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Continued Fractions, Algebraic Numbers
and Modular Invariants

R. F. CHURCHHOUSE AND S. T. E. MuUR

Atlas Computer Laboratory, S.R.C., Chilton, Didcot, Berkshire

[Received 8 November 1968]

Brillhart discovered in 1965 that the continued fraction of the real root of the cubic
equation x3—8x—10 = 0 has a number of very large partial quotients. In this paper
we explain why this phenomenon is surprising and then show how its consideration
naturally leads one into some very deep branches of the theory of numbers before the
reason for the phenomenon becomes clear. In order to make the paper intelligible
to non-specialists we give a brief account of the classical theories of continued fractions,
quadratic forms and modular functions in the appropriate sections.

1. Introduction

DURING A VISIT to San Francisco in June 1965 one of us (R.F.C.) was told by D. H.
Lehmer that John Brillhart had been using their computer to study the con-
tinued fraction expansions of certain algebraic numbers of the third and fourth
degrees. Some years earlier Delone & Faddeev (1964) had made a similar study of the
roots of cubic equations of the type

x}—ax—-b=0 1)
where a,b are integers and |a|, |b] € 9. They had found no results of any interest.
Brillhart, having access to an IBM 7094, had decided to extend the range of search
and almost immediately he found something which the Russians had narrowly missed.
One of the several thousand numbers studied had produced results of unusual interest
in that among the first 200 partial quotients there was one greater than 16,000,000
and seven others greater than 20,000. The number in question is the real root of
x3—8x—10 = 0. The discriminant of the cubic equation (1) is 4a®—2752 and so the
discriminant of x3—8x—10is —652 = 4x(—163). Now the number — 163 appears
in a significant role in algebraic number theory (as will be explained in Section 3,
below) and the question Lehmer posed was whether this apparent connection is real
or not. If it is real can one predict other algebraic equations whose roots also have
unusual continued fractions?

Some months later we were able to repeat Brillhart’s calculation of the root of this
cubic to several hundred places of decimals and obtained complete agreement. We
were able to do this by using a very fine multi-length arithmetic package for Atlas
written by W. F. Lunnon of Manchester University. The value of the root, to 200
places, and the first 200 partial quotients of its continued fraction are given in Table 1.
The computing time required to do this on Atlas was only ten seconds. Confident
that we now had a sufficiently powerful programming package available we set about
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trying to explain the phenomenon. The explanation is given in Section 5. The next
three sections provide the necessary background information.

2. Continued Fractions

Let 0 be any positive real number. Let
ao=[0], ro=(0—ap)!
where, as usual, [x] denotes the integral part of x. Define, for n >0
1 =[r], e+t = (ry—as+1)7L
Then we say that 6 has the continued fraction representation

1 1 1

— €))
ay+ a+ az+ ...

and the elements q, are called ‘‘the partial quotients” of the continued fraction.

It is well known that the continued fraction for 6 terminates if and only if 8 is rational

and that the continued fraction is periodic if and only if 8 is a quadratic irrational.

For example

0=a,+

7 2 1 11
—=1l4=-=14+—== —_——
s =143 +2% 1+2+2
whereas
1 1 1
\/2_1+2+2+2+

1t is natural to ask if the continued fractions of the roots of cubic (or higher degree)
equations have any properties ; for example:

Problem 1. If 0 in (2) satisfies a cubic equation, are the @, bounded ?

The answer is not known. We might also ask how many of the a, we might expect
to have a particular numerical value, such as 17. In this case there is a theorem,
first stated by Gauss in a letter to Laplace but the first published proof of which,
due to Kusmin, did not appear until 1928. This theorem tells us something about the
probability distribution of the a; for almost all real numbers; it can be stated:

THEOREM. Let 0 be a real number in (0,1) and suppose

1 1 1 s
T8+ ay+ az+
then, for almost all 0
(k+1)?

prob (a; = k) = log, Wkt2)'
For a proof of this see the book by Khinchin (1963: 81). Thus, for almost all real
numbers, we expect about 419, of the g, to have the value 1, 179, to be 2 and so on.
Unfortunately since the theorem refers only to “almost all 6 and since the field of
algebraic numbers has measure zero it is possible that the theorem does not apply
to any algebraic numbers at all. We note that it does not apply to any algebraic
numbers of degree one to two. Without much hope of an answer we therefore ask:
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Problem 2. Does the distribution of the partial quotients of a continued fraction
of a cubic irrational follow Gauss’ Law as given in the above theorem?

