
Lecture 10

The Sylvester Resultant

We want to compute intersections of algebraic curvesF andG. Let F andG be the vanishing sets off (x,y)
andg(x,y), respectively. Algebraically, we are interested in commonzeros of the bivariate polynomialsf
andg. Let us first ask a simpler question. DoF andG intersect on the linex = α . Algebraically, this
means to ask whether the univariate polynomialsf (α ,y) andg(α ,y) have a common zero. We address this
question first and derive the resultant calculus to solve it.Fortunately, the solution readily extends to the
bivariate case.

10.1 Common Zeros of Univariate Polynomials

Let f (x) ∈ R[x] andg(x) ∈ R[x] be univariate polynomials with real coefficients. We want todetermine
whether f andg have a common zero. We know already one technique for solvingthe problem: Compute
the gcd off andg. It comprises exactly the common roots off andg. The gcd off andg does not only tell
us whetherf andg have common roots; it tells us how many common roots there areand it is a compact
description of the common roots. In this section, we will seean alternative technique, the resultant calculus.
In its basic form, it will only tell us whetherf andg have a common root; it will not tell us how many
common roots there are nor will it give a description of the common roots. In this sense, resultants are
weaker than greatest common divisors. They are stronger in the sense, that they can give us information
about common roots of multivariate polynomials.

Assume thatf andg have a common factorh. Then f = ( f/h)h andg = (g/h)h and hence

f ·
g
h

=
f
h
·h·

g
h

=
f
h

g or f ·
g
h
−

f
h
·g≡ 0.

In other words, we have nonzero polynomialss= g/h andt = − f/h such that

0≤ degs< degg and 0≤ degt < degf and f s+gt ≡ 0. (1)

We have thus proved one direction of the following Lemma.

LEMMA 1. Let f ∈ R[x] and g∈ R[x] be univariate polynomials. f and g have a common zero iff there are
polynomials s and t satisfying (1).

Proof. Assume there ares andt satisfying (1). Thenf s= −gt and hence any zero off is also a zero of
gt (and at least with the same multiplicity). Iff andg would have no common zero,f would have to be a
divisor of t. Sincet is nonzero and has degree smaller thanf , this is impossible.
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2 LECTURE 10. THE SYLVESTER RESULTANT

How can we findsandt as in (1) or check for their existence? Linear algebra is the answer. Letn= degf
andm= degg and let

s= ∑
0≤i<m

six
i and t = ∑

0≤i<n

tix
i .

We do not know the coefficients ofs andt yet, but we may introduce names for them.

Exercise 0.1: May we restrict the coefficients ofsandt to R or do we need complex coefficients? ♦

Let P(x) = f (x)s(x)+g(x)t(x). Then

P(x)= ( fnsm−1+gmtn−1)x
m+n−1+( fnsm−2+ fn−1sm−1+gmtn−m−2+gm−2tn−m−1)x

m−n−2+ . . .+( f0s0+g0t0)x
0.

We wantP(x) ≡ 0. This is equivalent to the followingn+m linear equations for then+m coefficients ofs
andt.

fnsm−1 +gmtn−1 = 0

fnsm−2 + fn−1sm−1 +gmtn−m−2 +gm−2tn−m−1 = 0
... = 0

f0s0 +g0t0 = 0.

It is convenient to write this system in matrix form:

(sm−1, . . . ,s0, tn−1, . . . , t0) Syl( f ,g) = 0, (2)

where

Syl( f ,g) =





















fn . . . f0
. . . .. .

fn . . . f0
gm . . . g0

. . .
. . .

gm . . . g0



























m rows







n rows

is the Sylvester1 matrix of f and g. This is a square matrix withn+ m rows and columns. The firstm
rows contain shifted coefficient sequences off and the secondn rows contain contain shifted coefficient
sequences ofg. More precisely, rowi, 1≤ i ≤ m, contains the coefficient sequence off xm−i and rowm+ i,
1≤ i ≤ n, contains the coefficient sequence ofgxn−i . We have written system (2) with the vector(s, t) on
the left so that we can write the coefficient sequences as row vectors.

We know from linear algebra that the system (2) has a nontrivial solution if and only if the determinant
of the system is zero. The determinant of the Sylvester matrix will play an important role in the sequel and
hence deserves a name. Theresultant res( f ,g) of f andg is defined as the determinant of the Sylvester
matrix of f andg, i.e.,

res( f ,g) := detSyl( f ,g).

