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1. Introduction

1964, John Brillhart embarked upon some extended computations
continued fraction expansions of cubic irrationalities. Assisted by

Morrison, he was hoping that some kind of pattern would emerge—
ich pattern would of course be of tremendous value if it could be proved
st. No pattern was found but something equally unexpected occurred.
eal root of the equation

x*—-8x—-10=0 0))
und to have the continued fraction expansion:
=[3,3,7,4,2,30,1,8,3,1,1,1,9,2,2, 1, 3, 22986,
2,1,32,8,2,1.8,55,1,5,2,28, 1,5,1,1501790, ... 1.

ether 8 partial quotients over 10000 were found: if we write
a,a,, ... ] then

22986, @33 = 1501790,  ago = 35657,  ag, = 49405,
53460, 0121 = 16467250, a139 == 48120, a161 = 325927-

$ brought to my attention by D. H. Lehmer who noted that the
ant of (1) is —4-163 and asked if the amazingly large partial
s found were related to the fact that the class-number of 0V —163)

L. Atkin later brought to my attention a fact which greatly helped

earch was supported in part by the N.S.F. under contract GP-13630
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towards an affirmative answer to Lehmer’s question. He noted that if we
translate (1) by setting x + 2 = f, then we get the new equation

H. M. STARK

fP-6f2+4f-2=0. )

This equation may be found on p. 725 of Weber (1908). Its occurrence there
relates to the quadratic field Q(/ —163) and its form is due to the fact that
the class-number of this field is one. Let us define the Schlifli modular
function f by

f@ =g 1]1 (1+¢""), g=¢", Imz>0. ?3)

Then f'(/—163) is the real root of (2)!

2. Modular Functions and Quadratic Fields
Define 7,(z) by the equation

fQz +3)* + 9,(2)f(2z + 3)1¢ — 256 =0 @)
and set

J@) = 1,2, -

The function j(z) is regular inside the upper halfplane and invariant under
the full modular group, i.e.,

.(oc2+/3
d yz+ 0

) = j(z) if ad — By =1 and a, B, v, & are integers;
this property and the first two terms of the expansion
1
i@ = ri 744 + 196884q + 214937604 + ...

completely determine j(z).

Let d <0 be the discriminant of the complex quadratic field Q(\/d)
and let A(d) be its class-number. If 1 and o form an integral basis of Q(\/d)
then the importance of j(z) is illustrated by the fact that j(w) generates the
maximal unramified abelian extension of Q(./d) when it is adjoined to
Q(/d). In fact j(w) is an algebraic integer of degree exactly 4(d). For our
purposes here, we will assume for the rest of this paper that

|d|] = 3(mod 8) and 3td. 6)
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-3+ ./d
_ 2
7,(w) is also an algebraic integer of degree h(d) (Weber, 1908).

this case, we may take w = . But now in fact j(w) is a perfect

j‘=j(i3—+—ﬁ), y=n(ZE) s

ce from (4) that
¥ +9f1% - 25 =0. @)

f® is the root of a cubic equation over Q(y) [= Q(j)] .an.d hence is
gebraic integer of degree < 3h(d). In fact, with the restriction (6), f 8
algebraic integer of degree exactly 3h(d). But in fact we can do better.
er (1908) conjectured that f is itself an algebraic integer of degree 3h(d).
erified this conjecture in many numerical cases, including d = — 163,
. the conjecture itself has only recently been proved by Birch (1968)
er did prove that > has degree 3/(d)).

r notational convenience we write the (unique) cubic equation for
er O(j) as

¥+ Bf*+ Af —2=0 ®)

ére k is a positive integer. Here A, and B, are integers in Q(j). When we
with d = — 163, we get B, = — 6, A, = 4 which yields (2).

