Compactification and volume of bounded symmetric domains

Guy Roos
guy.roos@normalesup.org

January 30, 2004

Summary

1. Examples
1.1 Unit disc and Riemann sphere
1.2 Hermitian ball and $\mathbb{P}_{n}(\mathbb{C})$
$1.3 \mathcal{M}_{p, q}(\mathbb{C})$ and the Grassmannian $G_{p, q}(\mathbb{C})$
2. Bounded symmetric domains and Jordan triples
3. Compactification and volume of bounded symmetric domains

The unit disc in \mathbb{C}

Let $\Delta \subset \mathbb{C}$ be the unit disc, oriented by the volume form

$$
\alpha=\frac{\mathrm{i}}{2 \pi} \mathrm{~d} z \wedge \mathrm{~d} \bar{z}=\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial}(z \bar{z}) .
$$

Then

$$
\int_{\Delta}(1-z \bar{z})^{s} \alpha=\frac{1}{s+1} \quad(\operatorname{Re} s>-1) .
$$

In particular,

$$
\int_{\Delta} \alpha=1 .
$$

Proof. In polar coordinates, $\phi:(r, \theta) \mapsto z=$ $r \mathrm{e}^{\mathrm{i} \theta}$,

$$
\phi^{*} \alpha=\frac{1}{\pi} r \mathrm{~d} r \wedge \mathrm{~d} \theta
$$

and

$$
\int_{\Delta}(1-z \bar{z})^{s} \alpha=2 \int_{0}^{1}\left(1-r^{2}\right)^{s} r \mathrm{~d} r .
$$

The Fubini-Study metric on $\mathbb{P}_{1}(\mathbb{C})$

Denote by $\mathbb{P}_{1}(\mathbb{C})$ the complex projective space of dimension 1, by

$$
\begin{aligned}
\pi: \mathbb{C}^{2} \backslash\{0\} & \rightarrow \mathbb{P}_{1}(\mathbb{C}) \\
\left(z^{0}, z^{1}\right) & \mapsto\left[z^{0}, z^{1}\right]
\end{aligned}
$$

the canonical projection. The Fubini-Study metric on $\mathbb{P}_{1}(\mathbb{C})$ is the $(1,1)$-form β defined by

$$
\pi^{*} \beta=\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial} \ln \left(z^{0} \overline{z^{0}}+z^{1} \overline{z^{1}}\right) .
$$

Denote by $\widetilde{\beta}$ the pull-back of β by the inclusion $\mathbb{C} \subset \mathbb{P}_{1}(\mathbb{C}), z \mapsto[1, z]:$

$$
\widetilde{\beta}=\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial} \ln (1+z \bar{z}) .
$$

Then

$$
\widetilde{\beta}=\frac{\mathrm{i}}{2 \pi} \frac{\mathrm{~d} z \wedge \mathrm{~d} \bar{z}}{(1+z \bar{z})^{2}} .
$$

The Fubini-Study metric: existence

If β exists, it is unique as π is a submersion.
If U is open in $\mathbb{P}_{1}(\mathbb{C})$ and $f=\left(f_{0}, f_{1}\right)$ is a section of π defined on U, then

$$
\beta=f^{*} \pi^{*} \beta=\frac{\mathrm{i}}{2 \pi} f^{*} \partial \bar{\partial} \ln \left(z^{0} \overline{z^{0}}+z^{1} \overline{z^{1}}\right) .
$$

As

$$
\partial \bar{\partial} \ln \left(z^{0} \overline{z^{0}}+z^{1} \overline{z^{1}}\right)=\mathrm{d}\left(\frac{z^{0} \mathrm{~d} \overline{z^{0}}+z^{1} \mathrm{~d} \overline{z^{1}}}{z^{0} \overline{z^{0}}+z^{1} \overline{z^{1}}}\right),
$$

we have

$$
\beta=\frac{\mathrm{i}}{2 \pi} \mathrm{~d}\left(\frac{f^{0} \mathrm{~d} \overline{f^{0}}+f^{1} \mathrm{~d} \overline{f^{1}}}{f^{0} \overline{f^{0}}+f^{1} \overline{f^{1}}}\right) .
$$

If $g=\left(g_{0}, g_{1}\right)$ is another section, then $f=\lambda g$ where $\lambda: U \rightarrow \mathbb{C}$ is a non-vanishing function on U; we have

$$
\begin{aligned}
\mathrm{d}\left(\frac{f^{0} \mathrm{~d} \overline{f^{0}}+f^{1} \mathrm{~d} \overline{f^{1}}}{f^{0} \overline{f^{0}}+f^{1} \overline{f^{1}}}\right) & =\mathrm{d}\left(\frac{g^{0} \mathrm{~d} \overline{g^{0}}+g^{1} \mathrm{~d} \overline{g^{1}}}{g^{0} \overline{g^{0}}+g^{1} \overline{g^{1}}}+\mathrm{d} \bar{\lambda}\right) \\
& =\mathrm{d}\left(\frac{g^{0} \mathrm{~d} \overline{g^{0}}+g^{1} \mathrm{~d} \overline{g^{1}}}{g^{0} \overline{g^{0}}+g^{1} \overline{g^{1}}}\right)
\end{aligned}
$$

which shows the existence of β.

The Fubini-Study metric on \mathbb{C}

On $U_{0} \subset \mathbb{P}_{1}(\mathbb{C}), U_{0}=\{[1, z] \mid z \in \mathbb{C}\} \simeq \mathbb{C}$, we take the section $f_{0}=1, f_{1}=z$, which gives

$$
\begin{aligned}
\widetilde{\beta} & =\frac{\mathrm{i}}{2 \pi} \mathrm{~d}\left(\frac{z \mathrm{~d} \bar{z}}{1+z \bar{z}}\right) \\
& =\frac{\mathrm{i}}{2 \pi} \frac{\mathrm{~d} z \wedge \mathrm{~d} \bar{z}}{1+z \bar{z}}-\frac{\mathrm{i}}{2 \pi} \frac{\bar{z} \mathrm{~d} z \wedge z \mathrm{~d} \bar{z}}{(1+z \bar{z})^{2}} \\
& =\frac{\mathrm{i}}{2 \pi} \frac{\mathrm{~d} z \wedge \mathrm{~d} \bar{z}}{(1+z \bar{z})^{2}} .
\end{aligned}
$$

From \mathbb{C} to Δ (1)

Consider the real-analytic map

$$
\begin{aligned}
& \psi: \Delta \rightarrow \mathbb{C} \\
& z \mapsto \frac{z}{(1-z \bar{z})^{1 / 2} .}
\end{aligned}
$$

The map ψ is a diffeomorphism and its inverse is

$$
\psi^{-1}: u \mapsto \frac{u}{(1+u \bar{u})^{1 / 2}} .
$$

Proposition.

$$
\psi^{*}\left((1+z \bar{z})^{s} \tilde{\beta}\right)=(1-z \bar{z})^{-s} \alpha .
$$

From \mathbb{C} to Δ (2)

