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The unit disc in C

Let A C C be the unit disc, oriented by the
volume form

[ i
a=—dzANdzZ=—00(z22).
27 27T
Then
1

In particular,

/0421.
A

Proof. In polar coordinates, ¢ : (r,0) — z =
rel?,
. 1
oa=—rdrAdb
T
and

/A(l_ZE)SCX:Q/Ol (1—T2>87“d7~.
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The Fubini-Study metric on P1(C)

Denote by P1(C) the complex projective space
of dimension 1, by

m: C?\ {0} — P1(C)
(20,21 = 0,41
the canonical projection. The Fubini-Study

metric on P1(C) is the (1,1)-form g defined
by

wp o= 00 4 1.7
Wﬁ—gﬁaln(zz —|—zz).

Denote by B the pull-back of g by the inclusion
CcP1(C), z+—[1,z]:

~

B = L85|n (14 2%2).
2T

Then
o I dzAdZ
21 (1 + 22)°

B
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The Fubini-Study metric: existence

If B exists, it is unique as =« is a submersion.

If U is open in P1(C) and f = (fo, f1) is a section of «
defined on U, then

6= f*n"B = %f*(‘?gln (zog—l— 21;> :

AsS
0H .0 1 4.1
_ 0= 1\ z°dz+z2-dz
88|n(z 20+ 2 zl)—d< 00 1 ot ),
we have
g g fla0+rd st
Cem SOt )

If ¢ = (g0,91) is another section, then f = A\g where
AU — C is a non-vanishing function on U; we have

O0AH 0O 1 A4 £1 0OAH O 14 .1
g fdf_o-l‘fifl — gdf-l-gggl_I_dX
fOro+4 fisl g°g% + g'g?

_q (904 +g'dg’
g%g° + glgt

which shows the existence of (.
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The Fubini-Study metric on C

On Ug C P1(C), Ug = {[1,2] | z€e C} ~ C, we
take the section fop =1, f1 = 2z, which gives

b= id (124(-1;)

1 dzAdz | ZzdzAzdZ
T 2n 142z 2n (14 22)°
1 dzAdz
_277(1—|—z2)2.

V112-3



From C to A (1)

Consider the real-analytic map

v A—C

X y4

(1-— 22)1/2.
The map ¢ is a diffeomorphism and its inverse
IS

A

Uu

> (1+ uﬂ)l/?

w_l DU
Proposition.

¥ ((1+22)°B) = (1 - 22) *o
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From C to A (2)

Proof. For u = 4(z) = W,we have

14wz =(1-22)""t,

q dz z—zdz—2zdZ
u = — =
(1—22)Y2 2 (1-22)%2
1—% _|_22 dz
g z —_— ,
(1 — 2%)%/? 2 (1 - 22)%?
=2 d _ 2z
du =2 © 2__dz

== +
2(1-22)%%  (1-—22)%°
and

N\ 2 22 d d_
duAdu = (1—2) _Z= A ~
2 4 | (1-22)

This means
P (14 22)°) = (1 —22)7,
Vo= (1-22) 2a,
Y B=14" (14 22)%a) =a
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From C to A (3)

The map @ and the above proof are better understood
using the polar coordinates map

& :]0, +o00[x St — C\ {0}
(A, ¢c) — e

Transposed by @, the map ¢ is¥ =& Loyo,
¥ :]0, 1[x St —]0, +oo[x S?

A
(A, ¢) — ((1 - )\2)1/2,c> :

The pull-backs of a and B by & are
Do =2 Xd AN O1,

@*B: dA A O,
(14 x2)?
where ©; is the rotation-invariant form on S?! such that
€1 =1 If p= 55w then 1442 = (1- %) and

A2 1 2Xd A
2udp=d(p?) =d =d = ,
pdp=d () (1—A2> (1—A2) (1 — A2)?

which proves again y*a = (1 — 22) 2 a.
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Volume of P (C)

Proposition.

/M@ﬁ -

Proof.

/]pl(@)ﬁ:/@B:/Aa: .

as *03 = a.