3. Our Basic Goal and some Numerical Tests Thereof

is now clear that there is a relation between (1) and Q(/—163). Church-
house and Muir (1969) have recently made some extended computations
ich related the successive large partial quotients of f(y/—163) with the
essive factors in (3). They also have a very nice discussion of what it
ns for several partial quotients of f (/ — 163) to be “larger than expected™.
‘aim is different from theirs. If indeed the theory of modular functions
sponsible for the large partial quotients found, then we should be able to
modular functions that converge to the numerator and denominator
e corresponding convergents at 3(—3 + /—163) and the ratio of these
lular functions as series in z should give exceptionally good approxi-
ions to f(2z + 3). Our goal is to find such functions.
_indeed this is possible then we would expect f(y/d) to have some
llent approximations for other d satisfying (6) and A(d) = 1. There are
other fields which satisfy these conditions. Computations then reveal
following:
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Ford= -67, f3—2f2—2f-2=0,
f=1021,11,2,3,1,23,2,3,1,1337,2,8,3, 2,1,7,4, 2, 2, 87431, ...1].

Ford= —43, f*-2f2-2=0, )
f=12,21311,1,1,2,1,5,456, 1, 30, 1, 3, 4, 29866, ... 1

Ford= —19, f3®-2f—2=0,
f=101,1,3,2,1,952,1,1,2,1,127, ... ].

Ford= -11, f%-2f*4+2f-2=0,
f=11,1,1,54,2,305,..].

Note the tendency of the large a,’s to drift forwards and also to decrease.
This seems a persistent enough pattern to support our goal. The modular
functions that we get should converge to the numerator and denominator
of the exceptional approximations in these cases also.

Next let us ask what turns out to be the key question. Why should just f
have large partial quotients? Why not f2 or f* or f8, for example? In fact
these other numbers also have large partial quotients. Consider the case of
d = —163. We repeat some of the details of f for ease in comparison.

fisarootof x* —6x? +4x —2=0, a,=>5,
4., = 22986, a,, = 1501790, asy = 35657,
gy = 49405, ;5 = 53460, a,,, = 16467250.

fPisarootof x> —28x2 —8x —4=0, q,=28,
ay, = 126425, ay, = 8259853, a,, = 1620,
"@y, = 271730,  ago = 294038, a,,; = 90569882,

f*is aroot of x* — 800x2 — 160x — 16 = 0, a, = 800,
a, = 3202800, a,, = 209249628, as, = 41061,
asg = 19068, a,5 = 20634, a,4 = 6355781.

f¥is aroot of x3 — 640320x2 — 256 = 0, a, = 640320,
a; = 1601600400, a, = 2135467200, a, = 20533337,
s = 9535605, a5 = 10318433, a5 = 3178287878.

Even f?* gets in on the act. For f2* we find

ag = 262537412640768767 (a; = 1), a, = 1335334333499, ....
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ermore we can relate exceptionally good approximations to f* wi'th
nally good approximations to f 2k This is because we may rewrite

P Y e ©
f*+ B,

términant of this linear fractional transformation (we will call it

D, = — (AB, +29

generally not unity. Thus the continued fraction expansior_ls of f* and
e not eventually the same but they are related. In fact since the ex-
ons of * and 1/(f* + B,) are the same after the first term of the former
st two terms of the latter, and since

1

2k .. __ o s
f = Ak Dk.fk T Bkn

ayi1 > 2|Dyl/g*

g = ( - Akpn + 2kqn’ Pn + qun),

— Ay +2'g,
Dn + qun
a convergent of f2* (say the Nth) and ay., for f?* is given by

3
o~ W+19
an+1 N_—[D- |
k

r d= —163, we have |D,| =22, |D,| = 228, |D,| = 128016. Thus
ee from the list given earlier that all of the convergents of f * corresponding
the a,,,’s listed (k = 1,2, 4), except possibly those of f* corresponding
@3,, asg, a7 yield convergents of f2* and in fact the value of g is large
1igh in the three doubtfil cases to enable them to work also. In fact the
alues of a, . , listed for f correspond to the six values given for f 2 which
rrespond to the six values given for f# which correspond to the six values
ven for 8. This means that if we can find modular functions that converge
‘the numerators and denominators of the exceptional approximations
é, then we can do the same thing for f by using (9) inverted three times:

2k k

K _
Fr= S+ 4,
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It is interesting to note that for d = — 163, the approximation p,¢/q,¢
of f corresponds to the approximation Poldo = ag(= —7) of £8. If we were
to pass to f24 by

256/

AT

then we would completely lose this first spectacular approximation (or rather,
it corresponds to oo = p_,/g_,) while P32/q32 of f moves up to the integer
P1/4; = ao + 1(= —j + 768) approximation to f24.

