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Unbiased Adaptive Estimations of the Fourth-Order
Cumulant for Real Random Zero-Mean Signal
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Abstract—In this paper, a consistent efficient estimator of the
fourth-order cumulant for real discrete-time random i.i.d. (at least
up to order 8) zero-mean signal is proposed, in both, batch and
adaptive versions. In batch version, the proposed estimator is not
only consistent, but also unbiased and efficient. The systematical
theoretical and experimental studies with comparisons between the
proposed estimator and three other estimators of the fourth-order
cumulant (the natural or the traditional one, the trivial unbiased
estimator for the known power case and the fourth k-statistics),
are undertaken, for both, normal and uniform processes. Then,
the adaptive versions of the estimators (all, except the fourth k-sta-
tistics), are given and studied in detail. The convergence in mean
and the convergence in mean square analyses are performed for
them, first theoretically, then empirically. Finally, the whole set of
analyses carried out for both batch and adaptive versions shows
that from many points of view the proposed estimator is inter-
esting for use in versatile signal processing applications, especially
in real-time and short-term ones.

Index Terms—Adaptive estimation, bias, consistency, conver-
gence in mean, convergence in mean square, cumulant, estimation,
estimator, higher moments, higher order statistics (HOS), k-statis-
tics, mean square error (MSE), random signals, recursive method,
semi-invariant, stochastic processes, variance.

1. INTRODUCTION

HE use of the higher-order statistics in signal processing
T is nowadays an ordinary procedure. The third- and fourth-
order moments and cumulants are especially of great interest,
since they found many practical applications: blind source sep-
aration problems [1]-[3], including for the MIMO systems [4],
which by the way found many applications in wireless commu-
nications (e.g., Wi-Fi routers with multiple antenna), identifi-
cation of FIR systems [5], [6], speech stream and voicing detec-
tions [7]—[9], speech recognition [10]-[12], general speech pro-
cessing [13], and many others. Usually, cumulants, also known
as cumulative moment functions, semi-invariants, or half-invari-
ants [14]-[18], are more often used in applications, and the mo-
ments have generally only an auxiliary function. Unlike the mo-
ments, cumulants cannot be calculated directly from the density
probability function p(x), but only via the characteristic func-
tion or the moments. Since the moments and the cumulants can
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be easily expressed in terms of each other [15], [17]-[19], the
latter are often computed via the moments.

Let us consider a real random discrete signal z; = z(i), ¢ €
Z, where 7 is discrete time, i.e., number of current sample. Letus
consider in addition this signal is zero-mean and i.i.d. up to order
8; in other words, the samples of x; are identically distributed
(#; is stationary) and independent up to order 8. Furthermore,
it is also supposed that all its raw moments up to order § exist.
The latter are denoted for simplicity by E[+?] = E[z¥], p € N*,
where E[-] is the operator of the mathematical expectation.

The moment-based definition of the fourth-order cumulant x4
for such a signal #; is given by

k4 = E[z*] — 3E?[2%] ()

where the raw moments E[z?] and E[z*] are calculated from the
density probability function p(z) defining the distribution of the
samples ;. In practice, in many cases, on the one hand, we do
not know exactly the density probability function p(z), and on
the another hand, we do not have an access to all samples of
x;. Thus, in practice, the raw moments E[27], p € N*, cannot
be calculated directly, and consequently, neither the cumulant
in question. In these cases, we can make an estimation of this
cumulant from a single realization of 7 samples of x:;. The clas-
sical or natural estimator of this cumulant is given by [20]

2
n n
1 3 .
o _ 4 2
K4 nat = — ZTZ - = Z.Tl . (2)
n < n <
=1 =1

This estimator is called “natural,” because the unknown mo-
ments are simply, or naturally, replaced by the sample ones.
This estimator was subject to numerous studies in literature over
the past 60 years, and many authors use this estimator for their
works. Notwithstanding its simplicity and the fact that this es-
timator is very often used in practice, there is no reason that
it is the best estimator of the fourth-order cumulant. An esti-
mator is characterized by three fundamental properties: con-
sistency (absence of bias in probability or asymptotically, i.e.,
when n — 00), bias and efficiency, expressed in terms of mean
square error of the estimator [21]-[23]. The estimator (2) is con-
sistent, but it is biased and has nonzero variance, which is, in
turn, closely related to its mean square error (MSE).

In fact, the general problem of the unbiased estimation of cu-
mulants is an important statistical problem having potentially
many versatile applications in the field of signal processing. The
solution of this problem is known over the past 80 years under
the name of the so-called k-statistics [14], [18], [24], [25]. These
statistics, denoted by k,, p € N*, the mean values of which
are unconditionally equal to the pth cumulants Ek,] = &,
were worked out in a quite general way by Fisher at the end
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of the twenties of the XXth century [14], [18]. They provide
the unbiased estimations of the cumulants for the very general
case, in which all the previous moments (i.e., moments of order
less or equal than that of cumulant) are considered unknown.
These unknown moments are replaced by the weighted sym-
metric product sums, and the final expressions may be expressed
in terms of sample means. For instance, the fourth %-statistics is
given by
n?{(n+ 1)my — 3(n — 1)m3} 3
(n—l)(n—Z)( -3) ©)
where m» and my are the second and the fourth sample central
moments

ky =

n

1
my = — ;(JM — m’l)p

:%;T7 p €N~

[14], [18], [25]. However, in many signal processing problems
some moments are explicitly known, and consequently, the es-
timation could be more accurate. The most frequent case is that
of the strictly centered processes; e.g., speech signals, audio
signals, almost all telecommunication signals. In these cases,
one can suppose that the fourth k-statistics, that additionally
estimates the mean value, becomes less efficient, and, there-
fore, it may be not the best choice for such situations. Thus,
we decided to use this a priori information in order to build
a precise and efficient estimator of the fourth-order cumulant.
We will then compare it to the other aforementionned estima-
tors of the fourth-order cumulant, as well as to the trivial unbi-
ased estimator for the known parent variance E[z?] case (i.e.,
known power case, which can be often considered, e.g., for fre-
quency and phase modulation signals), in both, batch and adap-
tive versions.

II. BATCH VERSIONS OF THE ESTIMATORS

A. Construction of the Unbiased Estimators

1) Unbiased Estimator for the Unknown Variance Case: The
main problem of the natural estimator (2) is the second term in
the above difference. The first term of (2) is the unbiased esti-

mator of E[z%], but the second term (quadratic term) introduces
a bias to the estimation of the term E?[z?]. In fact, if we esti-
mated E?[z?] via the following estimator:

2
1 n
— (Z .q;?) )

=1

the bias b would be

=E — (Zm ) — E?[z?]

1 4, 1 2.2 27 2
ij
1

=—(Bl"] - B2, 3)

n
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Note that in the above calculation, we used the following
property:

Ele?) El2?] i # j

Elzfz]] = p,q € N* (6)
B2t =

provided that p+q < 8, and which holds because z; is assumed

to be an i.i.d. up to order 8 signal. Strictly speaking, here, we
only need the fulfilment of the property (6) for p and g such that
P+ q < 4, but in further calculations concerning variance, the
more strict condition p+ ¢ < 8 is required. Therefore, estimator
(4) is biased, but still consistent because
lim b=0. (7
n—occ
Consequently, the natural estimator (2) is also biased, and its
bias is
3 (w2, 2 4
b:—(E 2] - E[z ]) )
7
but it still remains consistent because (7) holds as well.

Before proceed with the construction of the unbiased estima-
tors of the fourth-order cumulant, we will just recall one impor-
tant theorem from theory of estimations: if one can found an
unbiased symmetric polynomial estimator of the pth cumulant,
this estimator is the unique unbiased estimator of this cumulant
[18]. Hence, the unbiased estimators of the cumulants we will
construct are unique.