Remark. More generally, for Res > —1,

/@(1+zz)s /(1—zz) Sq =

S—I—l

follows from * ((1 + zz)‘Sﬁ) =(1—-22) °«

Exercise. Compute

V11i4



The Hermitian ball in C"

Consider the standard Hermitian space V =
C"™ of dimension n, with the Hermitian scalar

product
mn

(z|t)=szg

j=1
and the Hermitian norm || || defined by ||z||? =
(z | z). The canonical (1,1)-form on V is
()4—L(95(z|z)—L ﬁ: dz/ Adzi
2 2 i=1 .
The volume form on V is a™. The Hermitian
unit ball is

B, ={z€V ||z < 1}.

The volume of B, is then

/ at = 1.
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The Fubini-Study metric on P, (C)

Denote by P,(C) the complex projective space
of dimension n, by

r:CPTI {0} — P, (C),

(zo,zl,...,zn) — [zo,zl,...,zn]
the canonical projection. Let (z | t) = S1_q 29t/
the standard Hermitian form on C*tl. The

Fubini-Study metric on P, (C) is the (1, 1)-form
B defined by

B = L(‘95”1 (z|2).
21

Denote by B the pull-back of 5 by the inclusion
C" Cc P,(C), (zl,...,zn> - [1,21,...,2’”}:

B’:ia@m (1+ Z zjzj> .

=1
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The Fubini-Study metric on P, (C):
existence

If B exists, it is unique as « is a submersion.

If U is open in P,(C) and f = (fo,..., fn) iS a section of
7w defined on U, then

6= f*n"B = %f*agln (z | 2).

S — u|d@>
891n (2 | 2) d((zlz) ,

s= La(U19D)
2m (f 15
where (f |df) =Y "_of7d fi. If g = (go,g1) is another

section, then f = Ag where X\ : U — C is a non-vanishing
function on U; we have

(fldf)): ((g|dg) —)
d((ﬂf) W T

_ (g|dg))
d(<gm> ’

which shows the existence of (.

AS

we have
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The Fubini-Study metric on C»

On Ug C Pr(C), Ug={[1,2] | z € C"} ~ C", we
take the section f = (1, z), which gives

=i (z | dz)

5_27rd<1+(7«'|2)>

_ i (dz|dz) i (dz|2)A(z]d2)
o114 (z]2) 27 (L4 (z]2))2

where

Y

n o
(z]dz) = > 2/dzJ,
j=1
n e .
(dz|z)= > =2idz,
j=1
n . _
(dz|dz)= > dz/ AdzJ.

j=1
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The projective volume form on C"

The canonical volume form on P,(C) is
w = [G".

Its pull-back E" to C" is then

~ ([ i\'[(dz|dz)\"
7=(z) Grer)
_n(i)n(dz|z)/\(z|dz)((dz|dz))n1
27 (14 (2] 2))° 14 (2] 2)
( i >n(dz|dz)n1/\7(z)
o (14 (z]2)" T

with

¥(z) =14+ (2]2))(dz|dz) —n(dz|[2)A(2]dz).
Using

we get

~ an

ST AT Gy

V122-4



From C" to By, (1)

We define the real-analytic map

Vv B, — C"
z

(1 - [2?) "2

The map ¢ is a diffeomorphism and its inverse is

Z

1., U
' 2\1/2°
(1+ Jlull?)
Consider the polar coordinates map in C»

& :]0, +oo[x 5?1 — C™\ {0}
(A, ¢c) — e

Transposed by @, the map ¢ is¥ =@ 1oy o,
¥ :]0, 1[x 52" 5]0, +oo[x 5271

A
(A, ¢) — ((1 - )\2)1/2,c> .
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From C" to By (2)

The pull-back of a™ by the polar coordinates map @ is
P*a" = 2n\?""Ld A A Oo,_1,

where G,,_1 is a U(n)-invariant form on S27~1. We
have[, a” = [ 2nX2""1d X [, , ©2n_1,Which implies

/ Oo,-1 = 1.

