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Algebraic Numbers
By Barry Mazur

The roots of our subject go back to ancient Greece
while its branches touch almost all aspects of
contemporary mathematics. In 1801 the Disquisi-
tiones Arithmeticae of Carl Friedrich GAUSS was
first published, a “founding treatise,” if ever there
was one, for the modern attitude towards number
theory. Many of the still unachieved aims of cur-
rent research can be seen, at least in embryonic
form, as arising from Gauss’s work.

This article is meant to serve as a companion to
the reader who might be interested in learning, and
thinking about, some of the classical theory of alge-
braic numbers. Much can be understood, and much
of the beauty of algebraic numbers can be appreci-
ated, with a minimum of theoretical background.
I recommend that readers who wish to begin this
journey carry in their backpacks Gauss’s Disqui-
sitiones Arithmeticae as well as Davenport’s The
Higher Arithmetic (1992) which is one of the gems
of exposition of the subject, and which explains the
founding ideas clearly and in depth using hardly
anything more than high-school mathematics.

1 The Square Root of 2

The study of algebraic numbers and algebraic
integers begins with, and constantly reverts back
to, the study of ordinary rational numbers and
ordinary integers. The first algebraic irrationali-
ties occurred not so much as numbers but rather
as obstructions to simple answers to questions in
geometry.

That the ratio of the diagonal of a square to the
length of its side cannot be expressed as a ratio
of whole numbers is purported to be one of the
vexing discoveries of the early Pythagoreans. But
this very ratio, when squared, is 2:1. So we might—
and later mathematicians certainly did—deal with
it algebraically. We can think of this ratio as a
cipher, about which we know nothing beyond the
fact that its square is 2 (a viewpoint taken toward
algebraic number by KRONECKER, as we shall see
below). We can write v/2 in various forms, e.g.

V2 =11-1|, (1.1)

and we can think of 1—i = 1—e2™/4 a5 the world’s

simplest trigonometric sum; we shall see general-
izations of this for all quadratic surds below. We
can also view /2 as a limit of various infinite
sequences, one of which is given by the elegant
CONTINUED FRACTION

1
V2=1+

2+ 5

(1.2)

Directly connected to this continued fraction (1.2)
is the Diophantine equation

2X? —YV?=+41 (1.3)

known as the Pell equation. There are infinitely
many pairs of integers (z,y) satisfying this equa-
tion, and the corresponding fractions y/x are pre-
cisely what you get by truncating the expression
in (1.2). For example, the first few solutions are
(1,1), (2,3), (5,7), and (12,17), and
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Replace the £1 on the right-hand side of (1.3) by
zero and you get 2X? — Y2 = 0, an equation all of
whose positive real-number solutions (X,Y") have
the ratio Y/X = \/5, so it is easy to see that the
sequence of fractions (1.4) (these being alternately
larger and smaller than v/2 = 1.414...) converges
to V2 in the limit. Even more striking is that
(1.4) is the full list of fractions that best approx-
imate v/2. (A rational number a/d is said to be
a best approximant to a real number « if a/d is
closer to o than any rational number of denomina-
tor smaller than or equal to d.) To deepen the pic-
ture, consider another important infinite expres-
sion, the conditionally convergent series

lcg(\/i ]‘) 1 1 1
\/i 3 5

Here the n range over positive odd numbers, and
the sign of the term i% is plus if n has a remain-
der of 1 or 7 when divided by 8, and it is minus
otherwise, i.e. if n has a remainder of 3 or 5 when
divided by 8. This elegant formula (1.5), which you
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Figure 1.1. The outer rectangle has its height-to-width
ratio equal to the golden mean. If you remove a square
from it as indicated in the figure, you are left with a
rectangle that has the golden mean as its width-to-
height ratio. This procedure is of course repeatable.

are invited to “check out” at least to one digit
accuracy with a calculator, is an instance of the
powerful and general theory of analytic formulas
for special values of L-functions, which plays the
role of a bridge between the more algebraic and the
more analytic sides of the story. When we allude to
this, below, we will call it “the analytic formula,”
for short.

2 The Golden Mean

If you are looking for quadratic irrationalities that
have been the subject of geometric fascination
through the ages, then /2 has a strong competi-
tor in the number %(1 + \/5)7 known as the golden
mean. The ratio %(1 ++/5):1 gives the proportions
of a rectangle with the property that when you
remove a square from it, as in Figure 1.1, you are
left with a smaller rectangle whose sides are in the
same proportion. Its corresponding trigonometric
sum description is

11+ V5) = 1+ cos Zm — cos 7. (2.1)

Its continued-fraction expansion is
1

1+1+{ ’

s1+V5) =1+ (2:2)

where the sequence of fractions obtained by suc-
cessive truncations of this continued fraction,

8 <

2 3 5 8 13 21 34
1

’» 29 37 5) 8 137 210 " (23)
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is the sequence of best rational-number approxi-
mants to

1(1+v/5) = 1.618033988749894848 .. .,

where “best” has the sense already mentioned. For
example, the fraction

34_1+ 1
21 L+ 111
1+ﬁﬁi

1+3

equals 1.619047619047619047 ... and is closer to
the golden mean than any fraction with denomi-
nator less than 21.

