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Abstract—The total harmonic distortion (THD) is an impor-
tant performance criterion for almost any communication device.
In most cases, the THD of a periodic signal, which has been
processed in some way, is either measured directly or roughly
estimated numerically, while analytic methods are employed only
in a limited number of simple cases. However, the knowledge of
the theoretical THD may be quite important for the conception
and design of the communication equipment (e.g. transmitters,
power amplifiers). The aim of this paper is to present a general
theoretic approach, which permits to obtain an analytic closed–
form expression for the THD. It is also shown that in some cases,
an approximate analytic method, having good precision and being
less sophisticated, may be developed. Finally, the mathematical
technique, on which the proposed method is based, is described
in the appendix.

Index Terms—Total harmonic distortion (THD), harmonic
analysis, signal analysis, Fourier series, analytic methods, the-
oretic techniques, complex analysis, Cauchy’s theorem, residue
theorem, continuous-time filters, transmitters, power amplifiers.

I. INTRODUCTION

THE total harmonic distortion (THD) is an important
performance criterion for versatile communication de-

vices. The lesser the THD, the closer the signal’s spectrum
to the ideal one and the lesser the interferences for other
electronic equipment. Moreover, the problem of distorted and
not eco–friendly radio–emissions is becoming more and more
important, especially, in the quite recent paradigm of spectrum
sharing and spectrum sensing.

In practice, transmitted signals are often obtained from
periodic ones of standard form via filtering. For instance, class
C and D power amplifiers are nowadays very popular in mod-
ern communication devices (especially, in their transmitting
circuits). These amplifiers are more efficient than traditional
class A, AB and B amplifiers1, but the other side of the coin
is their high non–linearity. Their output signal is very “dirty”
and “noisy” (in the sense that it contains too many harmonics
of the fundamental frequency), and even if the input signal
was sinusoidal, the output one is much closer to the pulse
train, which needs to be filtered before it goes to the antenna.
To this end, LRC filtering networks, ceramic or cavity filters
are usually inserted between the output transistor/tube and
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antenna. Another example may be the use of the motherboard
clock frequency as the carrier for a transmitter. In this case, the
square waveform of fundmental period 𝑇 should be converted
into a sinusoidal one of the same period 𝑇 (see e.g. [7]). Also,
some FM stereo transmitters use the square signal instead of
the sinusoidal one as stereo sub–carrier (at 38 kHz). Another
exampe: it may be sometimes necessary to obtain a 𝑛th sub–
harmonic of a sinusoidal signal (𝑛 ∈ �∗). For example, in
FM stereo modulators, a first sub–harmonics of a stereo sub–
carrier (which is at 38 kHz) is added to the composite stereo
signal; it is called a 19kHz pilot–tone2 [8]. Technically, the
latter task is quite sophisticated for the sinusoidal signal, but
elementary for the square one. For this reason, the following
procedure is often performed: the sinusoidal signal is first
transformed into a square waveform, then, its fundamental
frequency is devided by 𝑛, by means of digital frequency
dividers [5], and then, the square signal is filtered in order
to turn back to the sinusoidal waveform.

In all aforementioned situations, the 𝑇 –periodic non–
sinusoidal signal is filtered by a band–pass or low–pass
filter in order to get the output signal as close as possible
to the sinusoidal one of the same period 𝑇 , see Fig. 1.
Mathematically, the latter criterion (to be as close as possible
to the sine wave) is usually expressed in terms of the THD,
which shows the degree in which the sinewave signal of
the fundamental frequency is “noised” by all its harmonics
together.3 The value of the THD is usually obtained either
empirically by corresponding measures (e.g., with the help of
total harmonic distortion meters and analyzers), [6], [7], [9],
or it may be given approximately by making use of various
numerical methods, or by using hybrid numerico–empirical
THD analyzers (e.g. FPGA–based [10]). Unfortunately, an-
alytic methods are rarely used for this aim,4 and the main

1The effeciency of class C and class D amplifiers may be up to 80% and
95% respectively, while it does not exceed 35% for class A and 50% for
class B amplifiers [1]–[6]. For this reason, nowadays, many portable modern
communication devices (e.g. Wi–Fi, GSM, 3G devices, some trancievers, etc.)
are equipped with class C and D amplifiers.

2Moreover, the RDS component sub–carrier, placed at 57 kHz, is the
third harmonics of the pilot–tone, and there were also in US some SCA
broadcasting services using higher harmonics of the pilot–tone.

3Note, by the way, that the THD can be also interpreted as the inverse of
the signal–to–noise ratio (SNR), if harmonics are regared as noise and the
fundamental sinewave as signal of which the SNR is calculated.

4One may mention works [11]–[22], where various efforts for the analytic
evaluation of the THD were enterprised (see also [23], [24] in which a
connection between intermodulation noise and THD is addressed). However,
none of them is fully analytic in the sense that the infinite THD sums (9) are
always computed numerically. The unique exception is the publication [22],
were a formula from [25] was used to evaluate analytically the THD sum.
One may also mention work [11], where the convergence of the THD series
was studied analytically.
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reason for this, as was noticed in [22], is that the accurate
analytic evaluation of the THD is, in general, quite difficult.
As a result, many authors try to circumvent this difficulty by
using numerical methods. Basically, these methods truncate
the infinite THD sum [see formula (9)] at some term, after
which the total contribution of all remaining terms is believed
to be small enough; then, the gathered terms are banally
summed. For example, in [26] the THD sum is truncated at
49th harmonics, in [10] at 50th, in [16] at 63rd harmonics, in
[17] at 200th harmonics. Notwithstanding, the knowledge of
the theoretical THD may be important not only from analytic
and methodogical points of view, but also it may be crucial
for the conception and design of versatile electronic devices.
The aim of this paper is to provide a fully analytic method
for calculation of the THD of non–sinusoidal signals with
known Fourier coefficients filtered by a band–pass or low–
pass filter with given parameters (e.g. the 𝑄–factor, the filter’s
order, etc.). Of course, this includes also cases, where the
signal was not filtered, and simply, the analytic calculation of
the THD of a given signal is of interest. Moreover, we try
to provide, wherever possible, two analytic methods for this
aim: an approximate one, which is usually not sophisticated
and provides good accuracy, and the exact one, which is
more sophisticated and is based on the theory of functions
of a complex variable, in particular, on a Cauchy method of
residues.

II. GENERALITIES ON THE EVALUATION OF THE THD

A. Preliminaries

Without loss of generality, we assume that the continuous
𝑇 –periodic non–sinusoidal real–valued signal 𝑥(𝑡) can be
expanded in Fourier series. We recall that, such expansion,
in a very general way, can be written in the following form
(see e.g., [27]–[30]):

𝑥(𝑡) =
𝑎0
2
+

∞∑
𝑛=1

(
𝑎𝑛 cos𝜔0𝑛𝑡+ 𝑏𝑛 sin𝜔0𝑛𝑡

)
, (1)

where

𝑎𝑘 =
2

𝑇

𝑡0+𝑇ˆ

𝑡0

𝑥(𝜏) cos𝜔0𝑘𝜏 𝑑𝜏, 𝑏𝑘 =
2

𝑇

𝑡0+𝑇ˆ

𝑡0

𝑥(𝜏) sin𝜔0𝑘𝜏 𝑑𝜏,

(2)
𝜔0 = 2𝜋/𝑇 is the fundamental circular frequency (called also
pulsatance), 𝑘 ∈ �, 𝑡0 ∈ �, and 𝑎0/2 is the DC component
present in the signal 𝑥(𝑡) [more precisely, it is a time average
of 𝑥(𝑡) over fundamental period]. This expansion is called
trigonometrical Fourier series. It can be easily rewritten in a
more compact way, called exponential Fourier series:

𝑥(𝑡) =

+∞∑
𝑛=−∞

𝑐𝑛𝑒
𝑖𝜔0𝑛𝑡 , 𝑐𝑘 =

1

𝑇

𝑡0+𝑇ˆ

𝑡0

𝑥(𝜏) 𝑒−𝑖𝜔0𝑘𝜏𝑑𝜏 , (3)

𝑘 ∈ �. Since both forms are in frequent use, all derivations
and most important results will be given for both of them.
Note that as we considered that 𝑥(𝑡) ∈ �, Fourier coefficients
𝑎𝑘 ∈ �, 𝑏𝑘 ∈ �, 𝑐𝑘 ∈ � and 𝑐𝑘 = 𝑐∗−𝑘, where ∗

denotes complex conjugate. It may be also useful to note
that ∣𝑐𝑘∣ = ∣𝑐−𝑘∣ = 1

2

√
𝑎2𝑘 + 𝑏

2
𝑘 , 𝑘 ∈ �. There is also an

important equality for the Fourier series, called Parseval’s
identity:

𝑃tot =
1

𝑇

𝑡0+𝑇ˆ

𝑡0

𝑥2(𝜏) 𝑑𝜏 =
𝑎20
4
+
1

2

∞∑
𝑛=1

(
𝑎2𝑛 + 𝑏

2
𝑛

)
=

+∞∑
𝑛=−∞

∣𝑐𝑛∣2,

(4)
which is a kind of conservation law for the power in time and
frequency domains [𝑃tot being a mean power over period of
the signal 𝑥(𝑡)]. From functional point of view, this identity
is simply the Pythagorean theorem in the space created by the
orthonormal set of exponential functions, into which the signal
𝑥(𝑡) is decomposed. Existence of the equality (4) implies that
𝑥(𝑡) ∈ 𝐿2(𝑇 ) and 𝑎𝑘, 𝑏𝑘 and 𝑐𝑘 are in �2. Also, since all
Fourier coefficients depend on function 𝑥(𝑡) as functionals,
we will sometimes write 𝑎𝑘[𝑥(𝑡)], or simply 𝑎𝑘[𝑥], in order
to avoid any confusion about the signal whose coefficients
are presented (notation [ ⋅ ] will be always used for functional
dependencies).