Proof. For $u=\psi(z)=\frac{z}{\left(1-z \overline{)^{1 / 2}}\right.}$, we have

$$
\begin{aligned}
1+u \bar{u} & =(1-z \bar{z})^{-1} \\
\mathrm{~d} u & =\frac{\mathrm{d} z}{(1-z \bar{z})^{1 / 2}}-\frac{z}{2} \frac{-\bar{z} \mathrm{~d} z-z \mathrm{~d} \bar{z}}{(1-z \bar{z})^{3 / 2}} \\
& =\frac{1-\frac{z \bar{z}}{2}}{(1-z \bar{z})^{3 / 2}} \mathrm{~d} z+\frac{z^{2}}{2} \frac{\mathrm{~d} \bar{z}}{(1-z \bar{z})^{3 / 2}}, \\
\mathrm{~d} \bar{u} & =\frac{\bar{z}^{2}}{2} \frac{\mathrm{~d} z}{(1-z \bar{z})^{3 / 2}}+\frac{1-\frac{z \bar{z}}{2}}{(1-z \bar{z})^{3 / 2}} \mathrm{~d} \bar{z}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{d} u \wedge \mathrm{~d} \bar{u} & =\left(\left(1-\frac{z \bar{z}}{2}\right)^{2}-\frac{z^{2} \bar{z}^{2}}{4}\right) \frac{\mathrm{d} z \wedge \mathrm{~d} \bar{z}}{(1-z \bar{z})^{3}} \\
& =\frac{\mathrm{d} z \wedge \mathrm{~d} \bar{z}}{(1-z \bar{z})^{2}} .
\end{aligned}
$$

This means

$$
\begin{aligned}
\psi^{*}\left((1+z \bar{z})^{s}\right) & =(1-z \bar{z})^{-s}, \\
\psi^{*} \alpha & =(1-z \bar{z})^{-2} \alpha, \\
\psi^{*} \widetilde{\beta} & =\psi^{*}\left((1+z \bar{z})^{-2} \alpha\right)=\alpha .
\end{aligned}
$$

From \mathbb{C} to Δ (3)

The map ψ and the above proof are better understood using the polar coordinates map

$$
\begin{aligned}
\Phi:] 0,+\infty\left[\times S^{1}\right. & \rightarrow \mathbb{C} \backslash\{0\} \\
(\lambda, c) & \mapsto \lambda c .
\end{aligned}
$$

Transposed by Φ, the map ψ is $\Psi=\Phi^{-1} \circ \psi \circ \Phi$,

$$
\begin{aligned}
\Psi:] 0,1\left[\times S^{1}\right. & \rightarrow] 0,+\infty\left[\times S^{1}\right. \\
(\lambda, c) & \mapsto\left(\frac{\lambda}{\left(1-\lambda^{2}\right)^{1 / 2}}, c\right) .
\end{aligned}
$$

The pull-backs of α and $\widetilde{\beta}$ by Φ are

$$
\begin{aligned}
& \Phi^{*} \alpha=2 \lambda \mathrm{~d} \lambda \wedge \Theta_{1}, \\
& \Phi^{*} \widetilde{\beta}=\frac{2 \lambda}{\left(1+\lambda^{2}\right)^{2}} \mathrm{~d} \lambda \wedge \Theta_{1},
\end{aligned}
$$

where Θ_{1} is the rotation-invariant form on S^{1} such that $\int_{S^{1}} \Theta_{1}=1$. If $\mu=\frac{\lambda}{\left(1-\lambda^{2}\right)^{1 / 2}}$, then $1+\mu^{2}=\left(1-\lambda^{2}\right)^{-1}$ and $2 \mu \mathrm{~d} \mu=\mathrm{d}\left(\mu^{2}\right)=\mathrm{d}\left(\frac{\lambda^{2}}{1-\lambda^{2}}\right)=\mathrm{d}\left(\frac{1}{1-\lambda^{2}}\right)=\frac{2 \lambda \mathrm{~d} \lambda}{\left(1-\lambda^{2}\right)^{2}}$,
which proves again $\psi^{*} \alpha=(1-z \bar{z})^{-2} \alpha$.

Volume of $\mathbb{P}_{1}(\mathbb{C})$

Proposition.

$$
\int_{\mathbb{P}_{1}(\mathbb{C})} \beta=1 .
$$

Proof.

$$
\int_{\mathbb{P}_{1}(\mathbb{C})} \beta=\int_{\mathbb{C}} \widetilde{\beta}=\int_{\Delta} \alpha=1
$$

as $\psi^{*} \widetilde{\beta}=\alpha$.
Remark. More generally, for $\operatorname{Re} s>-1$,

$$
\int_{\mathbb{C}}(1+z \bar{z})^{s} \widetilde{\beta}=\int_{\Delta}(1-z \bar{z})^{-s} \alpha=\frac{1}{s+1}
$$

follows from $\psi^{*}\left((1+z \bar{z})^{s} \widetilde{\beta}\right)=(1-z \bar{z})^{-s} \alpha$.
Exercise. Compute $\int_{\Delta} \widetilde{\beta}, \int_{\Delta}(1+z \widetilde{z})^{s} \widetilde{\beta}$.

The Hermitian ball in \mathbb{C}^{n}

Consider the standard Hermitian space $V=$ \mathbb{C}^{n} of dimension n, with the Hermitian scalar product

$$
(z \mid t)=\sum_{j=1}^{n} z^{j} \overline{t^{j}}
$$

and the Hermitian norm $\|\|$ defined by $\| z \|^{2}=$ ($z \mid z$). The canonical $(1,1)$-form on V is

$$
\alpha=\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial}(z \mid z)=\frac{\mathrm{i}}{2 \pi} \sum_{j=1}^{n} \mathrm{~d} z^{j} \wedge \mathrm{~d} \overline{z^{j}} .
$$

The volume form on V is α^{n}. The Hermitian unit ball is

$$
B_{n}=\{z \in V \mid\|z\|<1\} .
$$

The volume of B_{n} is then

$$
\int_{B_{n}} \alpha^{n}=1 .
$$

The Fubini-Study metric on $\mathbb{P}_{n}(\mathbb{C})$

Denote by $\mathbb{P}_{n}(\mathbb{C})$ the complex projective space of dimension n, by

$$
\begin{aligned}
\pi: \mathbb{C}^{n+1} \backslash\{0\} & \rightarrow \mathbb{P}_{n}(\mathbb{C}), \\
\left(z^{0}, z^{1}, \ldots, z^{n}\right) & \mapsto\left[z^{0}, z^{1}, \ldots, z^{n}\right]
\end{aligned}
$$

the canonical projection. Let $(z \mid t)=\sum_{j=0}^{n} z^{j} \overline{t^{j}}$ the standard Hermitian form on \mathbb{C}^{n+1}. The Fubini-Study metric on $\mathbb{P}_{n}(\mathbb{C})$ is the $(1,1)$-form β defined by

$$
\pi^{*} \beta=\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial} \ln (z \mid z) .
$$

Denote by $\widetilde{\beta}$ the pull-back of β by the inclusion $\mathbb{C}^{n} \subset \mathbb{P}_{n}(\mathbb{C}),\left(z^{1}, \ldots, z^{n}\right) \mapsto\left[1, z^{1}, \ldots, z^{n}\right]:$

$$
\widetilde{\beta}=\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial} \ln \left(1+\sum_{j=1}^{n} z^{j} \overline{z^{j}}\right) .
$$