From previous analysis, one can notice that by choosing prop-
erly the coefficients before two terms in the right part of (2), one
can compensate the bias introduced by the quadratic term, and
therefore, make the total bias vanishes. Let us introduce now the
following estimator of the cumulant r4:

n 2
Raunk = ()[ZL (Z lf) . 9)

i=1

Its bias is

b=E[f4 unk] — 1= (an—Bn—1)E[z*]|—(Bn(n—1)—-3)E*[2”]

Hence, if we want the bias to be zero, we must choose the
coefficients v and 3 to be equal to

n—+2 3

Cn(n-1) n(n—1) (19

The resulting unbiased estimator of the fourth cumulant is

En: - L—1 (2}) . (1D

As a matter of fact, note that it is also possible to arrive to this
expression [as well as to obtain the further formulas (17), (18),
and (19) in Section II-C1], by using the aforementioned Fisher’s
method employed for the obtaining of k-statistics.

2) Unbiased Estimator for the Known Variance Case: By
considering the parent variance E[z%] (or power of the signal
x;), denoted by o2, a known fixed value, the cumulant to esti-
mate becomes

n+2

/%4 unk =
’ (n— 1

k4 = E[z*] — 30*
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Obviously, the unbiased estimation of this kind of cumulant is

- 1 - 4 4
4 kno — — €T, — 3 . 12
Rak - ;:1 T o (12)

In our work, this trivial estimator will be also used, mainly for
comparison purposes.

B. Efficiencies of the Estimators and Their Comparisons

Besides consistency and bias, another important property of
the estimator is its efficiency, which is usually expressed in
terms of its MSE [21]-[23]. For the statistics in question, the
latter is defined as

MSE = E[(fi4 - 54)2] = E[i?] - 2r4B[Rd] + K2, (13)
The MSE is often written in terms of variance and bias
var [#4] + b = MSE (14)
where the variance is
var [fa] = E[(Fi_i - E[Fe_i])?] — E[RY - E*ad. (15

Thus, since the MSE takes account of both, bias and variance,
it is usually employed as the index of efficiency of an esti-
mator. Note by the way that we do not call it “the index of
performance,” because the latter may be defined differently, de-
pending on the concrete application and aim. For instance, one
can consider a different cost functions composed of bias, vari-
ance, MSE, entropy, likelihood, posterior expected value of a
loss function (Bayesian estimation), etc., weighed by the corre-
sponding coefficients. By properly choosing the nature of each
term and each weight, one can emphasize the desired character-
istics of an estimator and this function can be called “the index
of performance.”

From latter equations, we understand that the main problem
of the calculation of MSE is actually reduced to the calculation
of the term E[#7], the term 3 being given by (1), and E[#4] was
calculated before, during the calculation of bias. The direct cal-
culation of the term E[#3], is often long, that is why we present
it in detail only once for A4 k., in Appendix A; the calculation
of this term for other estimators being almost analogous to the
presented one.

We will now compare the efficiencies of the four aforemen-
tioned estimators: A4 unk given by (11), R4 1no given by (12),
Fanat given by (2) and k4 given by (3). Since the most frequent
and important distributions in signal processing are normal
and uniform (e.g., distribution of the speech signal samples are
nearly Gaussian, almost any natural noise, including thermal
noise, is also normal, quantization error in analog-to-digital
converters is uniform, messages emitted from a discrete source
having the maximum entropy are distributed uniformly, etc.),
we will study only the processes described by these two distri-
butions. The even raw moments of the Gaussian and uniform
distributions with zero mean and given variance o2, denoted
N(0,0) and U(0, o), are, respectively

2'11,1‘\ , 1 [
E[[I/'Q“']: (\l/L;—’_ 2) 0_211,:0_211, H(2l _ 1)’
=1

u=12 ...
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and

3u{72u

T 2u+41’

BElz"] w=1,2...

where I'(+) is the gamma function, also known as Euler’s inte-

gral of the second kind. As to the odd moments E[z2“*+1], they

are all null for both distributions because of the symmetry.
The general formula for the MSE of the estimator for the un-

known variance case (11) is given by (see Appendix A for de-

tails):

-

_lors 12006 g =19 o4

B TLE[.L ] n Bla"]El] n(n — I)E [+
A8 — 84 4 o 4 36m—54 ,
n(n—1) Bl e - n(n — 1)E =7 a6

So, it tends asymptotically to zero when n — oc. For the
aforementioned normal and uniform processes, the MSE be-
comes

24(n+2) 4
n(n—1) ?
_288(6n+ 1)
~ 175n(n — l)a '

MSEunk [N(O, {7)] =
MSEunk [U(0,0)]

For the trivial estimator for the known variance case (12), the
MSE is

: 1 .
E|:(/?"'4Wkno - %4)2i| = (E[Tg] - Ez[T4])
n
In this case, the MSE also tends asymptotically to zero. For the

particular cases we face, it reads

0.8
MSEyno [N(0,0)] = 96—
mn

8
MSEj 0 [U(0, )] = 5.76(:—7.

As to the natural estimator (2), since it is biased, the calcula-
tion of the MSE is slightly more complicated. First, we calculate
its variance according to (15), and then use (14) in order to cal-
culate the corresponding MSE. For the variance, we first need
the mean value of the natural estimator

(n— S)E[ZL4] _3(n-1)

E2[z?].
n T [i ]

E[/‘Af/4,nat] =
Then, after the calculation of the term E[#] , ], which is quite
similar to that of E[#7 ] performed in the Appendix A, we
obtain the variance of the natural estimator

var [54 nat]
n—3)2% o 12(n—1)(n—3) . g o
_ ¢ > ) - 12 ng( ) Bl )
n?—24n+27 12(n—1)(4n—9
—T+E2[:z:4]+%E[m4]E2[m2]
18(n —1)(2n — 3) 4, o
18D =3y
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Normal distribution ¥ (0,1)

50 60 70 80 90 100

Uniform distribution U (0,1)
2 . . . . . . -
s — K4unk
: == Kdkno
=~ K4nat

Fig. 1. The evolution of the resulting MSE for the normal and uniform distri-
butions.

and finally, its MSE

E [(fm,nat - %4) 2}

(n—3)? 12(n —1)(n =3) . 6
= P — O g
_ MEQ[#]—F 6(8”2_23n+18)E[:1:4]E2[.7J2]
" n
3 9(n — 2)(471 —3) E4[+?).
n3

Hence, once again, both variance and MSE tend asymptoti-

cally to zero. For the considered uniform and normal cases, the
MSE becomes
12(2n* — 3n + 36
MSEy [N(0, )] = 12207 = 30 +36) g
"
144(12n* + 29n — 6)
MSEqa: [U(0,0)] = 5
«[U(0,0)] 1753 7

Finally, as to the MSE of the fourth k-statistics, the corre-
sponding expression can be found in [14], [18] or [25] (in first
two references it is designated by special notation #(4%) =
ka[ks] = var[k4]), and it tends asymptotically to zero as well.
For the particular normal and uniform cases with which we deal,
it, respectively, gives

24n(n + 1) 8
o
(n—1){n-2)(n-23)
"3 =2 p £
MSEje [U(0,0)] = 288(6n° 4+ bn* +n + 310) 8
175n(n — 1){(n — 2)(n — 3)

MSEkst [JV(Uw (7')] =

The behavior of the resulting MSE for all four estimators is
given in the Fig. 1. As can be ascertained from these graphics,
the efficiency of the unbiased estimator 4 ynik is almost the
same as that of the natural estimator A4 na¢ for both, normal and

3333

uniform distributions,! but since the estimator &4 unk is unbi-
ased, it is more precise. As to the estimator for the known vari-
ance case f4 kno- its behavior is strongly influenced by the dis-
tribution of the initial data, and depending on the conditions, it
can be efficient or inefficient. Finally, as to the fourth k-statistics
k4, itis less efficient than the proposed estimator A4, unk and than
the natural one A4 nat, in both uniform and normal scenarios.