The pull-back of 8" by & is then

" 2 )\2n—1
PP = 0 dAA O
(14 A2)"

Proposition.

v (1422 F) = (1 -2 an

Proof. Using polar coordinates, let p = m Then
2 1
14 ps = T and
QTL,LLQn_l ann—Q
n-l-ld’u: n-l—ld('u2)
(14 p2) (14 p?)
A2n—2 2Xd A
- = 2nA2""1d A\,

T @A) (142 T (1 - A7)
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Volume of P, (C)
Proposition.

/Pn(@) g =1.

Proof.

/pn(@)ﬁn: @ngn:/nan: 1

Exercise. Compute (the projective vol-
ume of the unit Hermitian ball).

Solution. 1/2"

Corollary. 1) Let P, C P,(C) be a projective
plane of complex dimension k. Then

/Pk g =1.

2) Let X Cc P,(C) be a projective subvariety of
pure dimension k. Then

/ ﬁk = deg X.
X
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The generalized unit ball in My 4(C)

Forp>qg>1, let
V = Hom((cq, (Cp) ~ Mp)q(@)

(space of complex matrices with p lines and ¢
columns).

Here C? and CP are Hermitian vector spaces
with the standard Hermitian structures; the
standard basis of C? (resp. CP) are denoted
by (71,...,m9) (resp. (e1,...,€p)). If u € V,
u: C?9 — CP, then u* : CP — CY? denotes the ad-
joint homomorphism of u w.r. to these struc-
tures. We identify uw with its matrix in the
standard basis: then v* = @/, where v’ is the
transpose of the matrix v.

The generalized unit ball of My 4(C) is
2L, = {u € Mpg(C) | Iy — u*u >> 0}.
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Volume forms on My ,(C)

OnV = My 4(C), consider the Hermitian scalar
product

mi(x,y) = Tr(y z),

where Tr is the trace of matrices, and the as-
sociated (1,1)-form

i
a=—00mq (x,x) .
27T
The flat volume form on V is

an

(with n = dimV = pq); the projective volume
form is

an

Det (I, + z*z)PT4
(Det denotes the determinant of matrices).
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Spectral decomposition in My 4(C)
(1)
Each matrix x € My 4(C) can be written

r = uAv®,

with v € U(p), v € U(g) and

A1 O - O
0 Ao - o\

A=| o0 o - A
O 0 -~ 0
Lo 0 - 0

= A1E1 + A2Eo + -+ AgEy,

A1 > Ao > -+ 2>XA¢g > 0. The matrix z is called
regular if Ay > Xop > -+ > A¢ > 0. The reg-
ular elements form an open dense subset of
Mp,q(C).
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Spectral decomposition in My 4(C)

(2)

A sequence (ci,...,cq) is called a frame for
M, o(C) if it satisfies
CZ'C?CJ' — 52](32 (1 S ’i,j S q) .

If £ = uwAv*, then = A1c1 + -+ + Ageg and
(cj = qu’U*> is a frame. Each regular matrix
has a unique decomposition

T = A1c1 + -+ AgCq,
where (c1,...,¢q) is a frame and Ay > - >
Ag > 0. This decomposition is called spectral
decomposition of x.
The frames form a real-analytic manifold ]?Z{q

(the Fiirstenberg-Satake boundary of Qg’q). We
denote by @ the map

{A1> X > > A >0} x FL— My g(C)
(()\1, CoAQ) (cl, .. .,cj)) — Zg':l Ajcj,

which generalizes the polar coordinates map.
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Volume forms on M, 4(C) (2)
Proposition.

q
_ 2(p—q)+1
P " = H A
j=1
2 \2\2 I
f“}f(Aj A7) dA AL AdA A G,
1<

where ©J, . is a U(p) x U(q)-invariant volume
form on F .
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Compactification of My ((C) (1)

