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The unit disc in C

Let ∆ ⊂ C be the unit disc, oriented by the
volume form

α =
i

2π
d z ∧ d z =

i

2π
∂∂ (zz) .

Then∫

∆
(1− zz)s α =

1

s + 1
(Re s > −1) .

In particular, ∫

∆
α = 1.

Proof. In polar coordinates, φ : (r, θ) 7→ z =
r ei θ,

φ∗α =
1

π
r d r ∧ d θ

and
∫

∆
(1− zz)s α = 2

∫ 1

0

(
1− r2

)s
r d r.
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The Fubini-Study metric on P1(C)

Denote by P1(C) the complex projective space
of dimension 1, by

π : C2 \ {0} → P1(C)(
z0, z1

)
7→

[
z0, z1

]

the canonical projection. The Fubini-Study
metric on P1(C) is the (1,1)-form β defined
by

π∗β =
i

2π
∂∂ ln

(
z0z0 + z1z1

)
.

Denote by β̃ the pull-back of β by the inclusion
C ⊂ P1(C), z 7→ [1, z]:

β̃ =
i

2π
∂∂ ln (1 + zz) .

Then

β̃ =
i

2π

d z ∧ d z

(1 + zz)2
.
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The Fubini-Study metric: existence

If β exists, it is unique as π is a submersion.

If U is open in P1(C) and f = (f0, f1) is a section of π
defined on U , then

β = f∗π∗β =
i

2π
f∗∂∂ ln

(
z0z0 + z1z1

)
.

As

∂∂ ln
(
z0z0 + z1z1

)
= d

(
z0 d z0 + z1 d z1

z0z0 + z1z1

)
,

we have

β =
i

2π
d

(
f0 d f0 + f1 d f1

f0f0 + f1f1

)
.

If g = (g0, g1) is another section, then f = λg where
λ : U → C is a non-vanishing function on U ; we have

d

(
f0 d f0 + f1 d f1

f0f0 + f1f1

)
= d

(
g0 d g0 + g1 d g1

g0g0 + g1g1
+ dλ

)

= d

(
g0 d g0 + g1 d g1

g0g0 + g1g1

)
,

which shows the existence of β.
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The Fubini-Study metric on C

On U0 ⊂ P1(C), U0 = {[1, z] | z ∈ C} ' C, we

take the section f0 = 1, f1 = z, which gives

β̃ =
i

2π
d

(
z d z

1 + zz

)

=
i

2π

d z ∧ d z

1 + zz
− i

2π

z d z ∧ z d z

(1 + zz)2

=
i

2π

d z ∧ d z

(1 + zz)2
.
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From C to ∆ (1)

Consider the real-analytic map

ψ : ∆ → C
z 7→ z

(1− zz)1/2
.

The map ψ is a diffeomorphism and its inverse

is

ψ−1 : u 7→ u

(1 + uu)1/2
.

Proposition.

ψ∗
(
(1 + zz)s β̃

)
= (1− zz)−s α.
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From C to ∆ (2)

Proof. For u = ψ(z) = z

(1−zz)
1/2 ,we have

1 + uu = (1− zz)−1 ,

du =
d z

(1− zz)1/2
− z

2

−z d z − z d z

(1− zz)3/2

=
1− zz

2

(1− zz)3/2
d z +

z2

2

d z

(1− zz)3/2
,

du =
z2

2

d z

(1− zz)3/2
+

1− zz
2

(1− zz)3/2
d z

and

du ∧ du =

((
1− zz

2

)2

− z2z2

4

)
d z ∧ d z

(1− zz)3

=
d z ∧ d z

(1− zz)2 .

This means

ψ∗ ((1 + zz)s) = (1− zz)−s ,

ψ∗α = (1− zz)−2 α,

ψ∗β̃ = ψ∗
(
(1 + zz)−2 α

)
= α.
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From C to ∆ (3)

The map ψ and the above proof are better understood
using the polar coordinates map

Φ :]0,+∞[×S1 → C\ {0}
(λ, c) 7→ λc.

Transposed by Φ, the map ψ is Ψ = Φ−1 ◦ ψ ◦ Φ,

Ψ :]0,1[×S1 →]0,+∞[×S1

(λ, c) 7→
(

λ

(1− λ2)1/2
, c

)
.

