L ecture 10

The Sylvester Resultant

We want to compute intersections of algebraic cufvesdG. Let F andG be the vanishing sets dfx,y)
andg(x,y), respectively. Algebraically, we are interested in commeros of the bivariate polynomials
andg. Let us first ask a simpler question. [BoandG intersect on the lin&k = a. Algebraically, this
means to ask whether the univariate polynomfdls,y) andg(a,y) have a common zero. We address this
guestion first and derive the resultant calculus to solvédrtunately, the solution readily extends to the
bivariate case.

10.1 Common Zeros of Univariate Polynomials

Let f(x) € R[x] andg(x) € R[x] be univariate polynomials with real coefficients. We want&termine
whetherf andg have a common zero. We know already one technique for sothi@groblem: Compute
the gcd off andg. It comprises exactly the common rootsfoAndg. The gcd off andg does not only tell
us whetherf andg have common roots; it tells us how many common roots theramaddt is a compact
description of the common roots. In this section, we will agalternative technique, the resultant calculus.
In its basic form, it will only tell us whethef andg have a common root; it will not tell us how many
common roots there are nor will it give a description of thenowon roots. In this sense, resultants are
weaker than greatest common divisors. They are strongdmwriisénse, that they can give us information
about common roots of multivariate polynomials.

Assume thatf andg have a common factdr. Thenf = (f /h)h andg = (g/h)h and hence

g f g f g

f
f.ﬁzﬁ. H:Hg or f.ﬁ_ﬁ.gzo_

In other words, we have nonzero polynomisls g/h andt = — f /h such that
0<degs<degg and O0<degt<degf and fs+gt=0. Q)
We have thus proved one direction of the following Lemma.

LEMMA 1. Let f € R[x] and g€ R[x] be univariate polynomials. f and g have a common zero ifetlaee
polynomials s and t satisfying (1).

Proof. Assume there areandt satisfying (1). Thenfs= —gt and hence any zero dfis also a zero of
gt (and at least with the same multiplicity). ffandg would have no common zerd,would have to be a
divisor oft. Sincet is nonzero and has degree smaller thathis is impossible. O
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2 LECTURE 10. THE SYLVESTER RESULTANT

How can we findsandt as in (1) or check for their existence? Linear algebra is tissvar. Lein = degf

andm= degg and let _ _
s= sx and t= tix'.
O§|Z<m Oglz<n

We do not know the coefficients efandt yet, but we may introduce names for them.

Exercise 0.1: May we restrict the coefficients afandt to R or do we need complex coefficients?
Let P(x) = f(x)s(x) +g(x)t(x). Then

P(X) = (faSm-1+Gmtn-1)X™ "+ (fasm-2+ fa_1Sm-1 4 Omtr-m-2+ Om-2ta-m-1)X™ "2+ ...+ (foso+ goto)X".

We wantP(x) = 0. This is equivalent to the following+ mlinear equations for the+ m coefficients ofs
andt.

faSm-1+0mtn-1=0
faSm—2 + fr—1Sm-1+ Imth—-m—2+ Om—2th-m-1 =0

=0
foso+ doto = 0.
It is convenient to write this system in matrix form:
(Smfly"'a&)atﬂfly"'vtO) Syl(fvg) :07 (2)
where
mrows
. _ nrows
Om ... %o

is the Sylvestér matrix of f andg. This is a square matrix with+ m rows and columns. The firsh
rows contain shifted coefficient sequencesfand the second rows contain contain shifted coefficient
sequences aj. More precisely, row, 1 < i < m, contains the coefficient sequencefaf™' and rowm-+i,

1 <i < n, contains the coefficient sequencegaf—'. We have written system (2) with the vectat) on
the left so that we can write the coefficient sequences as eoatoks.

We know from linear algebra that the system (2) has a noatradlution if and only if the determinant
of the system is zero. The determinant of the Sylvester raiii play an important role in the sequel and
hence deserves a name. Thesultant re¢f,g) of f andg is defined as the determinant of the Sylvester
matrix of f andg, i.e.,

reg(f,g) :=detSyl(f,g).