Let (n1,...,7nq) be the standard basis of C4. To

u € Mpqg(C), u = (uy,...,uqg), Where u; is the
j-th column of u, we associate u € G, ;4,(C)
(the Grassmannian of g-planes in C? @ CP) de-

fined by
u=(n1Pdug,...,nqg P ug).
By the Plucker embedding
Gp,q(C) CP (A1 (CT CP)),
w IS mapped to
O(u) =a=[(n +ur) A... A (g D ug)] -
The map
O Mpq(C) - P (N1 (CTa CP))

is injective and the closure of © (M, 4(C)) is

the Grassmannian G 4(C). The map © is called
the canonical compactification map of My 4(C).
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Compactification of My ((C) (2)

Using the isomorphism

P (A4 (CI @ CP)) ~ P (é Hom (/j\Cq,/j\(Cp)) |

j=0
the compactification map may also be written

O(x)=[1Pxd...dNz] = Lé /\ja:'].
=0

Let V; = Hom (/\J(Cq /\=7(Cp> and W = QBJ —oV;-
Let (:c | y); =Tr(y"z) be the Hermitian scalar
product on V arising from the standard Her-
mitian products on NJC4, ANJCP and let (| ) be
the direct sum of these products in W. Denote
by 8 the corresponding Fubini-Study form on

P(W):
8= éé@ln (w | w).
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From My 4(C) to its unit ball (1)

Define the real-analytic map
¢ : Qgg,q — Mp,q(@)
by
Y(z) = (Ip — :ca:*)_l/z r=x(lg— x*x)_l/z :
Then 7 is a diffeomorphism and
_ —1/2 —1/2
Y l(y) — (Ip—l—yy*) / y:y<IQ+y*y) / -
Proposition.
p* (Det (Ig+ z*x)" P71 an)

= Det (I; — z*z) " a".
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From My 4(C) to its unit ball (2)

Proof. Transposed by &, the map ¢ is ¥ =
P Lloyod,

Wi{l>X > > >N >0} x FL,
—>{)\1>>\2>"'>>\q>0}><f]iq,

(%) (e3)) = /\j)m (o)

As &*z =311 Ajej, we have

o det (I + 2*z) = 17—y (14 A2)

and

an

Det (14 + r* )P T4
2(p—q)+1 2
;1:1 )\j(p )+ Hj<k()‘32'_)‘%)

()
with w (M) =d A1 A...Ad ).
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From My ¢(C) to its unit ball (3)

Let
Aj
Hj — 1/2°
(1-2%)
Then
1
2 __
1 4 pj Vi
J
Bi  dp;=Xd),
(1+u3)
2 2
ps — pp = aiky'
’ (1 =A%) (1 -7
Finally
]2(1) Q+1 ) % /’Lk
HJ - H]< (p+q w (/’L)
[T (1+u2)

[Ty 2-22) pbg
TG Hjr (1 (A2) (1-x2)’ T (12972 wy

22 41
—HJ 1 g(p ? Hj<k: (A,]Z_ k:) w(A),

which ends the proof.
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The degree of Grassmannians in the
Plucker embedding
Proposition.

an

e* (") = .
(5%) Det (I, + x*xz)PT4

Theorem. Let Gpqe(C) < P(W) be the
Plicker embedding of the Grassmannian. Then

p,q

(n=dimV = pq).

Proof.

GeaGpu@ = [,
p,q

an
_/ :/ an.
V Det (Ig + z*2)P T Jaf,

V135



Bounded symmetric domains

A bounded domain 2 C C" is called symmetric
if for each =z € (2 there is an involutive holo-
morphic automorphism s; (s2 = idy) such that
x IS an isolated fixed point of s,.

Bounded symmetric domains are homogeneous
(under the group Aut 2 of holomorphic auto-
morphisms).

Any bounded symmetric domain (2 is biholo-
morphic to a bounded circled homogeneous
domains, which is unique up to linear isomor-
phisms and is called the circled realization of
(2.

We will always consider bounded symmetric
domains in their circled realization.