Nevertheless, the exclusive appearance of 1s in
this continued fraction! can be used to show that,
among all irrational real numbers, the golden mean
is the number that is, in a specific technical sense,
least well approzimated by rational numbers.

Readers familiar with the sequence of Fibonacci
numbers will recognize them in the successive
denominators of (2.3)—and in the numerators as
well. The analogue to equation (1.2) is

X2 4+ XY —Y?=+1. (2.4)

This time, if you replace the +1 on the right-hand
side of the equation by 0, you get the equation
X2+ XY —Y? = 0, whose positive real-number
solutions (X, Y) have the ratio Y/X = 3(1+v/5)—
that is, the golden mean. And now the numerators
and denominators y, x that appear in (2.3) run
through the positive integral solutions of (2.4). The
analogue of formula (1.4) (the “analytic formula”)
for the golden mean is the conditionally convergent
infinite sum

2log(:(1+ 5
g(Qi/g ) = _%_%+%+%+...il+...’

(2.5)

1The continued-fraction expansion of any real quadratic
algebraic number has an eventually recurring pattern in its
entries, as is vividly exhibited by the two examples (1.2)
and (2.2) given above.
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where the n range over positive integers not divis-
ible by 5, and the sign of +1/n is plus if n has
a remainder of +1 when divided by 5, and minus
otherwise.

What governs the choice of the plus terms and
minus terms is whether or not n is a quadratic
residue modulo 5. Here is a brief explanation of
this terminology. If m is an integer, two integers a,
b are said to be congruent modulo m (in symbols
we write @ = b modm) if the difference a — b is
an integral multiple of m; if a, b, and m are posi-
tive numbers, it is equivalent to ask that a and b
have the same “remainder” (sometimes also called
“residue”) when each is divided by m. An inte-
ger a relatively prime to m is called a quadratic
residue modulo m if a is congruent to the square
of some integer, modulo m; otherwise it is called
a quadratic nonresidue modulo m. So, 1,4,6,9, ...
are quadratic residues modulo 5, while 2,3, 7.8, ...
are quadratic nonresidues modulo 5.

A generalization of equations (1.4) and (2.5) (the
“analytic formula for the L-function attached to
quadratic DIRICHLET characters”) gives a very sur-
prising formula for the conditionally convergent
sum of terms +1/n, where n runs through posi-
tive integers relatively prime to a fixed integer and
the sign of +1/n corresponds to whether n is a
quadratic residue, or nonresidue modulo that inte-
ger (see Section 17).

3 Quadratic Irrationalities

The quadratic formula

—b 4+ Vb% — dac
2a ’

gives the solutions (usually two) to the general
quadratic polynomial equation aX? +bX +c¢ =0
as a rational expression of the number v/ D, where
D = b? — 4ac is known as the discriminant of
the polynomial aX? 4+ bX + ¢, or, equivalently,
of the corresponding homogeneous quadratic form
aX?+bXY + cY?. This formula introduces many
irrational numbers: Plato’s dialogue “Theaetetus”
has the young Theaetetus credited with the dis-
covery that v/D is irrational whenever D is a nat-
ural number that is not a perfect square. The curi-
ous switch from initially perceiving an obstruc-
tion to a problem, to eventually embodying this
obstruction as a number or an algebraic object of

X =

some sort that we can effectively study is repeated
over and over again, in different contexts, through-
out mathematics. Much later, compler quadratic
irrationalities also made their appearance. Again
these were not at first regarded as “numbers as
such,” but rather as obstructions to the solution
of problems. Nicholas Chuquet, for example, in his
1484 manuscript, Le Triparty, raised the question
of whether or not there is a number whose triple
is four plus its square and he comes to the con-
clusion that there is no such number because the
quadratic formula applied to this problem yields
“impossible” numbers, i.e. complex quadratic irra-
tionalities in our terminology.?

For any real quadratic (“integral”) irrational-
ity there is a discussion along similar lines to the
ones we have just given (expressions (1.1)—(1.5) for
V2 and expressions (2.1)—(2.5) for (1 + v/5)). For
complex irrationalities, there is also such a the-
ory, but with interesting twists. For one thing,
we do not have anything directly comparable to
continued-fraction expansions for a complex quad-
ratic irrationality. In fact, the simple, but true,
answer to the problem of how to find an infinite
number of rational numbers that converge to such
an irrationality is that you cannot! Correspond-
ingly, the analogue of the Pell equation has only
finitely many solutions. As a consolation, however,
the appropriate “analytic formula” has a simpler
sum, as we will see below.