The pull-backs of α and β̃ by Φ are

Φ∗α = 2λdλ ∧Θ1,

Φ∗β̃ =
2λ

(1 + λ2)2 dλ ∧Θ1,

where Θ1 is the rotation-invariant form on S1 such that∫
S1 Θ1 = 1. If µ = λ

(1−λ2)
1/2, then 1 + µ2 =

(
1− λ2

)−1
and

2µdµ = d
(
µ2

)
= d

(
λ2

1− λ2

)
= d

(
1

1− λ2

)
=

2λdλ

(1− λ2)2 ,

which proves again ψ∗α = (1− zz)−2 α.
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Volume of P1(C)

Proposition.
∫

P1(C)
β = 1.

Proof.
∫

P1(C)
β =

∫

C
β̃ =

∫

∆
α = 1,

as ψ∗β̃ = α.

Remark. More generally, for Re s > −1,
∫

C
(1 + zz)s β̃ =

∫

∆
(1− zz)−s α =

1

s + 1

follows from ψ∗
(
(1 + zz)s β̃

)
= (1− zz)−s α.

Exercise. Compute
∫
∆ β̃,

∫
∆ (1 + zz)s β̃.
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The Hermitian ball in Cn

Consider the standard Hermitian space V =
Cn of dimension n, with the Hermitian scalar
product

(z | t) =
n∑

j=1

zjtj

and the Hermitian norm ‖ ‖ defined by ‖z‖2 =
(z | z). The canonical (1,1)-form on V is

α =
i

2π
∂∂ (z | z) =

i

2π

n∑

j=1

d zj ∧ d zj.

The volume form on V is αn. The Hermitian
unit ball is

Bn = {z ∈ V | ‖z‖ < 1} .

The volume of Bn is then
∫

Bn

αn = 1.
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The Fubini-Study metric on Pn(C)

Denote by Pn(C) the complex projective space

of dimension n, by

π : Cn+1 \ {0} → Pn(C),(
z0, z1, . . . , zn

)
7→

[
z0, z1, . . . , zn

]

the canonical projection. Let (z | t) =
∑n

j=0 zjtj

the standard Hermitian form on Cn+1. The

Fubini-Study metric on Pn(C) is the (1,1)-form

β defined by

π∗β =
i

2π
∂∂ ln (z | z) .

Denote by β̃ the pull-back of β by the inclusion

Cn ⊂ Pn(C),
(
z1, . . . , zn

)
7→

[
1, z1, . . . , zn

]
:

β̃ =
i

2π
∂∂ ln


1 +

n∑

j=1

zjzj


 .
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The Fubini-Study metric on Pn(C):
existence

If β exists, it is unique as π is a submersion.

If U is open in Pn(C) and f = (f0, . . . , fn) is a section of
π defined on U , then

β = f∗π∗β =
i

2π
f∗∂∂ ln (z | z) .

As

∂∂ ln (z | z) = d

(
(z | d z)

(z | z)

)
,

we have

β =
i

2π
d

(
(f | d f)

(f | f)

)
,

where (f | d f) =
∑n

j=0 f j d f j. If g = (g0, g1) is another
section, then f = λg where λ : U → C is a non-vanishing
function on U ; we have

d

(
(f | d f)

(f | f)

)
= d

(
(g | d g)

(g | g) + dλ

)

= d

(
(g | d g)

(g | g)

)
,

which shows the existence of β.
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The Fubini-Study metric on Cn

On U0 ⊂ Pn(C), U0 = {[1, z] | z ∈ Cn} ' Cn, we

take the section f = (1, z), which gives

β̃ =
i

2π
d

(
(z | d z)

1 + (z | z)

)

=
i

2π

(d z | d z)

1 + (z | z) −
i

2π

(d z | z) ∧ (z | d z)

(1 + (z | z))2
,

where

(z | d z) =
n∑

j=1

zj d zj,

(d z | z) =
n∑

j=1

zj d zj,

(d z | d z) =
n∑

j=1

d zj ∧ d zj.
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The projective volume form on Cn

The canonical volume form on Pn(C) is

ω = βn.