We now have an elegant condition fbandg having a common zero.

1James Joseph Sylvester (September 3, 1814 London — 2013 MI5yc1897 Oxford) was an English mathematician. He
made fundamental contributions to matrix theory, invartheory, number theory, partition theory and combinatoride played
a leadership role in American mathematics in the later Halfi®@ 19th century as a professor at the Johns Hopkins Uriiyensd
as founder of the American Journal of Mathematics. At higllg@e was professor at Oxford. (Quote from Wikipedia, Janida
2010)
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THEOREM2. Let f,g € R[x]. Then f and g have a common zero if and only if feg) = O.

Exercise 0.2: Apply the findings of this section to the following pairs oflpaomials:

o f(X) =x®—5x+6 andg(x) = x> — 3x+ 2.
o f(X) =x2—7x+12 andg(x) = X2 — x.

In each case compute the resultant. Also factor the polyalsiin order to determine by other means
whether they have a common root. &

Exercise 0.3: Prove: f andg have two or more common roots if and only if there are polyradss andt
such that

0<degs<degg—2 and O0<degt<degf—2 and fs+gt=0.

What is the condition fok common roots? &

Exercise 0.4: Formulate the condition of the preceding exercise as arliggstem for the coefficients of
the sandt. How many unknowns are there? How many equations? Formalgtneralization of
Theorem 2. &

10.2 Common Zeros of Bivariate Polynomials

We now come to the question that really interests us. Givenbivariate polynomialsf € R[x,y] and
g € R[x,y] find their common zeros. If the degree bandg is at most two in one of the variables, sgy
a simple method works. We solve the equatigr y) = O for y and then substitute the resulting expression
for yinto f(x,y) = 0. In this way, we have eliminated one of the variables. Ifdegree in both variables
is more than two, this method fails, as we do not how to solveofe of the variables. We will see that
the resultant calculus allows us to eliminate a variabl&evit(!!!) first solving one of the equations for this
variable.

We view f andg as polynomials iry with coefficients inR[x|, i.e.,

fxy)= Y fiy and gixy)= 3y a(xy,

0<i<n 0<i<m

wherefi(x),g;(x) € R[x]. Let us first ask a simpler question.
Fixx=a. Is there g with f(a,B) =9(a,B) =07?

We have learned in the preceding section how to answer tlgstigm. The substitutior — a yields
univariate polynomials

fla,y)= S fi(a)y and gla,y)= S a(a)y.

0<i<n 0<i<m
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These polynomials have a common root if their resultastf (a,y),g(a,y)) is zero. The resultantds

fn(a) fo(a)
) mrows

det
gm(a) go(Q)
. n rows

gm(a) ' do(a)

There is an alternative way to compute this determinant. a&fed the entries as polynomialsxincompute
the determinant which is then a polynomialxnpand then make the substitution— a. More precisely,
define the Sylvester matrix dfandg with respect to variablg as

fn(X) e fo(x)
' - mrows
fn(x) ... fo(X)

Syl(f,9) = Gm(X) Jo(X)

nrows

o o %)

and the resultares,(f,g) of f andg with respect to variablg as the determinant of this matrix

res,(f,g) = detSyL/(f,g).

Observe, thates,(f,g) is a polynomial inx. The following lemma is immediate and captures the two ways
of evaluating the determinant:

e substitutea into the fj andg; and then evaluate a determinant whose entries are numbers or
e compute a determinant of univariate polynomials and swistir into the result.

LEMMA 3. Leta € R be such that f{a) # 0# gm(a). Then

res(f(a,y),g(a,y)) =res,(f,g)(a).

How about thoseax, where one of the leading coefficients is zero? Only thmsghere both leading
coefficients are zero, need special treatment, as the maondim of this section shows. Before stating and
proving it, we illustrate the lemma by an example. Consider

fxy)=y*—x and g(xy) =y —x

2This is only true iffy(a) # 0 andgn(a) # 0. Otherwise, the degree 6fa,y) is less tham or the degree of(a,y) is less
thanmand the Sylvester matrix changes. We will come back to thiist folow.

