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Unbiased Efficient Estimator of the Fourth-Order
Cumulant for Random Zero-Mean Non-i.1.d. Signals:
Particular Case of MA Stochastic Process

laroslav V. Blagouchine and Eric Moreau, Senior Member, IEEE

Abstract—Non-Gaussian processes may require not only the in-
formation provided by first two moments, but also that given by the
higher-order statistics, in particular, by the third- and fourth-order
moments or cumulants. This paper addresses a fourth-order cu-
mulant estimation problem for real discrete-time random non-i.i.d.
signal, that can be approximated as an MA stochastic process. An
unbiased estimator is proposed, studied and compared to two other
frequently used estimators of the fourth-order cumulant (natural
estimator and fourth k-statistics). Statistical comparative studies
are undertaken from both bias and MSE points of view, for dif-
ferent distribution laws and MA filters. Algorithms, aiming to re-
duce computational complexity of the proposed estimator, as well
as that of the fourth k-statistics bias, are also provided.

Index Terms—k-statistics, bias, consistency, cumulants, estima-
tion, estimator, higher order statistics (HOS), mean square error
(MSE), moments, non-i.i.d processes, random signals, semi-invari-
ants, stochastic processes, unbiasedness.

1. INTRODUCTION

T IS well known that for the non-normal processes, their

description given in terms of the first- and second-order sta-
tistics are often not sufficient, and the supplementary informa-
tion, provided by the higher-order statistics, may be required.
Among these statistics, the third- and fourth-order moments and
cumulants have received some special interest. Over 20 past
years the research community addressed many interesting as-
pects and applications of them: blind source separation (BSS)
[1]-[6], identification of the finite impulse response (IR) sys-
tems [7]-[12], speech processing [13]-[16], cyclo- and almost-
cyclo-stationarity [17]-[21], acoustics [22], biomedicine [23],
etc. Thus, in practice, it is often necessary to accurately esti-
mate these higher-order statistics.

Usually, cumulants, also known as cumulative moment func-
tions, semi-invariants or half-invariants [24]-[28], are more
often used in applications, and the moments have generally only
an auxiliary function. In earlier paper [29], different estimators
of the fourth-order cumulant for real discrete-time random
1.i.d. zero-mean signal were presented, studied and compared

Manuscript received January 14, 2010; revised April 01, 2010. Date of current
version November 19, 2010.

The authors are with the Telecommunication Department, ISITV, University
of Toulon, F-83162 Valette du Var, Toulon, France (e-mail: iaroslav.blagou-
chine @univ-tln.fr; moreau @univ-tln.fr).

Communicated by E. Serpedin, Associate Editor for Signal Processing.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2010.2078270

in detail theoretically and empirically. This work inter alia
showed that from many points of view, the unbiased estimator
of the fourth-order cumulant, formula (11) and (20) in [29],
behaves better or equally than other classically used estimators
of the fourth-order cumulant. However, the work [29], as well
as many others in domain, suffers from a strict requirement that
the samples of the considered signal are supposed to be i.i.d.,
while in practice, this is not always the case. A very frequent
case of the non-i.i.d. signals is that of the signals that can be
modeled as the i.i.d. signals passed through an ARMA filter,
i.e., the so-called ARMA processes. However, the general class
of the ARMA processes is relatively huge (e.g., signals having
Markov properties, i.e., AR processes, MA processes), and
often, the MA processes’ approximation may be sufficient,
especially because the IR of the corresponding MA filter may
be chosen long enough. The aim of this paper is therefore to
address an extension of the work [29] to this non-i.i.d. case.

In a recent paper [30], it is shown that the unbiased es-
timator for the i.i.d. processes given in [29], formula (11),
becomes biased for the dependent data; in particular, for the
strongly-mixing and p-mixing processes (e.g., the ARMA
processes). Moreover, it is also remarked in [30], that the
strongly-mixing and p-mixing processes (the latter are actually
contained in the former class) are quite rich classes of processes
(see also [31]-[34] for more details). On the other hand, in the
considered non-i.i.d. cases the proposed estimator [29], (11),
remains consistent, and the estimation error is asymptotically
normal [30]. Thus, the present paper aims not only to generalize
the work [29], but also to respond to the “criticism” from [30]
by proposing an unbiased estimator of the fourth-order cumu-
lant for the dependent-data cases, which can be approximated
as MA stochastic processes.