Its pull-back β̃n to Cn is then

β̃n =

(
i

2π

)n (
(d z | d z)

1 + (z | z)

)n

− n

(
i

2π

)n
(d z | z) ∧ (z | d z)

(1 + (z | z))2

(
(d z | d z)

1 + (z | z)

)n−1

=

(
i

2π

)n
(d z | d z)n−1 ∧ γ(z)

(1 + (z | z))n+1
,

with

γ(z) = (1 + (z | z)) (d z | d z)− n (d z | z) ∧ (z | d z) .

Using

n (d z | z) ∧ (z | d z) ∧ (d z | d z)n−1 = (z | z) (d z | d z)n ,

we get

β̃n =
αn

(1 + (z | z))n+1
.
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From Cn to Bn (1)

We define the real-analytic map

ψ : Bn → Cn

z 7→ z
(
1− ‖z‖2)1/2

.

The map ψ is a diffeomorphism and its inverse is

ψ−1 : u 7→ u
(
1 + ‖u‖2)1/2

.

Consider the polar coordinates map in Cn

Φ :]0,+∞[×S2n−1 → Cn\ {0}
(λ, c) 7→ λc.

Transposed by Φ, the map ψ is Ψ = Φ−1 ◦ ψ ◦ Φ,

Ψ :]0,1[×S2n−1 →]0,+∞[×S2n−1

(λ, c) 7→
(

λ

(1− λ2)1/2
, c

)
.
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From Cn to Bn (2)
The pull-back of αn by the polar coordinates map Φ is

Φ∗αn = 2nλ2n−1 dλ ∧Θ2n−1,

where Θ2n−1 is a U(n)-invariant form on S2n−1. We

have
∫

Bn
αn =

∫ 1
0 2nλ2n−1 dλ

∫
S2n−1 Θ2n−1,which implies

∫

S2n−1

Θ2n−1 = 1.

The pull-back of β̃n by Φ is then

Φ∗β̃n =
2nλ2n−1

(1 + λ2)n+1
dλ ∧Θ2n−1.

Proposition.

ψ∗
(
(1 + zz)s β̃n

)
= (1− zz)−s αn.

Proof. Using polar coordinates, let µ = λ

(1−λ2)
1/2. Then

1 + µ2 = 1
1−λ2 and

2nµ2n−1

(1 + µ2)n+1
dµ =

nµ2n−2

(1 + µ2)n+1
d

(
µ2

)

=
nλ2n−2

(1− λ2)n−1 (1 + µ2)n+1

2λdλ

(1− λ2)2 = 2nλ2n−1 dλ.
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Volume of Pn(C)
Proposition. ∫

Pn(C)
βn = 1.

Proof. ∫

Pn(C)
βn =

∫

Cn
β̃n =

∫

Bn

αn = 1.

Exercise. Compute
∫
Bn

β̃n (the projective vol-
ume of the unit Hermitian ball).
Solution. 1/2n

Corollary. 1) Let Pk ⊂ Pn(C) be a projective
plane of complex dimension k. Then∫

Pk

βk = 1.

2) Let X ⊂ Pn(C) be a projective subvariety of
pure dimension k. Then∫

X
βk = degX.
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The generalized unit ball in Mp,q(C)

For p ≥ q ≥ 1, let

V = Hom(Cq,Cp) 'Mp,q(C)

(space of complex matrices with p lines and q

columns).

Here Cq and Cp are Hermitian vector spaces
with the standard Hermitian structures; the
standard basis of Cq (resp. Cp) are denoted
by (η1, . . . , ηq) (resp. (ε1, . . . , εp)). If u ∈ V ,
u : Cq → Cp, then u∗ : Cp → Cq denotes the ad-
joint homomorphism of u w.r. to these struc-
tures. We identify u with its matrix in the
standard basis; then u∗ = u′, where v′ is the
transpose of the matrix v.

The generalized unit ball of Mp,q(C) is

ΩI
p,q = {u ∈Mp,q(C) | Iq − u∗u >> 0} .
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Volume forms on Mp,q(C)

On V = Mp,q(C), consider the Hermitian scalar

product

m1(x, y) = Tr
(
y∗x

)
,

where Tr is the trace of matrices, and the as-

sociated (1,1)-form

α =
i

2π
∂∂m1 (x, x) .