Let me close this section with an acknowledgment. With the exception of
Brillhart’s expansion given after (1), all the computer calculations shown
above were performed by Mr. Richard Schroeppel at M.I.T. (the accuracy
was insufficient to trace numerically the last two of Brillhart’s eight large
partial quotients for f forward to f'®). In addition, Mr. Schroeppel provided
me with equation (9) along with the calculations; he used (9) to find the

continued fraction expansion of f2* from that of f* as a check on his cal-
culations.

f24

TaBLE I. The continued fraction expansion of f(/d)* for certain )
values of d and k. Shown are the first few values of

a, in f(Jd)* = [ag,aj,a,,...].

0 1 2 3 4 5 6 7 8 9

0 1 1 3 2 1 95 2 1 1 2

10 1 127 2 2 32 1 4 1 35 1

20 1 7 3 1 1 5 9 7 4 1

f(/~19)

0 1 2 3 4 5 6 7 8 9

0 2 2 1 3 1 1 1 1 2 1
10 5 456 1 30 1 3 4 29866 2 5
20 1 3 1 7 . 1 3 2 5 2 2

f(J/—-43)

0 1 2 3 4 5 6 7 8 9

0 2 1 11 2 3 1 23 2 3 1
10 1337 2 8 3 2 1 7 4 2 2
20 87431 1 5 1 1 1 9 130 2075 1
30 158 1 5 2 1 1 4 1 22 4
40 7 1 2 1 1 2 1 3 1 1
50 3 7 1 1 8 122 1 4 15 2
60 3 1 4 1 15 1 1 7 1 1
70 1 9 1 1 4 1 2 1 4 1
80 608 155 1 3 1 2 5 1 5 1
90 5 5 17 1 7 8 3 14 3 1

F(J/—67)
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0 gz 34 s s 1 B 9
3 4 2 30 1 8 "
i 21; ; 2 2 1 3 22986 2 1
3 B 3 1 s 2 %
g 5 1 1501790 1 % ; Z g !
i 6
8 } _2, % _1, 1 2 4 3 1 35657
1 17 2 15 1 1 2 1 15
i 3 2 1 1 7 2 1 Z i ;
49405 1 1 3 1 1
ﬁ 1 2 83 1 162 2 1 1 1
e > 2 1 53460 1 6 4 3 4 1;
i s 5 & 1 4 1 4 1 1 2
1 16467250 1 3 1 7 2 6 1
f(/—163)
b o . 2 3 4 5 6 17 8 9
T s 3 2 9 3 18 1 6 14 13
L 2 126425 1 5 1 3011 8 1 3
y s 2 2 1 4 9 1 4 2 2
| 1 8259853 12 3 1 2 2 s § 3
’ E 7 2 11 5 2 1 3 3 1620
0 1 1 5 3 5 1 1 2 2 1
50 1 1 3 1 2 1 30 % 1 3
70 3 1 4 2 1 1 4 271730 1 1
2 3 2 6 2 1 3 7 1 2
) 1 20 1 6 2 g8 2 1 2 294038
4 5 1 % ;) 1 1 1 1 5
1 5 1 3 1 2 2 3 2 4
2 90569882
f(J—163)*
it o 1 3 4 4 5 6 1 8 9
0 "800 5 1600 5 3202800 4 2000 2 1 I
10| 570 1 209249628 2 1 1 20 5 2 1
1 1 2 4 5 2 1 2 1 1
4 8 41061 2 2 1 2 1 2 11
| 2 1 1 10 4 1 2 2 2 4
C 1 2 1 5 1 2 2 6 19068 31
g 2 7 3 2 1 2 2 1 3
b 1 4 1 3 1 1 5 38 20634 3
B 1 4 3 1 1 4 z 12 1 3
i 1 4 1 1 1 4 2 4 3 7
6355781

f—-163)*
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0 1 2 3 4 5 6 7 8 9
0 | 640320 1601600400 320160 2135467200 261949 10 120533337 1 1
10 4 3 1 3 1369 2 2 14 3 9535605
20 1 3 2 1 2 1 5 1 585 3
30 1 15 2 1 1 10318433 2 1 5 3
40 1 2 1 3 1 1 10 1 1 2
50 2 1 1 3 1 3178287878

f(J—163)®

4. The Achievement of our Goal

The A, and B, are actually modular functions of z. However when ex-
panded in series of fractional powers of ¢ = e*™7, the coefficients are not
always rational. This tends to be a nuisance. When we deal with /8, we find
that the coefficients of Bg(z) = 7,(z) are rational (44(z) = 0). Using g = e2™,
the expansion of y,(z) begins,