Let d be any square-free integer, positive or neg-
ative. Associated with d is a particularly important
number 74, defined as follows. If d is congruent to
1 mod 4 (that is, if d — 1 is a multiple of 4), then
74 = 3(1+ V/d); otherwise, 74 = v/d. We will refer
to these quadratic irrationalities 74 as fundamental
algebraic integers of degree 2. The general notion
of an “algebraic integer” is defined in Section 11
of this article. An algebraic integer of degree two
is simply a root of a quadratic polynomial of the
form X2+aX +b with a, b ordinary integers. In the
first case (when d = 1 modulo 4), 74 is a root of the
polynomial X? — X + (1 — d) and in the second
it is a root of X2 — d. The reason special names are
given to these quadratic irrationalities is that any
quadratic algebraic integer is a linear combination

2Rafael Bombelli, in the sixteenth century, would refer to
irrational square roots, of positive or of negative numbers,
as “deaf” (reminiscent of the word surd that is still in use)
and as “numbers impossible to name.”



4 PRINCETON COMPANION TO MATHEMATICS PROOF

(with ordinary integers as coefficients) of 1 and one
of these fundamental quadratic algebraic integers.

4 Rings and Fields

I think that one of the big early advances in math-
ematics is the now-current, universal recognition of
the importance of studying the properties of col-
lections of mathematical objects, and not just the
objects in isolation. A ring R of complex numbers
is a collection of them that contains 1 and is closed
under the operations of addition, subtraction, and
multiplication. That is, if a, b are any two num-
bers in R, a = b and ab must also be in R. If such
a ring R has the further property that it is closed
under division by nonzero elements (i.e. if a/b is
again in R whenever a and b are, and b # 0), then
we say that R is a field. (These concepts are dis-
cussed further in FIELDS and RINGS AND IDEALS.)
The ring Z of ordinary integers, {0, £1,+2,...} is
our “founding example” of a ring; visibly, it is the
smallest ring of complex numbers.

The collection of all real or complex numbers
that are integral linear combinations of 1 and 74 is
closed under addition, subtraction, and multiplica-
tion, and so is a ring, which we denote by Ry. That
is, Ry is the set of all numbers of the form a + b7y
where a and b are ordinary integers. These rings
R;—our first, basic, examples of rings of algebraic
integers beyond that prototype, Z—are the most
important rings that are receptacles for quadratic
irrationalities. Every quadratic irrational algebraic
integer is contained in exactly one Rg.

For example, when d = —1 the corresponding
ring R_1, usually referred to as the ring of Gauss-
ian integers, consists of the set of complex numbers
whose real and imaginary parts are ordinary inte-
gers. These complex numbers may be visualized
as the vertices of the infinite tiling of the complex
plane by squares whose sides have length 1 (see
Figure 1.2).

When d = —3 the complex numbers in the cor-
responding ring R_3 may be visualized as the ver-
tices of the regular hexagonal tiling of the complex
plane (see Figure 1.3).

With the rings Ry in hand, we may ask ring-
theoretic questions about them, and here is some
of the standard vocabulary useful for this. A unit u
in a given ring R of complex numbers is a number
in R whose reciprocal 1/u is also in R; a prime

-2 +1i —1+i +1i 1+i 2+i
-2 -1 0 1 2
-2-1i -1-1i —1i 1-i 2-i

Figure 1.2. The Gaussian integers are the vertices of
this lattice of squares tiling the complex plane.

(or synonymously, an irreducible) element in R is
a nonunit that cannot be written as the product
of two nonunits in R. A ring of complex numbers
R has the unique factorization property if every
nonzero, nonunit, algebraic number in R can be
expressed as a product of prime elements in exactly
one way (where two factorizations are counted as
the same if one can be obtained from the other by
rearranging the order in which the primes appear
and multiplying them by units).

In the prototype ring Z of ordinary integers, the
only units are +1. The fundamental fact that any
ordinary integer greater than 1 can be uniquely
expressed as a product of (positive) prime num-
bers (that is, that Z enjoys the unique factorization
property) is crucial for much of the number theory
done with ordinary integers. That this unique fac-
torization property for integers actually required
proof was itself a hard-won realization of Gauss,
who also provided its proof (see FUNDAMENTAL
THEOREM OF ARITHMETIC).

It is easy to see that there are only four units in
the ring R_; of Gaussian integers, namely +1 and
+1i; multiplication by any of these units effects a
symmetry of the infinite square tiling (Figure 1.2
above). There are only six units in the ring R_s,
namely £1, £3(1+4+/=3) and £3(1 —/=3); mul-
tiplication by any of these units results in a sym-
metry of the infinite hexagonal tiling (Figure 1.3
above).
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T3 1- 3

Figure 1.3. The elements of the ring R_3 are the ver-
tices of this lattice of hexagons tiling the complex
plane.