The flat volume form on V is

αn

(with n = dimV = pq); the projective volume

form is
αn

Det (Iq + x∗x)p+q

(Det denotes the determinant of matrices).
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Spectral decomposition in Mp,q(C)
(1)

Each matrix x ∈Mp,q(C) can be written

x = uΛv∗,

with u ∈ U(p), v ∈ U(q) and

Λ =




λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λq

0 0 · · · 0
... ... · · · ...
0 0 · · · 0




= λ1E1 + λ2E2 + · · ·+ λqEq,

λ1 ≥ λ2 ≥ · · · ≥ λq ≥ 0. The matrix x is called

regular if λ1 > λ2 > · · · > λq > 0. The reg-

ular elements form an open dense subset of

Mp,q(C).
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Spectral decomposition in Mp,q(C)
(2)

A sequence (c1, . . . , cq) is called a frame for
Mp,q(C) if it satisfies

cic
∗
i cj = δijci (1 ≤ i, j ≤ q) .

If x = uΛv∗, then x = λ1c1 + · · · + λqcq and(
cj = uEjv

∗) is a frame. Each regular matrix
has a unique decomposition

x = λ1c1 + · · ·+ λqcq,

where (c1, . . . , cq) is a frame and λ1 > · · · >
λq > 0. This decomposition is called spectral
decomposition of x.
The frames form a real-analytic manifold FI

p,q
(the Fürstenberg-Satake boundary of ΩI

p,q). We
denote by Φ the map

{λ1 > λ2 > · · · > λq > 0} × FI
p,q →Mp,q(C)(

(λ1, . . . , λq) ,
(
c1, . . . , cj

))
7→ ∑q

j=1 λjcj,

which generalizes the polar coordinates map.
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Volume forms on Mp,q(C) (2)

Proposition.

Φ∗αn =
q∏

j=1

λ
2(p−q)+1
j

∏

j<k

(
λ2

j − λ2
k

)2
dλ1 ∧ . . . ∧ dλq ∧ΘI

p,q,

where ΘI
p,q is a U(p) × U(q)-invariant volume

form on FI
p,q.
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Compactification of Mp,q(C) (1)

Let (η1, . . . , ηq) be the standard basis of Cq. To
u ∈ Mp,q(C), u = (u1, . . . , uq), where uj is the
j-th column of u, we associate ũ ∈ Gq,q+p(C)
(the Grassmannian of q-planes in Cq ⊕ Cp) de-
fined by

ũ = 〈η1 ⊕ u1, . . . , ηq ⊕ uq〉 .
By the Plücker embedding

Gp,q(C) ⊂ P (
∧q (Cq ⊕ Cp)) ,

ũ is mapped to

Θ(u) = û = [(η1 + u1) ∧ . . . ∧ (ηq ⊕ uq)] .

The map

Θ : Mp,q(C) → P (
∧q (Cq ⊕ Cp))

is injective and the closure of Θ (Mp,q(C)) is
the Grassmannian Gp,q(C). The map Θ is called
the canonical compactification map ofMp,q(C).
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Compactification of Mp,q(C) (2)

Using the isomorphism

P (
∧q (Cq ⊕ Cp)) ' P




q⊕

j=0

Hom




j∧
Cq,

j∧
Cp





 ,

the compactification map may also be written

Θ (x) = [1⊕ x⊕ . . .⊕ ∧q x] =




q⊕

j=0

∧j x


 .

Let Vj = Hom
(∧jCq,

∧jCp
)

and W =
⊕q

j=0 Vj.
Let (x | y)j =Tr (y∗x) be the Hermitian scalar
product on Vj arising from the standard Her-
mitian products on

∧jCq,
∧jCp and let ( | ) be

the direct sum of these products in W . Denote
by β the corresponding Fubini-Study form on
P(W ):

β =
i

2π
∂∂ ln (w | w) .
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From Mp,q(C) to its unit ball (1)

Define the real-analytic map

ψ : ΩI
p,q →Mp,q(C)

by

ψ(x) =
(
Ip − xx∗

)−1/2 x = x
(
Iq − x∗x

)−1/2 .

Then ψ is a diffeomorphism and

ψ−1(y) =
(
Ip + yy∗

)−1/2 y = y
(
Iq + y∗y

)−1/2 .

Proposition.