Finally, throughout the paper, following abbreviated nota-
tions are used: tg 𝑧 for tangent of 𝑧, ctg 𝑧 for cotangent of
𝑧, ch 𝑧 for hyperbolic cosine of 𝑧, sh 𝑧 for hyperbolic sine
of 𝑧, th 𝑧 for hyperbolic tangent of 𝑧, cth 𝑧 for hyperbolic
cotangent of 𝑧, 𝜁(𝑧) for Riemann zeta–function of argument
𝑧 (see, e.g., [31]–[34]). Re[𝑧] and Im[𝑧] denote respectively
real and imaginary parts of 𝑧; letter 𝑖 is never used as index
and is

√−1 ; res
𝑧=𝑎

𝑓(𝑧) stands for the residue of the function

𝑓(𝑧) at the point 𝑧 = 𝑎; other notations are standard.

B. THD of Periodic Signals of Standard Waveforms

Consider, for instance, the 𝑇 –periodic square wave of
amplitude 𝐴, given by the equation 𝑥sq(𝑡) = 𝐴 sgn(sin𝜔0𝑡)
(see also Fig. 1). It may be expanded in Fourier series as
follows:

𝑥sq(𝑡) =
4𝐴

𝜋

∞∑
𝑛=1

sin𝜔0𝑡(2𝑛− 1)
2𝑛− 1 . (5)

The 𝑇 –periodic triangle wave of amplitude 𝐴, given formally
by the equation 𝑥tr(𝑡) = (2𝐴/𝜋) arcsin(sin𝜔0𝑡), may be
written as:

𝑥tr(𝑡) =
8𝐴

𝜋2

∞∑
𝑛=1

(−1)𝑛+1 sin𝜔0𝑡(2𝑛− 1)
(2𝑛− 1)2 . (6)

The sawtooth signal of period 𝑇 of amplitude𝐴, which may be
regarded as 𝑥sw(𝑡) = (2𝐴/𝜋) arctg(tg 𝜔0𝑡), has the following
representation in Fourier series:

𝑥sw(𝑡) =
2𝐴

𝜋

∞∑
𝑛=1

(−1)𝑛+1 sin𝜔0𝑡𝑛

𝑛
. (7)

The rectangular pulse wave with cyclic ratio 𝜇 ∈ (0, 1), i.e. the
pulse train (see Fig. 2), which is the typical signal at the output
of class D amplifiers, admits the following Fourier expansion:

𝑥pt(𝑡, 𝜇) = 𝐴(2𝜇− 1) + 2𝐴

𝜋

∞∑
𝑛=1

(
sin 2𝜋𝜇𝑛

𝑛
cos𝜔0𝑛𝑡

+
1− cos 2𝜋𝜇𝑛

𝑛
sin𝜔0𝑛𝑡

)
; (8)
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Fig. 1. Filtering of some frequent periodic signals of standard form of period 𝑇 and of amplitude 𝐴. Analytic calculation of the THD of the output signal
𝑦(𝑡) is the interest of the study.

and so on. . . (see e.g. [27], [28], [35], or some Fourier series
handbook for a more complete list of Fourier expansions).

From the Fourier expansions, one may compute corre-
sponding THDs with respect to the sinusoidal wave of the
fundamental angular frequency 𝜔0. The amplitude of the 𝑘th
harmonics of the frequency 𝜔0 in the signal 𝑥(𝑡) is represented
by 2∣𝑐𝑘∣ =

√
𝑎2𝑘 + 𝑏

2
𝑘. Since the THD is the square root of the

ratio of the sum of the powers of all harmonic components,
denoted by 𝑃har to that of the fundamental frequency, desig-
nated by 𝑃sig, the THD may be expressed in terms of Fourier
coefficients:

THD[𝑥(𝑡)] =

√
𝑃har

𝑃sig

=

√√√√√⎷
∞∑

𝑛=2

(
𝑎2𝑛 + 𝑏

2
𝑛

)
𝑎21 + 𝑏

2
1

=

√√√√√⎷
∞∑
𝑛=2

∣𝑐𝑛∣2

∣𝑐1∣2 . (9)

For the square waveforme given by (5), we have

𝑎𝑛 = 0 , 𝑏2𝑛−1 =
4𝐴

𝜋(2𝑛− 1) , 𝑏2𝑛 = 0 , (10)

where 𝑛 ∈ �; formula (9) therefore yields:

THD[𝑥sq(𝑡)] =

√
𝜋2

8
− 1 ≈ 48.3%. (11)

To obtain this results we used the well–known summation
formula5

∞∑
𝑛=1

1

(2𝑛− 1)2 =
𝜋2

8
, (12)

which is a particular case of a more general formula:
∞∑
𝑛=1

1

(2𝑛− 1)2𝑘 = 𝜋2𝑘 (2
2𝑘 − 1)⋅∣𝐵2𝑘∣
2⋅(2𝑘)! , 𝑘 ∈ �∗ ,

(13)
where 𝐵𝑛 are so–called Bernoulli numbers. The first few are:
𝐵0 = 1, 𝐵1 = −1/2, 𝐵2 = 1/6, 𝐵2𝑛+1 = 0 for 𝑛 ∈ �∗,
𝐵4 = −1/30, 𝐵6 = 1/42, 𝐵8 = −1/30, 𝐵10 = 5/66,
𝐵12 = −691/2730, etc. Similar formulæ exist also for series
involving general terms , 1/𝑛2𝑘, (−1)𝑘/𝑛2𝑘, 1/(2𝑛− 1)2𝑘−1,
1/𝑛𝑝 with 𝑝 /∈ �, etc.; they contain Bernoulli numbers,
Euler numbers, Catalan’s constant, Riemann 𝜁–function, and

5It can be also obtained from Parseval’s identity (4) for 𝑥sq(𝑡).

other special numbers and functions (details may be found in
[27], [28], [34], [36]–[38]). In the analogous manner, we may
compute the THD of some other signals. For instance, for the
triangle wave, we have:

THD[𝑥tr(𝑡)] =

√
𝜋4

96
− 1 ≈ 12.1%, (14)

with the help of (13) for 𝑘 = 2. The same procedure for the
sawtooth signal (7) yields:

THD[𝑥sw(𝑡)] =

√
𝜋2

6
− 1 ≈ 80.3%, (15)

by taking into account that 𝜁(2) = 𝜋2/6 .
For the rectangular pulse train (8), the things are slightly

different. For this signal we cannot use tabular formula (13)
and similar ones; we should rather use its Parseval’s identity

𝜇(1− 𝜇)𝜋2

2
=

∞∑
𝑛=1

sin2 𝜋𝜇𝑛

𝑛2
, 𝜇 ∈ (0, 1) , (16)

which is also a generalization of (12).6 Thus, we obtain for
the THD of 𝑥pt(𝑡, 𝜇) the following result:

THD[𝑥pt(𝑡, 𝜇)] =

√
𝜇(1 − 𝜇)𝜋2

2 sin2 𝜋𝜇
− 1 . (17)

It is depicted in Fig. 2, and it logically reaches the minimum
when the signal 𝑥pt(𝑡, 𝜇) becomes “symmetric”, i.e. when
𝜇 = 0.5. The THD of such signal is symmetric about 𝜇 = 0.5,
i.e. THD[𝑥pt(𝑡, 𝜇)] = THD[𝑥pt(𝑡, 1− 𝜇)].

C. THD of Filtered Periodic Signals of Standard Waveforms

Let the filter’s impulse response ℎ(𝑡) be real–valued and
Lebesgue integrable function (i.e., the filter is stable). Consider
now signal 𝑦(𝑡), which is the filtered version of 𝑥(𝑡); in other
words 𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡). Since 𝑥(𝑡) is an 𝐿2(𝑇 ) signal,
so is 𝑦(𝑡). The Fourier coefficients of 𝑦(𝑡) strongly depend
on filter’s parameters: each of them is the corresponding
coefficient of input signal 𝑥(𝑡), weighted by the filter’s transfer
function at specified frequency. Thus, the amplitude of the
𝑘th harmonics at the output of the filter is 2

∣∣𝑐𝑘[𝑦(𝑡)]∣∣ =
6Formula (16) reduces to (12) when 𝜇 = 0.5.
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Fig. 2. Top: a 𝑇 –periodic rectangular pulse train of amplitude 𝐴 and with
cyclic ratio (duty cycle) 𝜇. Bottom: its THD as a function of cyclic ratio.