Fundamental to understanding the arithmetic of
R, is the following question: which ordinary prime
numbers p remain prime in Ry and which ones fac-
torize into products of primes in Ry;? We will see
shortly that if a prime number does factorize in
Ry, it must be expressible as the product of pre-
cisely two prime factors. For example, in the ring of
Gaussian integers, R_1, we have the factorizations

2=(1+1)(1-1),

5= (14 2i)(1 - 2i),
13 = (2+ 3i)(2 — 3i),
17 = (1 + 4i)(1 — 4i),
29 = (2 4 5i)(2 — 5i),

where all the Gaussian integer factors in brackets
above are prime in the ring of Gaussian integers.
Let us say that an odd prime p splits in R_1 if it
factorizes into a product of at least two primes and
remains prime if it does not do so. As we shall soon
see, the officially agreed-upon definitions of split-
ting and remaining prime for more general rings of
algebraic integers (even ones of the form Ry) are
worded slightly, but very significantly, differently
from the way we have just defined these concepts
in the ring R_; of Gaussian integers. (Note that
we have excluded the prime p = 2 from the above
dichotomy. This is because 2 ramifies in R_1; for
a discussion of this concept see Section 7 below.)
In any event, there is an elementary computable
rule that tells us, for any Ry, which primes p split

and which remain prime in this agreed sense. The
rule depends upon the residue of p modulo 4d: the
reader is invited to guess it for the ring of Gauss-
ian integers given the data just displayed above. In
general, an elementary computable rule that says
which primes split and which do not in a ring of
algebraic integers such as Ry is referred to as a
splitting law for the ring of algebraic integers in
question.

5 The Rings R, of Quadratic
Integers

There is a very important “symmetry,” or AUTO-
MORPHISM, defined on the ring Ry. It sends v/d to
—V/d, keeps all ordinary integers fixed, and more
generally, for rational numbers v and v, it sends
u + vVd to what we may call its algebraic
conjugate o = u — vVd. (The word “algebraic”
is to remind you that this is not necessarily the
same as the complex-conjugate symmetry of the
complex numbers!)

You can immediately work out the formulas for
this algebraic conjugation operation on the funda-
mental quadratic irrationalities 74: if d is not con-
gruent to 1 modulo 4, then 74 = v/d, so obviously
T, = —7g4, while if d is congruent to 1 modulo 4,
then 7y = 3(1++vd) and 7, = 11— Vd) = 1 —7,.
This symmetry a — o' respects all algebraic for-
mulas. For example, to work out the algebraic con-
jugate of a polynomial expression like a3 + 272,
where «, , and v are numbers in R4, you just
replace each individual number by its algebraic
conjugate, obtaining the expression o/ 3’ + 272

o =

The most telling integer quantity attached to
a number « = x + y7y in Ry is its norm N(a),
which is defined to be the product ae’. This equals
22 — dy? when 74 = V/d and 2% + 2y — %(d —1)y?
when 74 = 2(1 4+ v/d). The norm turns out to be
multiplicative, meaning that N(af) = N(a)N(f),
as you can directly check by multiplying out the
formula for the norm of each factor and comparing
with the norm of the product. This gives us a use-
ful tactic for trying to factorize algebraic numbers
in R4, and offers criteria for determining whether
a number « in Ry is a unit, and whether it is prime
in Ry. In fact, an element a € Ry is a unit if and
only if N(«) = e’ = £1; in other words, the units
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are given by the integral solutions to the equations

X2 —dy?=+1 (5.1)

or

X2+ XY - Ld-1y? =41 (5.2)

following the two cases. Here is the proof of this.
If @« = z + y74 is a unit in Ry, then its reciprocal,
8 = 1/a, must also be in Ry, and, of course, we
have a3 = 1. Applying the norm to both sides of
this equation and using the multiplicative property
of the norm discussed above, we see that N(«) and
N(fB) are reciprocal ordinary integers, and there-
fore they are both either equal to +1 or —1. This
shows that (z,y) is a solution to whichever of equa-
tion (5.1) or (5.2) is appropriate. In the other direc-
tion, if N(a) = a’ = %1, then the reciprocal of «
is simply +o’. This is in R4 so « is indeed a unit
in Rd.

These homogeneous quadratic forms, the left-
hand sides of equations (5.1) and (5.2) (which gen-
eralize formulas (1.4) and (2.4)), play an important
role; let us refer to whichever of them is relevant to
R, as the fundamental quadratic form for R4, and
its discriminant D the fundamental discriminant.
(D is equal to d if d is congruent to 1 modulo 4
and to 4d otherwise.) When d is negative there are
only finitely many units (if d < —3 the only ones
are 1) but when d is positive, so that R; con-
sists entirely of real numbers, there are infinitely
many. The ones that are greater than 1 are powers
of a smallest such unit, €4, and this is called the
fundamental unit.