Taking into account the latter fact, and that the analysis of the
fourth %-statistics in adaptive version would be too tedious,? the
fourth k-statistics will not be considered for the further studies
devoted to the adaptive versions of the estimators.

C. Extensions to the Higher-Order and to
the Cross-Cumulant Cases

1) Higher-Order Extensions: our method, based on the re-
placement of the unknown raw moments by the sample ones
with modified coefficients, may be used for the construction
of the unbiased estimators for other higher-order cumulants. In
particular, the unbiased estimator of the third-order cumulant
k3[x] = E[z%] is simply the third sample mean (i.e., in this case,
the unique coefficient 7! remains unchanged)

n

. 1 .
fig = —s3, where s, = E xy,
’ i=1

reN*  (17)
that of the fifth-order cumulant x5[x] = E[z°] — 10E[z3]|E[2?]

is
n+9 10

Sy —
nin—1)"
that of the sixth-order cumulant

rwe[r] = E[z°] — 15E[z*|E[z?] — 10E?[z*] + 30E*[2?]

Ry =

)5352 (18)

nin—1

is

L 2
g = —— 5 22n + 12)s6 — 15(n + 4)s15.
v n(n—l)(n—Q){(n +22n + 12)s6 5(n + 4) 8482

—10(n — 2)s2 + 3033} (19)

and so on. In fact, the possibility to generalize the method is
simply due to the fact, that the cumulants are expressed in terms
of different raw moment products, which includes all possible
homogeneous combinations of these moments (this follows
directly from the well-known moment-to-cumulant formula
[17]-[19]); these raw moments are then replaced by the sample
ones with variable coefficients, and the bias, due to the crossed
terms into the products of sample moments, can be precisely
compensated by the modifications of these coefficients.

2) Cross-Cumulant Extensions: We finally would like to
briefly discuss the possible extensions of the method to the

IBy the way, the MSE for » > 1 are in first approximation equal for the
estimators &4 unk, Ra,nat and ka: MSE[N(0,0)] = (24n7! + O(n™?)) 03,
and MSE [U(0,0)] & (9.87n~ + O(n~?)) ¢®, while the MSE for &1 1o
in first approximation differ from previous ones for both, normal and uniform
distributions.

2An approximate volume of such calculations can be estimated basing on the
Appendices B and C, where we, respectively, calculated the mean and the MSE
of the adaptive estimator for the unknown variance case, and this statistics does
not imply even a half of the auxiliary statistics that are needed for the fourth
k-statistics.
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cross-cumulants (called also joint cumulants), which are con-
stantly receiving growing interest in versatile signal processing
applications. Let us assume we have four real random dis-
crete-time zero-mean i.i.d. signals u;, x;, y; and z;. If these
processes are dependent (otherwise, such cross-cumulants are
null), we may again apply our method to obtain the unbiased
estimators. If, for example, we wished to estimate without
bias the third-order cross-cumulant 3z, y,z] = E[z,y,z],
[17]-[19], such an estimator would be the following one:
1 n
Ra[z,y, 2] = - ;‘z,.lyzzz.

As to the unbiased estimation of the fourth-order cross-cumu-
lant, defined as [17]-[19]

H’4[“7 Ty, Z] = E[’IL, Z,Y, Z] - E[1L7 ﬁ]E[yv Z]
—E[u, y|E[z, 2] — E[u, 2]E[, y]

its unbiased estimator may be given by

Ra[w, .y, 2]

= i: Wi Yizi — 3 (i uﬁh) (i: ym)
i=1 i=1 =1

where the coefficients «, 3, v, 6 are found, as previously, in such
way that the bias vanishes (obviously, they depend on the con-
crete dependencies between u;, ;, ¥;, ;). In analogous manner,
the extensions to higher-order cross-cumulants may be also ob-
tained basing on the above-mentioned moment-to-cumulant for-
mula, but it should be taken into account that the more the order
of the cumulant and the more the complexity of the dependency
between the processes, the more long and complicated the de-
termination of the coefficients.

III. ADAPTIVE VERSIONS OF THE ESTIMATORS

The adaptive estimation is based on a recurrent estimation
over time index m. The aim of the adaptive estimation is to be
able to calculate the new value of estimation, by using the pre-
vious value of the estimation and the new observation. Basing
on the recurrent relationship for the estimator, an adaptive step
size p, which is usually real and chosen in the range 0 < p € 1,
is then introduced as: u = 1/n.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 9, SEPTEMBER 2009

A. Construction of the Estimators and Convergence in Mean

1) Unknown Variance Case: If we denote the estimator (11)
by A4.n,unk, Where 7 is the size of frame we dispose for each
single estimation, one can see that its adaptive version can be
written as

. _(A=mA+3p) . T
4,n+1,unk (1 T M)(l T 2#) 4,n,unk (1 T H)(l + 2#)
. 614 R 12
4 .2 2 o
TUn T 1+ L :Ln,—&-l On + 1+ MLn+1 (20)

where by &, we denoted the square root of the unbiased estima-
tion of variance for the zero-mean case made from a frame of n
samples

2L

Thus, unfortunately, the adaptive estimation of the fourth-order
cumulant also involves at each stage the additional adaptive es-
timation of &,

on = (1= p)on_1 + pay. (22)

In practice, in order to initialize the algorithm, besides the
choice of the adaptive step size u, we must also choose the ini-
tial values &% and #4,2 unk- For instance, for the forthcoming
empirical tests, we chose to initialize and c}% at 0, and A4,2 unk
at —0.6 (mean between the values of the fourth semi-invariant
for the normal and uniform distributions of unit standard devi-
ation), but this choice is not mandatory and these values can be
any constants in the reasonable interval.

We now study the convergence in mean of the adaptive algo-
rithm. The analysis of the convergence in mean of this estimator
is a quite long procedure, that is why we put it into Appendix B,
and here we give only the final result [see (23) shown at the
bottom of the page], with fy defined in (42). Then, by calcu-
lating the limit of the latter, that is fortunately easy to do since
its 3 terms of 4 vanish when n tends to infinity, we obtain

2
(5p+1)(2 = p)
{(—/f +3p+ DE[z?] — 3(=2p® + 4p + 1)E2[$2]} 24)

lim E[/‘Af/_/;,n-l,-l,unk] =

n—oo

with the domain of convergence defined as intersection of (5 —
V33)/2 < p < =1/5and 0 < g < (5 + v33)/2, due to

(1 _ N)Qn,—? _ fél*l

3p(l — p)?

E[/?"'4Wn,+1,unk] = f(?il/?"wlv?,unk + (1 — /1,)2 — fO

, 2(1 — g
.{a‘f ST /)
2—p 2—p
p(1=f3

(1+ )1 = fo)
DN i

{E[:p‘*] — 6E%[?] +

1242(1 — 1)

(14 p)(1 +2p)

E2[2?] — 2E[z?] (&% - E[Tz])}

- +32u (2 " “E[#] + 2(2%_:)132@2])}

L—p—fo

(T4 ) (14 2p)

Elz2] (af - E[mZ]) (23)
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the first term in the estimator (20), with 0 < p < 2, due to the
first term in the auxiliary estimator (22); so, finally, the common
domain of convergence is 0 < p < 2.