We now have an elegant condition forf andg having a common zero.

1James Joseph Sylvester (September 3, 1814 London – 2013 March 15, 1897 Oxford) was an English mathematician. He
made fundamental contributions to matrix theory, invariant theory, number theory, partition theory and combinatorics. He played
a leadership role in American mathematics in the later half of the 19th century as a professor at the Johns Hopkins University and
as founder of the American Journal of Mathematics. At his death, he was professor at Oxford. (Quote from Wikipedia, January 7,
2010)
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THEOREM 2. Let f,g∈ R[x]. Then f and g have a common zero if and only if res( f ,g) = 0.

Exercise 0.2: Apply the findings of this section to the following pairs of polynomials:

• f (x) = x2−5x+6 andg(x) = x2−3x+2.

• f (x) = x2−7x+12 andg(x) = x2−x.

In each case compute the resultant. Also factor the polynomials, in order to determine by other means
whether they have a common root. ♦

Exercise 0.3: Prove: f andg have two or more common roots if and only if there are polynomials s andt
such that

0≤ degs≤ degg−2 and 0≤ degt ≤ degf −2 and f s+gt ≡ 0.

What is the condition fork common roots? ♦

Exercise 0.4: Formulate the condition of the preceding exercise as a linear system for the coefficients of
the s and t. How many unknowns are there? How many equations? Formulatea generalization of
Theorem 2. ♦

10.2 Common Zeros of Bivariate Polynomials

We now come to the question that really interests us. Given two bivariate polynomialsf ∈ R[x,y] and
g∈ R[x,y] find their common zeros. If the degree off andg is at most two in one of the variables, sayy,
a simple method works. We solve the equationg(x,y) = 0 for y and then substitute the resulting expression
for y into f (x,y) = 0. In this way, we have eliminated one of the variables. If thedegree in both variables
is more than two, this method fails, as we do not how to solve for one of the variables. We will see that
the resultant calculus allows us to eliminate a variable without(!!!) first solving one of the equations for this
variable.

We view f andg as polynomials iny with coefficients inR[x], i.e.,

f (x,y) = ∑
0≤i≤n

fi(x)y
i and g(x,y) = ∑

0≤i≤m

gi(x)y
i ,

where fi(x),g j (x) ∈ R[x]. Let us first ask a simpler question.

Fix x = α . Is there aβ with f (α ,β ) = g(α ,β ) = 0?

We have learned in the preceding section how to answer this question. The substitutionx 7→ α yields
univariate polynomials

f (α ,y) = ∑
0≤i≤n

fi(α)yi and g(α ,y) = ∑
0≤i≤m

gi(α)yi .
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These polynomials have a common root if their resultantres( f (α ,y),g(α ,y)) is zero. The resultant is2

det





















fn(α) . . . f0(α)
. . . . . .

fn(α) . . . f0(α)
gm(α) . . . g0(α)

. . . . . .
gm(α) . . . g0(α)



























m rows







n rows

.

There is an alternative way to compute this determinant. We leave the entries as polynomials inx, compute
the determinant which is then a polynomial inx, and then make the substitutionx 7→ α . More precisely,
define the Sylvester matrix off andg with respect to variabley as

Syly( f ,g) =





















fn(x) . . . f0(x)
.. . .. .

fn(x) . . . f0(x)
gm(x) . . . g0(x)

.. . .. .
gm(x) . . . g0(x)



























m rows







n rows

and the resultantresy( f ,g) of f andg with respect to variabley as the determinant of this matrix

resy( f ,g) = detSyly( f ,g).

Observe, thatresy( f ,g) is a polynomial inx. The following lemma is immediate and captures the two ways
of evaluating the determinant:

• substituteα into the fi andg j and then evaluate a determinant whose entries are numbers or

• compute a determinant of univariate polynomials and substituteα into the result.

LEMMA 3. Let α ∈ R be such that fn(α) 6= 0 6= gm(α). Then

res( f (α ,y),g(α ,y)) = resy( f ,g)(α).

How about thoseα , where one of the leading coefficients is zero? Only thoseα where both leading
coefficients are zero, need special treatment, as the main theorem of this section shows. Before stating and
proving it, we illustrate the lemma by an example. Consider

f (x,y) = y2−x2 and g(x,y) = y2−x.