2
∣∣𝐻(𝑘𝜔0)

∣∣⋅∣∣𝑐𝑘[𝑥(𝑡)]∣∣ , 𝑘 ∈ � . The THD of the output signal
therefore reads:

THD[𝑦(𝑡)] =

√√√√√⎷
∞∑
𝑛=2

(
𝑎2𝑛[𝑥] + 𝑏

2
𝑛[𝑥]

)∣∣𝐻(𝑛𝜔0)
∣∣2

(
𝑎21[𝑥] + 𝑏

2
1[𝑥]

)∣∣𝐻(𝜔0)
∣∣2

=

√√√√√⎷
∞∑

𝑛=2

∣∣𝑐𝑛[𝑥]𝐻(𝑛𝜔0)
∣∣2

∣∣𝑐1[𝑥]𝐻(𝜔0)
∣∣2 . (18)

Since 𝑦(𝑡) ∈ 𝐿2(𝑇 ), by Parseval’s identity Fourier coefficients
𝑐𝑘[𝑦(𝑡)] are in �2; consequently, latter sums always converge.
It is quite clear that such sums may be difficult to evaluate
analytically. Of course, there are no doubts that such sums may
be computed by various numerical methods, but we would
like to get an exact theoretical result. For the signal 𝑥(𝑡) we
could calculate infinite sums in THD expressions thanks to
some tabular formulæ, or to the Parseval’s identity. But, it is
obvious, that on the one hand, there can not be such formulæ
for all occasions, and not always a sum can be reduced to one
from handbook. Whereupon, there is only Parseval’s identity
for the signal 𝑦(𝑡) that can provide such sums. On the other
hand, for the use of the Parseval’s identity for this aim, 𝑦(𝑡)
should be known, and the latter implies the knowledge of the
impulse response of the filter ℎ(𝑡) or of its transfer function
𝐻(𝜔). More precisely,𝐻(𝜔) should be completely known (i.e.
we know its absolute value and phase). However, in many
practical cases, we only know its absolute value ∣𝐻(𝜔)∣ (for
example, obtained by direct measurement as it is often the case
for quartz–crystal, electromechanical, complex LRC networks,
ceramic filters, etc., see e.g. [1]–[3], [39]–[45]). Moreover, as
we come to see later, we do not even need ∣𝐻(𝜔)∣, but only
its values at frequencies 𝑘𝜔0, 𝑘 ∈ �, which is even a more
weak condition.

More generally, the problem lies in fact that sums of
series, unlike integrals, are not so tabularized in literature (see
e.g. [27], [28], [35]–[37], [46]–[48]). Furthermore, there are
not so many classic methods for the summation of series; see
e.g. [49, pp. 225–287], [50, pp. 293–321], [51, pp. 7–36], [52,

pp. 255–272], [53]. If, for instance, we slightly modify for-
mula (12) by replacing its general term by 1/(𝛼𝑛2+𝛽𝑛+𝛾),
where 𝛼, 𝛽 and 𝛾 are arbitrary real non–integers constants,
the corresponding series will be convergent and numerical
methods can provide the convergence point, but it is not listed
in mathematical handbooks, and it can not be reduced to
some tabular series. So, is it possible to arrive to an analytic
closed–form expression for such kind of non–tabular series,
and if yes, how one can get this result? Despite the recent
decline of analytic methods in favor of numeric ones, the
answer is, in many cases, ‘yes, it is’. In particular, we will
present, in this paper, an interesting method, based on the
Cauchy theorem from complex variable theory, that can be
precisely applied for the analytic calculation of the non–
tabular series, and which permits, inter alia, to obtain the
closed–form expression for the THD. The latter theorem,
proved by Augustin–Louis Cauchy in the first half of XIXth
century, is mainly used for the evaluation of contour or im-
proper integrals. In signal processing and related disciplines,
it is especially employed for the calculation of the inverse
Fourier, Laplace, Hilbert, Mellin and Z transforms, whereas in
other domains this theorem has quite limited use. Among such
uses, one may mention works in following fileds: error–rate
evaluation in fading communication channels [54]–[56], non–
uniform sampling [57], calculation of eigenmodes without
SVD technique [58], applications for Bode’s theorem [59],
analysis of data transmission over digital networks [60], [61],
and some others [62]–[67].

Since the aforementioned method is not directly related
to the subject of this paper, we put it in the appendix.
Note also that the method is quite general; under some mild
restrictions on the summed function, which are generally
satisfied whenever the series converges, it permits to deal
analytically with many finite and infinite series: from simple
energy–like sums to discrete Fourier transforms, trace and
determinant calculations, kernel expansions in eigenvalues and
eigenfunctions, and many others. Finally, the readers, who are
interested in other special methods and further reading devoted
to the summation of series, might also appreciate following
references: [68]–[74].

III. APPLICATION OF THE RESIDUE METHOD TO THE

ANALYTIC EVALUATION OF THE THD

A. Introductory Remarks

In order to use formula (44), we must, first, be sure
that the conditions on summed function

∣∣𝐻(𝑘𝜔0) 𝑐𝑘[𝑥]
∣∣2 are

satisfied, and then, reduce the sum in the numerator of (18)
to that over the integers from −∞ to +∞. The former is
usually true in cases like ours [all considered signals are
in 𝐿2(𝑇 )], because harmonics’ amplitude 2∣𝑐𝑘[𝑥]∣ decrease
with 𝑘, and analog filters are band– or low–pass, absolute
value of transfer function of which decrease with frequency as
well. In addition, function

∣∣𝑐𝑧[𝑥]𝐻(𝑧𝜔0)
∣∣ is normally regular

everywhere in a complex plane, except for a finite number of
isolated singularities. As to the latter, it is elementary since
∣𝑐−𝑘∣ = ∣𝑐𝑘∣.

Formula (44) is the key of the proposed method: infinite
sum was reduced the the finite one containing only 𝑚 terms,
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where 𝑚 is usually not grater than ten (it is closely related to
the filter’s topology and to its order).

B. THD of the Square Wave Filtered by a Band–Pass Filter

Consider a transfer function of a typical band–pass filter,
whose absolute value may be written as:∣∣𝐻(𝜔)∣∣ = 𝐻0√

1 +𝑄2

(
𝜔

𝜔𝑟
− 𝜔𝑟

𝜔

)2
, 𝐻0, 𝜔𝑟, 𝑄 > 0 ,

(19)
where 𝜔𝑟 is the resonant frequency, 𝐻0 is the maximum
gain of the transfer function at the resonant frequency, 𝑄
is the quality factor, commonly abbreviated to 𝑄–factor.
Obviously, since we wish to select fundamental frequency in
the periodic signal 𝑥(𝑡), filter’s resonant frequency 𝜔𝑟 = 𝜔0.
Given the signal 𝑥sq [see (5)], whose Fourier coefficients are
given explicitely in (10), and given the absolute value of
transfer function (19), we get the absolute value of the Fourier
coefficients for the filtered signal 𝑦(𝑡):∣∣𝑐𝑘[𝑦]∣∣2= ∣∣𝑐𝑘[𝑥]𝐻(𝑘𝜔0)

∣∣2=⎧⎨⎩
0 , 𝑘 = 2𝑛 ;

4𝐴2𝐻2
0𝜋

−2

𝑄2(2𝑛− 1)4 − (2𝑄2 − 1)(2𝑛− 1)2 +𝑄2
, 𝑘 = 2𝑛− 1 ;

where 𝑛 ∈ �∗. The explicit expression for the THD of the
filtered signal, given by (18), therefore reads: THD[𝑦(𝑡)] =

=

√√√⎷ ∞∑
𝑛=2

1

𝑄2(2𝑛− 1)4 − (2𝑄2 − 1)(2𝑛− 1)2 +𝑄2
(20)

1) Approximate Calculation of the THD for Medium and
Great 𝑄–Factors: Let 𝑄≫ 0.7; then 2𝑄2− 1 ≈ 2𝑄2. In this
case, the last formula may be simplified as follows:

THD[𝑦(𝑡)] ≈ 1

4𝑄

√√√⎷ ∞∑
𝑛=2

1

𝑛2(𝑛− 1)2 , 𝑄≫ 1√
2
.

This expression is quite simple, and the desired sum7 may be
reduced to tabular ones by partial fraction decomposition:

∞∑
𝑛=2

1

𝑛2(𝑛− 1)2
=

∞∑
𝑛=1

1

𝑛2(𝑛 + 1)2
(21)

= −2

∞∑
𝑛=1

1

𝑛(𝑛 + 1)︸ ︷︷ ︸
1

+

∞∑
𝑛=1

1

𝑛2︸ ︷︷ ︸
𝜋2/6

+

∞∑
𝑛=1

1

(𝑛 + 1)2︸ ︷︷ ︸
𝜋2/6− 1

=
𝜋2

3
− 3 .

The final result is straightforward:

THD[𝑦(𝑡)] ≈ 1

4𝑄

√
𝜋2

3
− 3 ≈ 0.1346

𝑄
, 𝑄≫ 1√

2
. (22)

The THD, as a function of 𝑄, is depicted in Fig. 3, together
with that computed exactly by residue method (obtained in
the next subsection).

7See also exercice 𝑛∘ 2997 [49, p. 275 and p. 504].