Hence, this estimator has a bias, but it vanishes for small step
sizes 4, i.e., when 1 — 0. Also, one can easily notice that
there is another interesting case when the bias also vanishes,
and it is also in the range of convergence: y = 1. We have

n11—1>Tolc E["?‘;h’l,nJrLunk] = nh—l};o E[/?"'4W71,+1,unk]
n——+0 pn—1

=E[z?] - 3E*[2?].

This second case may also be important because for small step
size p the convergence is slow, but for ;4 = 1 it is very fast.
Moreover, from (24) it follows also that there are no more un-
biased cases for our estimator, since the second degree equa-
tion has only two roots. Thus, using the terminology of the
adaptive estimation literature, the estimator A4 ,,11, unk 18 said
to be quasi-convergent in mean; i.e., there is no convergence in
mean in a classical sense, since the mean does not tend to x4
when n. — oo for any j in the domain of convergence, but the
quasi-convergence in mean, because the mean tends to x4 when
n — oo and p — 0.

2) Known Variance Case: This is again a quite simple case
for which the adaptive version can be written as
. by 3

K4 n,kno + —

4
o — 2ot (25

F4m+t1kno = v

that follows directly from (12).
Now, we perform the analysis of convergence of this adaptive

algorithm. By proceeding in the analogous way to that of the
adaptive estimator of variance, we obtain first

1
K4 n+1kno = )n K41, kno

(1+4+u
n—1 4

H xn—k-{—l o 4 1 :|
+ —30t|1- ———|.
L+ p ,;U (L+ )" { (L+p)m

Then, by calculating its mean value:

1 1
Elkq4, )| = ——m—F l1- ——|E[z*
[/%4,77,+Lkno] (1 T /l,)n K41 kno + |: (1 T /1,)”:| [”[7 ]
1
-3t |1 - ——— . 26
|- ) 20

And finally, by evaluating the limit of the last mean
Elz%] =30t ifp<—-2Up>0
lim E[/%4,71,+1,kno] =

n—oc

diverges otherwise.

27

So this adaptive estimator is convergent, but unlike the previous
ones, it is always unbiased. In other words, this estimator is
convergent in mean in a classical sense. Note, by the way, that
this estimator is the unique one which converges for negative
and for great step sizes p.
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Fig. 2. Theoretical behavior of the means of the estimators. By n,,.. we
denoted the maximum number of iterations n for both N(0,1) and U(0,1)
scenarios.

3) Natural Estimator: For the natural estimator (2), the adap-
tive version can be written as follows:

. n 31
—k _
1—|—/L 4,n,nat (1+/1)2

O o o p1=2) 4

- i@
(1 +lt)2J”n,+lan (1 +M)2 Lnt1 ( 8)

P _ ~4
K4 n+41,nat = (%

Again, the adaptive estimation involve the calculation of the
statistics 6,,, which must be calculated from its previous value
via (22).

Analogously to the adaptive convergence in mean of the al-
gorithm for the unknown variance, we first have

E[f4,n41,nat]
R4,2 nat B 1
(1+p)mt [(14 p)(1 - ;L)Q]nil
3p(l = )™
(L4 ) [(1T 4 p) (1 = p)* = 1]

E[z%]  2(1 - .
(3’% _ 24 [T ] _ ( /J“) EQ[ZL‘z]
2—pu 2—pu

1+prt-1

- 281 (67 - B |+

(1 — 2u)E[z*] — 6E2[2%]

+3 (2 " “E[xj‘] 420 e [xz]) (29)

2—pu
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and then

2
(14 p)(2—p)
{02 =+ DB - 3877} o)

lim E[f4nt1nat] =

n—oc

provided that 0 < v < 2. Strangely, this estimator becomes un-
biased exactly for the same values of 1 as it was for the unknown
variance case estimator: when it tends to 40, and when . = 1.
Furthermore, these unbiased cases are unique for this estimator
as well, since (30) is a second degree equation for y. Thus, the
natural estimator is not convergent in mean in a classical sense,
but quasi-convergent in mean.

4) Comparisons: In the first place, we present the graphs of
the theoretical behavior of the means of three considered esti-
mators of the fourth-order cumulant for given g, implemented
according to (23), (26), and (29). First half of data is considered
being distributed according to the law N (0, 1), and the second
half, to the law {/(0, 1); the adaptive step size 1 is set to 0.25.
Note that we deliberately choose ;4 not very small in order to
avoid arelatively banal behavior? of the statistics. First of all, we
note that the behavior of our estimator for the unknown variance
case and that of the natural estimator is quite similar, both having
a maximum that occurs in the beginning when » = 5, and after
reaching it, they begin to converge to their final limit value, de-
fined by the corresponding bias. Moreover, it is quite well vis-
ible that the latter is almost twice greater for the natural esti-
mator. Namely, the bias of the estimator for the unknown vari-
ance case is equal to —0.286 for the normal case, and —0.114,
for the uniform case, while the bias of the natural estimator is
about —0.514 and —0.206, respectively [see (24) and (30)]. On
the contrary, the estimator for the known variance case has a
qualitatively different behavior. It does not have any maximum
in the beginning and converges directly to the true value of cu-
mulant, since it has no bias. As to the rate of convergence, it is
practically the same for all the statistics, but in other cases, it
can differ, namely, in the case 4 = 1 that we come to study in
the experimental section of our work, Section IV.

In the second place, we illustrate the behavior of the asymp-
totic bias as a function of y, according to (24), (27), and (30),
see Fig. 3.

The dependence of the asymptotic bias on the step size p
shows the asymptotic bias is always smaller for the estimator
Fan+1.unk than that for the natural one A4 n41.nat in both,
normal and uniform scenarios. For both estimators and in both
scenarios, it is slightly negative for 0 < g < 1, it is positive
tending to infinity for 1 < g < 2 and it is null for ;4 = +0 and
w=1.

B. Convergence in Mean Square

1) Unknown Variance Case and Natural Estimator: The con-
vergence in mean square of these algorithms, necessary for the
corresponding MSE analysis, is usually performed in order to
find out the efficiencies of estimators. The latter analysis is even

3We mean, we do not want to take ¢ & +0, which is usual in adaptive es-
timations, because it would lead to the unbiasedness and to the entirely similar
behavior of both estimators £4. 41, unk and &4,741,nat-
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Fig. 3. Dependence of the asymptotic bias on the step size .

more long and tedious than that of its bias, because for both es-
timators A4 n+1,unk aNd R4 41 nat it implies a lot of additional
calculations related to four auxiliary estimators 62, 62, 58 58,
which are in addition all self-implicative (e.g., % requires &9,
6+ and 62), as well as, to four mixed estimators f4 , unkd2,
1%47n,unk&§, 1%47n,nat6ri and /%47,1’,1“&?1, which are also self-im-
plicative. Thus, this analysis was performed asymptotically and
put into Appendix C. From (44), it follows that both estimators
are quasi-convergent in mean square (i.e., the MSE — 0 when
n — oo and g — +0).

2) Known Variance Case: The asymptotic MSE of this adap-
tive estimator is much easier to calculate than the previous ones.
Basing on the method described in the Appendix C, and under
assumption of the convergence in mean (27), we find

nlggo E[ (12:4,,14_1’1{,10 — 534) 2} = #LM (E[.’I,’g] —E? [:174]> . (3D
It tends to zero for 4 — +0 and for 4 — —oc, and, thus, the
estimator is also quasi-convergent in mean square.