Alternatively, we can avoid the complication of vanishirgding coefficients by ahear (definition in Webster’s dictionary:
((physics) a deformation of an object in which parallel glamemain parallel but are shifted in a direction parallehtamselves;
"the shear changed the quadrilateral into a parallelogfpridefinef (x,y) = f(x+ay,y) for some nonzerg. A monomialx'yl in
f becomegx+ay)'yl = aly*i +yiti=1(_.). The degree of inyis the total degree of and the coefficient 0j4€9f is constant.
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Figure?? illustrates the vanishing sets of these polynomials. Then

1 0 —x2
1 0 —x

SWit.a =141 o _x
1 O —X

and hencees,(f,g) = x* — 2+ x? = x2(x— 1)2. The specializations for— 0 andx+— 2, respectively, are

100 10 -4
100 1 0 -4

res(f(0.),90Y)) = | 1 5 o =0 and res(f(2y).92y)=| ; o _» —4
100 1 0 -2

[[ The strengthening that it suffices that one of the leadindficats is nonzero adds a lot of complica-
tion to the proof. Is it worth it?. There is no way to avoid iteWeed part c) of the theorem. Assufoef) is
acommon zero of f and g. If(for) # 0+ gm(a), the Lemma above impliesa) = 0. If f,(a) =0=gm(a),
r(a) is clearly zero. However, if only one of the coefficients i®,zi¢ requires the argument given in the
proof of the theoreriji.

THEOREM 4. Let f(x,y),0(x,y) € R[x,y] and let r(x) = res,(f,g) € R[X| be the resultant of f and g with
respect to the variable y. Then

(@) f and g have a nontrivial common factor if and only if r iidical.y zero.
(b) If f and g are coprime (do not have a common factor), thie¥ahg conditions are equivalent:

e acCisarootofr.
e fo(a) =gm(a)=0o0rthereis af € Cwith f(a,) =0=g(a,B) =0.

(c) Forall (a,B)eCxC:If f(a,B)=0=09g(a,B)=0thenr(a)=0.

Proof. Assume first thaf andg have a nontrivial common factor, i.€.= fh andg = gh, whereh = h(x,y)
has degree at least one. Then for every C there is a3 € C with h(a,8) = 0. There are only finitely
manya’s that are a zero of eithef,(x) or gm(X); in fact there are at most+ msucha’s. For anya that is
not a zero off,(x) or gm(Xx), f(a,y) andg(a,y) have degrea andm, respectively, and

0=res(f(a,y),g(a.y)) =res/(f,g)(a)=r(a),

where the first equality follows from Theorem 2 and the seceqdality follows from Lemma 3. We
conclude that(x) has infinitely many zeros. Thus it is identically zero.
Conversely, assume thats identically zero and consider aayc C that is not a zero of eithefi,(x) or
gm(X). Then
0=r(a)=res(f,g)(a)=res(f(a,y),g(a.y)),

where the first equality holds sincds identically zero, the second equality follows from thdiniéon of
r, and the third equality is Lemma 3. Theorem 2 implies theterise of 83 with f(a,B) =0=g9(a,B).
Thus f andg have infinitely many points in common and hence have a commactorf [Strictly speaking,
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| should cite Bezout's theorem: Coprime cuns,y) = 0 andg(x,y) = 0 intersect in at most defglegg
points.]