For example, when d = 2 the fundamental unit,
€2,1s 14+1/2, and when d = 5 it is the golden mean,
€5 = %(1 ++/5). Since any power of a unit is again
a unit, we immediately have a machine for produc-
ing infinitely many units from any single one. For
example, taking powers of the golden mean, we get

€ :%(1+\/5)7 552%(34_\/5)5
e =245, 2 =1(7+3V5),
= 3011+ 55).

all of which are units in R5. The study of these
fundamental units was already under way in the
twelfth century in India, but in general their
detailed behavior as d varies still holds mysteries
for us today. For example, there is a deep theo-
rem of Hua (1942) that tells us that e < (4e%d)V4

(for a proof of it along with a historical discus-
sion of such estimates, see Chapters 3 and 8 in
Narkiewicz (1973)). There are examples of d that
come close to attaining that bound, but we still
do not know whether or not there is a positive
number 7 and an infinity of squarefree d for which
£q > d?". (The answer to this question would be
yes if, for example, there were an infinity of Ry sat-
isfying the unique factorization property! This fol-
lows from a famous theorem of Brauer (1947) and
Siegel (1935); for a proof of the Brauer—Siegel the-
orem, see Theorem 8.2 of Chapter 8 in Narkiewicz
(1973), or see Lang (1970).)

6 Binary Quadratic Forms and the
Unique Factorization Property

The principle of unique factorization is an all-
important fact for the ring of ordinary integers
Z. The question of whether this principle does or
does not hold for a given ring Ry is central to
the theory. There are helpful, analyzable, obstruc-
tions to the validity of unique factorization in Rg.
These obstructions, in turn, connect with profound
arithmetic issues, and have become the focus of
important study in their own right. One such mode
of expressing the obstruction to unique factoriza-
tion is already prominent in Gauss’s Disquisitiones
Arithmeticae (1801), in which much of the basic
theory of Ry was already laid down.

This “obstruction” has to do with how many
“essentially different” binary quadratic forms
aX? + bXY + cY? there are with discriminant
equal to the fundamental discriminant D of Rg.
(Recall that the discriminant of aX?+bXY +cY? is
b? —4ac, and that D equals 4d unless d = 1 mod 4,
in which case it equals d.)

In order to define a binary quadratic form
aX? 4+ bXY +cY? of discriminant D, what you
need to provide is simply a triplet of coefficients
(a,b, c) such that b2 —4ac = D. Given such a form,
one can use it to define other ones. For example,
if we make a small linear change of the variables,
replacing X by X —Y and keeping Y fixed, then we
get a(X —Y)2+b(X —Y)Y +cY? which simplifies
to aX?+ (b—2a)XY + (c— b+ a)Y? That is, we
get a new binary quadratic form whose triplet of
coefficients is (a,b — 2a,¢ — b+ a), and which (as
can easily be checked) has the same discriminant
D. We can “reverse” this change by replacing X by
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X +Y and keeping Y fixed. If we do this reversal
and perform the corresponding simplification then
we get back our original binary quadratic form.
Because of this reversibility, these two quadratic
forms take exactly the same set of integer values
as X and Y vary: it is therefore reasonable to think
of them as equivalent.

More generally, then, one says that two binary
quadratic forms are equivalent if one can be
turned into the other (or minus the other) by any
“reversible” linear change of variables with integer
coeflicients. That is, one chooses integers r, s, u, v
such that rv — su = +1, replaces X and Y by the
linear combinations X' = rX +sY, Y’ = uX +0Y,
and simplifies the resulting expression to get a new
triplet of coefficients. The condition rv — su = +1
guarantees that by a similar operation we can get
back to our original binary quadratic form, and
also that the new binary quadratic form has the
same discriminant D as the old one. So when
we talk of “essentially different” binary quadratic
forms of discriminant D we mean that we cannot
turn one into the other by this kind of change of
variables.

Here is the surprising obstruction to unique fac-
torization that Gauss discovered.

The unique factorization principle is valid
in Rg if and only if every homogeneous
quadratic form aX?+bXY +cY 2 with dis-
criminant equal to the fundamental dis-
criminant of Ry is equivalent to the fun-
damental quadratic form of Rg.

Furthermore, the collection of inequivalent quad-
ratic forms whose discriminant is the fundamental
discriminant of R4 expresses in concrete terms the
degree to which R; “enjoys unique factorization.”

If you have never seen this theory of binary
quadratic forms before, try your hand at working
with quadratic forms in the case where D = —23.
The idea is to start with some particular quad-
ratic form aX? + bXY + cY? of your choice with
discriminant D = b? — 4ac = —23. Then, using a
sequence of carefully chosen linear changes of vari-
ables you reduce the size of the coefficients a, b, ¢
until you can go no further. Eventually you should
end up with one of the two (inequivalent) quad-
ratic forms that there are with discriminant —23:
the fundamental form X2+ XY +6Y2, or the form
2X24 XY 43Y 2. For example, can you see that the

binary quadratic form X2 + 3XY + 8Y?2 is equiv-
alent to X2 + XY + 6Y2?

