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1. Introduction

1964, John Brillhart embarked upon some extended computations
continued fraction expansions of cubic irrationalities. Assisted by
L Morrison, he was hoping that some kind of pattern would emerge-

of Some Exotic Continued Fractions Found by
Brillhart

pattern would of course be of tremendous value if it could be proved
No pattern was found but something equally unexpected occurred.

tnt of (l) is -4.163 and asked if the amazingly large partial
found were related to the fact that the class-number of p17- 163y

L. Atkin later brought to my attention a fact which greatly helped

root of the equation

x3-8x-10=o (l)
nd to have the continued fraction expansion:

x = [3, 3,7,4,2,30, 1,8, 3, 1, l, I,9,2,2, l,3,229g6,
,,i 2,1,32,8,2, 1,8,55, l, 5,2,28,1,5, l, 1501290, ... ].

8 partial quotients over 10000 were found: if we write
, all d2> .. , ] then

'= 22986, atz:1501790, ass:35657, ag1: 49405,

53460, dt2t: 16467250, ctlts:48120, ctt6t:325927.

brought to my attention by D. H. Lehmer who noted that the
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towards an affirmative answer to Lehmer's question. He noted that if we
translate (1) by setting x + 2: f, then we get the new equation

f' - 6ft + 4"f - 2: o. (2)

This equation may be found on p. 725 of Weber (1908). Its occurrence there
relates to the quadratic field OQ - 163) and its form is due to the fact that
the class-number of this field is one. Let us define the Schliifli modular
function/ by

@

.f (z): q-rt48 fl (t + nn-7/21, q: ezni", Imz > o. (3)

Then/(../- 163) is *" *" root of (2)!

2. Modular Functions and Quadratic Fields

Define yzQ)by the equation

f (22 + 3)'n + yr(z)f (22 + 3)t6 - 256 :0 (+)

and set

j(z) : yzQ)'. (5)

The function j(z) is regular inside the upper halfplane and invariant under
the full modular group, i.e.,

, (+#) : iQ)irad - fv :1 and a, fl,^)/,5 are integers;

this property and the first two terms of the expansion

I
i(r) : :- + t+q + 96884q + 21493760q' + ...

q

completely determine 7(z).
Let d<0 be the discriminant of the complex quadratic field QQtd)

and let h(d)be its class-number. If I and o form an integral basis of QQd)
then the importance of j(z) is illustrated by the fact thatT(co) generates the
maximal unramified abelian extension of Q(Jd) when it is adjoined to
OQA.In fact 7(o) is an algebraic integer of degree exactly &(d). For our
purposes here, we will assume for the rest of this paper that
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case, we may take , : -t ! JO' But now in fact,r(ctr) is a perfect
2

yr(ar) is also an algebraic integer of degree i(d) (Weber, 1908)'

t:t(:+!!), y: v,(:+!!), f :fqil.
from (4) that

.f'o +Y.ftu -256:o'

H. M. STARK

(7)

/E is the root of a cubic equation over Q(7) L: O(j)l and hence ts

iebraic integer of degree < 3h(A.In fact, with the restriction (6), f'
ialgebraic integer of degree exactly 3h(d). Bnt in fact we can do better.

" 
(teOa; conjectured that/ is itself an algebraic integer of degree 3h(d).

this conjecture in many numerical cases, including d : - 163,

the conjecture itself has only recently been proved by Birch (1968)

did prove thatf2 has degree 3h(d)).

notational convenience we write the (unique) cubic

QU) as

f'o + Bof'o + Aofu -2k:o

equation for

k is a positive integer. Here Ap and 81, are integers in QU)'When we

with d - - 163, we get Br : - 6, A, :4 which yields (2).