We briefly recall several basic statements related to the con-
sidered problem. First of all, we consider two real discrete-time
random zero-mean signals z; = z(i) and u; = (i), i € Z,
where ¢ is discrete time, i.e., number of current sample. Signal
a; 1s 1.1.d. at least up to order 8§, see [29]. Signal u; is a non-i.i.d.
process modeled as an i.i.d. stochastic signal x; filtered by a
real MA filter of order p, whose coefficients are denoted by
{ak }zzo‘ In addition, for mathematical convenience, it is also
supposed the coefficients ay, for k ¢ [0, p] exist and are all null.
The IR of the considered MA filter, denoted via #;, therefore is

400 r
hi = Z arbi g = Z%@,k; 1 €7, Va,€R
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where 6; 5, is the Kronecker symboll. This MA filter is stable
since it has a finite IR. Thus, the w; may be written as

+o0 P
u; = hy xz; = E Apli—p = E ARTi—t (D

k=—oc k=0

where * is the discrete convolution operator. Furthermore, it is
also supposed that all raw moments up to order § of the signal
x,; exist, and hence, so do those of u;. The latter are denoted for
simplicity by E [27] = E [#?] and E [¢?] = E [u¥] respectively,
p € IN*, where E [] is the operator of mathematical expectation.
Also, for simplicity, we will write in further A instead of h; for
the IR of the above-mentioned MA filter. In addition, we will
also use MA filters whose IRs, designated by 1", are?

p
]LnEh,?: E E ak~~~al(57¢7k~~~57;7,: E dzéi,k
k l k=0
N———
n times

where n € IN*, 4 € 7Z. That is to say, we again omit the discrete
argument ¢ by writing A" instead of A}.

We now recall the moment-based definition (as opposed to the
characteristic function based one) of the fourth-order cumulant
4 for an arbitrary real discrete-time random zero-mean signal
yi (241, [25], [27], [28], [35]-[37]

raly] =E [y'] - 387 [y]. @)

Basing on this definition, many people use the so-called “natural
estimator” for the estimation of the fourth-order cumulant (2),
in which the unknown moments are trivially replaced by the
sample ones [29], [38]:

h4 nat 7/

n 2
Z vi- | D>_u] - (3)
i=1

However, there is also another frequently used estimator of the
fourth-order cumulant: the fourth k-statistics. This statistics is
an unbiased estimator of the fourth-order cumulant for an i.i.d.
process, and it does not make any assumption about the mean
value of the stochastic process [24], [28], [29], [39]

3

kaly] = 77[4] {(n + 1ymy — 3(n — 1)m§}
= n%{(n3 +n%)sq — 4(n% + n)sas
—3(n® — n)s3 4 12nsy87 — 6.911} )
where
] i n! .
nlkl = g(n—l): o n, k€N
IThe IR may be also written in vector notation, e.g., B = [@o,a1,...,a;],

but we will not use this notation, by preferring to view the IR as a discrete func-
tion of z, which is given as h; = a;.

2By using the vector notation from the footnote 1, this IR may be regarded as
(n — 1) Hadamard products of h.
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m,- are the sample central moments
n
— 1 o~ r
r =" E (yi - 777/1)
7 4
=1
n
My = L > "y,
n 4 :
=1

and s,. are the power sums s, =y, y/, 7 € IN".

r, g € IN”

II. CONSTRUCTIONOF THE ESTIMATOR

A. Preliminaries

Since the samples of the signal «; are i.i.d. up to order 8, the
following fundamental property holds:
Elf]E [«]], i#j

ps g €IN" (5

E[I7Y, i=j
provided that p + ¢ < 8. For the signal u;, the things are more
complicated. From (1), it is straightforward that the samples of
u; are not i.i.d., because E [u;u;] # E [u;] E[u;] for i # 7,
where 7z, j € IN*. Indeed, from (1), by using (5) and the fact
that x; and u; are zero-mean, we may verify the auto-correlation
function of the latter:

E[uu;] =E Z AR Ti kT
k,1=0
= Zawk+1 —j +E [ Z ara;
k=0 k,1=0
k#l+i—jg

»

1) akaryio; # BludE[u;] =0 (6)
k=0

where we used a somewhat similar method to the standard
method employed for the i.i.d. processes to deal with multiple
sums3. Thus, w; is in general not i.i.d. However, note that since
the coefficients ay for k& ¢ [0, p] are null, E [u;u;] # 0 only for
those 4 and j that satisfy | — j| < p; otherwise E [u;u;] = 0
and for these ¢ and j the samples u; and u; are mutually inde-
pendent. By the way, when ¢ = j, the latter equation gives the
well-known relationship between the powers (or second-order
cumulants) of u; and x;:

E [71,2] =E [u?] =E [T2] zp: ay. (7

Physically, the latter means that the power of the input signal z;
is not conserved through an MA filter, unless the filter is of unit
energy (unit Euclidean norm).

3Note that the method is not a straightforward generalization of the combina-
torial method [24], [28], [39]. In particular, the calculation of the coefficients of
the mathematical expectations, and that of the indexes of the IRs coefficients in
multiple sums, require careful watching (in order to better understand the prin-
ciple, one may want to study in detail (10), and Appendix).
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B. Unbiasedness of the Estimator

We wish to build an unbiased frame-based estimator of the
general form

n 2
2
"‘v4unb non i.i.d. U, —UZE U, - E U; . (8)

=1

where n is the size of the frame of w; we have for the estimation,
and the coefficients v and /3 are such that the bias b vanishes.
The latter reads

b=E [/%4,unb. non i.iAdA] - K/4[“]
= (om — l)E [u4] + 3E2 [uz] —
First, we calculate the term E [u? u?] . Again, different cases

may occur, depending on the current 4 and j. The calculation of
E [u 0% ] yields

2,2
B [u} “J]
P
=E E ApOAmGgli kLi|Lj_mdj_gq
k,Lom,q=0

P
T4] Z(LkakJrl 1+E2 [ ]
L=0

p p
2 2
X E apa; +2 E Ok Ok +i—j QIO i—j (10)
ke 1=0 k=0
kAlti—j el

where we took into account that x; is zero-mean®.
Then, we deal with the term E [uﬂ . The latter can be easily
derived from (10) by putting ¢ = 3

E [71,4] =E [u?]

2
+3E? [z (Z ak> . (11)
The last line is added in order to get rid of the double sum
without crossed term, which is not very convenient. Note that
from the last expression, by substituting it together with (7)
into (2), we obtain the well-known relationship between the
fourth-order cumulants of u; and «;

ale] > af

4If x; was not zero-mean, we would have several supplementary terms in the
latter expression.

(12)
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This relationship is very similar to the powers’ one, defining
the condition for the conservation of the fourth-order cumulant’
through an MA filter.

Finally, the substitution of (7), (10) and (11) into (9) yields
the bias of the estimator (8)

b= {omfl - Bfs— f1}E [2*]
—|—3{(m(f2 —f)—-Bf1+ f1}E? [$2] (13)

Where the auxﬂiary functions, depending all on the coefficients

{“k p=0> &

P P 2 n p
fi= Zai f2 = (Zai) Sz = Z Z“iaz+i—ja

k=0 k=0 2,7=1 k=0
1 n r P
2 2
fa= g Z Z Gpt; + 22 Ok Clti— 5101 | - (14)
ij=1 L ki=0 k,1=0
htlti—j el

By simultaneously equalizing the expressions between the
braces behind the terms E [#4] and E? [#?] in (13), we deduce
that the coefficients o and J that make the bias vanishes, are

f3 fife
nfi’ fifa+ fifs — fafs

The main computational complexity of the estimator is de-
fined by f4 in (14), and it is not negligible. Fortunately, it can be
simplified. The expression in the brackets in f, may be rewritten
as follows:

p b
2 2
E apdy + 2 E Ol Ofeti—j A Oy i—
k.l

:,1=0 k,1=0
ktl+i—j kel

P 2 P 2 P
= Zai + 2 Zaka,k+i_j - SZ(L%(L%H_j
k=0

k=0 k=0
= fo+2R5_;[h] = 3R;_;[W’]

where R, [h"] denotes discrete auto-correlation function of dis-
crete time & and of IR A", n € IN™ [see also formula between
(1) and (2) for A™]. This function is defined as