2) Exact Calculation of the THD for Arbitrary 𝑄–Factors:
In previous subsection, we used an approximate method for
the evaluation of the formula (20). Of course, it was a chance
that the needed series could be reduced to the tabular ones,
and in general, it is not possible; besides, the calculation
was approximate. We now calculate it exactly by using the
aforementioned residue method.

Let us denote, for simplicity, the general term of the sum
in (20) by

𝑓(𝑘) ≡ 1

𝑄2(2𝑘 − 1)4 − (2𝑄2 − 1)(2𝑘 − 1)2 +𝑄2
.

In order to use the residue method for the calculation of the
infinite sum in (20), we must verify that the conditions on the
summed function are satisfied.

1) As ∣𝑧∣ → ∞,

∣𝑓(𝑧)∣ ≈ 1

16𝑄2∣𝑧∣4 <
𝐶

∣𝑧∣𝜉 , 𝜉 > 1 . (23)

2) Is the function 𝑓(𝑧) regular for 𝑧 ∈ �? To respond to
this question, we must locate its singularities. Function
𝑓(𝑧) has four simple poles, in terms of which it may be
written as:

𝑓(𝑧) =
1

16𝑄2(𝑧 − 𝑧1)(𝑧 − 𝑧2)(𝑧 − 𝑧3)(𝑧 − 𝑧4)

where the poles are:

𝑧1,2,3,4 =
1

2
± 1
2

√√√⎷1− 1

2𝑄2
±
√
1− 4𝑄2

4𝑄4
, (24)

For convenience, we introduce an auxiliary function 𝜇:

𝜇 ≡

√√√⎷1− 1

2𝑄2
+

√
1− 4𝑄2

4𝑄4
, (25)

where we also suppose that 𝑄 > 1
2 , which is largely

true in practice.8 Then, the poles of 𝑓(𝑧) may be easily
written in terms of 𝜇:

𝑧1 =
1 + 𝜇

2
= 𝑧∗3 , 𝑧2 =

1− 𝜇

2
= 𝑧∗4 . (26)

Thus, all poles are complex, and therefore, for 𝑧 ∈ �,
function 𝑓(𝑧) is regular.

3) Since there are only four poles, the number of singular-
ities 𝑚 = 4, and except these points, function 𝑓(𝑧) is
regular everywhere in �.

One may finally notice that 𝑓(𝑧) is single–valued. All con-
ditions on 𝑓(𝑧) are therefore fulfilled, and consequently, (20)
can be computed via the residue method.

By noticing that

∞∑
𝑛=2

𝑓(𝑛) =
1

2

+∞∑
𝑛=−∞

𝑓(𝑛)− 𝑓(1) ,

8The case 0 < 𝑄 ⩽ 1
2

is uninteresting from practical point of view,
since filters with such a small quality factor do not attractive. Nevertheless,
methematically it can be always solved, but since in this case 𝜇 becomes
purely imaginary, the location of poles in the complex plane qualitatively
change. Consequently, (26) is not true anymore; one should simply use
expressions (24) (𝜇 was introduced only for the simplification of final
formulæ).
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Fig. 3. Top and middle: theoretical THD computed accordingly to the
approximate method and to the exact residue–based method. Bottom: relative
error between two analytic methods.

and that 𝑓(1) = 1, we apply equality (44). The THD becomes:

THD[𝑦(𝑡)] =

√√√⎷−𝜋

2

4∑
𝑙=1

res
𝑧=𝑧𝑙

[
𝑓(𝑧) ctg(𝜋𝑧)

]− 𝑓(1)

=

[
𝜋

8𝑄2(𝜇∗2 − 𝜇2)

(
1

𝜇
ctg

𝜋(1 + 𝜇)

2
− 1

𝜇
ctg

𝜋(1 − 𝜇)

2

+
1

𝜇∗ ctg
𝜋(1 − 𝜇∗)

2
− 1

𝜇∗ ctg
𝜋(1 + 𝜇∗)

2

)
− 1

] 1
2

= . . .

. . . =

√
𝜋

2
√

4𝑄2 − 1
Im

[
sin 𝜋𝜇

𝜇(1 + cos𝜋𝜇)

]
− 1 , 𝑄 >

1

2
,

with 𝜇 given by (25). The graph of this function is presented
in Fig. 3. From the latter, we may conclude that the THD
decrease quite quickly with 𝑄 (as 1/𝑄 for great 𝑄). Even
a filter with 𝑄–factor greater than 14 suffices for the output
THD lesser than 1%. If, in contrast, we use some special filters
with high 𝑄–factors, such as electromechanical filters (see
e.g. [3], [39]–[43], [45]), which are widely used is single–
side band (SSB) equipment and high–performance analog
transceivers, their 𝑄–factors is usually as high as 10,000–
20,0009 (which are by the way not easy to attempt even with
digital filters). In these cases, the THD at their output will be
lesser than 0.001%, which is sufficient even for Hi–Fi and Hi–
End devices. By the way, one may also note that the precision
of the approximate method is very good; both curves are
almost undistinguishable. In fact, the error is essential only for
small 𝑄, and thus, the approximate method may be practically
always used. For 𝑄 > 2.5 the precision of the approximate

9It may be up to 100,000 for torsional magnesium electromechanical filters
and up to 400,000 for quartz–crystal filters in vacuum [44].

method becomes better than 1%; for 𝑄 > 8, it is better than
0.1%; for 𝑄 > 25 it is better than 0.01%, etc.

C. THD of the Sawtooth Wave Filtered by a Low–Pass Filter

Consider a Butterworth filter of 𝑝th order, which is a typical
low–pass filter, whose gain is:

∣∣𝐻(𝜔)∣∣ = 𝐻0√
1 +

𝜔2𝑝

𝜔2𝑝
𝑐

, 𝐻0, 𝜔𝑐 > 0 , 𝑝 ∈ �∗ , (27)

where 𝐻0 is the maximum filter’s gain and 𝜔𝑐 is the cut–off
frequency. As before, we put 𝜔𝑐 = 𝜔0. For the sawtooth wave
𝑥sw given by (7), the absolute value of its Fourier coefficients
are:

∣∣𝑐𝑘[𝑥]∣∣ = 𝐴/(𝜋𝑘), 𝑘 ∈ �∗ . After filtering, the output
Fourier coefficients read:

∣∣𝑐𝑘[𝑦]∣∣2= ∣∣𝑐𝑘[𝑥]𝐻(𝑘𝜔0)
∣∣2= 𝐴2𝐻2

0

𝜋2𝑘2(1 + 𝑘2𝑝)
, 𝑘 ∈ �∗ .

By expression (18), the THD becomes:

THD[𝑦(𝑡, 𝑝)] =

√√√⎷2 ∞∑
𝑛=2

1

𝑛2(1 + 𝑛2𝑝)
. (28)

The infinite sum in the above formula is not tabular. We can
try either to reduce it by an approximation to some tabular
sum, or to compute it exactly by means of residues.

1) Approximate Calculation of the THD for Great Orders
𝑝: Let 𝑝 be such that 22𝑝 ≫ 1, then:

∞∑
𝑛=2

1

𝑛2(1 + 𝑛2𝑝)
≈

∞∑
𝑛=2

1

𝑛2𝑝+2
= 𝜁(2𝑝+ 2)− 1

=
(2𝜋)2𝑝+2∣𝐵2𝑝+2∣
2⋅(2𝑝+ 2)! − 1 .

The THD is then approximately:

THD[𝑦(𝑡, 𝑝)] ≈
√
2 𝜁(2𝑝+ 2)− 2

=

√
(2𝜋)2𝑝+2∣𝐵2𝑝+2∣
(2𝑝+ 2)!

− 2 . (29)

The so calculated approximate THD is shown in Fig. 4,
together with the exact one computed in the next subsec-
tion. Note however, that Bernoulli numbers and Riemann 𝜁–
function are themselves difficult to compute (especially the
latter), and in addition, it is much more convenient to have
an answer in terms of standard functions (if it exists, and
particularly, because it is an exact result). Furthermore, many
“calculators” do not have these special numbers and functions
built–in.10

10For example, in MATLAB v7.2.0.232 (R2006a), the Bernoulli numbers
are implemented only in a symbolic way via Maple kernel.
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2) Exact Calculation of the THD for Arbitrary Orders 𝑝:
As in previous example, we first denote for simplicity

𝑓(𝑘) ≡ 1

𝑘2(1 + 𝑘2𝑝)
,

which is regular for every 𝑘 ∈ �, except the point 𝑘 = 0,
which is a double pole; 𝑓(𝑘) should be therefore regularized
before it could be extended to 𝑘 ∈ �, and before we could
apply the residue method.11 Regularization is performed in the
same manner as explained in the Section B1 of the appendix.
We replace function 𝑓(𝑧) by a 𝑓(𝑧), such that

𝑓(𝑧) =
1

(𝑧2 + 𝜀2)(1 + 𝑧2𝑝)
, 0 < 𝜀≪ 1 .