3. Our Basic Goal and some Numerical Tests Thereof

now clear that there is a relation between (1) and aQ - 163). Church-
and Muir (1969) have recently made some extended computations
related the successive large partial quotients of f (J - 163) with the

factors in (3). They also have a very nice discussion of what it
for several partial quotients of f (J - 1 63) to be "larger than expected".

aim is different from theirs. If indeed the theory of modular functions
ble for the large partial quotients found, then we should be able to

modular functions that converge to the numerator and denominator
corresponding convergents at j( - 3 + J - I 63) and the ratio of these

ular functions as series in z should give exceptionally good approxl-
tof (22 * 3). Our goal is to find such functions.

indeed this is possible then we would expect f (Jd) to have some

(8)

ldl = 3(mod 8) and 3,Nd. (6)

lent approximations for other d satisfying (6) and h(d):1. There are
other fields which satisfy these conditions. Computations then reveal
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For d: -67, ft - 2f' - 2f- 2: O,

"f : 12, l, 11, 2, 3, l, 23, 2, 3, l, 1337, 2, 8, 3, 2, l, 7, 4, 2, Z, 87 431, ... f.

For d: -43, -ft - zf, - 2:0o
f : 12, 2, l, 3, l, l, t, l, 2, l, 5, 456, 1,30, l, 3, 4, 29866, ... f.

For d: -19, f, - 2f - 2:0,
f : ll, l, 3, 2, 1,95,2, l, l, 2, l, 127, ... J.

For d: -ll, f, - 2f, + 2f - 2:0,
f : ll, l, l, 5, 4, 2, 305, ...f.

Note the tendency of the large ao's to drift forwards and also to decrease.
This seems a persistent enough pattern to support our goal. The modular
functions that we get should converge to the numerator and denominator
of the exceptional approximations in these cases also.

Next let us ask what turns out to be the key question. Why should just/
have large partial quotients? Why not/2 or fa or f8, for example? In fact
these other numbers also have large partial quotients. Consider the case of
d : - 163. We repeat some of the details of/ for ease in comparison.

;f is a root ofx3 - 6x2 + 4x - 2:0, ao = 5,

att :22986, &33 : 1501790, qss:35657,
aer : 49405, eto3 : 53460, a12! : 16467250.

f2 is a root of x3 - 28x'- 8r 
. 
4:0, ao:28,

att : 126425, atr : 8259853, a+g : 1620,

aj\ : 271730, ags : 294038, a12t :90569882.

f4 isa root of x3 - 800.12 - 160:c - 16:0, ao:800,
u+ : 3202800, atz : 209249628, azz : 41061,

ase : 19068, ata : 20634, atoo: 6355781.

/8 is a root of x3 - 640320x2 - 256:0, ao: 640320,

ar : 1601600400, at:2135467200, az :20533337,

ao:9535605, ars : 10318433, ass:3178287878.

Evenf2a gets in on the act, For f 2a we find

ao : 262537412640768767 (a, : 11, qz : 1335334333499, ... .
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we can relate exceptionally good approximations to /k with

good approximations to f"o'This is because we may rewrite

7z*--A*fk+2k
' fr+Bo 

(9)

inant of this linear fractional transformation (we will call it

Dr": -(Aono+2k)

generally not unity. Thus the continued fraction expansions of/k and

inot eventually the same but they are related. In fact since the ex-

of fk and ll(fo + Bp) arc the same after the first term of the former

two terms of the latter, and since

fro: - Ao- Do T+8,
that if polq, is a convergent of fk and

an+ r ) 2lDollS'

g : ( - A&, * 2kQ* po * Br"Qn),

- At"pn * 2oq,

' Po I B*Qo

bonvergent of f 2k (say the Nth) and drv+ 1 for f2k is given by

o*+rN"#
d - - 163, we have lD,l :22, lDzl:228, lD4l: 128016. Thus

See from the list given earlier that all ofthe convergents of/k corresponding
ao*r's listed (k :1,2,4), except possibly those of /a corresponding

o!2,a5g,4ru yield convergents of f2k and in fact the value of g is large
)dph in the three doubtfril cases to enable them to work also. In fact the

lhe numerators and denominators of the exceptional approximations
, then we can do the same thing for f by using (9) inverted three times:

tk -Bof2k + 2k

'' .f'o + Au

v,hlues of a,a1 listed for/ correspond to the six values given for/2 which
rgspond to the six values given for fa which correspond to the six values
cn fqr/8. This means that if we can find modular functions that converge

(10)
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It is interesting to note that for d: _163, the approximation prulqruoflf corresponds to the approximation pslq, - ao(: -y; oflr. If we were
to pass to f2a by

t24 - 
256fer -7{Ty'

then we would completely lose this first spectacular approximation (or rather,
it corresponds to oo : p:!!q_) while prrlq, of/ moves up to tLe integei
prlQr: as l-l(: -j + 763) approximationtofia.