72(2) = q713(1 + 248g + 412497 + 347524 + ...). (11)
The expansion of f(2z + 3)® begins
FQz+3)° =q7"3(—1+ 87 — 284> + 64¢° — ...). 12)
Our object is to express f(2z + 3)® as the continued fraction
@z + 3)® = [ag, a4, 4a,,...]

where the a; are polynomials in y = y,(z) chosen so as to eliminate the
negative (and zero) powers of g at each stage.

We set ap = f(2z + 3)® and find «, ., recursively from o, and a, by the
usual continued fraction rule

= 1
n+1 — «, — a,
Comparing (11) and (12), we see that
9 = —7

and thus 1

HT Rzt )+ 1
= 7§—6f(22 + 3)16

= 7459 *(1—16q + 1209 — 576¢° + ...)

2
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t is convenient to use (1). From

i 2 S 13
72(2)* = ¢~ ¥3(1 + 4969 + 69752¢* + 2115008¢" + ) 13)

s 1471 —136g + 1436447 + ...).

0y = T a,

‘we take ;

a, = — 37
ENnce

1 -
oy = = 1570 P+ 5 g + ).
0y — 4y
! as = Tsl)—zl’
h yields
1 _
a4 -_,—— = — 79—2-q 1I3(1 + ...).

ow take .

a, = — 237

;t this point we have run out of accuracy. However, it' is clear how we
proceed if we were willing to start with more terms in (11) and (12).
so clear that a5 will be at least of degree 2 in y.

us assemble the convergents p,/q, which we find from the. usual
on relations. In order to get rid of needless powers of 2, we will find

terms of

T=-— %
n find
| po(D) = 8T, go(T) =1,
p(D)=2I%+1, ¢,(T)=4%I?
po(D) = 8T* + 12T, ¢,(I) =T? +1,
pa(D) = 8T 4 61 +1, go(T) =40° + 572
- Pa(T) = 9977 + 302T% + 198T, go(1) = HI° + HI° + 1.




30 H. M. STARK
When we set iy
Y =72 )

we will get rational p, and g, if 4(d) = 1, but not necessarily integral p, and
g,- We can expect that the factor that we must multiply through by in order
to get integers will increase with »; the approximation to f® compared to
g,> is worsened by this denominator squared and thus only finitely many
of the p,/q, should be convergents for the ordinary continued fraction ex-
pansion of f(y/d)®. The number of really good approximations to f )
that we get will also be for this reason larger with larger |y| which in turn
corresponds to larger |d|. In the five cases d = — 11, —19, —43, —67, —163,
we find that 8|y which helps things very much. We find that " = 4, 12, 120,
635, 80040 respectively.

The three best approximations (of the five that we have found) to f'(2z + 3)8
are given by

Po(I) p2(I)
go(I) ’ g,(I) ’

where in each case the numerators and denominators are (not necessarily
relatively prime) integers when d = —11, —19, —32, —67, —163. When we
trace these back to approximations to f(2z + 3) by applying (10), we find
that for d = —11, the first two already give the convergents p;/q;(a, = 4)
and ps/gs(as = 305) of f(/—11) and for d = —19, —43, —67, —163, all
three give convergents for f(i/d). For each of these last four discriminants
we get the first two spectacular approximations indicated in the expansions
earlier but the third becomes spectacular only as |d| grows. The third corre-
sponds to py4/q;4 for f(/ —19) (a5 = 1), t0 p16/g26 for f(/ —43) (2, = 5),
to py7/qy7 for f(J/—67)(azs = 2075), and to psglgss for f(/—163)
(aso = 35657). It would be interesting to know if there is a ninth non-
spectacular convergent to f(/ —163) that comes from this process.