3) Comparisons: We compare the behaviors of the asymp-
totic MSE of the three considered estimators as a function of ,
according to (44) and (31), see Fig. 4. This dependence shows
for small and average step sizes i, the asymptotic MSE of the
estimator for the unknown variance case and of the natural one
are almost the same for the normal process, and it is slightly
worse for average step sizes p for the uniform process. As to
the trivial estimator for the known variance case, its behavior
is again strongly influenced by the initial distribution of the
random signal z;.

Finally, it should be noted that for all three estimators this
second unbiased case, which gives, as we shall see later, a very
fast convergence rate and that could be very attractive perspec-
tive, gives also greater MSE.

IV. EXPERIMENTAL STUDY OF THE ESTIMATORS

In this section, we will experimentally study the considered
estimators. To carry out the experiments the following proce-
dure is performed. We generate d different random realizations

Low-resolution version (300 dpi). High-resolution version is available on IEEE Xplore site.
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Fig. 4. Dependence of the asymptotic MSE on the step size .

of signal x;, each realization being of length n (i.e., d frames of
n samples each, giving d X n samples in all, are generated). The
realizations are independent. Mathematically, the whole set of
d realizations (or frames) of length n can be written in vectorial
form as

{.1:7;}?:1, Vx,; € R?
where d is the dimension of the column vector x;. This can be
also view as a d x n matrix X, whose elements were taken from
signal z;. Then, for each realization (frame of length n), a single
value of the corresponding statistics is calculated; e.g., for the
natural estimator (2), one realization of z; of n samples (i.e.,
one frame) gives one value of the estimator 44. Since we have d
different realizations (d frames) of signal x;, d different values
of &4 will be calculated. Since we are mainly interested in mean
behavior of the estimator, from these d different values of A4,
denoted by a vector &4, we will calculate the mean E[&4]; the
latter being obviously estimated via the sample or arithmetic
mean.

Note that sometimes, especially in adaptive estimations, one
prefers to show a single realization of statistics, rather that its
mean (i.e., in practice, Fi[&4] with d = 1, instead of E[&4] with
great d). In particular, this can be interesting when the variance
of an estimator is small enough (e.g., when n — oo for the batch
estimators, or when pr — +0 for the adaptive ones), and a single
realization of the estimator has great chances to be close to the
mean value of estimator, and hence, in some sense, it “replaces”
the mean value. Thus, in general cases, when n is not very great,
or 4. is not very small, we prefer to show the mean and the MSE,
while for the special cases, we report also a single realization of
the statistics.

(32)

A. Batch Versions of the Estimators

The experimental studies of the batch versions of estimators
are divided in two parts: static power case and dynamic power
case. In both cases, we generated 500 random experiences (each
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experience being d realizations of n samples of signal x;): the
first 250, according to the normal law with zero mean, and the
second 250, according to the uniform law with zero mean; pa-
rameters d and 7 being fixed to 800 and 10, respectively.# In
static power case, the standard deviation of the initial data x; is
set to 1 for both normal and uniform distributions. In dynamic
power case, the standard deviation of the initial data :z; depends
on the number of current experience, denoted by k, according
to the amplitude modulation law

o(k) = oo(1 + asinwgk), 2n

wo = (33)

YIT1AaX

with og = 1, depth of modulation ¢ = 0.5, kpax = 250 and
k=1,2,..., kmax, for both normal and uniform cases.

The comparison of four considered in theoretical part statis-
tics A4 unk, A4 kno» F4,nat and k4 is shown in the Fig. 5 (static
power case) and Fig. 6 (dynamic power case).

For the static power case of unit power, the theoretical (or
true) value of the fourth-order cumulant is equal O for the normal
law, and to —1.2 for the uniform one. From Fig. 5, we can
observe the mean values of the estimators A4 unk, A4 kno and
k4 converge to the theoretical value of the fourth-order cumu-
lant for both, normal and uniform distributions, while the esti-
maror £ nat is strongly biased. Theoretically, according to (8),
its bias is b = —6/n = —0.6 for the case N(0,1), and is
b= —2.4/n = —0.24 for the case U(0, 1), and that is precisely
what we observe from Fig. 5. As to the MSE, in the Fig. 5 we
find the same features and values as those obtained theoretically
at the end of Section II-B and shown in Fig. 1 for parameter
n = 10.

The dynamic power case, intended to better represent the
reality (e.g., the real received signals may be strongly influ-
enced by the fluctuating physical properties of the channels
of propagation, e.g., Rayleigh fading, speech signals also have
nonconstant power, etc.), is shown in the Fig. 6. Theoretical
value of the fourth-order cumulant in the dynamic power case
depends on the evolution of the standard deviation of the initial
data: it remains still zero for normally distributed data, but it
becomes equal to —1.20*(k) for the uniformly distributed data,
and, therefore, depends also on the current experience k. From
the Fig. 6, it follows the estimators A4 unk, K4 kno, and k4 are
again without bias, in both, static and dynamic power cases.
In turn, the natural estimator has always a nonzero bias, and
the latter becomes especially important in the dynamic power
case for the normally distributed data. One can also notice that
this bias becomes greater when the initial standard deviation
reaches its maximal value 1.5. This is not an accident and ac-
tually follows directly from (8); more precisely, we have the
bias

~ —3.04. (34)

As to the MSE, it is again in accordance with the conclusions of
Section II-B and Fig. 1.

4We deliberately chose not great  in order to better observe the differences
between different estimators (bias and MSE).
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Fig. 5. Static power case: experimental means and MSE of the four considered
estimators with the true theoretical value of cumulant #,.

In conclusion note, that we considered here not a banal case,
when n = 10. If we took a more banal case (i.e., almost an
asymptotic case), when n is great, e.g., n = 10000, the behavior
of the estimators would be quite different. On the one hand, the
variance tending to zero, would permit to visualize the single
realization of the estimators A4, instead of its mean E[&4]. On
the other hand, great n would give a practically null bias for nat-
ural estimator, and we could not observe the differences between
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the estimators A4 unk, f4,nat and k4, because, in addition, their
MSE are in first approximation equal. More generally, one can

Low-resolution version (300 dpi). High-resolution version is available on IEEE Xplore site.
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Parameters: x4 = 0.0025, nmax = 12000.
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Fig. 7. Static power case: single realizations of estimators.

easily notice that for n >> 1, estimators &4 ynk (11) and A4 pnat
(2) become in first approximation equal
(n+2) 1 3 3

——~— and ——— ~ —.

nn—1) =n n(in—1) n?
Similar reasoning may be applied to k4 (3), but one has also
to take into account the first and third sample raw moments on
which k4 depends (explicitly on the first moment, and implicitly
on the third one5); the latter both tend to zero since the studied
processes are zero-mean and symmetric. Thus, the proposed es-
timator A4 ok may be especially advantageous and useful in
short-term and real-time signal processing applications.

B. Adaptive Versions of the Estimators

1) First Unbiased Case 0 < p < 1: As previously, in all ex-
periments, the first half of data was distributed according to the
law N(0,1), and the second half, according to the law U(0, 1);
Nmax 1 the number of maximum iterations of adaptive estima-
tors for each law.