=—+/5 f= (15)

(16)

Ry ["] = Ry [1]

+oc P

= ) afaiy=) afai,. keZ
o 1=0
Whence
f= n f2 L1 Z (ZRZ )] — 3R, [h?]). (17
1] 1

The resulting computation time is smaller, because the computa-
tional complexity of the auto-correlation function is lower than
that of the direct computation of multiple sums, since it can be

SMoreover, it is well known that the latter property can be extended even to
the rth-order cumulants: &, [u] = &.[2] >5_, ay, where r € IN*.

Low-resolution version (300 dpi). High-resolution version is available on IEEE Xplore site.



BLAGOUCHINE AND MOREAU: UNBIASED EFFICIENT ESTIMATOR OF THE FOURTH-ORDER CUMULANT

z; € N0,1), p=3.
0.06

—— R4uat
005 --- &4
&N
0.04 .
L‘_a \
2 0.03 \\
0.02 4
!
0.01
0
-0.6 -0.4 -02 0
Bias
x; € U(0,1), p=3.
0.06
0.05
0.04
:s AY
g 003 o
- 1
0.02 “
)
0.01 v
g A
- - N
-0.4 -02 0 02
Bias

6453

z; € N(0,1),p=8.

0.06

0.04 i )

pdf

-0.4 -0.2 0
Bias

z, € U({0,1),p=8.

0.06

0.04 EEN

pdf

0.02 son

0 -
0.4

-0.2 0 0.2

Bias

Fig. 1. Theoretical pdf of the biases of the natural estimator and the fourth k-statistics for a non-i.i.d. signal u; obtained via specified MA &--keeping filters.

calculated via FFT algorithm [40]. By the way, f3 may be com-
puted in the same mannert

n P n
URDIPILUSED IS

i,j=1 k=0 ij=1

(18)

Finally, note that according to the theorem of uniqueness
of symmetric polynomial unbiased estimators [28], [29] the
derived estimator (8) is the unique unbiased estimator of the
fourth-order cumulant for the considered MA process (1).

C. Mean Square Error of the Estimator

Besides the bias, which is a measure of the estimator’s perfor-
mances based on its first-order moment, the mean square error
(MSE), based on both its first- and second-order moments, is
another important characteristic of an estimator. Unfortunately,
the analytical calculation of the latter criterion, whose com-
plexity is mainly defined by the term F [&Z] , is a long and la-
borious procedure, especially because it implies a lot of calcu-
lations related of the numerous multiple sums (up to 12-fold
sums). Thus, the MSE studies will be performed empirically in
Section III-B, using numerical simulation approach.

III. STATISTICAL STUDY OF THE ESTIMATOR PERFORMANCES

A. Bias Comparisons

In order to find out the bias performances of the proposed esti-
mator, we undertake a statistical comparative study between the
proposed estimator, and two other estimation techniques of the
fourth-order cumulant: the natural estimator (3) and the fourth
k-statistics (4) for the considered non-i.i.d. signal u;. The bias

SFor example, for the numerical simulations that we come to show, p = 8,
n = 24, this gain is about 16 times for the formula (17) and 1.5 times for the
formula (18) with respect to f, and f; respectively computed directly from (14)
[empirical estimation from 1000 Monte-Carlo runs].

of the natural estimator for u; is obtained from (13) by setting
o« =1/nand 8 = 3/n?

3]{; 4 3f4
bnat = _n_z [=L4] +3 (

92— —
n?

) E? [:1:2]. (19)
That of the fourth k-statistics, whose calculation is put into
Appendix, is given by (25).