Let me close this section with an acknowledgment. with the exception of
Brillhart's expansion given after (l), all the computer calculations shown
above were performed by Mr. Richard Schroeppei at M.I.T. (the accuracy
was insufficient to trace numerically the last two of Brillhartis eight larg!
pafiial quotients for/ forward to/8). In addition, Mr. Schroeppel provided
me with equation (9) along with the calculations; he used 1ef to-nna tne
continued fraction expansion of f2k fuom that of fk as a checl on his cal-
culations.

Tlnrn L The continued fraction expansion of f(Jd)k for certain
values of d and k. Shown are the first few vaiues of
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ls convenient to use (1). From

'i:, y"(z), : q-2t3(I I 496q * 69752q2 + 2115008q3 + '.')

ttrat we should take

29

(13)
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4. The Achievement of our Goal

The Ao and Bo are actually modular functions of z. However when ex-
panded in series of fractional powers of q : e2nt", the coeffcients are not
always rational. This tends to be a nuisance. when we deal with/8, we find
that the coefficients of Bs(z) : TzQ) are rational (Ar("): 0). Using ql : e2ni",
the expansion of yr(z) begins,

yz(z): u-rrt(t + 248q * 4124q2 * 34752q3 + ...).

The expansion of f (22 + 3)8 begins

f (22 + 3)8 : q-rtz7- 1 + 8q - 28q. t_ 64q3 _ ...).
Our object is to express f (22 + 3)8 as the continued fraction

ar: z*dYz

I
ctc : L: - +q-,t,(l -136q * 14364q2 + ...).
' at-qt

(l t)

(t2)

w,q-take

yields

az: - trT

d., : -i- : -r!rq-ztt1L + ? s + ...).- dz-oz

as : T+zYz

1o
d4: 

- 

: - izq-'|3(l + ...).' dt-dr

f (22 + 3)8 : [ao, a1,a2,,..f

where the aj are polynomials in y - yr(z) chosen so as to eliminate the
negative (and zero) powers of q at each stage.

We set uo:f(22 f 3)8 and find a,*, recursively from ocn and anby the
usual continued fraction rule

I
fa*1 : 

ar- q"'

Comparing (11) and (12), we see that

and thus

ao: -T
I

f (22 + 3)s + yr(z)

= ,!"f (22 + 3)t6

: 
"!"q-z/z1l - 

l6q -t 120q2 _ 576q3 + ...)

take
qr: - fzl

this point we have run out of accuracy. However, it is clear how we

proceed if we were willing to start with more terms in (11) and (12)'

so clear that a5 will be at least of degree 2 in y.

us assemble the convergents pnlqn which we find from the usual

relations. In order to get rid of needless powers of 2, we will find
terms of

f : -

Po(f): 8f, qo(f) :1,

Pr(F) : 2lt + l, qr(D : if'',
pz(F) : 8la + l2r, Lz(f) : f3 + 1,

ps(f):$fu + 6F3 + 1, qs(f): $f5 + frf2
I) = ffFt + 3-ro-ffu + saf, q+(l): }?Fu + ++f3 + 1.

v
s'

find

cl1
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When we set
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,:r,(li&),
we will get rational pnandq,if h(d):1, but not necessarily integral poand
Q,. We can expect that the factor that we must multiply through by in order
to get integers will increase with n; the approximation to /8 compared to
4o2 is worsened by this denominator squared and thus only finitely many
of the p,fq, should be convergents for the ordinary continued fraction ex-
pansion of f (JOt.The number of really good approximations to f (r/d)
that we get will also be for this reason larger with larger l7l which in turn
corresponds to larger ldl. In the five cases d - - Il, -19, -43, -67, -163,
we find that 8ly which helps things very much. We find that I :4,12,120,
635, 80040 respectively.