ψ∗
(
Det

(
Iq + x∗x

)s−p−q αn
)

= Det
(
Iq − x∗x

)−s αn.
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From Mp,q(C) to its unit ball (2)

Proof. Transposed by Φ, the map ψ is Ψ =
Φ−1 ◦ ψ ◦ Φ,

Ψ : {1 > λ1 > λ2 > · · · > λq > 0} × FI
p,q

→ {λ1 > λ2 > · · · > λq > 0} × FI
p,q,

((
λj

)
,
(
cj

))
7→







λj(
1− λ2

j

)1/2


 ,

(
cj

)

 .

As Φ∗x =
∑q

j=1 λjcj, we have

Φ∗ det
(
Iq + x∗x

)
=

∏q
j=1

(
1 + λ2

j

)

and

Φ∗β̃n = Φ∗ αn

Det (Iq + x∗x)p+q

=

∏q
j=1 λ

2(p−q)+1
j

∏
j<k

(
λ2

j−λ2
k

)2

∏q
j=1

(
1+λ2

j

)p+q ω (λ) ∧ΘI
p,q,

with ω (λ) = dλ1 ∧ . . . ∧ dλq.
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From Mp,q(C) to its unit ball (3)

Let

µj =
λj(

1− λ2
j

)1/2
.

Then

1 + µ2
j =

1

1− λ2
j

,

µj(
1 + µ2

j

)2 dµj = λj dλj,

µ2
j − µ2

k =
λ2

j − λ2
k(

1− λ2
j

) (
1− λ2

k

).

Finally
∏q

j=1
µ2(p−q)+1

j

∏
j<k
(µ2

j−µ2
k)

2

∏q

j=1
(1+µ2

j)
p+q ω (µ)

=

∏q

j=1
λ2(p−q)+1

j∏q

j=1
(1−λ2

j)
p−q

∏
j<k

(λ2
j−λ2

k)
2

(1−λ2
j)

2

(1−λ2
k)

2

∏q
j=1

(
1− λ2

j

)p+q−2
ω(λ)

=
∏q

j=1 λ2(p−q)+1
j

∏
j<k

(
λ2

j − λ2
k

)2
ω(λ),

which ends the proof.

V134-3



The degree of Grassmannians in the
Plücker embedding

Proposition.

Θ∗ (βn) =
αn

Det (Iq + x∗x)p+q
.

Theorem. Let Gp,q(C) ⊂ P (W ) be the

Plücker embedding of the Grassmannian. Then

degGp,q(C) =
∫

ΩI
p,q

αn

(n = dimV = pq).

Proof.

degGp,q(C) =
∫

Gp,q(C)

βn

=
∫

V

αn

Det (Iq + x∗x)p+q
=

∫

ΩI
p,q

αn.
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Bounded symmetric domains

A bounded domain Ω ⊂ Cn is called symmetric
if for each x ∈ Ω there is an involutive holo-
morphic automorphism sx (s2x = idΩ) such that
x is an isolated fixed point of sx.

Bounded symmetric domains are homogeneous
(under the group AutΩ of holomorphic auto-
morphisms).

Any bounded symmetric domain Ω is biholo-
morphic to a bounded circled homogeneous
domains, which is unique up to linear isomor-
phisms and is called the circled realization of
Ω.

We will always consider bounded symmetric
domains in their circled realization.

A bounded symmetric domain is called irre-
ducible if it is not equivalent to the direct prod-
uct of two bounded symmetric domains.
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Jordan triple associated to a bounded
symmetric domain

Let Ω be an irreducible bounded circled homo-

geneous domain in a complex vector space V .

Let K be the identity component of the (com-

pact) Lie group of (linear) automorphisms of

Ω leaving 0 fixed. Let ω be a volume form on

V , invariant by K and by translations. Let K
be the Bergman kernel of Ω with respect to ω.

The Bergman metric at z ∈ Ω is defined by

hz(u, v) = ∂u∂v logK(z).

The Jordan triple product on V is defined by

h0({uvw}, t) = ∂u∂v∂w∂t logK(z) |z=0 .

The triple product (x, y, z) 7→ {xyz} is complex

bilinear and symmetric with respect to (x, z),

complex antilinear with respect to y. It satis-

fies the Jordan identity (J).
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Hermitian Jordan triples

Let V be a (finite dimensional) complex vector

space, endowed with a triple product

(x, y, z) 7→ {xyz}
complex bilinear and symmetric with respect

to (x, z), complex antilinear with respect to y,

satisfying the Jordan identity

{xy{uvw}}−{uv{xyw}} = {{xyu}vw}−{u{vxy}w}.
(J)

Then (V, {xyz}) is called a (Hermitian) Jordan

triple system.