It is certainly possible to analyze all of this further to include a discussion
of what multiples of the numerators and denominators we actually end up
with. The numbers 4, and B, are related to A,, and B,;. If we transpose the
/** and constant terms of (8) to the other side of the equation and then square
both sides, we find

11p,(I)
gy (1)’

sz = 2Ak il BkZ’ A2k = Akz + 2k+1 Bk' (14)

If we recall that Bg =y, Ag = 0, then we find from (14) that we may set
fork=1,2,4,8,

Ay =2, B, =20M1"1p, (15

N
AN EXPLANATION OF SOME EXOTIC CONTINUED FRACTIONS 31

a, and b, are integers (in particular 4|I"). This conclusion is true for any
scriminant d satisfying the restriction (6); we are of course then dealing
th algebraic integers.

For any algebraic integer I', such that 2|T", we find that

(Po(M):90(M) =1, (p2(D),q2(D)) =1,  (11pa(T), 11ga(D))I11;

T is also rational then

1if 11T
(11p4(), 11g4(1)) =
11if 11T,
the cases 6f interest to us, this factor 11 occurs only for d = —67 but

makes a,g of f(/—67) about 121 times larger than it would otherwise
ve been.
Now when 4|I" we see that

16|po(I),  16|p(T),  16]11p,(T),

uppose we haye an approximation to £, p(8)/q(8), where

16/p(8), (4(8),2) = 1. ~ (16)
en we get an approximation to f* given by (10),

p() _ _—B4p(® + 164(8)
q(4) p(®) + ALq(®)

anks to (15) and (16), we may remove a factor 16 from the numerator
denominator and take

PA) = = 1b,p(®) +4q(8),  q(4) = 15p(8) + a4 q(8)

1S enlarges the corresponding g, ; by a factor of about 256). We see also
it (2(4),2) = 1. We now get an approximation to 12,

pQ) _ —B:p(®) +49(4)
q(2) P4+ 4;,9(4)

€ We can’t remove any factors of 2 and so we set

P(D) = —4b,p(4) + 49(4),  q(2) = p(4) + 4a,q(4).
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Note that (g(2),2) =1 and 4|p(2). We are now ready to go to f,

p(1) _ —BipQ2) +24(2)
q() P+ 4,92

Here we can save a factor 2 and so we take

p(1) = — by p(2) +4(2),  g(1) =3p(2) + a,9(2).
For d = —19, —47, —67, —163, we find that in each of the first three
spectacular convergents, (p(D), g(1)) is divisible by 3 (but not 9). When

= —11, (p(1),¢(1)) is not divisible by 3.

When we come to compare the first two spectacular convergents to
f(/d), we note that the second is even more spectacular than the first. The
reason is that although the same powers of 2 and 3 come out of (p(D),
. q(1)) for the first two convergents, the result is relatively prime for the first
and usually not for the second. There are extra common factors

g=171,1,11

in p(1) and g(1) for the second spectacular convergent with d = —11,
—19, —43, —67, —163 respectively. The result is that the ay, 4, corresponding
to the second spectacular convergent is about

56 42 —
929 =

g2

(&
[N

[

times as large as the a,,, corresponding to the first spectacular convergent.

5. Other Applications of our Results

While there are only five discriminants d satisfying (6) and A(d) =1, there
is no reason why we should restrict ourselves to these. If d satisfies (6) then
we may give exceptionally good approximations to f(v/d) by quotients of
algebraic integers of degree h(d). For example, we may find good approxi-
mations to f(~/ —427) (an algebraic integer of degree 6) by the quotients of
two integers in Q(./61).

There is still another direction in which we may proceed. Consider the
cubic equation

x* +1x? =256 =0, a7

where ¢ is a negative integer, large in absolute value. Any such equation
will have a unique real root and the continued fraction expansion of this root

At
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ve some partial quotients of the order of #2. For if we let y > /3 be
ined (uniquely) by

-3+
72(—71) =1,

e real root of (17) is £ (iy)®. We have even explicitly given in the last
three excellent convergents as quotients of polynomials in I' = — }z.
n ¢ is a large positive integer, (17) has three real roots (this is true for
In the last section, we have found good approximations to one of
n fact if we determine y > 1 uniquely by

y2(iy) =1t

e have found good approximations to f(3 + 2iy)® which is one of
wo negative roots of (17) (the one furthest removed from 0). The other
o roots of (17) are of the order of ~'/? and hence not well approximable
lynomials in .