The Fubini-Study metric on $\mathbb{P}_{n}(\mathbb{C})$: existence

If β exists, it is unique as π is a submersion.
If U is open in $\mathbb{P}_{n}(\mathbb{C})$ and $f=\left(f_{0}, \ldots, f_{n}\right)$ is a section of π defined on U, then

$$
\beta=f^{*} \pi^{*} \beta=\frac{\mathrm{i}}{2 \pi} f^{*} \partial \bar{\partial} \ln (z \mid z)
$$

As

$$
\partial \bar{\partial} \ln (z \mid z)=\mathrm{d}\left(\frac{(z \mid \mathrm{d} z)}{(z \mid z)}\right)
$$

we have

$$
\beta=\frac{\mathrm{i}}{2 \pi} \mathrm{~d}\left(\frac{(f \mid \mathrm{d} f)}{(f \mid f)}\right),
$$

where $(f \mid \mathrm{d} f)=\sum_{j=0}^{n} f^{j} \mathrm{~d} \overline{f^{j}}$. If $g=\left(g_{0}, g_{1}\right)$ is another section, then $f=\lambda g$ where $\lambda: U \rightarrow \mathbb{C}$ is a non-vanishing function on U; we have

$$
\begin{aligned}
\mathrm{d}\left(\frac{(f \mid \mathrm{d} f)}{(f \mid f)}\right) & =\mathrm{d}\left(\frac{(g \mid \mathrm{d} g)}{(g \mid g)}+\mathrm{d} \bar{\lambda}\right) \\
& =\mathrm{d}\left(\frac{(g \mid \mathrm{d} g)}{(g \mid g)}\right),
\end{aligned}
$$

which shows the existence of β.

The Fubini-Study metric on \mathbb{C}^{n}

On $U_{0} \subset \mathbb{P}_{n}(\mathbb{C}), U_{0}=\left\{[1, z] \mid z \in \mathbb{C}^{n}\right\} \simeq \mathbb{C}^{n}$, we take the section $f=(1, z)$, which gives

$$
\begin{aligned}
\widetilde{\beta} & =\frac{\mathrm{i}}{2 \pi} \mathrm{~d}\left(\frac{(z \mid \mathrm{d} z)}{1+(z \mid z)}\right) \\
& =\frac{\mathrm{i}}{2 \pi} \frac{(\mathrm{~d} z \mid \mathrm{d} z)}{1+(z \mid z)}-\frac{\mathrm{i}}{2 \pi} \frac{(\mathrm{~d} z \mid z) \wedge(z \mid \mathrm{d} z)}{(1+(z \mid z))^{2}},
\end{aligned}
$$

where

$$
\begin{aligned}
(z \mid \mathrm{d} z) & =\sum_{j=1}^{n} z^{j} \mathrm{~d} \overline{z^{j}}, \\
(\mathrm{~d} z \mid z) & =\sum_{j=1}^{n} \overline{z^{j}} \mathrm{~d} z^{j}, \\
(\mathrm{~d} z \mid \mathrm{d} z) & =\sum_{j=1}^{n} \mathrm{~d} z^{j} \wedge \mathrm{~d} \overline{z^{j}} .
\end{aligned}
$$

The projective volume form on \mathbb{C}^{n}

The canonical volume form on $\mathbb{P}_{n}(\mathbb{C})$ is

$$
\omega=\beta^{n} .
$$

Its pull-back $\widetilde{\beta}^{n}$ to \mathbb{C}^{n} is then

$$
\begin{aligned}
& \widetilde{\beta}^{n}=\left(\frac{\mathrm{i}}{2 \pi}\right)^{n}\left(\frac{(\mathrm{~d} z \mid \mathrm{d} z)}{1+(z \mid z)}\right)^{n} \\
& -n\left(\frac{\mathrm{i}}{2 \pi}\right)^{n} \frac{(\mathrm{~d} z \mid z) \wedge(z \mid \mathrm{d} z)}{(1+(z \mid z))^{2}}\left(\frac{(\mathrm{~d} z \mid \mathrm{d} z)}{1+(z \mid z)}\right)^{n-1} \\
&
\end{aligned}
$$

with

$$
\gamma(z)=(1+(z \mid z))(\mathrm{d} z \mid \mathrm{d} z)-n(\mathrm{~d} z \mid z) \wedge(z \mid \mathrm{d} z) .
$$

Using

$$
n(\mathrm{~d} z \mid z) \wedge(z \mid \mathrm{d} z) \wedge(\mathrm{d} z \mid \mathrm{d} z)^{n-1}=(z \mid z)(\mathrm{d} z \mid \mathrm{d} z)^{n},
$$

we get

$$
\widetilde{\beta}^{n}=\frac{\alpha^{n}}{(1+(z \mid z))^{n+1}} .
$$

From \mathbb{C}^{n} to $B_{n}(1)$

We define the real-analytic map

$$
\begin{aligned}
& \psi: B_{n} \rightarrow \mathbb{C}^{n} \\
& z \mapsto \frac{z}{\left(1-\|z\|^{2}\right)^{1 / 2}}
\end{aligned}
$$

The map ψ is a diffeomorphism and its inverse is

$$
\psi^{-1}: u \mapsto \frac{u}{\left(1+\|u\|^{2}\right)^{1 / 2}} .
$$

Consider the polar coordinates map in \mathbb{C}^{n}

$$
\begin{aligned}
\Phi:] 0,+\infty\left[\times S^{2 n-1}\right. & \rightarrow \mathbb{C}^{n} \backslash\{0\} \\
(\lambda, c) & \mapsto \lambda c .
\end{aligned}
$$

Transposed by Φ, the map ψ is $\Psi=\Phi^{-1} \circ \psi \circ \Phi$,

$$
\begin{aligned}
\Psi:] 0,1\left[\times S^{2 n-1}\right. & \rightarrow] 0,+\infty\left[\times S^{2 n-1}\right. \\
(\lambda, c) & \mapsto\left(\frac{\lambda}{\left(1-\lambda^{2}\right)^{1 / 2}}, c\right) .
\end{aligned}
$$

From \mathbb{C}^{n} to B_{n} (2)

The pull-back of α^{n} by the polar coordinates map Φ is

$$
\Phi^{*} \alpha^{n}=2 n \lambda^{2 n-1} \mathrm{~d} \lambda \wedge \Theta_{2 n-1},
$$

where $\Theta_{2 n-1}$ is a $U(n)$-invariant form on $S^{2 n-1}$. We have $\int_{B_{n}} \alpha^{n}=\int_{0}^{1} 2 n \lambda^{2 n-1} \mathrm{~d} \lambda \int_{S^{2 n-1}} \Theta_{2 n-1}$, which implies

$$
\int_{S^{2 n-1}} \Theta_{2 n-1}=1
$$

The pull-back of $\widetilde{\beta}^{n}$ by Φ is then

$$
\Phi^{*} \widetilde{\beta}^{n}=\frac{2 n \lambda^{2 n-1}}{\left(1+\lambda^{2}\right)^{n+1}} \mathrm{~d} \lambda \wedge \Theta_{2 n-1} .
$$

Proposition.

$$
\psi^{*}\left((1+z \bar{z})^{s} \widetilde{\beta}^{n}\right)=(1-z \bar{z})^{-s} \alpha^{n} .
$$