It should by now be clear that anything which throws light on the continued
fractions of cubic irrationals is likely to arouse interest, for the theoretical analysis
of the problem is formidable. This accounts for the calculations of Delone & Faddeev
and the more recent work of Brillhart as well as several other people. When people
compute continued fractions to a large number of terms what do they look for?
Hopefully, something unusual; too many or too few terms having the value 1 or too
many “large” terms, for example. The theorem above gives us some idea of how
“large” a term we might expect to find if we compute a continued fraction to, say,
N terms. For

k+1)?
prob (a, = k) = log, Ec(k—+i)
and so
e (m+1)*? 1 1-44
>k =Y log, —— = ) P 3
prob (a, > k) mgk 08 i mt2) log, | 1+ e 3

Thus the probability that any particular partial quotient has a value greater than 1000
is about 1/690 and so, if we compute the continued fraction to 200 terms we shall be
lucky if we find one such case. Now Brillhart computed approximately 200 terms of
“several thousand” continued fractions. If we say 5000 this means he computed
1,000,000 partial quotients. Hence, from (3), he might have expected to find one or
two partial quotients which exceeded 1,000,000. What he did not expect to find was
one term greater than 16,000,000 and one term of more than 1,500,000 in the expansion
of the same algebraic number. When it is then found that this number also produces
a term greater than 300,000 and several other “large” terms interest is naturally
aroused.

3. Binary Quadratic Forms. Class Number
Given rational integers a,b,c we define a binary quadratic form (a,b,c) by

Sf(x,y) = ax2+bxy+cy?,
and we call the number 52 —4ac ““the discriminant of f(x, y)”. If we make a substitution
x = au+ fo, y = yu+ v, f(x,y) is transformed into a form g(u,v) and the discriminant
of g(u,v) will be found to be

(b2—4acKad - py). @
Denote the coefficients of g(u,v) by a',b’,¢’. If a,8,y,0 are rational integers and
(eé—By) = 1, in which case the substitution is called “unimodular”, we see from (4)
that f(x,y) and g(u,v) have the same discriminant. We then say that the forms (a,b,¢)
and (a’,b’,¢") are “equivalent” and we write (g,b,¢) ~ (a’,b’,c’). Thus for example
the form
Sx,y) = x2+43y2

is transformed into

g(u,v) = 31u2+40uv 41302
by the snimodular transformation x = 2u+v, y = 3u+2v and f and g will both be
found to have discriminant —12,
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Two binary quadratic forms which are equivalent necessarily have the same dis-
criminant. Is the converse true; i.e. if two forms f,g have the same discriminant can
we be sure that there exists an integral unimodular transformation which carries f
into g? The answer is “no”. For example the two forms x2+5y2 and 2x24 2xy+ 3y2
both have discriminant —20 but it can easily be proved that they are not equivalent.
On the other hand it can also be proved that any binary quadratic form of discriminant
—20 is equivalent to one of these two forms.

This last result is a particular case of the following theorem

THEOREM. Let D be given. If f(x,y) = ax2+bxy+cy2 is a binary quadratic form of
discriminant D = b2—4ac, then fis equivalent to one of a finite set of forms.

The number of forms in this finite set depends upon the value of D. It is denoted
by h(D) and called “the class number of the discriminant D”. A particular importance
is attached to those values of D for which A(D) = 1 for in this case all forms of the
given discriminant are equivalent to a single form and it can be shown that this implies
that the integers of the algebraic number field k(./ D), obtained by adjoining /D to
the rationals, possess the property of unique factorization. When D < 0 the only
values of D for which (D) = 1 are given by

—-D = 3,4,7,8,11,19,43,67,163.

Although it had been suspected for many years that D = —163 is the last negative
discriminant associated with class number 1 it is only recently that this has been
definitely established (Stark, 1967).

We therefore see why the number — 163 appearing as the discriminant of a quadratic
equation is of interest to a number theorist. However, the equation in which we are
interested is a cubic and its discriminant is 4 x (—163). The factor 4, being a square,
is of little importance in the theory of quadratic forms and can be ignored. The
former point turns out to be the key to the whole business as will be shown in the
next section.

4, Modular Functions and Klein’s Modular Invariant
The Weierstrass elliptic function, go(z) is defined as

1
@) = Z {(z Q) Q’}

where Q = 2mw; +2nw,, the numbers wy, w, being complex and the ratio w; /w, not
purely real; the ’ on the summation sign denoting, as usual, that the termm = n = 0
is excluded. It is easy to see that g(z) satisfies the differential equation

'Uz) = 49%2) - 920(2) g3, ®)
where g2 = 60 Z'QQ-4 and g3 = 140 2'Q-6. The roots of the cubic (5) can be shown

to be
@, W, o, +w,
p(z), p(z), @( ' )

and these are all different, hence the discriminant of the cubic
Aw,, ;) = g3-27g3 # 0.
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If we divide out by the appropriate powers of w; and put T = w2/w; we deduce that
g2 = o1*g:(1,7),
g3 = w1 °g5(1,7),
A = o7 12A(1,1),

and hence the ratio

g3 _ 93,9
T =3 = aw0
depends only on the ratio, 7, of w; to w;.