The auxiliary functions f1, ..., fip depend on the given nu-
meric values of the IR of the MA filter, and so do the biases. We
therefore carried out a statistical study of the bias for the ran-
domly generated IRs, given by {ak }ZZO. Two different filter’s
orders are considered: p = 3 and p = 8. In both cases, the co-
efficients of filter {ak }zzo are generated randomly according
to the normal law N (0, 1). Since in many applications, it is im-
portant to conserve either the power (i.e., the second-order cu-
mulant k3) or the fourth-order cumulant of the signal passing
through an MA filter, the IR is respectively normalized either by
its Euclidean norm, see (7), or by its 4-norm, see (12). Finally,
in all experiments, the initial i.i.d. signal z; is of the unit power
and distributed according to the normal and uniform laws. The
fourth-order cumulant of such a signal is O for the normal law
and —1.2 for the uniform one. As to the non-i.i.d. signal u;, its
power in the case of the xa-keeping filter is 1 in both normal
and uniform scenarios, its fourth-order cumulant in the case of
k4-keeping filter is O for the normal law and —1.2 for the uni-
form one.

The obtained results are reported in Figs. 1 and 2. The number
of performed simulations used to draw each pdf from the cor-
responding histograms? is set to one million (in other words,
we generated 8 million different filter’s realizations in all, i.e.,
one million different IRs per panel). The length of the estimated
frames n is set to 24.

7All pdfs are obtained via normalized histogram envelopes for both theoret-
ical bias (Figs. 1 and 2), and empirical MSE (Figs. 3 and 4). The normalization is
carried out in such a way that the 1-norm of the obtained discrete pdf is equated
to 1. Thus, depending on the number of bins of the histogram, the absolute am-
plitude of pdfs may vary, while the relative one remains invariant.
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Fig. 2. Theoretical pdf of the biases of the natural estimator and the fourth k-statistics for a non-i.i.d. signal ,; obtained via specified MA & 4-keeping filters.

For the natural estimator, from the power-keeping case,
Fig. 1, we may mainly deduce three results. Firstly, the bias in
the normal case is greater than that in the uniform one for the
same order p (the same result for the i.i.d. case was previously
obtained in [29]). Secondly, the more the order of the MA filter
p, the greater the bias. Thirdly, the bias of the non-i.i.d. case
is always greater than that in the i.i.d. case: 6/n = 0.25 for
N(0,1) and 2.4/n = 0.1 for U(0, 1) [29]. In the r4-keeping
case, Fig. 2, we observe the same tendencies as above, except
that the absolute values of biases are greater. Since in this case
the true (or real) value of cumulant is conserved through an
MA filter [i.e., it is still O for the N(0,1) law and —1.2 for the
U(0, 1) one], such great values of bias might be not acceptable
for many applications, while the proposed estimator remains
always unbiased.

As to the fourth k-statistics’ bias, globally, its behavior has
the same features as that of the natural estimator, but its values
are much smaller (we recall that it is unbiased for the i.i.d. case).
Also, there are two small differences: fourth k-statistics’ bias
can be positive, and in the case of the power-keeping filter for
the uniformly distributed samples of x; with filter’s order p = 3,
bias’ distribution is multimodal. However, the fourth k-statistics
has also a drawback with respect to the proposed unbiased and
natural estimators: greater computational complexity.

Lastly, in order to complete the estimator performances
studies, we also have to perform the MSE measures.

B. MSE Comparisons

The MSE = E [(/%4 - n4)2] of all studied estimators are
obtained empirically. Since this procedure is highly time-con-
suming, the number of the performed simulations used to draw
each pdf is set to 50 000 instead of one million (in other words,
we generated 8 x 50 000 different filter’s realizations in all, i.e.,
50000 random normally distributed IRs per panel). Then, for
one given filter’s configuration (i.e., for each IR), the MSE of
the studied estimators is calculated via the sample mean of 5000

Monte-Carlo runs (i.e., we generated 8 x 50 000 x 5000 = 20
millions simulations in all). Other simulation conditions are the
same as in bias studies.

The obtained results are reported in Figs. 3 and 4. For the
ra-keeping case, Fig. 3, we observe that in the normal case, the
MSE of the proposed estimator is worse with respect to other
estimators, while in the uniform case it is practically the same.
As to the r4-keeping case, Iig. 4, all estimators showed approx-
imately same performances for the low filter’s order p = 3, and
the unbiased estimator is slightly worse for the high filter’s order
p = 8. For both x2- and x4-keeping cases, we ascertain that the
more the order of the filter, the greater the MSEs of the estima-
tors (note that we also had a similar tendency in bias studies).