Now it is regular for each 𝑧 ∈ �, and it may be easily verified
that 𝑓(𝑧) satisfies all necessary and sufficient conditions on
the summed function for the use of the formula (44). Notice
that as 𝜀→0, 𝑓(𝑧)→𝑓(𝑧). The so regularized function 𝑓(𝑧)
has 2𝑝+ 2 simple poles at 𝑧 = 𝑧𝑙, in terms of which it may
be written as:

𝑓(𝑧) =

2𝑝+2∏
𝑙=1

1

𝑧 − 𝑧𝑙
,

where⎧⎨⎩

𝑧𝑙+1 = 𝑒
𝑖𝜋(2𝑙+1)

2𝑝 , 𝑙 = 0, 1, . . . , 2𝑝− 1 .

𝑧2𝑝+1 = +𝑖𝜀 ,

𝑧2𝑝+2 = −𝑖𝜀 .
(30)

Function 𝑓(𝑧) is even, and hence
∞∑
𝑛=2

𝑓(𝑛) =
1

2

+∞∑
𝑛=−∞

𝑓(𝑛)− 𝑓(1)− 1

2
𝑓(0) .

From above equations and by (44), the infinite series in (28)
may be reduced to the following expression:

∞∑
𝑛=2

1

𝑛2(1 + 𝑛2𝑝)

= lim
𝜀→0

{
− 𝜋

2

2𝑝+2∑
𝑙=1

res
𝑧=𝑧𝑙

[
𝑓(𝑧) ctg(𝜋𝑧)

]− 𝑓(1)− 1
2
𝑓(0)

}

= − 𝜋

2

2𝑝∑
𝑙=1

res
𝑧=𝑧𝑙

[
𝑓(𝑧) ctg(𝜋𝑧)

]
+
1

2
lim
𝜀→0

𝑔 (𝜀, 𝑝) , (31)

where we designated the part depending on 𝜀 by

𝑔 (𝜀, 𝑝) ≡ 𝜋 cth𝜋𝜀

𝜀
(
1 + (−1)𝑝𝜀2𝑝) − 1

1 + 𝜀2
− 1

𝜀2
.

The evaluation of the limit for 𝜀→0 yields:

lim
𝜀→0

𝑔 (𝜀, 𝑝) =

⎧⎨⎩
𝜋2

3
, 𝑝 = 1;

𝜋2

3
− 1 , 𝑝 = 2, 3, 4, . . .

11Note that, each time we deal with the signal 𝑥(𝑡), whose Fourier
coefficients have term 𝑘 in the denominator, the regularization procedure has
great chances to be demanded.

After the calculation of residues, formula (31) gets its final
form:

∞∑
𝑛=2

1

𝑛2(1 + 𝑛2𝑝)
= − 𝜋

2

2𝑝∑
𝑠=1

⎡⎢⎣ctg 𝜋𝑧𝑠
𝑧2𝑠

2𝑝∏
𝑙=1
𝑙∕=𝑠

1

𝑧𝑠 − 𝑧𝑙

⎤⎥⎦

+
𝜋2

6
− 1
4
sgn

(
𝑝− 3

2

)
− 1
4
,

where points
{
𝑧𝑠
}2𝑝
𝑠=1

are given in the first line of (30). From
this formula, analytic expression for the THD is straightfor-
ward: THD[𝑦(𝑡, 𝑝)] =√√√√√⎷−𝜋

2𝑝∑
𝑠=1

⎡⎢⎣ctg 𝜋𝑧𝑠
𝑧2𝑠

2𝑝∏
𝑙=1
𝑙∕=𝑠

1

𝑧𝑠 − 𝑧𝑙

⎤⎥⎦+ 𝜋2

3
− 1
2
sgn

(
𝑝− 3

2

)
− 1
2

(32)
Note that in final expression there are only poles of the
low–pass filter; those due to the regularization procedure
logically dissapeared [see lines 2–3 of (31)]. Given explicitely
(numerically) the order 𝑝, the last formula may become more
simple. For instance, for 𝑝 = 1, the filter’s poles are 𝑧1,2 = ±𝑖;
formula (32) then gives

THD[𝑦(𝑡, 1)] =

√
𝜋2

3
− 𝜋 cth𝜋 ≈ 0.3695 . (33)

For 𝑝 = 2, the filter’s poles are 𝑧1,2,3,4 = (±1 ± 𝑖)/
√
2 ;

formula (32) yields [see formula (34) at the bottom of the
page 2485]. And so on. . . The THD computed accordingly
to the formula (32) is plotted in Fig. 4. From the latter, we
see that the dependency of the THD on the filter’s order is
very close to the exponential one (in logarithmic scale, the
THD decrease practically linearly with 𝑝). The sawtooth wave,
which is quite strongly distorted with respect to other standard
periodic waveforms (THD is 80.3%), should be filtered by a
third–order low–pass filter if we need the THD lesser than
10%, by a 6th–order filter if the THD should be lesser than
1%, by a 9th order–filter if the THD must be not greater than
0.1%, etc. One can roughy estimate that a third–order filter
reduce the THD by a tenth.

D. THD of the Pulse Train Filtered by a Low–Pass Filter

Consider the pulse train (8) filtered by a 𝑝th order But-
terworth filter whose transfer function is given by (27). We
want to calculate the THD at the output of this filter as a
function of the signal’s duty cycle 𝜇 and of the filter’s order
𝑝. This case is more sophisticated than previous two (it will
require two different regularization procedures), but it is very
interesting from practical point of view, since pulse train is a
very frequent signal in digital electronics. From (8), it is clear
that the absolute value of complex Fourier coefficients for this
signal is: ∣∣𝑐𝑘[𝑥]∣∣ = 2𝐴 ∣ sin𝜋𝜇𝑘∣

𝜋𝑘
, 𝑘 ∈ �∗ .

After filtering and by putting again 𝜔𝑐 = 𝜔0 in (27), the output
Fourier coefficients read:∣∣𝑐𝑘[𝑦]∣∣2= ∣∣𝑐𝑘[𝑥]𝐻(𝑘𝜔0)

∣∣2= 4𝐴2𝐻2
0 sin

2 𝜋𝜇𝑘

𝜋2𝑘2(1 + 𝑘2𝑝)
, 𝑘 ∈ �∗ .
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Fig. 4. Top and middle: Theoretical THD (exact and approximate) as a
function of filter’s order 𝑝 computed accordingly to the analytcal residue–
based method. Bottom: relative error between exact and approximate analytic
methods. Nota bene: order of the filter is depicted as continuous variable only
for more comfortable viewing.

By expression (18), the THD becomes:

THD[𝑦(𝑡, 𝜇, 𝑝)] =

√√√⎷ 2

sin2 𝜋𝜇

∞∑
𝑛=2

sin2 𝜋𝜇𝑛

𝑛2(1 + 𝑛2𝑝)
. (35)

Thus, the problem of the closed–form evaluation of the THD
is reduced to the analytical computation of the above series for
0 < 𝜇 < 1. Its calculation may be performed in the folowing
way: we first remark that

∞∑
𝑛=2

sin2 𝜋𝜇𝑛

𝑛2(1 + 𝑛2𝑝)
=
1

2

∑
𝑛∈�

sin2 𝜋𝜇𝑛

𝑛2(1 + 𝑛2𝑝)
− sin

2 𝜋𝜇

2
− 𝜋2𝜇2

2
.

(36)
Because the point zero for the summed function is not a pole
but a removable singularity, the regularization was not needed
at this stage. Now, according to the regularization procedures
described in the appendix’s sections B1–B2, we first introduce
a small regularization parameter 𝜀 ∈ �, and then, use formulæ

(44) and (49). This gives12 the formula (37) [at the bottom
of the page 2486], in which points 𝑧𝑙 are given by (30),
except that 𝑧2𝑝+1 = 𝜀, and where we again denoted the part
depending on 𝜀 by 𝑔(𝜀, 𝜇, 𝑝):

𝑔 (𝜀, 𝜇, 𝑝) ≡ lim
𝑧→𝜀

[
cos𝜋

(
𝑧(2𝜇− 1)− 2𝜇𝜀)− cos𝜋𝑧
(1 + 𝑧2𝑝) sin𝜋𝑧

]′
𝑧

.

The limit of 𝑔 (𝜀, 𝜇, 𝑝) when 𝜀→0 exists and is equal to 2𝜇𝜋.
By calculating the value of residues at specified points, and by
taking into account the convergence point of the above limit,
the expression (37) becomes:

∑
𝑛∈�

sin2 𝜋𝜇𝑛

𝑛2(1 + 𝑛2𝑝)
= − 𝜋

2

2𝑝∑
𝑠=1

⎡⎢⎣ctg 𝜋𝑧𝑠
𝑧2𝑠

2𝑝∏
𝑙=1
𝑙∕=𝑠

1

𝑧𝑠 − 𝑧𝑙

⎤⎥⎦

+
𝜋

2
Re

2𝑝∑
𝑠=1

⎡⎢⎣𝑒𝑖𝜋𝑧𝑠(2𝜇−1)

𝑧2𝑠 sin𝜋𝑧𝑠

2𝑝∏
𝑙=1
𝑙∕=𝑠

1

𝑧𝑠 − 𝑧𝑙

⎤⎥⎦+ 𝜇𝜋2 .