If a,b,c,d are integers and ad—bc = 1 then a g function based on the periods
o} = am+bw; and ), = cw;+dw2 will be the same as the original g function
based on w; and w,. Hence g2, g3 and so A will be unchanged and so J(z) will also be
unchanged ; thus J(z) will have the property that

J(@) = J(‘Z:Z) for ad—bc =1

so that J(1) is an elliptic modular function.
Letg = e**. Then it can be shown (Weber, 1908: 179) that

24 —16 3
1728J(7) = j(z) = [f——f(zzT} , ©
where
5@ = a7 [T g™, G

The function j(r) is called “Klein’s modular invariant”. It is known (Lehmer, 1942:
488) that

J(@) =q 247444+ 19688492+ 214937604 +... 8)
the coefficients being integral. Furthermore if d > 0 is a prime and A(—d) = 1 then

](——i%/;d> is itself an integer (indeed it is a perfect cube). Denoting this integer

by N and observing that
q? = exp (2nit) = ~ e~*v4
we find that
evd = —N+744—196884 e~=v4 421493760 e~ 2=v4— ., . )
It is known (Lehmer, 1942: 488) that the coefficients of the powers of e ~*v4 are heavily
outweighed by these negative exponentials so that if d is large it follows from (9) that
e*v4 must be very close to an integer, the error being approximately — 196884 ¢~*v4,
We have seen that the last value of d for which A(—d) = 1is d = 163 and computa-
tion shows that in this case
e*v163 = 262537412640768743-999999999999250... . (10)
We now show that e?*v163 must also be very close to an integer (which is not
obvious).
Let M = —N+744 in (9). Then if x = e*v163
x = M—196884x1+21493760x2— ...
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so that

x2 = Mx—196884+21493760x1...
= M(M—196884x1+21493760x2...) — 196884 +21493760x1— ...
= M2+ M(—196884x-1+21493760x2...)— 196884 +21493760x1— ...
= M2+ (x+196884x~1—21493760x2...)(— 196884x1+21493760x2—...)—
196884 +21493760x1— ...
= M2—393768 +42987520x~1+0(x2). an
The value of x is given by (10) and we therefore deduce that x = e¢?*v'163 should differ

from an integer by approximately 42987520/262537412640768744 = 1-63739 x 10-19,
the error being one of excess.

In a similar manner one could deal with e3=v163 e4xv163 Tt s found that the first
seven powers of e*v163 are close to integers, the error increasing fairly rapidly. The
fractional parts of the powers of x(= e*v163) are shown below.

Power of x Fractional part
X -999999999999250
x2 -000000000163738
x3 +999999990123693
x4 -000000308464322
x5 +999993654187468
x6 -000097175254162
x7 -998809316526134

4.1. Class Invariants

We have already remarked that if d > 0 is a prime and A(—d) =1 then
_1<——1+§‘ﬂ) is itself an integer. From (6) this shows that f (——H-Z#i) satisfies
an algebraic equation. Since j(z) is a modular function, j(z+1) = j(r) and so

j<—1+2J—d> _ j(1+\2/—d)

and this implies that f (1+‘2/_d) is algebraic also. Furthermore it is easy to see

from (7), that
f2¢(1+\2/—d)f2‘(—1+2\/—d> _ e —d)

and so f(/ —d) is also algebraic whenever h(—d) = 1. It is in fact true that, even if
h(—d) > 1, f(/ —d) still satisfies an algebraic equation but the degree of the equation
depends upon the value of A(—d). The theory of these class invariants, as they are
known, is given in detail in Weber (1908) and a table is provided on pages 721-726
showing the algebraic equations satisfied by f(r) for a large number of values of d
up to d = 193 and for a few more values up to d = 1848. Thus, corresponding to
d = 1 we find f24(i) = 64, that is

e* 1—[ (1+ e—(Zn—l)t)Z-t = 64,

A=l
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and again corresponding to d = 3, f4(i/3), i.e.

e:v:’; ﬁ (1+ e—-(2u—l)t-,/3)24 — 256.

n=1
A more comprehensive list is given by Watson (1936). Corresponding to the case
d = 163 we have