First of all, we give a results for a single realization of esti-
mators, Fig. 7. All estimations vary a lot locally, but their global
behavior is quite stable. The step size ;1 was chosen equal to
0.0025, that guarantees the bias of the statistics practically null
and the small MSE; Fig. § illustrates the mean and MSE be-
haviors. On the other hand, the convergence is attempted after
2000 iterations approximately. One can also notice that the esti-
marors A4 n41,unk a0d A4 nt1,nat behave almost equally, from

SFormula (3) may be also written: k4 = {(r° + n?)s; —4(n%+ n)sss —
3(n? — n)s3 +12ns,s7 — 6s1}/{n(n — 1)(n — 2)(n — 3)}, where the
power sums s,. (17) are related to the sample raw moments m /. via the following
relationship: s, = nm.., r € N*, [16].
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Parameters: ¢ = 0.0025, d = 360, mmax = 12000.
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Fig. 8. Static power case: mean behavior and MSE of estimators. Note that
the MSE of the statistics &4 41, unk a0d K4 11 nat are so close that they are
practically undistinguishable.

both, bias and MSE points of view. This result is normal, be-
cause for small step sizes y, the initial formulas for both esti-
mators (20) and (28) become in first approximation the same;
namely, one may easily verify by using Maclaurin series, that
for small g

(1—p)(1+3p)
O m(ow ~ Lm0

and
1
— =1-—p+0d).
7 pt+O(p”)
Analogous comparisons may be done for other coefficients in
(20) and (28). Also, the asymptotic equality of both adaptive

Low-resolution version (300 dpi). High-resolution version is available on IEEE Xplore site.
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Parameters: y= 0.25, d = 100000, #max = 50.
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Fig. 9. Static power case: Mean behavior and MSE of estimators.

estimators may be observed in dynamic power case, which we
come to study later, Figs. 10 and 11.

In order to see the consequences of a greater adaptive step
size, we carried out another experience with ;1 = 0.25, Fig. 9.
The convergence is faster, it is attempted after 20 iterations, but
the variance and MSE, are greater. Actually, in general, this is
the common property for the adaptive estimation: the smaller
the step size u, the slower the convergence and the smaller the
variance, which can be the oscillations around the mean. Thus,
we do not present a single realization of such statistics, but its
mean and MSE. From Fig. 9, we can clearly observe the bias
of the estimator for the unknown variance case and that of the
natural estimator. Exactly as was predicted by the theory (see
Fig. 3 and the corresponding formulas, and compare Fig. 2 with
Fig. 9), the bias of the estimator for the unknown variance case
is about —0.286 for the normal case, and —0.114 for the uni-
form case; the bias of the natural estimator is about —0.514 and
—0.206, respectively, that is to say, almost two times greater in
both cases. The trivial estimator £4 4,41 kno» a5 €xpected is un-
biased. On the other hand, the MSE showed in Fig. 9 is slightly
better for A4.5n41,nat than for A4 ny1 unk in the normal case, and
is the same for R4 p41,unk a0d A4 54 1,nat i the uniform case.
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As to the estimator A4 n1,kno, its MSE is again strongly influ-
enced by the parent distribution of z;: it can be better (uniform
case) or worse (normal case) than that of two other estimators.
Thus, the proposed estimator 4 ,41,unk Showed good results
in the adaptive version as well, and with respect to the natural
estimator, it may be attractive especially because of its bias per-
formances (which are twice better), while it has variable MSE
performances. Note also, that our theoretical calculations rep-
resent very exactly the experimental behavior of the statistics.
On the one hand, for the mean and bias, the maxima observed
empirically correspond exactly to those obtained theoretically
(see Fig. 2), and the asymptotical bias corresponds exactly to
the observed one (see Fig. 3). On the other hand, the tedious
theoretical calculations of the MSE are also in excellent accor-
dance with experience.

We consider now the dynamic power case, Figs. 10 and 11.
In order to keep the bias as low as possible, we take again
1+ = 0.0025. The evolution of the initial power is the same as
described before (33), where % and ky,,x are, respectively, re-
placed by n and nyax. We had to choose a such big number of
iterations because of the slow convergence of the algorithm for
the small step sizes . We observe that all the estimators follow
quite good the changes of the current value of cumulant, pro-
voked by the changes of the current initial input power. A little
time shift between real and estimated values is due to the rate
of convergence, which depends, inter alia, on . Therefore, the
estimators have good dynamic properties allowing them to es-
timate fairly accurate the fourth-order cumulant of the random
signals of nonconstant power, which are obviously more fre-
quent in practice.

2) Second Unbiased Case pu = 1: Obviously, since for this
case the variances are relatively great (see Fig. 4), we present
only the means and the MSE.

First, we present the static power case, Fig. 12. Since the con-
vergence rate is great, we took a maximum number of iterations
Nmax = 25, for both N(0,1) and U(0, 1) scenarios. As pre-
dicted, the biases are null for all three estimators. We notice the
convergence of the estimator for the unknown variance case is
attempted after one single iteration, while for the others, it is
attempted only after 6-9 iterations. In fact, we run many simu-
lation of such a kind, and this is not an accident: the proposed
estimator converges always in one iteration, while the other es-
timators, in 69 iterations. As to the MSE of the estimators, for
R4 n+1,unk itis slightly better in NV (0, 1) case and slightly worse
in U(0,1) case, compared to A4 5,41 nat eStimator. In this case,
the main advantage of A4 n+1,unk OVEr A4 ny1 nat 1S the great
rate of convergence in mean and the stability of mean (it does
not have a brutal transition into a false direction when the dis-
tribution law changes). As to the trivial estimator A4 511 kno» it
showed better MSE performances than two other estimators.

Now, we present the dynamic power case, Fig. 13, with the
same parameters as just before. The power evolution is again
given by the amplitude modulation law (33), where k and %y ax
are, respectively, replaced by n and n,,,x. We observe in these
fast dynamic conditions, estimator A4 ,41,unk behaves good
giving a unit shift from the true cumulant value, A4 541 kno
behaves acceptably, while A4 541 nat iS completely unable to
converge for the normal process, but it still converges well for

Low-resolution version (300 dpi). High-resolution version is available on IEEE Xplore site.
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Parameters: g = 0.0025, nmax = 12000.
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Current iteration n x 10*

Fig. 10. Dynamic power case: single realizations of estimators.

the uniform one. By decreasing the frequency of modulation
(e.g., by taking nmax = 200 instead of 25), the estimators
K4,n+1,kno»> and especially &4 41 nat, behave much better and
their performances become quite similar to those of f4 541, unk-
Thus, the estimator #4441 ,unk Was found to be more robust
and accurate in fast dynamic processes.

On the other hand, for this unbiased case, such MSE for all
three estimators may in principle limit their practical uses. Per-
haps, it could be used in some fast dynamic cyclic (or quasi-
cyclic) process with identical statistical properties of each cycle
(e.g., radar, lidar, or sonar signals).

Finally, we would like to note that the proposed estimator
was designed according to the zero-bias principle, not to the
minimum MSE one, that is why the MSE is not always op-
timum. On the other hand, certainly, the MSE is an important
estimator’s criterion, but as we could ascertain, for the known
variance case, the MSE of the trivial estimator &4 ko 1S much
worse in normal case, while its construction is really trivial and
do mnot casts doubts (everyone would use it, if the power was
known). So, in fact, the main problem is that the MSE perfor-
mances depend on the distribution laws, while the proposed esti-
mator has always zero bias (batch version) or smaller one (adap-
tive versions®) for any law; the latter may be especially appreci-
ated in the applications that cannot tolerate the bias, e.g., blind
source separation problem [4], speech processing [8], where the
performance indexes are based on the simple Monte Carlo runs

SFrom (24) and (30), it is straightforward that for 0 < g < 2, we always
have lim,, _, oo (|bsat| — |bunk|) = 0, since E[z?*] > E?[2?] (equalities when
¢ = 1,4 — 40 and for any ¢ when the distribution law becomes a Dirac
delta function or a linear combination of them, e.g., Bernoulli distribution with
equiprobable states).
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Parameters: x = 0.0025, d = 360, nmax = 12000.
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Fig. 11. Dynamic power case: mean behavior and MSE of estimators. Note
that the MSE of the statistics &4, 41,unk a80d K4 541 nat are so close that they
are practically undistinguishable.

