327323 +

1287025

)+

4320

nn'

I.sz

1
18

(=

30

Tz

(zm

(20!

(221-‘,—1 _

1

(22—1)In2 — L In7 +InT(2) + InT'(z + 3), we have

|Sl(n, 20 + 1)|

327r3z3 >

1575

(4mz

1
32

1395

327 23

1287525

20+1

1
2mz

_|_

79
1671'3z3>Jr ()

&
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Fig. 5. Relative error of the series expansion for lnF(% ) given by (78), linear scale.

which holds in the green zone shown in Fig. 2. This expression allows to expand any value of the form
In F( + ar~!) into the series with rational coefficients if o is rational greater than %W. For example,
putting z = 71, we have

L3n J
1 1 l+nmw 11171' L (200 (224 — 1) | Sy (n, 21 + 1)
lnf(g—i—?) == 11'127'('—— E n n' 24l ==
1+Inm n ln2 1 141 1 + 1 + 1 119 71 7853 12611
= - 4+ — T — — 4 — - — — — — ...
s 2 Am 4 16 128 19200 9216 1290240 2949120

Furthermore, both series expansions (64) and (79), used together with the reflection formula and the re-
currence relationship for the I'-function, yield series with rational coefficients for any values of the form
InT(4n + ar~!), where n is integer.

As a final remark, we note that expression (79), written for z instead of %—&—z, straightforwardly produces
another series expansion for the logarithm of the I'-function

1 1 1 1
InT(z) = (z— 5)111(2’— 5) —z+ 5l + 5111271’—

LGJ
- _Z n - nl

()1 (2 1)1
— (47)2i+1 . (z —

(n,20+1)|
)2l+1

(80)

N[= | =

which converges in the green zone given in Fig. 2 shifted by to the right. In particular, if z is real, it
converges for any z > 3.

Remark. Expansion (79) may be also derived if we replace in (59) Binet’s formula by its analog with

“conjugated” denominator

oo

arctg ax m 1 b 1 21a

AR g = — T ar(z 1+ 22) + Do
/ebm+1dx bn<2+27ra> 2a<+nb>+2bn7r
0

where a > 0 and Reb > 0, see [13, Sect. 4, exercise n° 40-a], or if we replace it by the following formula
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ooarctgax oo b 1 b 1. 27ma
/Tbx do = b{l‘”(zm) IHF(2+ m) 21nb}
0

derived in [13, Sect. 4, exercise n® 39-¢]. Making a change of variable z = —7 2 arcthu, and then, proceeding
analogously to (60)—(64), yields

2n+1

1 1 2k on \ .Sy (k,20+1)
lnF(z)—lnF(§+z> = ——lnz+ Z T 1 Z:l k'( )Z 27rz)2l+1 (81)

which, being combined with (79), leads to a rearranged version of (64).

3.8. Series expansion for the polygamma functions

By differentiating expressions (64) and (80), one may easily deduce similar series expansions for the
polygamma functions. Differentiating the former expansion yields the following series representations for
the digamma and trigamma functions

L3n J
(20 +1)! 20+1
o =ms- g LS ESUHCYOE LSV

n- n' (2mz)2i+1

| NN U O S +1 1 3, 1 (1 AW (82)
= In _——_——— —_— _— _——_—— —_— _——_——
“T oz 8rz 18 \mz 47323 ) 32 \ 7z 278

4 > 1 12 105 + 15 + 1 @_ 675 + 225 +
600 \ 72  4m3z3 | 4755 4320 \ mz  4m3z3  4mdL5

and
ol _ > L%”J @1+ 2 S (n 20+ 1))
1(z) = ﬁ Z -1 (2mz)2i+1 -
n=1 1:0
_1+1+1 1+1+1 2 3,1 /1 3, )
9222 z nz2 |mz  A4mz 18 33 16 w323

i 1 /24 105 45 1 @ 675 675
600 4320

+
H‘,—/

z w323 + 2525 z 323 2785
respectively. More generally, by differentiating & times with respect to z the above series for ¥(z), we obtain
a series expansion for the kth polygamma function

L%nJ

Up(z) = (1)1 i +(—1)k+1<k—1)! (D& 1 LU+ E+ 1) |Si(n,20+ 1)