We turn to part b). Assume first thatis a root ofr. If f,(a)=gm(a) =0, we are done. l&r is neither
a root of f,(x) nor of gm(x), we have

0= l'(Cf) = re%/(f,g)(a) = res(f(a,y),g(a,y)),

where the second equality follows from the definitiorr oAnd the third equality is Lemma 3. We claim that
res(f(a,y),g(a,y)) = 0, even if one but not both of the leading coefficients is zékssumegn(a) # 0,

0= fp(a) =... = fys1(a) and fy(a) = O; the other case is symmetric. In other words,(dég,y)) = k.
Then
fn(ar) fo(ar)
} m rows
B B B fu(a) fo(ar)
O=r(a)=detSyl(f,g)(a) = det gm(a1) %(a) }
nrows
gm(a) go(a)
0 coe fla) oo fo(a)
}mrows
B 0 v fla) ..o fo(a)
= det gm(a) go(ar) }
n—1rows
gm(Q) do(a)
fu(a) fo(a)
} mrows
_((_q\ym n—k fi(ar) fo(a)
= ((=1)gm(@))™ det) o 9(a1) }
k rows
gm(Q) do(a)

= ((=1)Mgm(a))"res(f(a.y).g(a.y)),

where the next to last equality follows from developing thatmx n — k times according to the first col-
umn. Each such step eliminates the the first column and theyfiwv of the matrix, generates the factor
(—1)Mgm(a), and produces a matrix of the same form but with one ¢essv. The last equality is the def-
inition of res(f(a,y),g(a,y)). Thusres(f(a,y),g(a,y)) =0 and hence, by Theorem 2, there i avith
f(a,B)=0= f(a,B)=0.

Assume conversely, that eith&f(a) = 0= gm(a) or there is 3 € C with f(a,8) =0= f(a,B) =0.
In the former case, the first column 8f1,(f,g)(a) is a column of zeros and hencgx) = 0. In the latter
caseres f(a,y),g(a,y)) = 0 by Theorem 2. We may assume that eitfigior) # 0 orgm(a) # 0 as the
former case would apply otherwise. The argument in the pusvparagraph shows thdir) is a multiple
(with a nonzero factor) ofes(f(a,y),g(a,y)) and hence(a) = 0.

Part c) follows immediately from part b). O
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Exercise 0.5: Let f(x,y) = X2 —y? andg(x,y) = X2 — 2xy+ y2. Computer (x) = res,(f,g). Explain, whyr
is identically zero. &

Exercise 0.6: Let f(x,y) =x2—y?andg(x,y) = x—y*. Computeres,(f,g). Also computees(f,g). What
can you say about the pointa, B) € R? with f(x,y) = g(x,y) = 0?

Answer:
-1 0 %
-1 0 %
res,(f,g) = det —1 0 ¥ | =xX-X=x(x—1)(x+1)(*+1).
-1 0 0 x
-1 0 0 x
and
1 0 -y
res(f.g)=det{ 1 -y =Y =¥’ =V (y- D+ 1)y’ +1).
1 -y
For the real intersections ¢fx,y) = 0 andg(x,y) =0, we haven € {—1,0,+1} andp € {—1,0,+1}.

o

10.3 Real Intersections of Real Algebraic Curves

The results of the preceding section yield a first algoritemcbmputing the real intersections of real alge-
braic curves. LeE be the vanishing set df(x,y) andG be the vanishing set @f(x,y).

(1) If f andg have a common factdyfactor it out. We assume from now on, tHaandg are coprime.

(2) Computer(x) = res,(f,g). If r is identically zero,f andg have a common factor. Go back to step (1).
Otherwise, determine the real zeifysof r as discussed in Lectuf®.

(3) Continue with either step (a) or step (b) as preferred.

(a) Foreacln € Z, determine the common zerosffa,y) andg(a,y). This can be done by computing
the gcd off (a,y) andg(a,y) and then isolating the roots of the gcd. The coefficient$ (af,y)
andg(a,y) are algebraic numbers and hence this step is computatidmeid.

(b) Computes(y) =res(f,g) and determine the real zerdsof sas discussed in Lectuf®.

For each paifa, 8) € Z; x Zs check whetheff (a,8) = 0= g(a,). This step is computationally
hard asor and3 are algebraic numbers.

10.4 Subresultants of Univariate Polynomials and the Degree of the Com-
mon Factor

The resultant of two univariate polynomials decides whethendg have a common factor. Can we deter-
mine the multiplicity of the common factor? The followingiena generalizes Lemma 1 above.