The three best approximations (of the five that we have found) tof (22 + 3)B

are given by

po(r) pz(r) llpo(r)
4o(f) ' ez(T)' llqo(f)'

where in each case the numerators and denominators are (not necessarily
relatively prime) integers when d - -ll, -19, -32, -67, - 163. When we
trace these back to approximations to f (22 + 3) by applying (10), we find
that for d- - 11, the first two akeady give the convergents prlq{qu:4)
and ptlqt(au:305) of f (J- ll) and for d: -19, -43, -67, -163, all
three give convergents for f (Jd). For each of these last four discriminants
we get the first two spectacular approximations indicated in the expansions
earlier but the third becomes spectacular only as ldl grows. The third corre-
sponds to p sl q ru tor f (J - 19) (a r, : 1), to p zaleza for f (J - 43) (azt : 5),
to pztlqzt for f (J -67) (are : 2075), and to psalQse for /(./- 163)
(ass:35657). It would be interesting to know if there is a ninth non-
spectacular convergent to f (J - 163) that comes from this process.

It is certainly possible to analyze all of this further to include a discussion
of what multiples of the numerators and denominators we actually end up
with. The numbers Ao and Bo are related to A21, and Bro.If we transpose the
f x and constant terms of (8) to the other side of the equation and then square
both sides, we find

Bzrr:2At - Bo',

If we recall that B, : l, Ae : 0,
fork : 1,2,4,8, 

A*:2kqx,
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arand bp are integers (in particular 4lf). This conclusion is true for any
riminant d satisfying the restriction (6); we are of course then dealing
algebraic integers.

or any algebraic integer F, such that2lT, we find that

(po(f), ao(f)) : 1, (pr(r), ez(l)) : l, (l lp4(f), I lq.(r))l 1 I ;

is dlso rational then

t if tttl.

11 if r1lr.

the cases of interest to us, this factor ll occurs only for d: -67 bat
about l2l times larger than it would otherwisea6 of f (J -67)

been.
when 4lf we see that

l6lp6(f), t6lpr(f), l6ll lpn(r),

(qo(r), 2) : (qr(t),2) : (ttqoQ),2) : r.

we haye an approximation to/8, p(8)/4(8), where

I
(llpn(r), llan(r)): I

t

l6lp(8), (q(8),2) : t.

we get an approximation to fa given by (10),

p(4)

s(4)

(16)

- B+p(8) + l6q(8)
p(8) + A+(t$)

may remove a factor 16 from the numerator

p(4): - Lb+p(8) + q(8), q(4) : *p(g) + aaq(8)

enlarges the corresponding an.. 1 by a factor of about 256). We see also
lp@),z) : I . We now get an approxim ation to f 2 

,

to (15) and (16), we
denominator and take

-Bzp@ + aq@
p(4) + Az(tG)

we ean't remove any factors of 2 and so we set
t'. '

', p(2): - 4brp(4) + 4q(4), q(2): p(4) + 4a2q(4).

Aar: Arr2 + 2k+L Bk'

then we find from (14) that

Bo : 2lkl21+r 6o,

p(2)

sQ)(14)

we may set

(1 5)
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Note that (q(2),2) : I

H. M. STARK

and 4lp(2). We are now ready to go to f,
p(1) _
sQ)

-Brp(2) + 2q(2)

p(2) + Arq(2)

xs + txt - 256: o,
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some partial quotients of the order of t2. For if we let y > J3 be
(uniquely) by

Here we can save a factor 2 and so we take

p(r): - brp(2) + s(2), 4(l) : *p(2) + qa(2)'

For d- - lg,-47,-67,-163, we find that in each of the first three

spectacular convergents, (p(l), q(1)) is divisible by 3 (but not 9)' When

fl - -ll, (l(l),4(l)) is not divisible bv 3'

when we come to compare the first two spectacular convergents to

f(Jd),wenotethatthesecondisevenmofespectacularthanthefirst.The
;;"; is that although the same powers of 2 and 3 come out of (p_(1),

a(l)) for the first two convergents, the result is relatively prime for the first

ani usually not for the second. There are extra common factors

g : 7,1,7,7,7

in p(1) and q(l) for the second spectacular convergent with d: -11'
_is, _qz, _zi, _163 respectively. The result is that the 471., 1 coff€sponding

to the second spectacular convergent is about

138s' : ts'
times as large as the a,a1 corresponding to the first spectacular convergent.