This type of exercise offers a small hint of the
role that the geometry of numbers will play in the
eventual theory. As you might expect from the ven-
erability of these ideas, elegant streamlined meth-
ods have been discovered for making such calcula-
tions. Nevertheless, it is an open secret that any
working mathematician, contemporary or ancient,
engaged in this subject or nearby subjects, has
done a myriad of straightforward simple hand com-
putations along the lines of the above exercise.

If you try a few examples of this exercise, as I
hope you do, here is one way of organizing your
calculations. First, find a simple reversible linear
change of variables to turn your form into an equiv-
alent one with a,b,c > 0. (You may also have to
multiply the whole form by —1.)

The cleanest way of writing down all binary
quadratic forms given by triplets (a,b,c) of dis-
criminant —23 is to list the triplets in increasing
order of b, which will now be an odd positive inte-
ger. For each value of b you can then choose a and
¢ in such a way that their product is (6% + 23).
At this point the aim is to build up a repertoire
of moves that tend to decrease b (which will keep
a and ¢ within bounds as well). A big clue, and
aid, here is that for any pair of relatively prime
integers x, y if you evaluate your quadratic form
aX?+bXY +cY? at (X,Y) = (r,y) to get the inte-
ger a’ = ax®+bry+cy?, you can find, for appropri-
ate b’ and ¢/, a quadratic form o’ X2+ ¥ XY +'Y?
equivalent to yours, with first coefficient a’. So,
one tactic is to look for small integers represented
by your quadratic form. Also the “example” lin-
ear change of variables X — X —Y, Y — Y will
lead you to be able to reduce the coefficient b to
an integer smaller than 2a. Can you check that
X2+ XY 4+6Y? and 2X? + XY +3Y? are inequiv-
alent?

Now, as we have just discussed, it follows from
the general theory that R_s3 does not have the
unique factorization property. We can also see this
directly. For example,

/!
T—-23 'T_23 :23,

and all four of the factors in this equation are irre-
ducible in R_53. To be a faithful companion, I
should at this point give at least a hint at what
connection there might be between this specific
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“failure of unique factorization” and the previous
discussion. It may become a bit clearer in the next
paragraph, but the underlying tension in the equa-
tion T_g3 - /93 = 2 -3 is that all the factors in
our ring are prime: we are missing any elements
in our ring R_g3 that could factorize it further.
We lack, for example, elements that play the role
of the greatest common divisor of factors of this
equation. The general theory regarding these mat-
ters (which we are not entering into here, but see
EucLID’s ALGORITHM) tells us that what is miss-
ing is some element v in R_o3 that is both a linear
combination of the numbers 7_23 and 2 (with coef-
ficients in the ring R_»3) and also a common divi-
sor of 7_93 and 2 in the ring R_»3, i.e. such that
T_923/7 and 2/ are both in R_o3. There is no such
element, for its norm must divide N(7_23) = 6 and
N(2) = 4, and therefore be equal to 2, which can
easily be shown to be impossible. But we are inter-
ested, rather, in the phenomenon that inequiva-
lence of certain binary quadratic forms will indeed
show this, so let us go on.
First, check that any linear combination

a- T3+ 32

with «, 8 elements of Ra3 can also be written as
U - T_93 + v -2, where v and v are ordinary inte-
gers. Now compute the binary quadratic form given
by systematically taking the norms of these linear
combinations, and viewing these norms as func-
tions of the integer coefficients u, v:

N(u- 703 +v-2) = (T_o3u + 2v) (7] 55u + 2v)
= 6u? + 2uv + 4>,

Viewing the v and the v as variables, and dubbing
them U and V to emphasize their status as vari-
ables, we can say that the NORM QUADRATIC FORM
obtained from the collection of linear combinations
of T_93 and 2 is

6U2 +2UV +4V?2 =2.(3U* + UV +2V?).

Now suppose that, contrary to fact, there were
a common divisor, 7, as above; in particular, the
multiples of v in the ring R_s3 would then be pre-
cisely the linear combinations of the numbers 7_o3
and 2. We would then have another way of describ-
ing those linear combinations; namely, for any pair
of ordinary integers (u,v) there would be a pair of
ordinary integers (r, s) such that

U T_o3+0v-2=r-(rr_o3 +8) = ryr_a3 + 7.

Taking norms, as above, we would get

N(y - (r7—23 +5)) = N(ry7-23 + 57)
= N(v)(6r® +rs + 5%).

Again, thinking of r and s as variables and renam-
ing them R and S we would have the corresponding
norm quadratic form:

N(v) - (6R*> + RS 4+ 5%) =2- (6R?> + RS + S?).