By substituiting the last expression into (36), we finally arrive
to the desired sum [see expression (38) at the bottom of the
page 2486], from which the analytic expression for the THD
is straightfowrard [it is sufficient to put (38) into (35)]. In
particular, for 𝑝 = 1, by (38), we simply have:

∞∑
𝑛=2

sin2 𝜋𝜇𝑛

𝑛2(1 + 𝑛2)
=

𝜋

4

{
ch𝜋(2𝜇− 1)

sh𝜋
− cth𝜋

}

+
𝜋2𝜇(1− 𝜇)

2
− sin

2 𝜋𝜇

2
. (39)

Consequently, THD[𝑦(𝑡, 1)] =

=

√
𝜋
ch
(
𝜋(2𝜇− 1))− ch𝜋
2 ⋅ sh𝜋 ⋅ sin2 𝜋𝜇 +

𝜋2𝜇(1− 𝜇)

sin2 𝜋𝜇
− 1 .

Other particular cases may be without difficulty written in ex-
plicit form from the general formula (38). The implementation
of this formula produces Fig. 5 as well as Tab. I (since 3–D
plot may be difficult to read), which show the behaviour of
the THD as a function of 𝜇 and 𝑝. It can be remarked that the
THD of the output signal is symmetric about 𝜇 = 0.5, i.e.

THD[𝑦(𝑡, 𝜇, 𝑝)] = THD[𝑦(𝑡, 1− 𝜇, 𝑝)] ; (40)

12Notice that, in the first line of (37), we do not convert the unwanted
second–order pole into two first–order ones which are both “well–located”
(as we did in previous section when introducing ˜𝑓 instead of 𝑓 ), but into
a second–order pole which is simply displaced from the unwanted location
(this permits to simultaneously shift the argument of the sinus). The rest of
the calculation in (37) is very similar to (31) and what follows, except that
for the first sum we use (44), while for the second one we employ (49)
[see appendix for details].

THD[𝑦(𝑡, 2)] =

√√√√√√⎷𝜋

ctg
𝜋√
2
cth2

𝜋√
2

− ctg2 𝜋√
2
cth

𝜋√
2

− ctg 𝜋√
2

− cth 𝜋√
2

√
2

(
ctg2

𝜋√
2
+ cth2

𝜋√
2

) +
𝜋2

3
− 1 ≈ 0.1811 (34)
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Fig. 5. Theoretical THD as a function of cyclic ratio (duty cycle) 𝜇 and of
filter’s order 𝑝  computed accordingly to the analytcal residue–based method.

that is to say, the signal keeps this property after filtering as
well. In logarithmic scale, the THD decrease almost linearly
with 𝑝; in addition, the closer the pulse train to the square
wave, the faster the decresing of the THD with the order 𝑝
(i.e. 𝜇 = 0.5 represents the line of the fastest descent and of
the lesser THD for given 𝑝).

IV. CONCLUSIONS

We presented a fully analytic method for the calculation
of the THD, which is an important performance criterion
for almost any communication device. Signal, whose THD is
computed, is modeled as a 𝑇 –periodic 𝐿2(𝑇 ) signal, passed
through 𝐿1 filter with partially known transfer function (this
corresponds quite well to a typical transmitter output stage).
The calculation of the THD, which depends on the Fourier
coefficients of the filtered signal, is usually reduced to that
of some infinite sums. In contrast to classic methods, which
evaluate THD sums empirically or numerically, the proposed
one is completely analytic, quite general and gives the closed–
form expression for the THD. Mathematical essence of the

method, which is based on the theory of functions of a
complex variable, is described in the appendix. We rigorously
carry out calculations, showing that the method could be
practically always employed for the proposed and similar
aims. We also considered practical examples including band–
pass and low–pass filters (typical filters at the output of the
power amplifiers) with three frequent periodic signals. In
particular, these exemples showed that, in the case of band–
pass filters with quality factor 𝑄, for large 𝑄, the THD is
inversely proportional to 𝑄, and in the case of 𝑝th–order low–
pass filters, for large 𝑝, the THD decrease exponentially with 𝑝.
Under specified conditions, which are very mild, the proposed
method can be similarly applied to other filters and signals.
However, it should be noted that as the filter’s topology and
the signal’s shape becomes more and more sophisticated,
calculations becomes more and more long and complicated.
Thus, it may be quite laborious to establish the closed–form
expression of the THD for some type of signals and filters,
and one should estimate the tradeoff between the need of the
analytic result and the work to be done. Note finally that the
proposed method may be used for discrete–time signals as
well, in which case Fourier coefficients have to be replaced
by DFT ones and the residue technique for the summation of
series should be applied to finite sums.

APPENDIX

CAUCHY METHOD OF RESIDUES FOR THE SUMMATION OF

SERIES

A. General Theory

The fundamental theorem of the theory of functions of a
complex variable is the Cauchy theorem of residues.13 This
theorem states that for the function 𝑓(𝑧), which is analytic14

and single–valued inside and on a simple closed curve 𝛾
except possibly for a finite number of isolated singularities,

13As to the theory of functions of a complex variable, the readers are
referred to these classic books: [27], [28], [30], [75]–[88].

14In complex analysis, terms “analytic”, “regular” and “holomorphic” are
synonyms.

∑
𝑛∈�

sin2 𝜋𝜇𝑛

𝑛2(1 + 𝑛2𝑝)
= lim

𝜀→0

{
1

2

∑
𝑛∈�

1

(𝑛− 𝜀)2(1 + 𝑛2𝑝)
− 1
2
Re

∑
𝑛∈�

𝑒2𝑖𝜋𝜇(𝑛−𝜀)

(𝑛− 𝜀)2(1 + 𝑛2𝑝)

}

= lim
𝜀→0

{
− 𝜋

2

2𝑝+1∑
𝑙=1

res
𝑧=𝑧𝑙

ctg 𝜋𝑧

(𝑧 − 𝜀)2(1 + 𝑧2𝑝)
+
𝜋

2
Re

2𝑝+1∑
𝑙=1

res
𝑧=𝑧𝑙

𝑒𝑖𝜋𝑧(2𝜇−1)𝑒−2𝑖𝜋𝜇𝜀

(𝑧 − 𝜀)2(1 + 𝑧2𝑝) sin𝜋𝑧

}

= − 𝜋

2

2𝑝∑
𝑙=1

res
𝑧=𝑧𝑙

ctg 𝜋𝑧

𝑧2(1 + 𝑧2𝑝)
+
𝜋

2
Re

2𝑝∑
𝑙=1

res
𝑧=𝑧𝑙

𝑒𝑖𝜋𝑧(2𝜇−1)

𝑧2(1 + 𝑧2𝑝) sin𝜋𝑧
+

𝜋

2
lim
𝜀→0

𝑔 (𝜀, 𝜇, 𝑝) , (37)

∞∑
𝑛=2

sin2 𝜋𝜇𝑛

𝑛2(1 + 𝑛2𝑝)
= − 𝜋

4

2𝑝∑
𝑠=1

⎡⎢⎣ctg 𝜋𝑧𝑠
𝑧2𝑠

2𝑝∏
𝑙=1
𝑙∕=𝑠

1

𝑧𝑠 − 𝑧𝑙

⎤⎥⎦+ 𝜋

4
Re

2𝑝∑
𝑠=1

⎡⎢⎣𝑒𝑖𝜋𝑧𝑠(2𝜇−1)

𝑧2𝑠 sin𝜋𝑧𝑠

2𝑝∏
𝑙=1
𝑙∕=𝑠

1

𝑧𝑠 − 𝑧𝑙

⎤⎥⎦+ 𝜋2𝜇(1 − 𝜇)

2
− sin

2 𝜋𝜇

2

(38)
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TABLE I
THEORETICAL THD IN % AS A FUNCTION OF THE CYCLIC RATIO 𝜇 AND OF THE FILTER’S ORDER 𝑝 COMPUTED ACCORDINGLY TO THE ANALYTICAL

RESIDUE–BASED METHOD. THE VALUES OF THE THD FOR 𝜇 = 0.6, 0.7, 0.8, 0.9 MAY BE EASILY OBTAINED FROM THE ABOVE ONES SINCE THE THD IS
SYMMETRICAL ABOUT 𝜇 = 0.5 [SEE E.G. (40)]. CASE 𝑝 = 0 CORRESPONDS TO THE NON–FILTERED SIGNAL, WHOSE THD IS GIVEN BY (17) AND IS

DEPICTED IN FIG. 2.