3Step 2 will tell us whether this is the case.



8 LECTURE 10. THE SYLVESTER RESULTANT

LEMMA 5. Let f € R[x] and ge R[x], deg f) = n anddegg) = m. The degree of the common factor of
f and g is the minimum k such that for all s and t with &g< m—k, dedt) < n—k, t £ 0, we have
deq fs+gt) > k.

Proof. Leth = gcd(f,g) andky = degh).

For k with 0 < k < kg, sets=g/h andt = —f/h. Thent # 0, degs=m— ko < m—k and degt) =
n—ko < n—kand degfs+gt) = deg0) = —co.

Considerk = ky and arbitrarys andt satisfying the constraints. Thdis+ gt is a multiple ofh and hence
is either identically zero or has degree at ldast We show that the former case is impossible. Assume
otherwise. Then & fs+gt =h((f/h)s+ (g/h)t) and hencé f /h)s+ (g/h)t = 0. Sinceg/h # 0 andt # 0
and sincef /h andg/h are relatively prime, this implies thdt/h dividest. But ded f/h) = n—ky and
degt) < n—ko, a contradiction. O

The contrapositive of the second condition in the lemma ebeads: there are polynomiadsandt
with with deg’s) < m—k, dedt) < n—k, t # 0, and de¢fs+ gt) < k. This can again be formulated in
the language of linear algebra. We hame- k variables for the coefficients af(sinces has degree at most
m— k— 1) andn— k variables for the coefficients ¢{sincet has degree at most- k+ 1). LetP = fs+gt;
it is a polynomial of degree at most+ m—k— 1. We want that the coefficients correspondingctdo
xm-k-1 gre zero. This results in+m—k—1—k+ 1= n+m— 2k linear constraints for tha+m— 2k
coefficients ofs andt. The matrix of this system is a truncated Sylvester matrixe Wavem — k rows
for shifted coefficient sequences bfandn — k rows for shifted coefficient sequencesgandn+ m— 2k
columns. Everything after columm+ m— 2k of Syl(f,g) is truncated. The determinant of this matrix is
called thek-th principal subresultant and is denotgés(f,g). We summarize in

THEOREMG. Letded f) =n anddegg) = m. The degree of the common factor of f and g is the minimum
k such that srag f,g) # 0, where

fn fo m— Kk rows

fn fl

fn ... Tk

srex(f,g) = det :
(1.9 Om Jo

Gm % n—k rows

Om 01

Om -+ Ok
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We apply Theorem 6 td(x) = x? — 5x+ 6 andg(x) = x* — 3x+ 2. We have

1 -5 6
1 -5 6
sreg(f,g) =reg(f,g) = det 1 .3 9 =0
1 -3 2

1 -5
sreg(f,qg) _det< 1 3 > #0
and hencd andg have a linear factor in common.

Exercise 0.7: What is the degree of the common factorfgk) = x> — —9x? + 21x — 49 andx® — 2x? 4- 7x?
&

10.5 Subresultants of Bivariate Polynomials and Multiple Intersection of
Algebraic Curves

We extend the results to bivariate polynomidi,y) € R[x,y] andg(x,y) = R[x,y]. As in Section 10.2
we view f andg as polynomials iry with coefficients inR[x]. We define thek-th subresultant as above;
sregy = srexy(f,g) is a polynomial inx.

[introduce the concept of a genexevalue: a is generic forf if the degree off does not drop adr.

Fora € C with fqo(a) # 0# gm(a), we have two ways of computirgres(f(a,y),g(a,y)). We either
follow the definition or we computsregy = sregy(f,g) and then plugx into the resulting polynomial.
Both approaches lead to the same value. We obtain:

THEOREM 7. Let f and g be bivariate polynomials, lete C be generic for f and g. Then the minimal k
such that regy(a) # O is precisely the degree of the common factor @f /) and ga,y).