2This is only true if fn(α) 6= 0 andgn(α) 6= 0. Otherwise, the degree off (α,y) is less thann or the degree ofg(α,y) is less
thanm and the Sylvester matrix changes. We will come back to this point below.

Alternatively, we can avoid the complication of vanishing leading coefficients by ashear(definition in Webster’s dictionary:
((physics) a deformation of an object in which parallel planes remain parallel but are shifted in a direction parallel tothemselves;
”the shear changed the quadrilateral into a parallelogram”)). Define f̄ (x,y) = f (x+ay,y) for some nonzeroy. A monomialxiy j in
f becomes(x+ay)iy j = aiyi+ j +yi+ j−1(. . .). The degree of̄f in y is the total degree off and the coefficient ofydegf is constant.
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Figure?? illustrates the vanishing sets of these polynomials. Then

Syly( f ,g) =









1 0 −x2

1 0 −x2

1 0 −x
1 0 −x









and henceresy( f ,g) = x4−2x3+x2 = x2(x−1)2. The specializations forx 7→ 0 andx 7→ 2, respectively, are

res( f (0,y),g(0,y)) =









1 0 0
1 0 0

1 0 0
1 0 0









= 0 and res( f (2,y),g(2,y)) =









1 0 −4
1 0 −4

1 0 −2
1 0 −2









= 4.

[[The strengthening that it suffices that one of the leading coefficients is nonzero adds a lot of complica-
tion to the proof. Is it worth it?. There is no way to avoid it. We need part c) of the theorem. Assume(α ,β ) is
a common zero of f and g. If fn(α) 6= 0 6= gm(α), the Lemma above implies r(α) = 0. If fn(α) = 0= gm(α),
r(α) is clearly zero. However, if only one of the coefficients is zero, it requires the argument given in the
proof of the theorem.]]

THEOREM 4. Let f(x,y),g(x,y) ∈ R[x,y] and let r(x) = resy( f ,g) ∈ R[x] be the resultant of f and g with
respect to the variable y. Then

(a) f and g have a nontrivial common factor if and only if r is identical.y zero.

(b) If f and g are coprime (do not have a common factor), the following conditions are equivalent:

• α ∈ C is a root of r.

• fn(α) = gm(α) = 0 or there is aβ ∈ C with f(α ,β ) = 0 = g(α ,β ) = 0.

(c) For all (α ,β ) ∈ C×C: If f (α ,β ) = 0 = g(α ,β ) = 0 then r(α) = 0.

Proof. Assume first thatf andg have a nontrivial common factor, i.e.,f = f̃ h andg= g̃h, whereh= h(x,y)
has degree at least one. Then for everyα ∈ C there is aβ ∈ C with h(α ,β ) = 0. There are only finitely
manyα ’s that are a zero of eitherfn(x) or gm(x); in fact there are at mostn+m suchα ’s. For anyα that is
not a zero offn(x) or gm(x), f (α ,y) andg(α ,y) have degreen andm, respectively, and

0 = res( f (α ,y),g(α ,y)) = resy( f ,g)(α) = r(α),

where the first equality follows from Theorem 2 and the secondequality follows from Lemma 3. We
conclude thatr(x) has infinitely many zeros. Thus it is identically zero.

Conversely, assume thatr is identically zero and consider anyα ∈ C that is not a zero of eitherfn(x) or
gm(x). Then

0 = r(α) = resy( f ,g)(α) = res( f (α ,y),g(α ,y)),

where the first equality holds sincer is identically zero, the second equality follows from the definition of
r, and the third equality is Lemma 3. Theorem 2 implies the existence of aβ with f (α ,β ) = 0 = g(α ,β ).
Thus f andg have infinitely many points in common and hence have a common factor. [Strictly speaking,
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I should cite Bezout’s theorem: Coprime curvesf (x,y) = 0 andg(x,y) = 0 intersect in at most degf degg
points.]