In conclusion, the MSE studies showed that the MSE perfor-
mances of the proposed estimator are variable and depend, as
it is in many cases, on the distribution law. On the other hand,
the proposed estimator was designed according to the principle
of unbiasedness, that also explains why the MSE performances
are not always optimum.

IV. NUMERICAL SIMULATION TEST

In order to achieve estimator performances studies, we finally
propose to test it in conditions close to the real ones. For this
aim, we will test it in dynamic conditions in which power and
distribution law of x; are both variable. The results of this test
are shown in Fig. 5. First 80 frames of x; are normally dis-
tributed according to N (0, o, 1) law, while the second ones are
distributed according to the law U(0, 0, 1,). Standard deviation
0.1 (k is the frame’s number), of each frame of the input signal
x; is time-depending according to the amplitude modulation law
of the form

2
Opk — 0-41:,0(1 + asin wok) ﬂ—

Wy =

3

"max

with 0,9 = 1, depth of modulation @ = 0.5, knax = 80 and
k=1, 2,..., kmax, for both normal and uniform laws. Other

Low-resolution version (300 dpi). High-resolution version is available on IEEE Xplore site.
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parameters are: p = 8, n = 24, number of Monte-Carlo runs is
set to 5000 (for each k).

The simulation shows that the proposed statistics A4 unb €8-
timates very well the true (or real) value of cumulant, while
keeping its MSE at the same level as other estimators.

V. CONCLUSIONS

In this paper we designed and studied an unbiased and quite
efficient estimator of the fourth-order cumulant for real random
zero-mean non-i.i.d. signal that can be approximated by an MA
stochastic process. We undertook statistical comparative studies
of the proposed estimator with two other classically used esti-
mators of the fourth-order cumulant: the natural estimator and
the fourth k-statistics. These studies were devoted to two main

estimator’s criteria: bias and MSE. The bias studies showed that
in contrast to the proposed estimator, the natural one is strongly
biased, while the fourth k-statistics turned out to be moderately
biased. As to the MSE performances, as expected the proposed
unbiased estimator showed variable MSE performances: they
depend on the distribution law, on the order of the MA filter
and on the concrete choice of the IR coefficients. Hence, the
proposed unbiased estimator may be particularly useful in the
applications where the performances depend on the mean of the
cumulant (e.g., [6], [16], something similar to [13], etc.) and
not on the mean square. In order the estimators to be appreci-
ated in versatile short-term and real-time applications, we also
reduced, wherever possible, computational complexity of the al-
gorithms. Finally, an adaptive version of the proposed estimator

Low-resolution version (300 dpi). High-resolution version is available on IEEE Xplore site.
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Fig. 5. Numerical simulation test for three compared estimators for the dy-
namic power stochastic signal ;.

may be also designed by using the method described in [29],
but the derivation procedure is more complicated, because the
coefficients « and 3 of the estimator (8) do not depend on n
explicitly, but implicitly, via the IR. In a very general way, the
recursive version of such an estimator for arbitrary values of «
and 3 [see (8)] is given as

N [S 77 N 2 [P ] ~4
R4 n41 = o K4n +n ﬂn - ﬂn+1 g,

‘T T

A2 2 4
=2n0n416,u;, 1 + (Oén,+1 - ﬁn,+1)un+1

where indices n and (n + 1) denote the size of the signal’s
frames from which estimations are performed (i.e., v, and (3,
are the coefficients from (8) corresponding to an estimate made
from n samples; a,, 1 and /3,11, are those corresponding to an
estimate made from (n + 1) samples), and &, = /s2/n. The
usual performance analysis of such an adaptive estimator (i.e.,
convergence in mean and in mean square) may be performed
by using the recursive method that was described in [29] (see
especially appendices B and C). Also, higher-order cumulants
can be always estimated without bias by using the same method
(e.g., see the discussion in [29] for k3, k5, kg, .. .)-