J(i/163) = x
where
x3—6x2+4x—-2 = 0. (12)
If we write x = z+2 in (12) it reduces to
28—-8z—10=0 (13)
which is Brillhart’s cubic! Now
f(l\/163) = e:\/163/24 ﬁ (1+ e—(Zu—l):V163)' (14)
n=1

The value of this expression is dominated by the factor e*v163/24 the remaining factors
tending to unity with great rapidity. The largest is the first which, from (10), is about
1+4 x 1018, We see therefore that we have established the following:

THEOREM. If x denotes the real root of the equation x®—8x—10 = O then x+2 has the
value given by the right-hand side of (14), and, within an error of less than 10-17
x+2 = erV163/24, (15)

4.2. The Pseudo Class Invariant

We now have all the information necessary to dispose of the problem which we
stated in the introduction. We know that the root of Brillhart’s cubic, x, has a remark-
able continued fraction and we now know that (x+2) is given accurately by (14) and
to 17 places of decimals by (15). We therefore computed the continued fraction of
€*v163/24 and we found that not only was this continued fraction quite unremarkable
but the values of the partial quotients first differ from the partial quotients of x+2
at the 16th term, which is immediately before the first large term (22,986) occurs.
This implies that the first factor ignored, viz.

1+e—tV163
is, in some sense, responsible for the first large term in the continued fraction for
x+2. Now we have seen, (10), that e*v'163 is very nearly an integer, the error being
negative, and so

r 1 1
M,+ 14+ N+
where M; = 262537412640768743 and N; = 1333462407511. The second factor
ignored is 1 +e~3=v'163 and this is also close to an integer, the error also being on the
negative side, so that

1+e72V163 = 14

111
l4edvied_ gy~ -~ 1
© Mo+ 1+ No+

where M, = 1-8 x 1052 and N, = 108,
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Similar remarks apply to the third and fourth factors, the corresponding values of
M, N, being about
M; = 1-24x 1097, M4 = 8-6x10121,
N3 = 1-56x 105, N4 == 800.
Some further calculations led us to the conclusion that the very large terms in Brillhart’s
continued fraction are caused by the presence of these unusual factors which contain
two large integer terms separated by a single 1. In order to test this hypothesis we
computed the continued fraction obtained by taking N;, N2, N3, N4 to be infinite. This
is achieved in practice by replacing (14) by
fi) = w4 Az WU+ 23 X +z5 D)1 +27Y) ... (16)
where u = e*v163 and z, = [u"+13], so that z, is the integer nearest to u". The value
JS1(u) so obtained is of course extremely close to that obtained from (14), the error
being only about 5-8 x 10~47. Despite this minute numerical change the effect on the
continued fraction is catastrophic. Only the first large term (22986) remains, the others
have completely disappeared. When the factors in (16) are replaced, one by one,
by their correct values the large partial quotients reappear one or two at a time.
The value of (16), which we called “the pseudo class invariant”, and the expansion
of its continued fraction are given in Table 2.

5. Conclusions

The numerical evidence shows that the reasons why the root of the cubic
x3—8x—10 = 0 has a remarkable continued fraction are:

(i) the equation is, effectively, the equation of the class invariant associated with
discriminant —163; :
(ii) the algebraic number field k(./ —163) has class number 1;
(iii) the root x of the equation is approximated to seventeen places of decimals
by x’ = —2-perv163/24.
(iv) the ratio x/x’ is given by the product
—(28—-1)x4/163\.
"]:[l (1+ e~ @r-Dxv163),
(v) the first few terms of this product can all be written in the form

1 1 1
M+ 14 N+ 7

where M, is “very large” and N, is “large”;

(vi) the presence of such factors as these produces large terms in the continued
fraction expansion for x. When these factors are replaced by 1+(1/M,+1)
the large terms disappear although the resulting change in the value of x is
extremely small.

On the basis of these observations we can therefore make some predictions. We
have seen that ¢"*v 163 js verylnearly an integer forn = 1,2,...,7 and that the closeness
of the approximations decreases from about 10-12at n = 1 to 102 at n = 7. Hence
the observation made at (v) above will not apply from n = 9 onwards (remember

1+
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that only odd powers of n are relevant). Thus there is no reason to expect the large
terms in the continued fraction for the root to persist beyond about the 200th term,
1.e. about the point where the factor 1+e~7%v 163 has an effect. This prediction is borne
out. We have computed the continued fraction to 875 terms and there are no large
terms after the one shown in Table 1 at position 161.