We turn to part b). Assume first thatα is a root ofr. If fn(α) = gm(α) = 0, we are done. Ifα is neither
a root of fn(x) nor of gm(x), we have

0 = r(α) = resy( f ,g)(α) = res( f (α ,y),g(α ,y)),

where the second equality follows from the definition ofr, and the third equality is Lemma 3. We claim that
res( f (α ,y),g(α ,y)) = 0, even if one but not both of the leading coefficients is zero.Assumegm(α) 6= 0,
0 = fn(α) = . . . = fk+1(α) and fk(α) = 0; the other case is symmetric. In other words, deg( f (α ,y)) = k.
Then

0 = r(α) = detSyly( f ,g)(α) = det





















fn(α) . . . f0(α)
. . . . . .

fn(α) . . . f0(α)
gm(α) . . . g0(α)

. . . . ..
gm(α) . . . g0(α)



























m rows







n rows

= det





















0 . . . fk(α) . . . f0(α)
. .. .. . . . .

0 . . . fk(α) . . . f0(α)
gm(α) . . . g0(α)

. .. . ..
gm(α) . . . g0(α)



























m rows







n−1 rows

= ((−1)mgm(α))n−k det





















fk(α) . . . f0(α)
. .. .. .

fk(α) . . . f0(α)
gm(α) . . . g0(α)

. .. . . .
gm(α) . . . g0(α)



























m rows







k rows

= ((−1)mgm(α))n−kres( f (α ,y),g(α ,y)),

where the next to last equality follows from developing the matrix n− k times according to the first col-
umn. Each such step eliminates the the first column and the first g-row of the matrix, generates the factor
(−1)mgm(α), and produces a matrix of the same form but with one lessg-row. The last equality is the def-
inition of res( f (α ,y),g(α ,y)). Thusres( f (α ,y),g(α ,y)) = 0 and hence, by Theorem 2, there is aβ with
f (α ,β ) = 0 = f (α ,β ) = 0.

Assume conversely, that eitherfn(α) = 0 = gm(α) or there is aβ ∈ C with f (α ,β ) = 0 = f (α ,β ) = 0.
In the former case, the first column ofSyly( f ,g)(α) is a column of zeros and hencer(α) = 0. In the latter
case,res( f (α ,y),g(α ,y)) = 0 by Theorem 2. We may assume that eitherfn(α) 6= 0 or gm(α) 6= 0 as the
former case would apply otherwise. The argument in the previous paragraph shows thatr(α) is a multiple
(with a nonzero factor) ofres( f (α ,y),g(α ,y)) and hencer(α) = 0.

Part c) follows immediately from part b).
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Exercise 0.5: Let f (x,y) = x2−y2 andg(x,y) = x2−2xy+y2. Computer(x) = resy( f ,g). Explain, whyr
is identically zero. ♦

Exercise 0.6: Let f (x,y) = x2−y2 andg(x,y) = x−y3. Computeresy( f ,g). Also computeresx( f ,g). What
can you say about the points(α ,β ) ∈ R

2 with f (x,y) = g(x,y) = 0?

Answer:

resy( f ,g) = det













−1 0 x2

−1 0 x2

−1 0 x2

−1 0 0 x
−1 0 0 x













= x6−x2 = x2(x−1)(x+1)(x2 +1).

and

resx( f ,g) = det





1 0 −y2

1 −y3

1 −y3



 = y6−y2 = y2(y−1)(y+1)(y2 +1).

For the real intersections off (x,y) = 0 andg(x,y) = 0, we haveα ∈{−1,0,+1} andβ ∈ {−1,0,+1}.
♦

10.3 Real Intersections of Real Algebraic Curves

The results of the preceding section yield a first algorithm for computing the real intersections of real alge-
braic curves. LetF be the vanishing set off (x,y) andG be the vanishing set ofg(x,y).

(1) If f andg have a common factor3, factor it out. We assume from now on, thatf andg are coprime.

(2) Computer(x) = resy( f ,g). If r is identically zero,f andg have a common factor. Go back to step (1).
Otherwise, determine the real zerosZr of r as discussed in Lecture??.

(3) Continue with either step (a) or step (b) as preferred.

(a) For eachα ∈Zr determine the common zeros off (α ,y) andg(α ,y). This can be done by computing
the gcd of f (α ,y) andg(α ,y) and then isolating the roots of the gcd. The coefficients off (α ,y)
andg(α ,y) are algebraic numbers and hence this step is computationally hard.

(b) Computes(y) = resx( f ,g) and determine the real zerosZs of sas discussed in Lecture??.

For each pair(α ,β ) ∈ Zr ×Zs check whetherf (α ,β ) = 0 = g(α ,β ). This step is computationally
hard asα andβ are algebraic numbers.