For x, y, z ∈ V , denote by D(x, y) and Q(x, z)

the operators defined by

{xyz} = D(x, y)z = Q(x, z)y.
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Positive Jordan triples

A Jordan triple system is called (Hermitian)

positive if

(u|v) = tr D(u, v)

is positive definite.

An Hermitian positive Jordan triple system is

always semi-simple, that is, the direct sum of a

finite family of simple subsystems with compo-

nent-wise triple product. It is called simple if it

not the product of two non-trivial subsystems.
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Quadratic operator and Bergman
operator

Let (V, { , , }) be a Jordan triple. The quadratic
representation Q : V −→ EndR(V ) is defined by

2Q(x)y = {xyx}.
The following fundamental identity is a conse-
quence of the Jordan identity:

Q(Q(x)y) = Q(x)Q(y)Q(x).

The Bergman operator B is defined by

B(x, y) = I −D(x, y) + Q(x)Q(y),

where I denotes the identity operator in V . It
is also a consequence of the Jordan identity
that the following fundamental identity holds
for the Bergman operator:

Q(B(x, y)z) = B(x, y)Q(z)B(y, x).
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Tripotent elements in Jordan triples

Let (V, { , , }) be a Jordan triple. An element

c ∈ V is called tripotent if

{ccc} = 2c.

If c is a tripotent, the operator D(c, c) annihi-

lates the polynomial T (T − 1)(T − 2).The de-

composition

V = V0(c)⊕ V1(c)⊕ V2(c),

where Vj(c) is the eigenspace

Vj(c) = {x ∈ V ; D(c, c)x = jx} ,

is called the Peirce decomposition of V (with

respect to the tripotent c).
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Orthogonality of tripotents

Two tripotents c1 and c2 are called orthogonal

if D(c1, c2) = 0. If c1 and c2 are orthogonal

tripotents, then D(c1, c1) and D(c2, c2) com-

mute and c1 + c2 is also a tripotent.

A non zero tripotent c is called primitive if it is

not the sum of non zero orthogonal tripotents.

A tripotent c is called maximal if there is no

non zero tripotent orthogonal to c.
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Frames

A frame of V is a maximal sequence (c1, . . . , cr)

of pairwise orthogonal primitive tripotents.

Let V be a simple positive Jordan triple. Then

there exist frames for V . All frames have the

same number of elements, which is the rank r

of V .

Let c = (c1, . . . , cr) be a frame. For 0 ≤ i ≤ j ≤
r, let

Vij(c)

=
{
x ∈ V | D(ck, ck)x = (δk

i + δk
j )x, 1 ≤ k ≤ r

}
.

The decomposition V =
⊕

0≤i≤j≤r Vij(c) is

called the simultaneous Peirce decomposition

with respect to the frame c.
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Numerical invariants

Let V be a simple positive Jordan triple.

For any frame c of V , the subspaces Vij =
Vij(c) of the simultaneous Peirce decomposi-
tion have the following properties: V00 = 0 ;
Vii = Cei (0 < i); all Vij’s (0 < i < j) have the
same dimension a; all V0i’s (0 < i) have the
same dimension b.

The numerical invariants of V are the rank r

and the two integers

a = dimVij (0 < i < j),

b = dimV0i (0 < i).

The genus of V is the number g defined by

g = 2 + a(r − 1) + b.

The positive Jordan triple V is said to be of
tube type if b = 0.
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Spectral theory

Let V be a simple positive Jordan triple. Then

any x ∈ V can be written in a unique way

x = λ1c1 + λ2c2 + · · ·+ λpcp,

where λ1 > λ2 > · · · > λp > 0 and c1, c2 . . . , cp

are pairwise orthogonal tripotents. The ele-

ment x is regular iff p = r (the rank of V );

then (c1, c2, . . . , cr) is a frame of V . The de-

composition x = λ1c1+λ2c2+· · ·+λpcp is called

the spectral decomposition of x.