(i.e., on the sample mean of cumulant). Besides, we studied only
two particular distribution laws, and in order to truly judge the
MSE qualities of all studies estimators, other distributions (e.g.,
Rayleigh, Maxwell-Boltzmann, y, different multimodal distri-
butions, etc.) have to be considered as well.

V. CONCLUSION

We have proposed a consistent efficient estimator of the
fourth-order cumulant (or semi-invariant) for real discrete-time
random 1i.i.d. (at least up to order 8) zero-mean signal.

The first stage of our work was the elaboration of the batch
version of the estimator, according to the principle of zero bias.
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Parameters: x4 = 1, d = 100000, #max = 25.
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Fig. 12. Static power case: mean behavior and MSE of estimators.

The elaborated estimator was found to be not only unbiased,
but also quite efficient. We actually undertook a systematical
theoretical and empirical studies for normal and uniform pro-
cesses in static and dynamic power conditions, with compar-
isons to other estimation techniques of the fourth-order cumu-
lant (natural estimator, trivial unbiased estimator for the known
initial power case and the fourth k-statistics), and the proposed
estimator showed better of equal performances than the latter
ones, except the trivial estimator for the known initial power
case whose performances vary a lot, depending on the distribu-
tion of the random samples x;.

The second stage of our work was to provide, for all studied
estimators (except the fourth k-statistics), their adaptive ver-
sions, and then, to study and compare them in detail. We
performed for them the analysis of convergence in mean, and
asymptotically, the analysis of convergence in mean square.
These analyses show that the proposed estimator and the natural
one are quasi-convergent in mean and in mean square, while the
trivial estimator for the known variance case is convergent in
mean and quasi-convergent in mean square. On the other hand,
the bias of the proposed estimator is about twice smaller than
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Parameters: 4 =1, d= 100000, mmax = 25.
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Fig. 13. Dynamic power case: mean behavior and MSE of estimators.

that of the natural estimator for the normal and uniform distri-
butions. Two particular unbiased cases were found: p = +0
and ; = 1. Then, we performed an experimental study of the
considered estimators for the normal and uniform distributions
in static and dynamic power conditions. The first unbiased case
was found to be the classic one, and it gives a slow rate of con-
vergence with a small bias and small MSE. In this case, in both
static and dynamic power conditions, the proposed estimator
and the natural one behave practically equally, while the per-
formances of the estimator for the known variance case depend
again on the distribution of the samples z;. In the intermediate
case for average step sizes p, the proposed estimator was found
to have its bias smaller than that of the natural one, while its
efficiency may be slightly worse (normal case), or slightly
better (uniform case). Again, the behavior of the estimator
for the known variance case is different. Finally, the second
unbiased case 1 = 1, gives a very fast convergence rate for the
proposed estimator (one iteration is sufficient) for the normal
and uniform processes in static and dynamic power conditions,
while the natural estimator and the trivial one converge more
slowly or are not capable at all to converge. The latter drawback
becomes especially important for the natural estimator in fast
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dynamic power condition for the normal distribution, but it
almost disappears in slow dynamic power conditions. However,
all three estimators showed relatively great MSE for this second
unbiased case.

APPENDIX A
CALCULATION OF THE VARIANCE AND MSE OF THE
BATCH ESTIMATOR A4 unk

The calculation of the variance and MSE is mainly reduced to
the term E[#7 . ], because of the unbiasedness of the estimator.
First, we write the term ,%Z ank rom (9) in the following form:

n n n n n
-2 _ .2 o4 4,22
K3 unk = @ E E Tz, — 20 E E E T;T5Th
i=1 j=1 i=1 j=1k=1
n " n n
+32 g g g x; 127'le

i=1 j=1 k=1 I=1

where the coefficients « and 3 are given by (10). Then, we cal-
culate the mathematical expectation of each term. By treating
separately each term, and by finding into each multiple sum all
crossed terms (i.e., when two or more indexes in multiple sums
coincide, exactly as it was done in the (5)7) we can get the result.
Thus, for the first term of the last expression we have

Egyﬁ?ﬁazﬁ+§yﬁﬂ
" ' .J

i#]
= 7LE[:L‘8] + n(n _ 1)E2[14]

For the middle one

E T4ﬂr2ri

i.7,k
=B af+2) afx +Z*4J’4+Z wjatay
i N 4,1,k

l;gj 2751 i#j#k
=nE[z°] + 2n(n — DE[Z°|E[2?] + n(n — 1)E*[2%]
+n(n — 1)(n — 2)E[z*]E*[z?].

And finally, for the last term, we have the following mathemat-
ical expectation:

Z T ‘lk‘Ll

2,7.k,1

= nE[z®] + 4n(n — DE[25|E[2?]
+ 3n(n — 1)E*[z*] + 6n(n —

1)(n — 2)E[z"]E?[27]

+n(n — 1)(n — 2)(n — 3)E*[z?].

From these three latter equations, we obtain E[f%?l
sequently, (16).

unk] ’ and con-

7This method is also very well explained in [18], in the chapter related to the
approximations to sampling distributions.
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APPENDIX B
CALCULATION OF THE MEAN OF THE
ADAPTIVE ESTIMATOR 74 141 unk

It is straightforward that since the estimator A4 41, unk (20)
depends on the auxiliary estimators 62 and 67+, we should better
start our calculations with these auxiliary estimators.

In the first instance, we deal with 2. At first, we express
the nth value of the estimator in terms of the initial value 57,
which is a deterministic one. It can be achieved by recursively
decreasing the order of estimator in the right part of (22)

= (L= p)6s_, + pay, = (1 - u)szi_z
+ /J“(l - /1’) Tp_1 + /l“T
n—2

= —p oty (1= pial .
k=0

Then, we apply the operator of the mathematical expectation
to the both sides of the last expression. On the one hand, it per-
mits us to get rid of the random values 22 by replacing them by
the corresponding moments; on the other hand, the finite sum
becomes a simple geometric series which can be easily calcu-
lated:

Blop] = (1—p)" 7167 + [1 — (1~ u)"‘l}E[w’QI (395)
Finally, since we are also interested in the asymptotical mean
(especially for the further calculations in the Appendix C), we
calculate the limit of the last expression when n — oo

E[2?] if|1—pl <1
2= (36)

diverges otherwise.

lim E[é

n—0C

So, the auxiliary adaptive estimator &2

without bias if 0 < p < 2.
In the second 1nstance we deal with 4. By proceeding in the
similar way to an, we first write from (22)

is convergent and

5t = (62)" = (1= w)26i_, + 2u(1 — )62 _ a2 + p’al
n—2
= (1= )22t 4 Z )t
k=0
— 2k’ 2 ~2

+20(1 — p) Z

k=0

(37)

Tp—kOn—k—1-
Then, by calculating its mean, we obtain

n—2
Eloa] =(1— 1)* 261 + Bl Y (1 — )
k=0

n—2
+2p(1 = E[E®] Y (1= p)*El6h 1]
k=0
— (1= M)Qn,—?
—(1 — 2n—2 » 4 (
(1—p) oy + —2 _—

{WE*+ 20 - ) B2 4+ 2B (2] (1 )"
(1= =) (68 - Ble) (38)
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where we used (35) in order to calculate E[
taking the limit when n — oc we obtain

E[.L4] + 2(1 — M

) E2[?).
if 0 < p < 2. Note also that the case ¢ = 1 is a particularly
interesting case, because in this case the variance E[z*] does
not have any influence at all. Also the case u — 40 is quite
particular8 because

- _4_). Finally, by

4 = e

lim E[6 5
—u

n—oc

2—pu (39

lim E[6 ]

n—>o0

p—=+0

E?[z?]. (40)

that gives the result intuitively expected, and in this case the
estimator &2 becomes asymptotically unbiased for E2[x?].
Whence, we can already suppose, that if we wish our adaptive
estimators to be unbiased, 4 has to be chosen small enough.