Proof. Using polar coordinates, let $\mu=\frac{\lambda}{\left(1-\lambda^{2}\right)^{1 / 2}}$. Then $1+\mu^{2}=\frac{1}{1-\lambda^{2}}$ and

$$
\begin{aligned}
& \frac{2 n \mu^{2 n-1}}{\left(1+\mu^{2}\right)^{n+1}} \mathrm{~d} \mu=\frac{n \mu^{2 n-2}}{\left(1+\mu^{2}\right)^{n+1}} \mathrm{~d}\left(\mu^{2}\right) \\
& \quad=\frac{n \lambda^{2 n-2}}{\left(1-\lambda^{2}\right)^{n-1}\left(1+\mu^{2}\right)^{n+1}} \frac{2 \lambda \mathrm{~d} \lambda}{\left(1-\lambda^{2}\right)^{2}}=2 n \lambda^{2 n-1} \mathrm{~d} \lambda .
\end{aligned}
$$

Volume of $\mathbb{P}_{n}(\mathbb{C})$

Proposition.

$$
\int_{\mathbb{P}_{n}(\mathbb{C})} \beta^{n}=1
$$

Proof.

$$
\int_{\mathbb{P}_{n}(\mathbb{C})} \beta^{n}=\int_{\mathbb{C}^{n}} \widetilde{\beta}^{n}=\int_{B_{n}} \alpha^{n}=1 .
$$

Exercise. Compute $\int_{B_{n}} \widetilde{\beta}^{n}$ (the projective volume of the unit Hermitian ball).
Solution. $1 / 2^{n}$
Corollary. 1) Let $P_{k} \subset \mathbb{P}_{n}(\mathbb{C})$ be a projective plane of complex dimension k. Then

$$
\int_{P_{k}} \beta^{k}=1
$$

2) Let $X \subset \mathbb{P}_{n}(\mathbb{C})$ be a projective subvariety of pure dimension k. Then

$$
\int_{X} \beta^{k}=\operatorname{deg} X
$$

The generalized unit ball in $\mathcal{M}_{p, q}(\mathbb{C})$

For $p \geq q \geq 1$, let

$$
V=\operatorname{Hom}\left(\mathbb{C}^{q}, \mathbb{C}^{p}\right) \simeq \mathcal{M}_{p, q}(\mathbb{C})
$$

(space of complex matrices with p lines and q columns).

Here \mathbb{C}^{q} and \mathbb{C}^{p} are Hermitian vector spaces with the standard Hermitian structures; the standard basis of $\mathbb{C}^{q}\left(\right.$ resp. $\left.\mathbb{C}^{p}\right)$ are denoted by $\left(\eta_{1}, \ldots, \eta_{q}\right)$ (resp. $\left(\varepsilon_{1}, \ldots, \varepsilon_{p}\right)$). If $u \in V$, $u: \mathbb{C}^{q} \rightarrow \mathbb{C}^{p}$, then $u^{*}: \mathbb{C}^{p} \rightarrow \mathbb{C}^{q}$ denotes the adjoint homomorphism of u w.r. to these structures. We identify u with its matrix in the standard basis; then $u^{*}=\bar{u}^{\prime}$, where v^{\prime} is the transpose of the matrix v.

The generalized unit ball of $\mathcal{M}_{p, q}(\mathbb{C})$ is

$$
\Omega_{p, q}^{I}=\left\{u \in \mathcal{M}_{p, q}(\mathbb{C}) \mid I_{q}-u^{*} u \gg 0\right\} .
$$

Volume forms on $\mathcal{M}_{p, q}(\mathbb{C})$

On $V=\mathcal{M}_{p, q}(\mathbb{C})$, consider the Hermitian scalar product

$$
m_{1}(x, y)=\operatorname{Tr}\left(y^{*} x\right),
$$

where Tr is the trace of matrices, and the associated (1,1)-form

$$
\alpha=\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial} m_{1}(x, x) .
$$

The flat volume form on V is

$$
\alpha^{n}
$$

(with $n=\operatorname{dim} V=p q$); the projective volume form is

$$
\frac{\alpha^{n}}{\operatorname{Det}\left(I_{q}+x^{*} x\right)^{p+q}}
$$

(Det denotes the determinant of matrices).

Spectral decomposition in $\mathcal{M}_{p, q}(\mathbb{C})$
 (1)

Each matrix $x \in \mathcal{M}_{p, q}(\mathbb{C})$ can be written

$$
x=u \Lambda v^{*},
$$

with $u \in U(p), v \in U(q)$ and

$$
\begin{aligned}
\Lambda & =\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{q} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right) \\
& =\lambda_{1} E_{1}+\lambda_{2} E_{2}+\cdots+\lambda_{q} E_{q},
\end{aligned}
$$

$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{q} \geq 0$. The matrix x is called regular if $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{q}>0$. The regular elements form an open dense subset of $\mathcal{M}_{p, q}(\mathbb{C})$.

Spectral decomposition in $\mathcal{M}_{p, q}(\mathbb{C})$

(2)

A sequence $\left(c_{1}, \ldots, c_{q}\right)$ is called a frame for $\mathcal{M}_{p, q}(\mathbb{C})$ if it satisfies

$$
c_{i} c_{i}^{*} c_{j}=\delta_{i j} c_{i} \quad(1 \leq i, j \leq q) .
$$

If $x=u \Lambda v^{*}$, then $x=\lambda_{1} c_{1}+\cdots+\lambda_{q} c_{q}$ and $\left(c_{j}=u E_{j} v^{*}\right)$ is a frame. Each regular matrix has a unique decomposition

$$
x=\lambda_{1} c_{1}+\cdots+\lambda_{q} c_{q},
$$

where $\left(c_{1}, \ldots, c_{q}\right)$ is a frame and $\lambda_{1}>\cdots>$ $\lambda_{q}>0$. This decomposition is called spectral decomposition of x.
The frames form a real-analytic manifold $\mathcal{F}_{p, q}^{I}$ (the Fürstenberg-Satake boundary of $\Omega_{p, q}^{I}$). We denote by Φ the map

$$
\begin{aligned}
\left\{\lambda_{1}>\lambda_{2}>\cdots>\lambda_{q}>0\right\} \times \mathcal{F}_{p, q}^{I} & \rightarrow \mathcal{M}_{p, q}(\mathbb{C}) \\
\left(\left(\lambda_{1}, \ldots, \lambda_{q}\right),\left(c_{1}, \ldots, c_{j}\right)\right) & \mapsto \sum_{j=1}^{q} \lambda_{j} c_{j}
\end{aligned}
$$

which generalizes the polar coordinates map.

Volume forms on $\mathcal{M}_{p, q}(\mathbb{C})$ (2)

Proposition.

$$
\begin{aligned}
\Phi^{*} \alpha^{n}= & \prod_{j=1}^{q} \lambda_{j}^{2(p-q)+1} \\
& \prod_{j<k}\left(\lambda_{j}^{2}-\lambda_{k}^{2}\right)^{2} \mathrm{~d} \lambda_{1} \wedge \ldots \wedge \mathrm{~d} \lambda_{q} \wedge \Theta_{p, q}^{I},
\end{aligned}
$$

where $\Theta_{p, q}^{I}$ is a $U(p) \times U(q)$-invariant volume form on $\mathcal{F}_{p, q}^{I}$.