w let us consider the cubic equation

x> = 252x% + 8sx — 16 =0 (18)
is an integer, large in absolute value. Any such equation will have a
! rea.l root apd the continued fraction expansion of this root will have
f,parltjlal quotients on the order of s°. In fact, if we determine y > V3
y by

=34y
')’2(—2—) =t = 4s(4 — s5%),

L oot of (18) is f(iy)*. We have 4, =85, B, = — 2s® and these
§atlsfy the relation (14) (with k =4) where By = 4s(4 — s)
. Since ’ ,

D, = 16s° — 16,

we havc; approximations to f(iy)® with partial quotients of the
] a’g leafst £” which is of the order of s8, we see that we get approxi-
6‘f @Ey)* with partial quotients of the order of at least s°.

mple of such an equation is given by s = 60 (the value of y is then

q t )'

x3 — 7200x2 + 480x — 16 = 0.
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Since 2|x, we may set x = 2X and the equation for X is then,
' X3 — 3600X2 + 120X — 2 = 0.

The people at Atlas very kindly furnished the continued fraction expansion
of the real root of this equation. It is given in Table II. Besides the expected
very large partial quotients we note some others in the neighborhood of
10000. These do not come from the expansion of f(iy)®. We do get partial
quotients for £(iy)* on the order of s from f'(iy)® but the partial quotients
on the order of 10000 for f(iy)* originate with f(iy)* and come from ex-
panding f(iy)* in a continued fraction with partial quotients being poly-
nomials in s.

TasBLE II. The continued fraction expansion of
the real root of X* — 3600X> + 120X — 2 = 0.
Shown are the values of @, in X = [ag, ay,a,, ... ].

0 1 2 3 4 5 6 7 8 9

0] 3599 1 28 1 7198 1 29 388787400 23 1
10 [ 8998 1 13 1 10284 1 2 25400776804 1 1
20 3 4 93 3 1 2 11 1 9 1
30 99 1 3 1 3 9 1 603118914 1 1
40 2 24 1 1 3 2 1 1 2 2
50 1 1 26 1 8 1 18 1 2 2
60 1 2 1 1 3 9 3 2 1 2314761
70 6 1 2 5 5 61 1 1 4 1
80 1 5 1 22 1 4 2 1 1 1
90 9 2 1 1 2 1 2 2 1 1

100 | 12 1709319

In view of all this, why did Brillhart come up with a cubic related to a
quadratic field? The answer is that the magnitude of the coefficients involved
in his search made sure that any spectacular approximations to f(iy)*
covered by our discussion here that he might find would come with k =1
(and conceivably 2). While there are infinitely many y > /3 such that f'(iy)®
is the root of a cubic equation of the form

X3 +1x2-256=0

with ¢ an integer, and still infinitely many such y with the additional restric-
tion that £ (iy)* should generate a cubic extension of the rationals, there are
only six values of y satisfying all this and having f(iy)* generate a cubic
extension of the rationals. This is because the recursion relations (14) are
very restrictive (k = 2, 4). They give a set of Diophantine equations with only
six solutions (the corresponding y being /3, /11, /19, /43, /67, \/163).
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in fact the Heegner (1952) approach to proving that there are only
\ alues of d with A(d) = 1. [See also Birch (1968), Deuring (1968) and
(1969)]
= close by mentioning one more aspect of all this. Suppose X = X(s),
Y(s) are polynomials in s (with complex coefficients) of degrees n
n — 2 respectively. How small can we make the degree of

i F(X,Y)=X3—2sX2Y +85XY? —16Y3?

- there are 2n unknown coefficients we would expect that the degree
(X, Y) (in s) would be at least n + 1; if it were any smaller, we would
e : 2n homogeneous equations in the 2n coefficients and would expect
2n unknowns to be all zero. In fact our expectations are wrong. For
nitely many 7, there exist polynomials X and Y (with integral coefficients)
h that the degree of F(X, Y) in s is less than or equal to » — 3. For ex-
le, if

X(s)=25°—8s3+4, Y(s)=s*—2s

F(X,Y) = — 64(s® — 1).
( fpe to say more about this in the future.
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