10.4 Subresultants of Univariate Polynomials and the Degree of the Com-
mon Factor

The resultant of two univariate polynomials decides whether f andg have a common factor. Can we deter-
mine the multiplicity of the common factor? The following lemma generalizes Lemma 1 above.

3Step 2 will tell us whether this is the case.
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LEMMA 5. Let f ∈ R[x] and g∈ R[x], deg( f ) = n anddeg(g) = m. The degree of the common factor of
f and g is the minimum k such that for all s and t with deg(s) < m− k, deg(t) < n− k, t 6≡ 0, we have
deg( f s+gt) ≥ k.

Proof. Let h = gcd( f ,g) andk0 = deg(h).

For k with 0 ≤ k < k0, sets = g/h and t = − f/h. Thent 6= 0, degs= m− k0 < m− k and deg(t) =
n−k0 < n−k and deg( f s+gt) = deg(0) = −∞.

Considerk = k0 and arbitrarysandt satisfying the constraints. Thenf s+gt is a multiple ofh and hence
is either identically zero or has degree at leastk0. We show that the former case is impossible. Assume
otherwise. Then 0= f s+gt = h(( f/h)s+(g/h)t) and hence( f/h)s+(g/h)t = 0. Sinceg/h 6= 0 andt 6= 0
and sincef/h andg/h are relatively prime, this implies thatf/h divides t. But deg( f/h) = n− k0 and
deg(t) < n−k0, a contradiction.

The contrapositive of the second condition in the lemma above reads: there are polynomialss and t
with with deg(s) < m− k, deg(t) < n− k, t 6= 0, and deg( f s+ gt) < k. This can again be formulated in
the language of linear algebra. We havem−k variables for the coefficients ofs (sinces has degree at most
m−k−1) andn−k variables for the coefficients oft (sincet has degree at mostn−k+1). LetP= f s+gt;
it is a polynomial of degree at mostn+ m− k− 1. We want that the coefficients corresponding toxk to
xn+m−k−1 are zero. This results inn+ m− k−1− k+ 1 = n+ m−2k linear constraints for then+ m−2k
coefficients ofs and t. The matrix of this system is a truncated Sylvester matrix. We havem− k rows
for shifted coefficient sequences off andn− k rows for shifted coefficient sequences ofg andn+ m−2k
columns. Everything after columnn+ m− 2k of Syl( f ,g) is truncated. The determinant of this matrix is
called thek-th principal subresultant and is denotedsresk( f ,g). We summarize in

THEOREM 6. Letdeg( f ) = n anddeg(g) = m. The degree of the common factor of f and g is the minimum
k such that sresk( f ,g) 6= 0, where

sresk( f ,g) = det

















































fn . . . f0
. . . . . .

fn . . . f0
fn . . . f1

. . . . . .
...

fn . . . fk
gm . . . g0

. . . . . .
gm . . . g0

gm . . . g1
. . . . . .

...
gm . . . gk























































































m−k rows







































n−k rows
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We apply Theorem 6 tof (x) = x2−5x+6 andg(x) = x2−3x+2. We have

sres0( f ,g) = res( f ,g) = det









1 −5 6
1 −5 6

1 −3 2
1 −3 2









= 0

sres1( f ,g) = det

(

1 −5
1 −3

)

6= 0

and hencef andg have a linear factor in common.

Exercise 0.7: What is the degree of the common factor off (x) = x3−−9x2 +21x−49 andx3−2x2 +7x?
♦

10.5 Subresultants of Bivariate Polynomials and Multiple Intersection of
Algebraic Curves

We extend the results to bivariate polynomialsf (x,y) ∈ R[x,y] andg(x,y) = R[x,y]. As in Section 10.2
we view f andg as polynomials iny with coefficients inR[x]. We define thek-th subresultant as above;
sresk,y = sresk,y( f ,g) is a polynomial inx.

[introduce the concept of a genericx-value:α is generic forf if the degree off does not drop atα .
For α ∈ C with fn(α) 6= 0 6= gm(α), we have two ways of computingsresk( f (α ,y),g(α ,y)). We either

follow the definition or we computesresk,y = sresk,y( f ,g) and then plugα into the resulting polynomial.
Both approaches lead to the same value. We obtain:

THEOREM 7. Let f and g be bivariate polynomials, letα ∈ C be generic for f and g. Then the minimal k
such that resk,y(α) 6= 0 is precisely the degree of the common factor of f(α ,y) and g(α ,y).