A bounded symmetric domain is called irre-
ducible if it is not equivalent to the direct prod-
uct of two bounded symmetric domains.
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Jordan triple associated to a bounded
symmetric domain

Let 2 be an irreducible bounded circled homo-
geneous domain in a complex vector space V.
Let K be the identity component of the (com-
pact) Lie group of (linear) automorphisms of
(2 leaving O fixed. Let w be a volume form on
V', invariant by K and by translations. Let IC
be the Bergman kernel of (2 with respect to w.
The Bergman metric at z € {2 is defined by

h(u,v) = 0y0y log K(2).
The Jordan triple product on V is defined by
ho({uvw}, t) = 9y0y0w0: 109 K(2) | ,—0 -

The triple product (z,y, z) — {xyz} is complex
bilinear and symmetric with respect to (z,z),
complex antilinear with respect to y. It satis-
fies the Jordan identity (J).
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Hermitian Jordan triples

Let V be a (finite dimensional) complex vector
space, endowed with a triple product

(z,y,2) — {zyz}

complex bilinear and symmetric with respect
to (x,z), complex antilinear with respect to vy,
satisfying the Jordan identity

{zyluvw};—{uvizyw}} = {{zyutvwi—{u{veyjw;.

(J)
Then (V,{zyz}) is called a (Hermitian) Jordan
triple system.

For z,y,z € V, denote by D(x,y) and Q(x,z)
the operators defined by

{zyz} = D(z,y)z = Q(z, 2)y.
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Positive Jordan triples

A Jordan triple system is called (Hermitian)
positive if
(u|v) = tr D(u,v)

IS positive definite.

An Hermitian positive Jordan triple system is
always semi-simple, that is, the direct sum of a
finite family of simple subsystems with compo-
nent-wise triple product. It is called simple if it
not the product of two non-trivial subsystems.
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Quadratic operator and Bergman
operator

Let (V,{, , }) bea Jordan triple. The quadratic
representation QQ : V — Endp (V') is defined by

2Q(z)y = {zyz}.
T he following fundamental identity is a conse-
quence of the Jordan identity:

Q(Q(z)y) = Q(z)Q(y)Q(x).
The Bergman operator B is defined by

B(z,y) =1—D(z,y) + Q(z)Q(y),

where I denotes the identity operator in V. It
IS also a consequence of the Jordan identity
that the following fundamental identity holds
for the Bergman operator:

Q(B(z,y)z) = B(z,y)Q(2)B(y, ).
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Tripotent elements in Jordan triples

Let (V,{, , }) be a Jordan triple. An element
c € V is called tripotent if

{ccc} = 2ec.

If ¢ is a tripotent, the operator D(¢,c) annihi-
lates the polynomial T(T — 1)(T — 2).The de-
composition

V = Vo(c) ® Vi(e) ® Va(o),
where V;(c) is the eigenspace
Vile) ={z €V ; D(c,c)z = jz},

is called the Peirce decomposition of V (with
respect to the tripotent ¢).
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Orthogonality of tripotents

Two tripotents ¢1 and ¢, are called orthogonal
if D(cy,co) = 0. If ¢1 and c¢» are orthogonal
tripotents, then D(cl,cl) and D(co,cr) com-
mute and cy 4+ ¢» is also a tripotent.

A non zero tripotent c is called primitive if it is
not the sum of non zero orthogonal tripotents.
A tripotent ¢ is called maximal if there is no
non zero tripotent orthogonal to c.
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Frames

A frame of V is a maximal sequence (cq1,...,¢r)
of pairwise orthogonal primitive tripotents.

Let V be a simple positive Jordan triple. Then
there exist frames for V. All frames have the
same number of elements, which is the rank r
of V.

Letc = (cq,...,¢cr) beaframe. For0<i<j<
r, let

Vi;(c)
= {azG V| D(cp,cr)r = (5?4—55)33, 1 gkgr}.

The decomposition V. = @o<i<j<r Vijlc) is
called the simultaneous Peirce decomposition
with respect to the frame c.
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Numerical invariants
Let V be a simple positive Jordan triple.