𝑝 𝜇 = 0.1 𝜇 = 0.2 𝜇 = 0.3 𝜇 = 0.4 𝜇 = 0.5

0 191.0 113.3 76.37 55.62 48.34

1 80.04 57.74 39.03 23.81 16.35

2 36.26 29.10 20.38 11.32 5.348

3 17.40 14.48 10.34 5.555 1.760

4 8.539 7.200 5.191 2.753 5.837 ⋅ 10−1

5 4.233 3.587 2.597 1.370 1.942 ⋅ 10−1

6 2.108 1.790 1.298 6.839 ⋅ 10−1 6.469 ⋅ 10−2

7 1.052 8.945 ⋅ 10−1 6.494 ⋅ 10−1 3.416 ⋅ 10−1 2.155 ⋅ 10−2

8 5.257 ⋅ 10−1 4.470 ⋅ 10−1 3.247 ⋅ 10−1 1.707 ⋅ 10−1 7.185 ⋅ 10−3

9 2.627 ⋅ 10−1 2.234 ⋅ 10−1 1.623 ⋅ 10−1 8.536 ⋅ 10−2 2.395 ⋅ 10−3

10 1.313 ⋅ 10−1 1.117 ⋅ 10−1 8.117 ⋅ 10−2 4.268 ⋅ 10−2 7.983 ⋅ 10−4

11 6.567 ⋅ 10−2 5.586 ⋅ 10−2 4.058 ⋅ 10−2 2.133 ⋅ 10−2 2.660 ⋅ 10−4

12 3.283 ⋅ 10−2 2.793 ⋅ 10−2 2.029 ⋅ 10−2 1.066 ⋅ 10−2 8.853 ⋅ 10−5

13 1.641 ⋅ 10−2 1.396 ⋅ 10−2 1.014 ⋅ 10−2 5.334 ⋅ 10−3 2.916 ⋅ 10−5

14 8.209 ⋅ 10−3 6.983 ⋅ 10−3 5.073 ⋅ 10−3 2.667 ⋅ 10−3 9.064 ⋅ 10−6

the contour integral

‰

𝛾

𝑓(𝑧) 𝑑𝑧 =

⎧⎨⎩
0 , if 𝑓(𝑧) has no singularities inside 𝛾 ,

2𝜋𝑖

𝑚∑
𝑙=1

res
𝑧=𝑧𝑙

𝑓(𝑧) , otherwise ,

where
{
𝑧𝑙
}𝑚
𝑙=1

are the isolated singularities of the function
𝑓(𝑧) enclosed by the contour 𝛾. We recall that singularities
are special points at which function is not regular. For single–
valued functions, singularities are usually classified as follows:
removable singularities, poles and isolated essential singular-
ities. Note that in practice, function 𝑓(𝑧) is often a mero-
morphic function (it is especially true for the functions that
we face when computing the THD); in this case, singularities{
𝑧𝑙
}𝑚
𝑙=1

are poles of the function 𝑓(𝑧).
We now describe the method of residues for the summation

of series. Unfortunately, this method is present only in a small
amount of good complex variable literature [75, pp. 188–191],
[85, pp. 261–269], [76], [51, pp. 69–70], [86, pp. 115–116],
[87, pp. 123–125], and it is just mentioned in [30, pp. 114–
115], [27, p. 205]. Besides, considered sums, integrals, and
proofs vary significantly depending on the authors and on their
objectives. We will therefore try to present the method in a
well–structured and concise way adjusted to our purposes. Let
𝑓(𝑧), in addition to the aforementioned conditions, have no
singularities at integers and be bounded in the following way:
as ∣𝑧∣→∞,∣∣𝑓(𝑧)∣∣ ⩽ 𝐶

∣𝑧∣𝜉 , 𝜉 > 1 , 𝐶 = const . (41)

A typical example of such a function may be a rational
function for which ∣𝑓(𝑧)∣ = 𝑂(∣𝑧∣−𝑠), 𝑠 = 2, 3, 4, . . . , as

∣𝑧∣→∞, and which does not have poles at integers. Consider
now the integral ‰

𝛾𝑅

𝑓(𝑧) ctg(𝜋𝑧) 𝑑𝑧 , (42)

where contour 𝛾𝑅 is given by the circle ∣𝑧∣ = 𝑅+ 𝛼, with
𝑅→∞, 𝑅 ∈ � and 𝛼 ∈ (0, 1).15 On the one hand, by the
residue theorem we have:

lim
𝑅→∞

‰

𝛾𝑅

𝑓(𝑧) ctg(𝜋𝑧) 𝑑𝑧 (43)

= 2𝜋𝑖

{
1

𝜋

+∞∑
𝑛=−∞

𝑓(𝑛) +

𝑚∑
𝑙=1

res
𝑧=𝑧𝑙

[
𝑓(𝑧) ctg(𝜋𝑧)

]}
,

where
{
𝑧𝑙
}𝑚

𝑙=1
are all finite singularities of the function 𝑓(𝑧)

in the complex plane, and where we took into account that the
poles of ctg(𝜋𝑧) are simple and occur at 𝑧 = 𝑛, 𝑛 ∈ �. On the
other hand, as 𝑅→∞, 𝑅 ∈ �, the integral (42) approaches
zero:

lim
𝑅→∞

∣∣∣∣∣∣
‰

𝛾𝑅

𝑓(𝑧) ctg(𝜋𝑧) 𝑑𝑧

∣∣∣∣∣∣
⩽ 2𝜋 lim

𝑅→∞
[
(𝑅+ 𝛼) max

𝑧∈𝛾𝑅

∣𝑓(𝑧) ctg(𝜋𝑧)∣]

⩽ 2𝜋𝐶 lim
𝑅→∞

max
𝑧∈𝛾𝑅

∣ ctg(𝜋𝑧)∣
𝑅𝜉−1

= 0 ,

15A somewhat different method is presented in [75] and [30], where the
considered integrand is the same (with additional 𝜋), but the integral is taken
around the square which intersects coordinate axes at half–integers and whose
perimeter tends to infinity [by the way, the readers of this book should beware
of misprints, e.g. p. 189, 2𝜋𝑖 is forgotten in the right part of equation (1)].
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since 𝜉 > 1 and ctg(𝜋𝑧) may be always bounded by a constant
on the contour 𝛾𝑅 (thanks to the small constant 𝛼 which is
strictly non–integer).16 Whence, it follows immediately that

+∞∑
𝑛=−∞

𝑓(𝑛) = −𝜋
𝑚∑
𝑙=1

res
𝑧=𝑧𝑙

[
𝑓(𝑧) ctg(𝜋𝑧)

]
. (44)

This equation is the key formula for the evaluation of infinite
sums. By the way, the condition (41) on the summed function
𝑓(𝑧) can be replaced by a more general one:

∣𝑧𝑓(𝑧) ctg𝜋𝑧∣ → 0 as ∣𝑧∣ → ∞ , ∣𝑧∣ /∈ �∗ , (45)

which may be sometimes more convenient. Note that both
conditions (41) and (45) are closely related to the chosen
contour 𝛾𝑅, around which the integral (42) is taken, and on
which ctg(𝜋𝑧) should be bounded. Namely, the integration
contour was chosen so that the line integral (42) vanishes.

Application of the same technique to slightly different line
integral provides also this useful formula:

+∞∑
𝑛=−∞

(−1)𝑛𝑓(𝑛) = −𝜋
𝑚∑
𝑙=1

res
𝑧=𝑧𝑙

[
𝑓(𝑧)

sin𝜋𝑧

]
. (46)

It may be of interest to note that the formula (46) may be used
not only under conditions (41) or (45), but also under more
weak requirement:∣∣∣∣ 𝑧𝑓(𝑧)sin𝜋𝑧

∣∣∣∣ → 0 as ∣𝑧∣ → ∞ , ∣𝑧∣ /∈ �∗ . (47)

This condition is less restrictive than conditions (41) and (45),
and it can be particularly useful when the summed func-
tion is not rational and contains, for example, trigonometric
functions. Consider for instance 𝑓(𝑧) = 𝑒𝑖𝛼𝑧𝑔(𝑧), where 𝛼
is a real constant and 𝑔(𝑧) is a rational function such that
∣𝑔(𝑧)∣ = 𝑂(∣𝑧∣−2) as ∣𝑧∣→∞. For such a summed function,
condition (47) is verified for −𝜋 < 𝛼 < 𝜋, while (41) and (45)
are never verified. Same results are obtained if encountering
sin𝛼𝑧 or cos𝛼𝑧 instead of 𝑒𝑖𝛼𝑧 in 𝑓(𝑧).

A short demonstration of the practical use of the method
may be quite fruitful at this stage. Suppose that one wants to
evaluate the following series:∑

𝑛∈�

(−1)𝑛 sin𝛼𝑛
(𝑛− 𝜀)2

, −𝜋 < 𝛼 < 𝜋 , 𝜀 /∈ � .

Summed function satisfies condition (47); consequently, for-
mula (46) may be used for the analytic computation of this
series. The latter yields:

+∞∑
𝑛=−∞

(−1)𝑛 sin𝛼𝑛
(𝑛− 𝜀)2

= −𝜋 res
𝑧=𝜀

[
sin𝛼𝑧

(𝑧 − 𝜀)2 sin𝜋𝑧

]
(48)

= −𝜋 lim
𝑧→𝜀

[
sin𝛼𝑧

sin𝜋𝑧

]′
𝑧

=
𝜋 sin𝛼𝜀

sin𝜋𝜀

{
𝜋 ctg 𝜋𝜀− 𝛼 ctg𝛼𝜀

}
.

Finally, the use of the residues for the summation of series
may be also extended to the finite sums. For example, if
contour 𝛾 encloses the points 𝑧 = 𝐾 , 𝑧 = 𝐾 +1, . . ., 𝑧 = 𝑁 ,

16More generally, function ctg(𝜋𝑧) is bounded in the whole complex plane,
except discs ∣𝑧 − 𝑛∣ < 𝜀, where 𝑛 ∈ � and 𝜀 is an arbitrary small positive
constant [76], [78], [82].

where 𝐾 ∈ � and 𝑁 ∈ �, and 𝑓(𝑧) is analytic and single–
valued within and on 𝛾 except for a finite number of isolated
singularities

{
𝑧𝑙
}𝑚
𝑙=1

, none of which are integer, then:

𝑁∑
𝑛=𝐾

𝑓(𝑛) =
1

2𝑖

‰

𝛾

𝑓(𝑧) ctg(𝜋𝑧) 𝑑𝑧− 𝜋

𝑚∑
𝑙=1

res
𝑧=𝑧𝑙

[
𝑓(𝑧) ctg(𝜋𝑧)

]
.