Compactification of $\mathcal{M}_{p, q}(\mathbb{C})(1)$

Let $\left(\eta_{1}, \ldots, \eta_{q}\right)$ be the standard basis of \mathbb{C}^{q}. To $u \in \mathcal{M}_{p, q}(\mathbb{C}), u=\left(u_{1}, \ldots, u_{q}\right)$, where u_{j} is the j-th column of u, we associate $\widetilde{u} \in G_{q, q+p}(\mathbb{C})$ (the Grassmannian of q-planes in $\mathbb{C}^{q} \oplus \mathbb{C}^{p}$) defined by

$$
\tilde{u}=\left\langle\eta_{1} \oplus u_{1}, \ldots, \eta_{q} \oplus u_{q}\right\rangle .
$$

By the Plücker embedding

$$
G_{p, q}(\mathbb{C}) \subset \mathbb{P}\left(\wedge^{q}\left(\mathbb{C}^{q} \oplus \mathbb{C}^{p}\right)\right),
$$

\widetilde{u} is mapped to

$$
\Theta(u)=\widehat{u}=\left[\left(\eta_{1}+u_{1}\right) \wedge \ldots \wedge\left(\eta_{q} \oplus u_{q}\right)\right] .
$$

The map

$$
\Theta: \mathcal{M}_{p, q}(\mathbb{C}) \rightarrow \mathbb{P}\left(\wedge^{q}\left(\mathbb{C}^{q} \oplus \mathbb{C}^{p}\right)\right)
$$

is injective and the closure of $\Theta\left(\mathcal{M}_{p, q}(\mathbb{C})\right)$ is the Grassmannian $G_{p, q}(\mathbb{C})$. The map Θ is called the canonical compactification map of $\mathcal{M}_{p, q}(\mathbb{C})$.

Compactification of $\mathcal{M}_{p, q}(\mathbb{C})(2)$

Using the isomorphism

$$
\mathbb{P}\left(\bigwedge^{q}\left(\mathbb{C}^{q} \oplus \mathbb{C}^{p}\right)\right) \simeq \mathbb{P}\left(\bigoplus_{j=0}^{q} \operatorname{Hom}\left(\bigwedge^{j} \mathbb{C}^{q}, \bigwedge^{j} \mathbb{C}^{p}\right)\right)
$$

the compactification map may also be written

$$
\Theta(x)=\left[1 \oplus x \oplus \ldots \oplus \wedge^{q} x\right]=\left[\bigoplus_{j=0}^{q} \wedge^{j} x\right] .
$$

Let $V_{j}=\operatorname{Hom}\left(\wedge^{j} \mathbb{C}^{q}, \wedge^{j} \mathbb{C}^{p}\right)$ and $W=\oplus_{j=0}^{q} V_{j}$. Let $(x \mid y)_{j}=\operatorname{Tr}\left(y^{*} x\right)$ be the Hermitian scalar product on V_{j} arising from the standard Hermitian products on $\Lambda^{j} \mathbb{C}^{q}, \Lambda^{j} \mathbb{C}^{p}$ and let (|) be the direct sum of these products in W. Denote by β the corresponding Fubini-Study form on $\mathbb{P}(W)$:

$$
\beta=\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial} \ln (w \mid w) .
$$

From $\mathcal{M}_{p, q}(\mathbb{C})$ to its unit ball (1)

Define the real-analytic map

$$
\psi: \Omega_{p, q}^{I} \rightarrow \mathcal{M}_{p, q}(\mathbb{C})
$$

by

$$
\psi(x)=\left(I_{p}-x x^{*}\right)^{-1 / 2} x=x\left(I_{q}-x^{*} x\right)^{-1 / 2} .
$$

Then ψ is a diffeomorphism and

$$
\psi^{-1}(y)=\left(I_{p}+y y^{*}\right)^{-1 / 2} y=y\left(I_{q}+y^{*} y\right)^{-1 / 2} .
$$

Proposition.

$$
\begin{gathered}
\psi^{*}\left(\operatorname{Det}\left(I_{q}+x^{*} x\right)^{s-p-q} \alpha^{n}\right) \\
=\operatorname{Det}\left(I_{q}-x^{*} x\right)^{-s} \alpha^{n} .
\end{gathered}
$$

From $\mathcal{M}_{p, q}(\mathbb{C})$ to its unit ball (2)

Proof. Transposed by Φ, the map ψ is $\Psi=$ $\Phi^{-1} \circ \psi \circ \Phi$,

$$
\begin{aligned}
\Psi:\{1 & \left.>\lambda_{1}>\lambda_{2}>\cdots>\lambda_{q}>0\right\} \times \mathcal{F}_{p, q}^{I} \\
& \rightarrow\left\{\lambda_{1}>\lambda_{2}>\cdots>\lambda_{q}>0\right\} \times \mathcal{F}_{p, q}, \\
& \left(\left(\lambda_{j}\right),\left(c_{j}\right)\right) \mapsto\left(\left(\frac{\lambda_{j}}{\left(1-\lambda_{j}^{2}\right)^{1 / 2}}\right),\left(c_{j}\right)\right) .
\end{aligned}
$$

As $\Phi^{*} x=\sum_{j=1}^{q} \lambda_{j} c_{j}$, we have

$$
\Phi^{*} \operatorname{det}\left(I_{q}+x^{*} x\right)=\prod_{j=1}^{q}\left(1+\lambda_{j}^{2}\right)
$$

and

$$
\begin{aligned}
\Phi^{*} \widetilde{\beta}^{n} & =\Phi^{*} \frac{\alpha^{n}}{\operatorname{Det}\left(I_{q}+x^{*} x\right)^{p+q}} \\
& =\frac{\prod_{j=1}^{q} \lambda_{j}^{2(p-q)+1} \prod_{j<k}\left(\lambda_{j}^{2}-\lambda_{k}^{2}\right)^{2}}{\prod_{j=1}^{q}\left(1+\lambda_{j}^{2}\right)^{p+q}} \omega(\lambda) \wedge \Theta_{p, q}^{I},
\end{aligned}
$$

with $\omega(\lambda)=\mathrm{d} \lambda_{1} \wedge \ldots \wedge \mathrm{~d} \lambda_{q}$.

From $\mathcal{M}_{p, q}(\mathbb{C})$ to its unit ball (3)

Let

$$
\mu_{j}=\frac{\lambda_{j}}{\left(1-\lambda_{j}^{2}\right)^{1 / 2}}
$$

Then

$$
\begin{aligned}
1+\mu_{j}^{2} & =\frac{1}{1-\lambda_{j}^{2}} \\
\frac{\mu_{j}}{\left(1+\mu_{j}^{2}\right)^{2}} \mathrm{~d} \mu_{j} & =\lambda_{j} \mathrm{~d} \lambda_{j} \\
\mu_{j}^{2}-\mu_{k}^{2} & =\frac{\lambda_{j}^{2}-\lambda_{k}^{2}}{\left(1-\lambda_{j}^{2}\right)\left(1-\lambda_{k}^{2}\right)}
\end{aligned}
$$

Finally

$$
\begin{aligned}
& \frac{\prod_{j=1}^{q} \mu_{j}^{2(p-q)+1} \prod_{j<k}\left(\mu_{j}^{2}-\mu_{k}^{2}\right)^{2}}{\prod_{j=1}^{q}\left(1+\mu_{j}^{2}\right)^{p+q}} \omega(\mu) \\
& =\frac{\prod_{j=1}^{q} \lambda_{j}^{2(p-q)+1}}{\prod_{j=1}^{q}\left(1-\lambda_{j}^{2}\right)^{p-q}} \prod_{j<k} \frac{\left(\lambda_{j}^{2}-\lambda_{k}^{2}\right)^{2}}{\left(1-\lambda_{j}^{2}\right)^{2}\left(1-\lambda_{k}^{2}\right)^{2}} \prod_{j=1}^{q}\left(1-\lambda_{j}^{2}\right)^{p+q-2} \omega(\lambda) \\
& =\prod_{j=1}^{q} \lambda_{j}^{2(p-q)+1} \prod_{j<k}\left(\lambda_{j}^{2}-\lambda_{k}^{2}\right)^{2} \omega(\lambda),
\end{aligned}
$$

which ends the proof.