APPENDIX
BIAS OF THE FOURTH k-STATISTICS FOR THE MA PROCESS

The bias of the fourth k-statistics for non-i.i.d. signal u; can
be calculated from (4). By separately evaluating the mathemat-
ical expectation of each term, we first obtain

n n p
4
E[sl] = E E [uujupw] = E E E U Qg loGh
1,7,k I1=1 2,7, k,0=1 m,q,0,h=0

Tiem@j—qTh—oti—p | = f5E [2%] + foE” [27]

(20)
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where we designated

n p
f-5 = § E U G4 j—iOm4-k—iGm41—i
4,7,k I=1 Lm=0
3
n p n
= E § [£27) E Gt j—i ’
=1 m=0 i=1
n r
f6 =3 E § UmUglgtk—7Am41—3
4,5,k1=1 [ m,q=0
m#q+i—j
n
=3 E Rj_k [h] Ri—l [h] - 3f5
i,7,k,1=1
2

=3 ZRj_k [h] - 3f5.
7,k=1

Note that we try everywhere where is possible to reduce com-
putational complexity.
Then, by using the same procedure as above, we obtain

T 143

B [828%] = Z B [u?ujuk] = Z B

i.gk=1 i\j k=1

P
g G QgQoQp,

m,q,0,h=0
TimmTi—qTj—oTh—p |=f7E [a:4]+f8E2 [mz]
2D

where we denoted

n p

§ : E : 2
(L»m, (Lerj — i Omtk—i

i,7,k=1 Lm=0
2

14
+ 2 E A g j—i g 4 ki
m,q=0
m#q
n

-3 (Rji [P/ T+ 2Rics W] Rici [H] ) = 317

=nvf2 AZ Rj_k[h,]+2zn: zn:Ri_j [h] | —3f.
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For the term E [s3s1], the same procedure yields

"

Z E [uf’uj]

ij:l

E E E U gOo@hTi—mLi—qTi—oXj_h

2,7=1 m,q,0,h=0

JobS [ ]+f10E[ ]

E [5351] =

»

(22)

where we designated

=D 3D ITRIEES S )

7,j=1m=0 7,5=1

n P
2
fi0=3 E E Ay gy j—i

i,j=1 m,q=0
m;ﬁq

=3f2 Z Ri_j[h] —3f

2,5=1

and

and Ry, [-, -] denotes discrete cross-correlation function. For the
IRs 1™ [given in the formula between (1) and (2)], and g™, m €
IN*, defined analogously

i€, VbelR

P
g =g = bl

k=0

this function is given as

oo

Ry [h", ™) = Z a'bity = Z(ll ks

l=—o0

ke

where % is discrete time. By the way, note that as usual we

have Ry, [h”, h”] =R, [h"] ,1.e., cross-correlation function be-

comes auto-correlation one when its both arguments coincide.
Finally, we deal with

E [93] = Z E [u?u?] = f3E [:1:4] + 3f,E? [Tz] (23)

that follows from (10) and (14); as well as with F. [s4], that may
be easily derived from (11) and (14):

Elsa) = nfiE [#*] +3n(f2 — 1)E® [+7]. (24

By substituting (20), (21), (22), (23) and (24) into (4), we finally
arrive to the mathematical expectation of the fourth k-statistics

1
n(n — 1){n — 2)(n — 3)

Elky] =
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X (7L3(7l +1)f1 —dn(n+1)fo

—3n(n — 1)fs + 12nfr — 6f5)E 2]

+ (3713(77, + 1){(fa— f1)—4n(n+1)f1o

—9n(n—1)fs+ 12nfs — 6f6)E2 [LQ]

and consequently, to its bias

Fu(B [o] - 387 [+7])

both for the considered MA process u; defined in (1).

Lastly, we note that the overall reduction of the computational
complexity for the bias byg (25) is about 480 times8 (compar-
isons between bias calculated with auxiliary functions directly
computed via multiple sums and between bias calculated with
auxiliary functions after computational reduction, e.g., first line
for f5 versus the second one, or first line for fg versus the third
one, or first line for fg versus the last one, etc.).

bist = E[ka] — (25)
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