Secondly, the last negative discriminant with class number 1 is —163; the pen-
ultimate is —67 and the one before that is —43. The theory of modular functions
shows that exv67 and e*v43 will also be close to integers, and in fact:

e*v67 = 147194952743-99999 86624 54224 ...,
e*v43 = 884736743-99977 74660 34906... .

The class invariants associated with these numbers also satisfy cubic equations. Is it
possible that the continued fractions of the roots of these equations will also have large
partial quotients for reasons similar to the above ? The cubic equation associated with
discriminant —67 is x3—2x2—2x—2 = 0; expansion of the root showed one large
partial quotient, 87431, at the 20th position. This is considerably larger than one
would expect at random. The cubic associated with discriminant —43 is
x3—2x2—-2 = 0Q;

again just one large partial quotient, 29,866, was found at the 17th position. A large
number of other, random cubics were tested but none produced any unusually large
partial quotients. It is a pity that —163 is the last of these interesting discriminants.
Had there been another we might have seen some really astronomical partial quotients.

In cases where the class number is greater than one the term — N of (9) is replaced
by an algebraic number of degree greater than one. Thus, for example, if d = 3(mod 8)
the algebraic number appearing in (9) is of degree A(—d), and the value of f(i\/d) is of
degree 3h(—d). This is why in the three cases considered above (d = 43, 67, 163) we
had to deal with a cubic equation. For an account of such matters see Watson (1936).

In view of these computational confirmations of our analysis, plus a good deal of
other computational evidence on related aspects too lengthy to give here, we have
reached the conclusion that Brillhart’s cubic must be regarded as a quite un-typical
cubic and consequently provides no evidence relating to Gauss’ Law and cubics in
general.

We are indebted to Dr A. O. L. Atkin, Research Fellow of the Atlas Computer
Laboratory for some valuable discussions during the preparation of this paper.
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TABLE 1
x3—8x—10=0

The real root of this equation to 200 places is:

3-31862 82177 50185 65910 96801 53318 02246 77219 19808 83690 02602 28091 99584 01958
97457 32187 43665 34591 07487 15400 45589 07647 42444 78645 91488 72327 64878 31165
98454 79445 12414 29908 75700 21982 39534 04098 41477 60189 42443 29911

The partial quotients of the continued fraction of the number above are:

0 3 41 5 81 49405 121 16467250 161 325927
1 3 42 2 82 1 122 1 162 1
2 7 43 1 83 1 123 3 163 60
3 4 4 6 84 3 124 1 164 1
4 2 45 2 85 1 125 7 165 87
5 30 46 2 86 1 126 2 166 1
6 1 47 1 87 4 127 6 167 2
7 8 48 2 88 1 128 1 168 1
8 3 49 1 89 2 129 95 169 5
9 1 50 1 90 15 130 20 170 1
10 1 51 3 91 1 131 1 1m 1
11 1 52 1 92 2 132 2 172 1
12 9 53 3 93 83 133 1 173 2
13 2 54 1 94 1 134 6 174 2
14 2 55 2 95 162 135 1 175 2
15 1 56 4 96 2 136 1 176 2
16 3 57 3 97 1 137 8 177 2
17 22986 58 1 98 1 138 1 178 17
18 2 59 35657 99 1 139 48120 179 4
19 1 60 1 100 2 140 1 180 9
20 32 61 17 101 2 141 2 181 9
21 8 62 2 102 1 142 17 182 1
22 2 63 15 103 53460 143 2 183 7
23 1 64 1 104 1 144 1 184 11
24 8 65 1 105 6 145 2 185 1
25 55 66 2 106 4 146 1 186 2
26 1 67 1 107 3 147 4 187 9
27 5 68 1 108 4 148 2 188 1
28 2 69 5 109 13 149 3 189 14
29 28 70 3 110 5 150 1 190 4
30 1 71 2 111 15 151 2 191 6
31 5 72 1 112 6 152 23 192 1
32 1 73 1 113 1 153 3 193 22
33 1501790 74 7 114 4 154 2 194 11
4 1 75 2 115 1 155 1 195 1
35 2 76 1 116 4 156 1 196 1
36 1 77 7 117 1 157 1 197 1
37 7 78 1 118 1 158 2 198 1
38 6 79 3 119 2 159 1 199 4
39 1 80 25 120 1 160 27 200 1
40 1
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The value to 200 places is:
5-31862 82177 50185 65910 96801 53318 02246 77219 19808 77903 25291 02486 16405 49342
75592 94236 99171 57852 32639 72630 30208 06883 94087 98203 79559 02991 44546 73822
67205 03958 81415 44232 97654 81169 19582 87166 38540 80329 70950 41676

TABLE 2
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The partial quotients of the continued fraction of the number above are:
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