5. Other Applications of our Results

Whilethere are only five discriminants d satisfying (6) and h(d):l' there

is no reason why we should restrict ourselves to these. If d satisfies (6) then

we may give exceptionally good approximations to f (Jd) by quotients of

atgeUraic intrg"r, of degree-h(d). For example' we may find good approxi-

rn-utiorN tof (J-427) (an algebraic integer of degree 6) by the quotients of

two integers in Q(./61).
There is still another direction in which we may proceed. Consider the

cubic equation

real root of (17) is/(;y)8. We have even explicitly given in the last
three excellent convergents as quotients of polynomials in f : - *1.

t is alarge positive integer, (17) has three real roots (this is true for
In the last section, we have found good approximations to one of
fact if we determine y > 1 uniquely by

tz(iy): t

have found good approximations to f (3 + 2iy)8 which is one of
negative roots of (17) (the one furthest removed from 0). The other

of (17) are of the order of t-rt2 and hence not well approximable

let us consider the cubic equation

x3 -2s2x2 *8sx-16:0 (18)

s is an integer, large in absolute value. Any such equation will have a
real root and the continued fraction expansion ofthis root will have

lpaftial quotients on the order of s5. In fact, if we determine y > ./3
by

,,(a*2):,,

,,(a*) :,:4s(4-s3),

: we have approximations to f (iy)t with partial quotients of the
atleast t2 which is of the order of 18, we see that we get approxi-

,root of (18) is f(iy) . We have A+:8s, B+: - 2s2 and these
relation (la) (with k : 4) where B, : 4s(4 - s3),

lD+l :16s3-16,

s. satisfy the

f (iy)u with partial quotients of the order of at least 15.
rle of such an equation is given by s : 60 (the value of7 is then
tal and thus certainly not connected with quadratic neiOs;. We

equation
(17)

where I is a negative integer, large in absolute value. Any such equation

will have a unique real root and the continued fraction expansion ofthis root x3 - 72oox2 -l 4gox - 16 : o.
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Since 2lx, we may set x : 2X and the equation for X is then,

X3 - 3600x2 + t20x - 2: o.

The people at Atlas very kindly furnished the continued fraction expansion
of the real root of this equation. It is given in Table II. Besides the expected
very large partial quotients we note some others in the neighborhood of
10000. These do not come from the expansion of f (iy)8. We do get partial
quotients for f (iy)a on the order of s from /(iy)8 but the partial quotients
on the order of 10000 for f (iy)o originate with f (iy)a and come from ex-
panding f(iy)o in a continued fraction with partial quotients being poly-
nomials in s.

TAsre IL The continued fraction expansion of
the real root of x3 - 36oox2 * 120x - 2: 0,

Shown are the values of an i\ X : la s, a1, a 2, . . . f.

0123456789
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in fact the Heegner (1952\ approach to proving that there are only
of d with h(d) - l. [See also Birch (1968), Deuring (1968) and

ose by mentioning one more aspect of all this. Suppose X : X(s),
degrees n(s) are polynomials in s (with complex coefficients) of

- 2 respectively. How small can we make the degree of

F(X, Y): X3 - 2s2X2 Y * 8s XY2 - l6Y3?

there are 2z unknown coefficients we would expect that the degree

, Y) (in s) would be at least n +l; if it were any smaller, we would
homogeneous equations in the 2n coefficients and would expect

unknowns to be all zero. ln fact our expectations are wrong. For
many n, there exist polynomials X and Y (with integral coefficients)

the degree of F(X, Y) in s is less than or equal to n - 3. For ex-

X(r) : 2s6 - 8s3 + 4, Y(s) : sa - 2s

F(X,Y): -64(s3-1).

to say more about this in the future.
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In view of all this, why did Brillhart come up with a cubic related to a
quadratic field? The answer is that the magnitude of the coefficients involved
in his search made sure that any spectacular approximations to f(iy)o
covered by our discussion here that he might find would come with k : I
(and conceivably 2). While there are infinitely many / ) ./3 such thatf (iy)g
is the root of a cubic equation of the form

x3 + tx2 - 256: o

with I an integer, and still infinitely many such y with the additional restric-
tionthatf(iy)a should generate a cubic extension of the rationals, there are

only six values of y satisfying all this and having f(iy)' generate a cubic
extension of the rationals. This is because the recursion relations (14) are

very restrictive (k : 2, 4). They give a set of Diophantine equations with only
six solutions (the correspondingy being J3, Jll, Jlg, J43, J67, Jl63).
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