It is frequently possible to chose the path 𝛾 so that the integral
on the right vanishes. For example, by slightly changing the
above integrand, and by taking the integration contour 𝛾 as a
rectangle with vertices at [2𝜋+ 𝑖𝑎, 𝑖𝑎,−𝑖𝑎, 2𝜋− 𝑖𝑎], 𝑎→∞,
one may obtain the following summation formula:

𝑁−1∑
𝑛=0

𝑓

(
2𝑛𝜋

𝑁

)
= − 𝑁

2

𝑚∑
𝑙=1

res
𝑧=𝑧𝑙

[
𝑓(𝑧) ctg

(
𝑁𝑧

2

)]
,

where 𝑓(𝑧) is the rational function of sin 𝑧 or/and of cos 𝑧
none of whose poles lie on 𝛾 or on the coordinate axes,
where 𝑧𝑙 are poles of the function 𝑓(𝑧) inside 𝛾, and where
∣𝑓(𝑧)∣ → 0 as Im[𝑧]→ ±∞. This formula may be particu-
larly appreciated for the analytic computation of the discrete
Fourier, cosine and Hartley transforms (DFT, DCT & DHT).
More details on the application of the residue method for the
summation of finite series may be found in [85, p. 262].

B. Special Cases—Regularization

Some of the restrictions on the function 𝑓(𝑧) may be quite
annoying, but in many cases they can be circumvented. The
most common cases, when one of these requirements is not
satisfied, are these two. First, function 𝑓(𝑧) may have poles
at integers, and consequently, it may be not regular at 𝑧 ∈ �.
In this case, it is often possible to regularize the problem by
introducing a small constant 𝜀 into the function 𝑓(𝑧), in such
way that the unwanted pole be slightly displaced. The formula
(44) may be therefore used by an appropriating limiting
procedure [if the limit on the right for 𝜀→ 0 exists]. Second,
summed function may fulfill (41) or (45) only partially; e.g. it
may be satisfied only on the real or imaginary axis, but not
on the both as required. In this case, the problem can be often
regularized either by trying to make use of different integrands
in (42) [e.g. by trying to use formula (46) instead of (44)], or
by an appropriate choice of the integration contour, or both
at the same time. Examples below permit to better understand
how these procedures may be performed in practice.

1) Summed Function has Poles at Integers: We wish to
evaluate the following series:∑

𝑛∈�∗

1

𝑛2
.

The result is well known from analysis17; it is equal to
𝜁(2) = 𝜋2/6, but we want to verify it by using the Cauchy
method of residues. Let 𝑓(𝑧) = 𝑧−2. This function satisfies
all requirements for the application of the formula (44), except
that it is not regular at 𝑧 = 0; this point is a double pole for

17More precisely, analytically, it was first computed by L. Euler in 1735
(the problem of the evaluation of this series is sometimes referred as Basel
problem).
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𝑓(𝑧). We therefore try to regularize the problem by adding a
small real positive constant 𝜀2 to its denominator:

𝑓(𝑧) =
1

𝑧2 + 𝜀2
, 𝜀 ∈ � .

Function 𝑓(𝑧) is now regular for 𝑧 ∈ �, and also for 𝑧 ∈ �,
since it has two poles at points ±𝑖𝜀. Obviously, as 𝜀 → 0,
function 𝑓(𝑧)→𝑓(𝑧). The application of the formula (44) is
now possible; it reads:

∞∑
𝑛=1

1

𝑛2
= lim

𝜀→0

∞∑
𝑛=1

1

𝑛2 + 𝜀2
=

1

2
lim
𝜀→0

{
+∞∑

𝑛=−∞

1

𝑛2 + 𝜀2
− 1

𝜀2

}

= − 𝜋

2
lim
𝜀→0

{
res
𝑧=𝑖𝜀

ctg 𝜋𝑧

𝑧2 + 𝜀2
+ res

𝑧=−𝑖𝜀

ctg 𝜋𝑧

𝑧2 + 𝜀2
+

1

𝜋𝜀2

}

=
𝜋

2
lim
𝜀→0

{
cth𝜋𝜀

𝜀
− 1

𝜋𝜀2

}
=

𝜋2

6
,

since the last limit converges to 𝜋/3.
2) Summed Function Satisfies Condition (41) Only Par-

tially: As we previously noticed, if the summed function con-
tains trigonometric or exponential functions in the numerator,
e.g.:

𝑓1(𝑘) =
sin𝛼𝑘

𝑘2 + 1
, 𝑓2(𝑘) =

𝑒𝑖𝛼𝑘

(𝑘 − ln 2)2 , 𝛼 ∈ � ,

formula (44) cannot be applied, because conditions (41) and
(45) are satisfied for them either only for Re[𝑧]→ ±∞, or
for Im[𝑧] → ±∞, or for three of them, but not for ∣𝑧∣ →
∞. However, in many cases, sums of such series can be still
computed via an appropriate use of the formula (46) instead
of (44). On the one hand, the condition (47) is less restrictive
than (41) and (45) and the summed functions 𝑓1 and 𝑓2 satisfy
it for −𝜋 < 𝛼 < 𝜋. On the other hand, the formula (46) is
suitable for alternating series, while we face an “ordinary”
series. The regularization, in this case, consists in reducing an
“ordinary” series to an alternating one. In view of the fact that
(−1)𝑛 = 𝑒±𝑖𝜋𝑛, formula (46) may be rewritten as

+∞∑
𝑛=−∞

𝑓(𝑛) = −𝜋
𝑚∑
𝑙=1

res
𝑧=𝑧𝑙

[
𝑓(𝑧)𝑒±𝑖𝜋𝑧

sin𝜋𝑧

]
. (49)

It is important to note here that functions sin(𝛼𝑧)𝑔(𝑧)𝑒±𝑖𝜋𝑧

and cos(𝛼𝑧)𝑔(𝑧)𝑒±𝑖𝜋𝑧 do not satisfies (47), while
𝑒𝑖𝛼𝑧𝑔(𝑧)𝑒±𝑖𝜋𝑧 still does in some range of 𝛼. Namely,
𝛼 should be such that −𝜋 < 𝛼±𝜋 < 𝜋; consequently, in (49)
we choose sign “−” if 0 < 𝛼 < 2𝜋 and “+” if −2𝜋 < 𝛼 < 0.
Hence, series, containing trigonometric functions and which
are not alternating, should be computed via exponential series
[i.e. they cannot be computed directly as we did in (48)].

For example, we wish to calculate two following series:∑
𝑛∈�

sin𝛼𝑛

(𝑛− 𝜀)2
,

∑
𝑛∈�

cos𝛼𝑛

(𝑛− 𝜀)2
, (50)

where 0 < 𝛼 < 2𝜋 and 𝜀 /∈ �. To this end, we must first
compute the following series:∑

𝑛∈�

𝑒𝑖𝛼𝑛

(𝑛− 𝜀)2
. (51)

The sign in (49) should be therefore “−”, and thus, this
formula yields:

+∞∑
𝑛=−∞

𝑒𝑖𝛼𝑛

(𝑛− 𝜀)2
= −𝜋 res

𝑧=𝜀

[
𝑒𝑖(𝛼−𝜋)𝑧

(𝑧 − 𝜀)2 sin 𝜋𝑧

]
(52)

= −𝜋 lim
𝑧→𝜀

[
𝑒𝑖(𝛼−𝜋)𝑧

sin 𝜋𝑧

]′

𝑧

=
𝜋𝑒𝑖𝜀(𝛼−𝜋)

sin 𝜋𝜀

{
𝑖(𝜋 − 𝛼) + 𝜋 ctg 𝜋𝜀

}
.

On taking imaginary parts, one can deduce the summation
formula containing sinus:

+∞∑
𝑛=−∞

sin𝛼𝑛

(𝑛− 𝜀)2
=

𝜋 sin 𝜀(𝛼− 𝜋)

sin𝜋𝜀

⋅
{
(𝜋 − 𝛼) ctg 𝜀(𝛼− 𝜋) + 𝜋 ctg 𝜋𝜀

}
. (53)

Analogously, by equating real parts of (52), one can obtain:

+∞∑
𝑛=−∞

cos𝛼𝑛

(𝑛− 𝜀)2
=

𝜋 cos 𝜀(𝛼− 𝜋)

sin𝜋𝜀

⋅
{
− (𝜋 − 𝛼) tg 𝜀(𝛼− 𝜋) + 𝜋 ctg 𝜋𝜀

}
. (54)

It is easy to verify by numerical summation that these formulæ
are correct, while direct application of (49) to the series (50)
[i.e. not to (51)] would produce incorrect results. By the way,
since many of the formulæ obtained throughout the paper are
quite long, in order to avoid any error, they were all carefully
verified, including by numeric summation and by computer
simulations18.
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