The degree of Grassmannians in the Plücker embedding

Proposition.

$$
\Theta^{*}\left(\beta^{n}\right)=\frac{\alpha^{n}}{\operatorname{Det}\left(I_{q}+x^{*} x\right)^{p+q}}
$$

Theorem. Let $G_{p, q}(\mathbb{C}) \subset \mathbb{P}(W)$ be the Plücker embedding of the Grassmannian. Then

$$
\operatorname{deg} G_{p, q}(\mathbb{C})=\int_{\Omega_{p, q}^{I}} \alpha^{n}
$$

($n=\operatorname{dim} V=p q$).

Proof.

$$
\begin{aligned}
\operatorname{deg} G_{p, q}(\mathbb{C}) & =\int_{G_{p, q(\mathbb{C})}} \beta^{n} \\
& =\int_{V} \frac{\alpha^{n}}{\operatorname{Det}\left(I_{q}+x^{*} x\right)^{p+q}}=\int_{\Omega_{p, q}^{I}} \alpha^{n}
\end{aligned}
$$

Bounded symmetric domains

A bounded domain $\Omega \subset \mathbb{C}^{n}$ is called symmetric if for each $x \in \Omega$ there is an involutive holomorphic automorphism $s_{x}\left(s_{x}^{2}=\mathrm{id} \Omega\right)$ such that x is an isolated fixed point of s_{x}.

Bounded symmetric domains are homogeneous (under the group Aut Ω of holomorphic automorphisms).

Any bounded symmetric domain Ω is biholomorphic to a bounded circled homogeneous domains, which is unique up to linear isomorphisms and is called the circled realization of Ω.

We will always consider bounded symmetric domains in their circled realization.

A bounded symmetric domain is called irreducible if it is not equivalent to the direct product of two bounded symmetric domains.

Jordan triple associated to a bounded symmetric domain

Let Ω be an irreducible bounded circled homogeneous domain in a complex vector space V. Let K be the identity component of the (compact) Lie group of (linear) automorphisms of Ω leaving 0 fixed. Let ω be a volume form on V, invariant by K and by translations. Let \mathcal{K} be the Bergman kernel of Ω with respect to ω. The Bergman metric at $z \in \Omega$ is defined by

$$
h_{z}(u, v)=\partial_{u} \bar{\partial}_{v} \log \mathcal{K}(z) .
$$

The Jordan triple product on V is defined by

$$
h_{0}(\{u v w\}, t)=\left.\partial_{u} \bar{\partial}_{v} \partial_{w} \bar{\partial}_{t} \log \mathcal{K}(z)\right|_{z=0} .
$$

The triple product $(x, y, z) \mapsto\{x y z\}$ is complex bilinear and symmetric with respect to (x, z), complex antilinear with respect to y. It satisfies the Jordan identity (J).

Hermitian Jordan triples

Let V be a (finite dimensional) complex vector space, endowed with a triple product

$$
(x, y, z) \mapsto\{x y z\}
$$

complex bilinear and symmetric with respect to (x, z), complex antilinear with respect to y, satisfying the Jordan identity
$\{x y\{u v w\}\}-\{u v\{x y w\}\}=\{\{x y u\} v w\}-\{u\{v x y\} w\}$.
(J)

Then ($V,\{x y z\}$) is called a (Hermitian) Jordan triple system.

For $x, y, z \in V$, denote by $D(x, y)$ and $Q(x, z)$ the operators defined by

$$
\{x y z\}=D(x, y) z=Q(x, z) y
$$

Positive Jordan triples

A Jordan triple system is called (Hermitian) positive if

$$
(u \mid v)=\operatorname{tr} D(u, v)
$$

is positive definite.

An Hermitian positive Jordan triple system is always semi-simple, that is, the direct sum of a finite family of simple subsystems with compo-nent-wise triple product. It is called simple if it not the product of two non-trivial subsystems.

Quadratic operator and Bergman operator

Let ($V,\{,$,$\}) be a Jordan triple. The quadratic$ representation $Q: V \longrightarrow \operatorname{End}_{\mathbb{R}}(V)$ is defined by

$$
2 Q(x) y=\{x y x\} .
$$

The following fundamental identity is a consequence of the Jordan identity:

$$
Q(Q(x) y)=Q(x) Q(y) Q(x) .
$$

The Bergman operator B is defined by

$$
B(x, y)=I-D(x, y)+Q(x) Q(y),
$$

where I denotes the identity operator in V. It is also a consequence of the Jordan identity that the following fundamental identity holds for the Bergman operator:

$$
Q(B(x, y) z)=B(x, y) Q(z) B(y, x) .
$$

Tripotent elements in Jordan triples

Let ($V,\{,$,$\}) be a Jordan triple. An element$ $c \in V$ is called tripotent if

$$
\{c c c\}=2 c .
$$

If c is a tripotent, the operator $D(c, c)$ annihilates the polynomial $T(T-1)(T-2)$. The decomposition

$$
V=V_{0}(c) \oplus V_{1}(c) \oplus V_{2}(c),
$$

where $V_{j}(c)$ is the eigenspace

$$
V_{j}(c)=\{x \in V ; D(c, c) x=j x\},
$$

is called the Peirce decomposition of V (with respect to the tripotent c).

Orthogonality of tripotents

Two tripotents c_{1} and c_{2} are called orthogonal if $D\left(c_{1}, c_{2}\right)=0$. If c_{1} and c_{2} are orthogonal tripotents, then $D\left(c_{1}, c_{1}\right)$ and $D\left(c_{2}, c_{2}\right)$ commute and $c_{1}+c_{2}$ is also a tripotent.

A non zero tripotent c is called primitive if it is not the sum of non zero orthogonal tripotents. A tripotent c is called maximal if there is no non zero tripotent orthogonal to c.

Frames

A frame of V is a maximal sequence $\left(c_{1}, \ldots, c_{r}\right)$ of pairwise orthogonal primitive tripotents.

Let V be a simple positive Jordan triple. Then there exist frames for V. All frames have the same number of elements, which is the rank r of V.

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{r}\right)$ be a frame. For $0 \leq i \leq j \leq$ r, let
$V_{i j}(\mathrm{c})$
$=\left\{x \in V \mid D\left(c_{k}, c_{k}\right) x=\left(\delta_{i}^{k}+\delta_{j}^{k}\right) x, 1 \leq k \leq r\right\}$.
The decomposition $V=\oplus_{0 \leq i \leq j \leq r} V_{i j}(\mathbf{c})$ is called the simultaneous Peirce decomposition with respect to the frame c.