2zk+1 I Tkt L nl 4 (2mz)2i+1 N
k! (k—1)! (—1)’“rl (k;+ 1)! (k:+1). 1 [(k+1)!  (k+3)
= (=1 k+1 ™ -1 k+1 . _
(=1) 2zk+1 +(=1) P + mzhtl 2z + 8z + 18 Tz 8323
1 (k+1)! B (k+3)! 1 12 (k+1)! B 35(k+3)!  (k+5)! (84)
32 TZ 4323 600 TZ 8323 327525 o
where k = 1,2,3,.... Convergence analysis of these series is analogous to that performed in Section 3.1.2,

and we omit the details because the calculations are a little bit long. This analysis reveals that the general
term of these series may be always bounded by ay(z)n =2, where ay(z) depends solely on z and on the order
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of the polygamma function k. At large n, the general term of these series is of the same order as (n lnmn)_Q,

where m =1 for ¥(z), m = 2 for ¥U1(z) and ¥y(z), m = 3 for U5(z) and ¥4(z), and so on.
We now give several particular cases of the above expansions. From (82)—(84), it follows that at 71, the
polygamma functions have the following series representations

LgnJ

1 20+ 1) ]S1(n, 20 + 1)
\Il<—> lnﬂ'———z =
| 2041
T = n-nl 2 (85)
1 T 1 1 1 n 1 n 7 n 7 n 643 n 103 n
=—Inmr———-—=-—-— —t — 4+ —=4+ — 4+ —+...
T 2 2 8 72 ' 64 ' 400 ' 576 ' 94080 ' 30720
I.Q”J
1\ (2042)!-|S1(n,20+1)]
\Ill(?> B _—HT—HTZTL nl 4 221+1 N
(86)
_ 2 I 14 1 1 1 39 29 353 L 11 n
T T 418 8 400 576 23520 @ 3840
and, more generally, for k =1,2,3,...
l3n J
1 w1 k) TE! U+ E+ 1) |S1(n, 20+ 1)]
qjk(ﬂ) = ()T 7 k=1) Urzn n! ¢ 2241 B
k! (1+k)! (1+k)! 1 (k+3)!
= (DM ST L 1) — (e + 11— 2228 (87)
(=) r 2+(k )+2+8+18(+) 3 +
1 (k+3)! 1 35(k+3)!  (k+5)!
— |(k+ 1) - ——~ — [12(k+ 1) —
+32{(+) 4 }4_600[ (k+1) s 32 |7

Fig. 6 shows the rate of convergence of first two series.
Second variant of the series expansions for the polygamma functions follows from (80). Differentiating
the latter with respect to z yields

,i
Wl
3
[y

2L+ 1)1 (221 1) . |S (n,20+1
U(z) = In <z - —) Z BNCAR ) |1 ors ) (88)
n=1 1:0 (4m)2i+t . (Z - 5)
and
(—1)k+1(k 1 k e bnj . (2l—|—k;—|—1)!~(22l+1 - 1) : |Sl(n,2l+1)‘
Ui(z) = 1 Z " - nl (1) 2041 1) 20+k+2 (89)
(z — 5) n=1 1=0 (47T) T (Z - 5)
In particular
L3 J
11 : 204+ 1)1 (2241 — 1) - [Sy(n, 20 + 1)
v(3+ 1) :_m+z -
T 4112
2 ' x n-nl & 2 (90)
il + 1 5 13 569 539 98671
= — T T, T TeA T Taia T

16 576 512 25600 36864 12042240

Similarly to expansions for InT'(z), expansions (84) and (89), combined with the reflection formula and the
recurrence relationship for polygamma functions, give series with rational coefficients for any polygamma
function of the argument %n + an~!, where « is rational greater than %71’ and n is integer.
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Fig. 6. Top: Relative error of the series expansion for ‘II(Trfl) given by (85). Bottom: Relative error of the series expansion for
\Ill(wfl) given by (86). For better visibility, both errors are presented in absolute values and logarithmic scales.

Final remark. Series which we discovered in the present work are very interesting especially because of
the implication of combinatorial numbers S;(n,!). In this context, it seems appropriate to note that series
of a similar nature for InT'(z) and ¥y(z) were already obtained, but remain little-known and practically
not mentioned in modern literature. For instance, in 1839, Jacques Binet [12, pp. 231-236, 257, 237, 235,
335-339, Eqs. (63), (81)] obtained several, rapidly convergent for large |z|, expansions

1 1 1< I(n) 1
InT(z) = ——)lnz— —In2r 42 —. ——
nl'(2) (z 2)112 z+ 5 In 7r—i—27Z:1 w GEn
X 7
InT'(z2) = (z—%)lnz—z—i—%ln%r—%z];n) &
n=1
1 1 K(n) 1 o1
n
PR = 2 T T,
\Il(z):lnz—i—l Kmn)—nKmn-1) 1
2 2~ n (2)n

where numbers I(n), I'(n) and K(n) are rational and may be given in terms of the Stirling numbers of the
first kind. Binet recognized these numbers, denoted them by a capital H, referenced Stirling’s treatise [145]
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and even corrected Stirling’s error: in the table on p. 11 [145] he noticed that the value of |S1(9,3)| = 118 124
and not 105056. In our notations, Binet’s formule for I(n), I'(n) and K(n) read