For any frame c of V, the subspaces V;; =
V;;(c) of the simultaneous Peirce decomposi-
tion have the following properties: Vgg = O ;
Vii = Ce; (0 <i); all Vj;'s (0 < i< j) have the
same dimension a; all Vp;'s (0 < 7) have the
same dimension b.

The numerical invariants of V are the rank r
and the two integers

azdlm‘/fm (O<i<j),
b=dimVy;, (0<1).
The genus of V is the number g defined by
g=2-4a(r—1)+0.

The positive Jordan triple V is said to be of
tube type if b = 0.
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Spectral theory

Let V be a simple positive Jordan triple. Then
any x € V can be written in a unique way

T = A1c1 + Aoco + -+ Apep,

where Ay > Ao > --- > Ap > 0 and cy,cp...,¢p
are pairwise orthogonal tripotents. The ele-
ment z is regular iff p = r (the rank of V);
then (cq1,¢0,...,¢r) is @ frame of V. The de-
composition x = Ajc1+Azeco+- - -+ Apcp is called
the spectral decomposition of zx.

The map =z — A1, where x = Aic1 + Moo +
-+« + Apcp IS the spectral decomposition of x
(AL >X>--->Ap>0)isanormon V, called
the spectral norm.
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The generic minimal polynomial

Let V be a simple positive Jordan triple of
rank r. There exist polynomials m1q,...,my
on V x V, homogeneous of respective bide-
grees (1,1),...,(r,r), such that for each regu-
lar x € V', the polynomial

m(T,xz,y)
=T — ml(w,y)TT_l + -+ (=1)"'mp(z,y)
satisfies

.
m(T,z,z) = [[ (T —\2),
i=1

where x = ZAjcj IS the spectral decomposition
of x. The polynomial m(T,z,y) is called the
generic minimal polynomial of V (at (z,y)).
The (inhomogeneous) polynomial N : VxV —
C defined by

N(z,y) = m(1l,z,y)
IS called the generic norm.
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The spectral unit ball

If (V,{zyz}) is the triple system associated to
a bounded symmetric domain {2, the Bergman
metric at O is related to D by

ho(u,v) = tr D(u,v).

Hence (V,{xyz}) is Hermitian positive. The
Bergman operator gets its name from the fol-
lowing property:

hy (B(z,2)u,v) = hg(u,v) (z€ 2; u,veV).

The bounded symmetric domain (2 is the unit
ball of V for the spectral norm.

It is also characterized by the set of polynomial
inequalities

i < 7<7r—1.
aT]m(T,:Iz,x)T21>O, 0<j<r-1
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Volume forms on Jordan triples

Let V be a simple positive Hermitian Jordan
triple, with generic norm

N(z,y) =1-—mi(z,y) + -+ (=1)"'ms(z,y).
Consider on V the Hermitian scalar product

(z|y) = mi(z,y)
and the associated (1,1)-form

a = L(‘95m1 (z,x).
21

The flat volume form on V is

an

(with n = dimV); the projective volume form

IS

aTL

N (x,x)9’
where g is the genus of V.
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Polar coordinates in Jordan triples

Let V be a simple positive Hermitian Jordan
triple and (2 the associated bounded symmetric
domain.

The frames of V form a real-analytic manifold
F (the Fiirstenberg-Satake boundary of (2).
The map @

{A1>X>---> XA >0} X F -V
<()\1,...,)\q),(Cl,...,Cj)) I—>Z§:1 )\]C]

is a diffeomorphism onto the set Vyeg Of regular
elements of V.

Let K be the identity component of the (linear
Lie) group of automorphisms of V. Then K
acts transitively on F and the map & is K-
equivariant.
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Volume forms in polar coordinates

Proposition. Let V be a simple positive Jor-
dan triple, with dimension n, rank r, numerical
invariants a, b and genus g =2+ a(r — 1) 4+ b.
Then the pull-back of the flat volume form in
generalized polar coordinates is

.
o*a" = [[ X[ (A2 - /\i)“wr(,\) AO,
J=1 <k
where wr(A) = dA1 A...AdX, and O is a K-
invariant volume form on F.
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Schmid decomposition

Let V be a simple positive Hermitian Jordan
triple of rank r. Let P(V) be the space of
polynomials on V. For n = (n1,...,nr) € N",
writen >0 iff ny > --- > n, > 0.