Finally, we can proceed with the adaptive estimator of cu-
mulant itself. By using the same method, we first express the
(n + 1)th value of the adaptive estimator in terms of the initial
value

A rn—1 2
K4 n41,unk = f() K42 unk

34 ki 4
b G
(14 )(1 + 2p) kz::(]fo k
n—2
Zf :L’n k+10n k

772

1—|—/12

(1 — p)(1 +3p)
(L4 m)(1+2p)

bp
1+u

T k+1 (41)

where we denoted

fo= (42)

Then, we calculate its mean

1n
K4 2 unk

34 K ad
E[6
+(1—|—/l, 1—|—2,¢L2fo [70—i]

_mE Zfo

p(l— f5~ 1)
(1+ M)(l - fo)

By substituting (35) and (38) into (43) we reach the final ob-
jective, and, thus, obtain the mean given by (23), as well as the
asymptotical mean given by (24). In the analogous manner, the
calculation of the means is also performed for the natural esti-
mator (28); these results are reported in (29) and (30).

E[Pﬂél,n—i—l,unk] = f(?_

+ E[z]. (43)

APPENDIX C
CALCULATION OF THE ASYMPTOTICAL MSE OF THE
ADAPTIVE ESTIMATOR A4, 141, unk

The calculation of the asymptotical MSE is mainly reduced to
the asymptotical mean of the quadratic term E:in | 1.unk- From

8The strict case g = 0 cannot be considered here, because the first limit for
n — oo will not converge for ¢ = 0.
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(20), analogously to the method employed in the Appendix B,
we can write &3 | 1.unk 10 terms of its initial value

~2
’L”4,n+1,unk

n—2

_]l27l 2“12unk+(i2+2f1f‘5 Z]L Oy

k=0
+f1z fiken s

k=0

4
Lp— k+1

n—2

+f32

k=0

n—2
ko N
+2f0f1 Z fg "("'4.,77‘716,1111}(0':57%;

n—2

+2f1f22f2k fi kln k41
k=0
n—2

+2fof2 Y SoFRam—rumkOn_ph i1 + 2f2 ]
k=0

2k ~2
Z.f Ty k‘Ln k+1+2f0f32f0 /“‘/411 kunk-L»,, k-+1

k=0

QL .8
Loy k+1

where the coefficients f1, fo, f3 are

f= 3b
YT+ )+ 2m)
610
fr=——r

1+ p

__H
f3_1+/1,'

Then, we calculate its asymptotical mean

nh—I>Iolo E[’k‘/4 n+1, unk]
e { (201 f5) Bl lim B[s] 47 lim E[63)

+ [3E[] +2fo i Jim E[f4,, unk&p)
+ 2f12E] ] li E[ o]
+2f0f2E[i ] hm Elf4,n, unk07, ]

[2°]

[27]

T 1- fo

x

+2f2f3E E[ ]
+ 2fo f3E[z? hm Elfan unk]}

xT

(44)

Thus, the calculation of the asymptotical MSE of Rzn +1.unk I
quires not only the asymptotical means of the auxiliary statistics
62 and 67, but also those of 68 and 5%, as well as, those of two
mixed estimators® %47n7unk&,2l and I:E47n7unk&ﬁ.

First, we deal With 8. Analogously to the method employed
for the estimator a - in (37) we first write from (22)

= (1= )6y +3u(l — p)’6,_yx7
+3M(1_M) Op— 1TIL+,‘LT’II:"'
*Note that E[&4,,,unx62] # E[f4,n,unk]E[62] and E[R4 , unkb2] #

E[&4,n unx]E[6%], because the estimators’ indexes coincide, and thus, the
estimators use the same x;.
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= (1= 0)*" %67 + 3p(1 — p)?

n—2

=)oy wk oy 436 (1 - p)

k=0

n—2

Z(l ) g Z )y
k=0 k=0

By calculating the asymptotical mean of the latter, provided that
0 < p < 2 and with the help of (36) and (39), we obtain
1

nh—{l;oE[&’] (2= (2 =3+ 3)
{2 2= Bl )4 3p(1 ~ 1) (3= 20) Bl Bl

+6(1 - ) B }. (45)

Thus, this statistics is biased and as previously, two interesting
limit cases are present

Jim E[s 8] = E*[«?]
pn——+0

and
lim_E[67] =E[+°]

pn—1

The former represents the asymptotic unbiasedness for the sta-
tistics E3[z2], which is again an intuitively expected result; the
latter is asymptotically unbiased for E[z°].

Second, we deal with 6%. Similarly to the previous lines, we

write &5 in terms of its initial value
n—2
55 = (=" 16 +ap(1-p)* Y (1 — w)*6S 2k,
k=0
n—2
+ 67 (1—p)” Y (1=p) ™o 12y
k=0
n—2
‘|‘N4Z )4 as
n—2

+ 47 (1 = p) Z(l — )y

k=0
and then, we calculate its asymptotical mean value
lim E[6%]
n—mo 1
—2u+2)
442(1 = p)(2p% = 5+ 4)
12 =3+ 3

(2 = w)(p?

A E[z®] + E[z%E[#?]

61%(1 — p1)?
L B (1—p)
2—p
124(1 — 11)*(3p> — 8 + 6)
(2= p)(p? = 3u+3)

24(1 — p)° 4,2
(2= p)(p? = 3p+3) Ele ]}

E?[2Y]

E[IL‘4]E2 [:172]

(40)
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provided that 0 < g < 2. The corresponding double limits are,
respectively
lim E[67] =E*[+7]
w——+0
and

lim E[s ]

n—oo
n—1

BE[z¥].

Third, we deal with 1%47n,unk&3 . The previous method gives
the following asymptotical mean:

. N A2
lim E[/"A,n,,unkan]

n—o0
1

TI-(-wh
. {(1 — /i lim E[55] + o] lim Bl
+ (i + (1= 0 f2)E[2?] lim E[5,]
+ (ot (1= ) fo) Bl B 4 0 fsBla] ) 47)

where the corresponding limits are given according to the above
calculated asymptotical means (23), (39), and (45).

Fourthly, we deal with 1%47n,unk&;11. By using the same
method, its asymptotical mathematical expectation yields

} . 4
lim E[f4.n unk0,,)

n—oc
1

T1I-0-wh
A= lim BI6Y] + n2foBle’]
+ 1= p)(2ufi+(1-
+2p(1 — ) foE[w
+(/1,2,)"1+2;1,(1—/1,)f2+( —n)? f3)Elx ]nhm E[6,]

+ (afot 201 ) ) Ele®lBl2?) + 12 3Bl ]}
(48)

lim E[f4 5 unk]
n—0o0

)fg)E[g;z] lim_ E[6°]

] hnl E[h,4 n, unko— ]

where the corresponding limits are given according to the
above-calculated asymptotical means (23), (39), (45), (46),
and (47).

Thus, by substituting (23), (39), (45), (46), (47) and (48) into
(44), we obtain the mathematical expectation of the quadratic
term F;_?“l +1,unk- After that, the MSE is calculated according to
(13) and (23). Similarly, by replacing the corresponding coeffi-
cients fo, ..., f3, the MSE of the natural estimator is calculated.

Last, note that the MSE analysis did not lead to the new do-
mains of convergence, because it is always restricted by the
smaller one defined by the auxiliary estimator 52, and the ana-
logical reasoning can be applied to the estimator A4 541 nat-
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