Given the above facts—dependent, of course, on
the contrary-to-fact hypothesis that there is a v as
above—the key idea is that there would be linear
changes of variables from (U, V') to (R, S) and back
that would establish an equivalence between the
two quadratic forms 2 - (3U2 + UV + 2V?) and
2 (6R?+ RS +S?). But these quadratic forms are
not equivalent! Their inequivalence therefore shows
that the putative v does not exist and factorization
in the ring R_»3 is not unique.

7 Class Numbers, and the Unique
Factorization Property

In the previous section we saw that the collection of
inequivalent quadratic forms of discriminant equal
to the fundamental discriminant provides us with
an obstruction to unique factorization. Somewhat
later, a more articulated version of this obstruc-
tion arose, known as the ideal class group Hy of
R,. As its name implies, to describe this we must
use the vocabulary of ideals and groups. For a gen-
eral discussion of these concepts, see FUNDAMEN-
TAL CONCEPTS, GROUPS and RINGS AND IDEALS.
A subset I of Ry is an ideal if it has the following
closure properties: if « belongs to I, so do —« and
T4, and if a and 3 belong to I, so does a + (.
(The first and third properties imply together that
any integer combination of o and 3 belongs to I.)
The basic example of such an ideal is the set of all
multiples of some fixed, nonzero element v of Ry,
where by a multiple of v we mean the product of
~ and an element of R;. We denote this set tersely
as (), or, slightly more expressively, as v - R4. An
ideal of this sort, i.e. one that can be expressed
as the set of all multiples of a single nonzero ele-
ment v, is called a principal ideal. For example,
the ring Ry itself is an ideal (it consists, after all,
of all linear combinations of 1 and 74) and is even
a principal ideal: in our laconic terminology, it can



PRINCETON COMPANION TO MATHEMATICS PROOF 9

be denoted (1) = 1 Ry = Rq. Strictly speaking,
the singleton {0} is also an ideal, but the ones that
will interest us are the nonzero ideals.

As a direct counterpart to the obstruction prin-
ciple involving binary quadratic forms that was
described in the previous section, we have the fol-
lowing obstruction principle involving ideals.

The unique factorization principle is valid
in Ry if and only if every ideal in Ry is
principal.

Reflecting on this, you can get a sense of why the
word ideal might have been chosen. Every princi-
pal ideal in Ry is of the form - R4 for some number
v in Ry (which is uniquely determined apart from
multiplication by units), but sometimes there are
more general ideals. These arise if you ever have
two elements of Ry (think of 7_53 and 2, as in the
previous section) such that the set of all their inte-
ger combinations cannot be expressed as the set of
multiples of some fixed number v in Ry4. This phe-
nomenon is a sign that we may be missing numbers
in Ry that provide fine enough factorizations to
make the arithmetic in Ry as smooth going as one
might hope for. Just as a principal ideal - R4 corre-
sponds to the number -, ideals of this more general
kind (think of the set of all integer combinations
of 7_93 and 2) can be thought of as correspond-
ing to “ideal numbers” that should, “by rights,”
be present in our ring, but happen not to be.
Once we think of ideals as standing for ideal
numbers it makes some sense to try to multiply
them: if I, J are two ideals in Ry, we let I-J denote
the set of all finite sums of products a3 where « is
in I and §is in J. The product of two principal ide-
als (1) (y2) is the principal ideal (71 -72) so, just as
one would hope, multiplication of principal ideals
corresponds to multiplication of the corresponding
numbers. Multiplication of any ideal I by the ideal
(1) leaves I unchanged: (1) - I = I; we therefore
refer to the ideal (1) as the unit ideal. With this
new notion of multiplication of ideals we can now
give the general definition of what it means for a
prime number p to split or to remain prime in a
ring R4—the definition we promised in Section 4.
The idea behind the definition is to use multi-
plication of ideals rather than of numbers. So if
we are thinking about a prime p, the first thing
we do is turn our attention to the principal ideal
(p) in Ry. If this can be factorized as a product of

two different ideals (not necessarily principal ide-
als, this is the whole point) in Ry, and if neither of
these is the unit ideal (1) = Ry, then we say that
p splits in Ry. If, on the other hand, no factoriza-
tion of the ideal (p) can be made without one of
the factors being the ideal (1) = Ry, then we say
that p remains prime in Ry. There is also a third
important definition: if the principal ideal (p) can
be expressed as the square of another ideal I, then
we say that p ramifies in Ry. Continuing with the
momentum of this definition, we may say that an
ideal P is a prime ideal if P cannot be “factorized”
as the product of two ideals neither of which is the
unit ideal. This definition makes sense whether or
not P is principal, so we are subtly shifting our
attention from the multiplicative arithmetic of the
numbers in Ry to the ideals.