The map x 7→ λ1, where x = λ1c1 + λ2c2 +

· · · + λpcp is the spectral decomposition of x

(λ1 > λ2 > · · · > λp > 0) is a norm on V , called

the spectral norm.
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The generic minimal polynomial

Let V be a simple positive Jordan triple of
rank r. There exist polynomials m1, . . . , mr

on V × V , homogeneous of respective bide-
grees (1,1), . . . , (r, r), such that for each regu-
lar x ∈ V , the polynomial

m(T, x, y)

= T r −m1(x, y)T r−1 + · · ·+ (−1)rmr(x, y)

satisfies

m(T, x, x) =
r∏

i=1

(T − λ2
i ),

where x =
∑

λjcj is the spectral decomposition
of x. The polynomial m(T, x, y) is called the
generic minimal polynomial of V (at (x, y)).
The (inhomogeneous) polynomial N : V ×V →
C defined by

N(x, y) = m(1, x, y)

is called the generic norm.
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The spectral unit ball

If (V, {xyz}) is the triple system associated to

a bounded symmetric domain Ω, the Bergman

metric at 0 is related to D by

h0(u, v) = tr D(u, v).

Hence (V, {xyz}) is Hermitian positive. The

Bergman operator gets its name from the fol-

lowing property:

hz (B(z, z)u, v) = h0(u, v) (z ∈ Ω; u, v ∈ V ).

The bounded symmetric domain Ω is the unit

ball of V for the spectral norm.

It is also characterized by the set of polynomial

inequalities

∂j

∂T j
m(T, x, x)

∣∣∣∣∣
T=1

> 0, 0 ≤ j ≤ r − 1.
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Volume forms on Jordan triples

Let V be a simple positive Hermitian Jordan

triple, with generic norm

N(x, y) = 1−m1(x, y) + · · ·+ (−1)rmr(x, y).

Consider on V the Hermitian scalar product

(x | y) = m1(x, y)

and the associated (1,1)-form

α =
i

2π
∂∂m1 (x, x) .

The flat volume form on V is

αn

(with n = dimV ); the projective volume form

is
αn

N(x, x)g
,

where g is the genus of V .
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Polar coordinates in Jordan triples

Let V be a simple positive Hermitian Jordan

triple and Ω the associated bounded symmetric

domain.

The frames of V form a real-analytic manifold

F (the Fürstenberg-Satake boundary of Ω).

The map Φ

{λ1 > λ2 > · · · > λq > 0} × F → V(
(λ1, . . . , λq) ,

(
c1, . . . , cj

))
7→ ∑q

j=1 λjcj

is a diffeomorphism onto the set Vreg of regular

elements of V .

Let K be the identity component of the (linear

Lie) group of automorphisms of V . Then K

acts transitively on F and the map Φ is K-

equivariant.
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Volume forms in polar coordinates

Proposition. Let V be a simple positive Jor-

dan triple, with dimension n, rank r, numerical

invariants a, b and genus g = 2 + a(r − 1) + b.

Then the pull-back of the flat volume form in

generalized polar coordinates is

Φ∗αn =
r∏

j=1

λ2b+1
j

∏

j<k

(
λ2

j − λ2
k

)a
ωr(λ) ∧Θ,

where ωr(λ) = dλ1 ∧ . . . ∧ dλq and Θ is a K-

invariant volume form on F.
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Schmid decomposition

Let V be a simple positive Hermitian Jordan
triple of rank r. Let P(V ) be the space of
polynomials on V . For n = (n1, . . . , nr) ∈ Nr,
write n ≥ 0 iff n1 ≥ · · · ≥ nr ≥ 0.
Theorem. (Schmid decomposition) The space
P(V ) decomposes into irreducible, pairwise un-
equivalent K-modules: P(V ) =

⊕
n≥0Pn(V ).

For 0 ≤ j ≤ r, let 〈j〉 = (j,0, . . . ,0). Then
mj(x, y) is a reproducing kernel for P〈j〉(V ), en-
dowed with the Hermitian structure induced on
P(V ) by the Hermitian scalar product m1: for
each f ∈ P〈j〉(V ),

f(y) =
(
f |

(
mj

)
y

)
,

where
(
mj

)
y
(x) = mj (x, y) .
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Compactification of Jordan triples

Let V be a simple positive Hermitian Jordan triple of
rank r. Let

σj : V → P〈j〉(V ∗) ⊂ ⊙
j V

be defined by

σj (x) (y∗) = mj (x, y) ,

where y 7→ y∗ is the anti-isomorphism of V onto V ∗
induced by the Hermitian product m1. Then

mj (x, y) = (σj(x) | σj(y)) .