1 n
L-|Si(n, 1) |Si(n, D)
—1)( =y ——0 - Cop
/x de ;(lJrl l+2 Z I+2 >
0 =
1 n—2
I-]S1(n—1,141)]
2z —1)(1 — _1dx = 92
/ v ) (@)n-1d ; (+2)0+3)( +4) (92)
) -
1 [$1n.1)
n7
K(n) = n'—2/( Jndx = n! 22 ll+1 = n!—-2Cy,
A =1
In particular, the first few coefficients are I(1) = ¢, I(2) = 1, I(3) = 52, I(4) = 38 I(5) = 323, I(6) = 1577
(1) = =5, 1'(2) = 0. I'8) = 455, I'(4) = 455, I'(5) = +52, I'(6) = +%, ... and K(2) = 3,
K(3)=32 K(4)=12 K(5)=28 K(6)=113 K(7)= 22881 Strictly speaking, Binet only found

first four coefficients for each of these series and incorrectly calculated some of them (e.g. for I(4) he took
%07 instead of 22 = 28 for K(5) he took 245 instead of %), but otherwise his method and derivations are
correct. Binet also remarked that

I'(n) 1 :0<#>, n— oo, (93)

n*tllnn

which implies that he knew the first-order approximation for the Cauchy numbers of the second kind as early
as 1839.* In 1923 Niels E. Ngrlund [111, pp. 243-244], [151, p. 335] obtained two series of a similar nature
for the polygamma functions. In particular, for the Digamma function, he provided following expressions

1 = Con 1
U(z) = Inz— - n__ L
(2) nz Z+ =30,

u(2) mzzlzzw

A careful inspection of both formulse reveals that they actually are rewritten versions of the foregoing
expansions for ¥(z) given by Binet 84 years earlier.*> One may also notice that Fontana—Mascheroni series
(9), (40), is a particular case of the latter formula when z = 1. In contrast, the former expression at z = 1
yields a not particularly well-known series for Euler’s constant

> Csy 1 5 1 251 19 19087
e - - - 95
7 Z n-(n+1)! 4 72 32 14400 1728 2540160 (95)

n=1

which is, in fact, closely related to the above-mentioned Fontana—Mascheroni series and may be reduced to
the latter by means of the recurrence relation

43 Values I'(1) = —%,1'(2) = 0 are found from the integral formula, their definition via the sum with the Stirling numbers of the
first kind being valid only for n > 3.

44 Note, however, that Binet stated this result without proof (he wrote Je ne développe pas ici ces résultats, parce que les détails
sont un peu longs).

o0 o0
45 In order to reduce first Binet’s series to first Ngrlund’s series, it suffices to remark that > 5:_:11))! = (z+1)<z_1'_'22)'>'_'f<bz+n+1) =
n=2 " n=1 )

% — z—}rl and Ca,1 = % The equivalence between second Binet’s series and second Ngrlund’s series follows from the fact that
%[K(n) —nK(n— 1)] =nCspn_1—Ca2pn = |Cl,n,| = ‘Gn‘ -n!, where K(1) =0 and n = 2,3,4,....
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71027”_1 - Cg)n = }Clm‘ = ’Gn| -n!, 0270 = 1, n = 1,2,3, e (96)

Namely, by partial fraction decomposition, (95) becomes

OOCQn 1 > CQn = CQn
= 1— . =1 - — o %" =
7 Z n!  n(n+1) gn-n!+;(n+1)!

n=1 1
= C2,n71 - {Gn| ’ (n B 1)! . CZ,n - |G"|
:1_2 n! +Z:1(n+1)! :z;l n

It is interesting to note that series (95) converges at the same rate as S.n~2In"'n, while Fontana—
Mascheroni series (9), (40) converges slightly faster, as S.n~2In"2n, see (18). It secems also appropriate to
note here, that apart from Ngrlund, the series expansions equivalent or similar to those derived by Binet
in 1839, were also obtained (sometimes simply rediscovered, sometimes generalized) by various contempo-
raneous writers, see e.g. [34, p. 2052, Eq. (1.17)], [35, p. 11], [106], [164, pp. 4005-4007].

4. A note on the history of this article

Various internet searches may indicate that this article was first expected to be published by the journal
“Mathematics of Computation” (article submitted on 18 August 2014 and accepted for publication on 3
December 2014).'® However, due to a disagreement with the managing editor of this journal during the
production of this paper, I decided to withdraw it.

Note also that the present article was written before the recently published paper [14], which is an
extension of the present work to generalized Euler’s constants (Stieltjes constants).
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