Numerical invariants

Let V be a simple positive Jordan triple.
For any frame c of V, the subspaces $V_{i j}=$ $V_{i j}(\mathbf{c})$ of the simultaneous Peirce decomposition have the following properties: $V_{00}=0$; $V_{i i}=\mathbb{C} e_{i}(0<i) ;$ all $V_{i j}$'s $(0<i<j)$ have the same dimension a; all $V_{0 i}$'s $(0<i)$ have the same dimension b.

The numerical invariants of V are the rank r and the two integers

$$
\begin{gathered}
a=\operatorname{dim} V_{i j}(0<i<j), \\
b=\operatorname{dim} V_{0 i} \quad(0<i) .
\end{gathered}
$$

The genus of V is the number g defined by

$$
g=2+a(r-1)+b .
$$

The positive Jordan triple V is said to be of tube type if $b=0$.

Spectral theory

Let V be a simple positive Jordan triple. Then any $x \in V$ can be written in a unique way

$$
x=\lambda_{1} c_{1}+\lambda_{2} c_{2}+\cdots+\lambda_{p} c_{p}
$$

where $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{p}>0$ and $c_{1}, c_{2} \ldots, c_{p}$ are pairwise orthogonal tripotents. The element x is regular iff $p=r$ (the rank of V); then $\left(c_{1}, c_{2}, \ldots, c_{r}\right)$ is a frame of V. The decomposition $x=\lambda_{1} c_{1}+\lambda_{2} c_{2}+\cdots+\lambda_{p} c_{p}$ is called the spectral decomposition of x.

The map $x \mapsto \lambda_{1}$, where $x=\lambda_{1} c_{1}+\lambda_{2} c_{2}+$ $\cdots+\lambda_{p} c_{p}$ is the spectral decomposition of x ($\lambda_{1}>\lambda_{2}>\cdots>\lambda_{p}>0$) is a norm on V, called the spectral norm.

The generic minimal polynomial

Let V be a simple positive Jordan triple of rank r. There exist polynomials m_{1}, \ldots, m_{r} on $V \times \bar{V}$, homogeneous of respective bidegrees $(1,1), \ldots,(r, r)$, such that for each regular $x \in V$, the polynomial

$$
\begin{aligned}
& m(T, x, y) \\
& =T^{r}-m_{1}(x, y) T^{r-1}+\cdots+(-1)^{r} m_{r}(x, y)
\end{aligned}
$$

satisfies

$$
m(T, x, x)=\prod_{i=1}^{r}\left(T-\lambda_{i}^{2}\right)
$$

where $x=\sum \lambda_{j} c_{j}$ is the spectral decomposition of x. The polynomial $m(T, x, y)$ is called the generic minimal polynomial of V (at (x, y)). The (inhomogeneous) polynomial $N: V \times \bar{V} \rightarrow$ \mathbb{C} defined by

$$
N(x, y)=m(1, x, y)
$$

is called the generic norm.

The spectral unit ball

If ($V,\{x y z\}$) is the triple system associated to a bounded symmetric domain Ω, the Bergman metric at 0 is related to D by

$$
h_{0}(u, v)=\operatorname{tr} D(u, v) .
$$

Hence ($V,\{x y z\}$) is Hermitian positive. The Bergman operator gets its name from the following property:

$$
h_{z}(B(z, z) u, v)=h_{0}(u, v) \quad(z \in \Omega ; u, v \in V) .
$$

The bounded symmetric domain Ω is the unit ball of V for the spectral norm.

It is also characterized by the set of polynomial inequalities

$$
\left.\frac{\partial^{j}}{\partial T^{j}} m(T, x, x)\right|_{T=1}>0, \quad 0 \leq j \leq r-1 .
$$

Volume forms on Jordan triples

Let V be a simple positive Hermitian Jordan triple, with generic norm

$$
N(x, y)=1-m_{1}(x, y)+\cdots+(-1)^{r} m_{r}(x, y)
$$

Consider on V the Hermitian scalar product

$$
(x \mid y)=m_{1}(x, y)
$$

and the associated (1, 1)-form

$$
\alpha=\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial} m_{1}(x, x) .
$$

The flat volume form on V is

$$
\alpha^{n}
$$

(with $n=\operatorname{dim} V$); the projective volume form is

$$
\frac{\alpha^{n}}{N(x, x)^{g}}
$$

where g is the genus of V.

Polar coordinates in Jordan triples

Let V be a simple positive Hermitian Jordan triple and Ω the associated bounded symmetric domain.

The frames of V form a real-analytic manifold \mathcal{F} (the Fürstenberg-Satake boundary of Ω). The map Φ

$$
\begin{aligned}
\left\{\lambda_{1}>\lambda_{2}>\cdots>\lambda_{q}>0\right\} \times \mathcal{F} & \rightarrow V \\
\left(\left(\lambda_{1}, \ldots, \lambda_{q}\right),\left(c_{1}, \ldots, c_{j}\right)\right) & \mapsto \sum_{j=1}^{q} \lambda_{j} c_{j}
\end{aligned}
$$

is a diffeomorphism onto the set $V_{\text {reg }}$ of regular elements of V.

Let K be the identity component of the (linear Lie) group of automorphisms of V. Then K acts transitively on \mathcal{F} and the map Φ is K equivariant.

Volume forms in polar coordinates

Proposition. Let V be a simple positive Jordan triple, with dimension n, rank r, numerical invariants a, b and genus $g=2+a(r-1)+b$. Then the pull-back of the flat volume form in generalized polar coordinates is

$$
\Phi^{*} \alpha^{n}=\prod_{j=1}^{r} \lambda_{j}^{2 b+1} \prod_{j<k}\left(\lambda_{j}^{2}-\lambda_{k}^{2}\right)^{a} \omega_{r}(\lambda) \wedge \Theta,
$$

where $\omega_{r}(\lambda)=\mathrm{d} \lambda_{1} \wedge \ldots \wedge \mathrm{~d} \lambda_{q}$ and Θ is a $K-$ invariant volume form on \mathcal{F}.

Schmid decomposition

Let V be a simple positive Hermitian Jordan triple of rank r. Let $\mathcal{P}(V)$ be the space of polynomials on V. For $\mathbf{n}=\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}^{r}$, write $\mathbf{n} \geq 0$ iff $n_{1} \geq \cdots \geq n_{r} \geq 0$.
Theorem. (Schmid decomposition) The space $\mathcal{P}(V)$ decomposes into irreducible, pairwise unequivalent K-modules: $\mathcal{P}(V)=\bigoplus_{\mathrm{n} \geq 0} \mathcal{P}_{\mathrm{n}}(V)$.