In particular, σ0(x) = 1 and σ1(x) = x. Let

W =
r⊕

j=0

P〈j〉(V ∗).

The canonical compactification map of the Jordan triple
V is

σ : V → P (W )

x 7→ [1⊕ σ1(x)⊕ · · · ⊕ σr(x)] .

The closure X = σ(V ) is an algebraic projective variety,

called canonical compactification of V , or compact dual

of the bounded symmetric domain Ω associated to V .
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Projective volume form of Jordan
triples

Let V be a simple positive Hermitian Jordan

triple of rank r and genus g. Let

W =
r⊕

j=0

P〈j〉(V ∗)

be endowed with the Hermitian product in-

duced by m1. Denote by β the corresponding

Fubini-Study form on P (W ). Then

σ∗β =
i

2π
∂∂ lnN(ix, ix).

Proposition.

σ∗βn =
(

i

2π
∂∂ lnN(ix, ix)

)n

= N(ix, ix)−gαn.
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From a Jordan triple to its unit ball
(1)

Let V be a simple positive Hermitian Jordan
triple and Ω the associated bounded symmetric
domain. Denote by B the Bergman operator

B(x, y) = idV −D(x, y) + Q(x)Q(y).

Define the real-analytic map

ψ : Ω → V

by

ψ(x) = B(x, x)−1/4x.

Then ψ is a diffeomorphism and

ψ−1(y) = B(i y, i y)−1/4y.

Proposition. Let N denote the generic norm
of V , g the genus of V . Then

ψ∗
(
N (ix, ix)s−g αn

)
= N(x, x)−sαn.
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From a Jordan triple to its unit ball
(2)

Proof. Transposed by Φ, the map ψ is Ψ =
Φ−1 ◦ ψ ◦ Φ,

Ψ : {1 > λ1 > λ2 > · · · > λr > 0} × F
→ {λ1 > λ2 > · · · > λr > 0} × F ,

((
λj

)
,
(
cj

))
7→







λj(
1− λ2

j

)1/2


 ,

(
cj

)

 .

If Φ∗x =
∑r

j=1 λjcj, we have

Φ∗N (ix, ix) =
∏r

j=1

(
1 + λ2

j

)

and

Φ∗β̃n = Φ∗ αn

N (ix, ix)g

=

∏r
j=1 λ2b+1

j

∏
j<k

(
λ2

j−λ2
k

)a

∏r
j=1

(
1+λ2

j

)g ωr (λ) ∧Θ.
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From a Jordan triple to its unit ball
(3)

Let

µj =
λj(

1− λ2
j

)1/2
.

Then

1 + µ2
j =

1

1− λ2
j

,

µj(
1 + µ2

j

)2 dµj = λj dλj,

µ2
j − µ2

k =
λ2

j − λ2
k(

1− λ2
j

) (
1− λ2

k

).

Finally, using g = 2 + a(r − 1) + b, we have
∏r

j=1
µ2b+1

j

∏
j<k
(µ2

j−µ2
k)

a

∏r

j=1
(1+µ2

j)
g ωr (µ)

=

∏r

j=1
λ2b+1

j∏r

j=1
(1−λ2

j)
b

∏
j<k

(λ2
j−λ2

k)
a

(1−λ2
j)

a

(1−λ2
k)

a

∏r
j=1

(
1− λ2

j

)g−2
ωr(λ)

=
∏r

j=1 λ2b+1
j

∏
j<k

(
λ2

j − λ2
k

)a
ωr(λ),

which ends the proof.
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Volume and degree

Let V be a simple positive Jordan triple and Ω

the associated bounded symmetric domain.
Theorem. Let σ : V → P (W ) be the canon-
ical compactification map and X = σ(V ) the
compact dual of Ω. Then

degX =
∫

Ω
αn

(n = dimV ).

Proof.

degX =
∫

X
βn =

∫

V

αn

N (ix, ix)g =
∫

Ω
αn.

Exercise.Compute the projective volume of the
domain Ω, embedded in X by σ

∫

σ(Ω)
βn.

Solution. degX/2n
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