Theorem. (Schmid decomposition) The space
P(V) decomposes into irreducible, pairwise un-
equivalent K-modules: P(V) = @®p>0 Pn(V).

For 0 < j < r, let () = (5,0,...,0). Then
m;(x,y) is a reproducing kernel for 7?<j>(V), en-
dowed with the Hermitian structure induced on
P(V) by the Hermitian scalar product my: for
each f € 73<j>(V),

Fo) = (£1(mj) ),

where

(mj)y () =m;(x,y).
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Compactification of Jordan triples

Let V be a simple positive Hermitian Jordan triple of
rank r. Let

gj . V — 'P<j>(V*) C ij
be defined by
oj (z) (y*) = m; (z,y),

where y — y* is the anti-isomorphism of V onto V*
induced by the Hermitian product mi. Then

mj (z,y) = (0;(z) | 0;(y)) -
In particular, og(x) =1 and o1(x) = z. Let

W =Py (V).
=0
The canonical compactification map of the Jordan triple
Vs
oc:V — P(W)
x— [1Poi(x)d - Por(x)].

The closure X = o(V) is an algebraic projective variety,
called canonical compactification of V., or compact dual

of the bounded symmetric domain 2 associated to V.
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Projective volume form of Jordan
triples

Let V be a simple positive Hermitian Jordan
triple of rank r and genus g. Let

.
W = @ 73<j>(V*)
§=0
be endowed with the Hermitian product in-
duced by mq1. Denote by g the corresponding
Fubini-Study form on P(W). Then

o* B = Lﬁgln N(iz,ix).
21

Proposition.

o*(" = (é@g INn N(ix,i :E))n

= N(iz,iz) 9a".
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From a Jordan triple to its unit ball

(1)

Let V be a simple positive Hermitian Jordan
triple and (2 the associated bounded symmetric
domain. Denote by B the Bergman operator

B(z,y) = idy —=D(z,y) + Q(z)Q(y).
Define the real-analytic map
Y-V
by
v(x) = B(ac,a:)_l/4x.
Then % is a diffeomorphism and
v (y) = Biy,iy) "%

Proposition. Let N denote the generic horm
of V, g the genus of V.. Then

™ (N (iz,iz)° 9 ()4”) = N(xz,z) °a".
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From a Jordan triple to its unit ball

(2)

Proof. Transposed by &, the map ¢ is ¥ =
P~ Lloyod,

U {1>A>X> >N\ >0} xXF
—{A1 > > - > A >0} X F,

() (o)) = (1_/\‘12)1/2 1C)

If &*x = J 1 Ajcj, we have

N (iz,iz) = [y (14 A2)

and

an

N (ix,ix)?
[T 57 I (4342)
H§=1(1+>‘32~>

wr (A) A 6.
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From a Jordan triple to its unit ball

(3)

Let
My = A
J o\ 1/2
(1-2%)
Then
1
2 __
J
2]
du;, = A;dX;
5 J J J>
(1+13)
2 2
2 >‘j_>‘k

2
Ky — K — :
’ (1=23) (1 =A3)
Finally, using g =2+ a(r — 1) + b, we have

| A | PR )
TGty " (1)

o ) ~
- HU](l >\2)b HJ<’<7 (1 (A)?\) ()\1 x2)" HJ 1( ) Qwr(M
= Loy X" T (A2 = 22)“ wr (),

which ends the proof.
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Volume and degree

Let V be a simple positive Jordan triple and (2
the associated bounded symmetric domain.
Theorem. Let o : V — P(W) be the canon-
ical compactification map and X = o(V) the
compact dual of (2. Then

degX:/ o’
0

(n =dimV).

Proof.
(87

degX:/Xﬁn:/VN(ix:x)g :/gan'

Exercise. Compute the projective volume of the
domain (2, embedded in X by o

Solution. deg X /2"
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