For $0 \leq j \leq r$, let $\langle j\rangle=(j, 0, \ldots, 0)$. Then $m_{j}(x, y)$ is a reproducing kernel for $\mathcal{P}_{\langle j\rangle}(V)$, endowed with the Hermitian structure induced on $\mathcal{P}(V)$ by the Hermitian scalar product m_{1} : for each $f \in \mathcal{P}_{\langle j\rangle}(V)$,

$$
f(y)=\left(f \mid\left(m_{j}\right)_{y}\right)
$$

where

$$
\left(m_{j}\right)_{y}(x)=m_{j}(x, y)
$$

Compactification of Jordan triples

Let V be a simple positive Hermitian Jordan triple of rank r. Let

$$
\sigma_{j}: V \rightarrow \mathcal{P}_{\langle j\rangle}\left(V^{*}\right) \subset \bigodot_{j} V
$$

be defined by

$$
\sigma_{j}(x)\left(y^{*}\right)=m_{j}(x, y),
$$

where $y \mapsto y^{*}$ is the anti-isomorphism of V onto V^{*} induced by the Hermitian product m_{1}. Then

$$
m_{j}(x, y)=\left(\sigma_{j}(x) \mid \sigma_{j}(y)\right) .
$$

In particular, $\sigma_{0}(x)=1$ and $\sigma_{1}(x)=x$. Let

$$
W=\bigoplus_{j=0}^{r} \mathcal{P}_{\langle j\rangle}\left(V^{*}\right)
$$

The canonical compactification map of the Jordan triple V is

$$
\begin{aligned}
& \sigma: V \rightarrow P(W) \\
& x \mapsto\left[1 \oplus \sigma_{1}(x) \oplus \cdots \oplus \sigma_{r}(x)\right] .
\end{aligned}
$$

The closure $X=\overline{\sigma(V)}$ is an algebraic projective variety, called canonical compactification of V, or compact dual of the bounded symmetric domain Ω associated to V.

Projective volume form of Jordan triples

Let V be a simple positive Hermitian Jordan triple of rank r and genus g. Let

$$
W=\bigoplus_{j=0}^{r} \mathcal{P}_{\langle j\rangle}\left(V^{*}\right)
$$

be endowed with the Hermitian product induced by m_{1}. Denote by β the corresponding Fubini-Study form on $P(W)$. Then

$$
\sigma^{*} \beta=\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial} \ln N(\mathrm{i} x, \mathrm{i} x) .
$$

Proposition.

$$
\begin{aligned}
\sigma^{*} \beta^{n} & =\left(\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial} \ln N(\mathrm{i} x, \mathrm{i} x)\right)^{n} \\
& =N(\mathrm{i} x, \mathrm{i} x)^{-g} \alpha^{n} .
\end{aligned}
$$

From a Jordan triple to its unit ball (1)

Let V be a simple positive Hermitian Jordan triple and Ω the associated bounded symmetric domain. Denote by B the Bergman operator

$$
B(x, y)=\mathrm{id}_{V}-D(x, y)+Q(x) Q(y) .
$$

Define the real-analytic map

$$
\psi: \Omega \rightarrow V
$$

by

$$
\psi(x)=B(x, x)^{-1 / 4} x .
$$

Then ψ is a diffeomorphism and

$$
\psi^{-1}(y)=B(\mathrm{i} y, \mathrm{i} y)^{-1 / 4} y .
$$

Proposition. Let N denote the generic norm of V, g the genus of V. Then

$$
\psi^{*}\left(N(\mathrm{i} x, \mathrm{i} x)^{s-g} \alpha^{n}\right)=N(x, x)^{-s} \alpha^{n} .
$$

From a Jordan triple to its unit ball (2)

Proof. Transposed by Φ, the map ψ is $\Psi=$ $\Phi^{-1} \circ \psi \circ \Phi$,

$$
\begin{aligned}
\Psi:\{1 & \left.>\lambda_{1}>\lambda_{2}>\cdots>\lambda_{r}>0\right\} \times \mathcal{F} \\
& \rightarrow\left\{\lambda_{1}>\lambda_{2}>\cdots>\lambda_{r}>0\right\} \times \mathcal{F}, \\
& \left(\left(\lambda_{j}\right),\left(c_{j}\right)\right) \mapsto\left(\left(\frac{\lambda_{j}}{\left(1-\lambda_{j}^{2}\right)^{1 / 2}}\right),\left(c_{j}\right)\right) .
\end{aligned}
$$

If $\Phi^{*} x=\sum_{j=1}^{r} \lambda_{j} c_{j}$, we have

$$
\Phi^{*} N(\mathrm{i} x, \mathrm{i} x)=\prod_{j=1}^{r}\left(1+\lambda_{j}^{2}\right)
$$

and

$$
\begin{aligned}
\Phi^{*} \widetilde{\beta}^{n} & =\Phi^{*} \frac{\alpha^{n}}{N(\mathrm{i} x, \mathbf{i} x)^{g}} \\
& =\frac{\prod_{j=1}^{r} \lambda_{j}^{2 b+1} \prod_{j<k}\left(\lambda_{j}^{2}-\lambda_{k}^{2}\right)^{a}}{\prod_{j=1}^{r}\left(1+\lambda_{j}^{2}\right)^{g}} \omega_{r}(\lambda) \wedge \Theta .
\end{aligned}
$$

From a Jordan triple to its unit ball (3)

Let

$$
\mu_{j}=\frac{\lambda_{j}}{\left(1-\lambda_{j}^{2}\right)^{1 / 2}}
$$

Then

$$
\begin{aligned}
1+\mu_{j}^{2} & =\frac{1}{1-\lambda_{j}^{2}}, \\
\frac{\mu_{j}}{\left(1+\mu_{j}^{2}\right)^{2}} \mathrm{~d} \mu_{j} & =\lambda_{j} \mathrm{~d} \lambda_{j}, \\
\mu_{j}^{2}-\mu_{k}^{2} & =\frac{\lambda_{j}^{2}-\lambda_{k}^{2}}{\left(1-\lambda_{j}^{2}\right)\left(1-\lambda_{k}^{2}\right)} .
\end{aligned}
$$

Finally, using $g=2+a(r-1)+b$, we have

$$
\begin{aligned}
& \frac{\prod_{j=1}^{r} \mu_{j}^{2 b+1} \prod_{j<k}\left(\mu_{j}^{2}-\mu_{k}^{2}\right)^{a}}{\prod_{j=1}^{2}\left(1+\mu_{j}^{2}\right)^{c}} \omega_{r}(\mu) \\
& =\frac{\prod_{j=1}^{2} \lambda_{j}^{2 b+1}}{\prod_{j=1}^{=}\left(1-\lambda_{j}^{2}\right)^{6}} \prod_{j<k} \frac{\left(\lambda_{j}^{2}-\lambda_{k}^{2}\right)^{a}}{\left(1-\lambda_{j}^{2}\right)^{a}\left(1-\lambda_{k}^{2}\right)^{a}} \prod_{j=1}^{r}\left(1-\lambda_{j}^{2}\right)^{g-2} \omega_{r}(\lambda) \\
& =\prod_{j=1}^{r} \lambda_{j}^{2 b+1} \prod_{j<k}\left(\lambda_{j}^{2}-\lambda_{k}^{2}\right)^{a} \omega_{r}(\lambda),
\end{aligned}
$$

which ends the proof.

Volume and degree

Let V be a simple positive Jordan triple and Ω the associated bounded symmetric domain.
Theorem. Let $\sigma: V \rightarrow \mathbb{P}(W)$ be the canonical compactification map and $X=\overline{\sigma(V)}$ the compact dual of Ω. Then

$$
\operatorname{deg} X=\int_{\Omega} \alpha^{n}
$$

($n=\operatorname{dim} V$).
Proof.

$$
\operatorname{deg} X=\int_{X} \beta^{n}=\int_{V} \frac{\alpha^{n}}{N(\mathrm{i} x, \mathbf{i} x)^{g}}=\int_{\Omega} \alpha^{n} .
$$

Exercise. Compute the projective volume of the domain Ω, embedded in X by σ
$\int_{\sigma(\Omega)} \beta^{n}$.
Solution. deg $X / 2^{n}$