By definition, two ideals are in the same ideal
class if when you multiply each by an appropriate
principal ideal you get the same ideal as a result.
This is a natural EQUIVALENCE RELATION on ide-
als. It is also one that respects products, meaning
that if I and J are two ideals, then the ideal class
of their product I - J depends only on the ideal
classes of I and J. (In other words, if I’ is in the
same ideal class as I and J’ is in the same ideal
class as J', then I’ - J' is in the same ideal class as
I-J.) We can therefore say what we mean by mul-
tiplication of ideal classes: to multiply two classes,
pick an ideal from each, multiply those, and take
the ideal class of the resulting product. The set
H, of ideal classes of R4, given this operation of
multiplication, forms an ABELIAN GROUP, in the
sense that the multiplication law whose definition
we have just defined is associative and commuta-
tive, and there are inverses. The identity element
is the principal ideal Ry itself. This group Hy,
known as the ideal class group, directly measures
the extent to which the ideals of the ring R, are
principal: roughly speaking it is what you get if
you take the multiplicative structure of all ideals
and “divide out” by the principal ones.

As was mentioned in Section 6, there is a close
connection between ideal classes and binary quad-
ratic forms. To begin to see this, take an ideal I
of Ry and write it as the set of all integer combi-
nations of two elements «, 8 of R4. Then consider
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the norm function on the elements of I, that is,

N(za+yp) = (za+yp)(za’ +yp')
= ad'z? + (af + o/ B)zy + BB8'Y>.

This is a binary quadratic form in the variable
coefficients = and y. If you start with a different
choice of «, 8 that generate I you get a different
form, but the two forms are scalar multiples of two
forms with discriminant D that are equivalent to
one another. Even better, the equivalence class of
these forms depends only on the ideal class of I.

It can be shown that there are only a finite num-
ber of distinct ideal classes of Ry; that is, the ideal
class group Hy is finite. The number of its elements
is denoted hy and called the class number of Ry.
So, the obstruction to unique factorization of Ry is
given by the nontriviality of the group Hyg; equiv-
alently, unique factorization holds for R, if and
only if its class number is 1. But whether or not
H, is trivial, its detailed group-theoretic structure
is profoundly related to the arithmetic of Ry.

The class number enters into the generalizations
of formulas (1.5) and (2.5) of Section 1; that is,
the analytic formulas we alluded to in that sec-
tion. These formulas represent just the beginning
of one of the ongoing chapters of our subject, and
form a bridge between the world of discrete arith-
metical issues and that of calculus, infinite series,
volumes of spaces, all of which can be attacked by
the methods of complex analysis (SEE FUNDAMEN-
TAL CONCEPTS, HOLOMORPHIC FUNCTIONS). Here
is a sample of them.

(1) If d > 0 is a square-free integer and D is either
d or 4d according to whether d is congruent to
1 modulo 4 or not, then

logeq 1
. = +=,
VR D

n>=0

ha

where the integers n run through those that
are relatively prime to D and the signs 4 are
chosen in a way that depends only on the
residue class of n modulo D.

If d < 0 we have a somewhat simpler formula:
there is no fundamental unit €4 in Ry to con-
tend with, but when d = —1 or —3, there are
more roots of unity than merely £1. If wy
denotes the number of roots of unity in Ry,
then w_; = 4, w_3 = 6 and otherwise wg = 2,
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and then one has a formula of the following
type:

As d tends to —oo the class number hg tends
to infinity.

We have effective lower bounds for the growth of hy
but these lower bounds are probably still far from
the actual growth (cf. Goldfeld 1985). The effec-
tive lower bounds that are known are exceedingly
weak. They follow, however, from beautiful work
of Goldfeld, and Gross and Zagier: for every real
number r < 1 there is a computable constant C(r)
such that hg > C(r)log |D|". Here is a sample:

2\/;5>
1— —— |- -log|D
P g|D|

if (D,5077) = 1.

It is a striking lacuna in our theory that, even
today, nobody knows how to prove that there
are infinitely many values of d > 0 for which
R; enjoys the unique factorization property—
particularly since we expect that more than three-
quarters of them do! Our expectations are even
more precise than that, thanks to Henri Cohen and
Hendrik Lenstra, who make use of certain prob-
abilistic expectations (now known as the Cohen—
Lenstra heuristics) to conjecture that the density
of positive fundamental discriminants of class num-
ber 1 among all positive fundamental discriminants
is 0.75446 . . ..

8 The Elliptic Modular Function
and the Unique Factorization
Property

A different obstruction to unique factorization in
R, is available when d is negative. Now Ry may be
thought of as a lattice in the complex plane (see
Figure 1.4), which makes a wonderful tool avail-
able for us: the classical elliptic modular function
of KLEIN,

§(2) = e™?™2 1 744 4 1986 884¢>™*

+ 21493760 e*™* 4 864299970e5™% 4 ... .
(8.1)
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This function, also colloquially referred to as the
“j-function,” converges for complex numbers z =
x+iy withy > 0. If 2 =z +iy and 2/ = 2’ + iy
are two such complex numbers, then j(z) = j(2') if
and only if the lattice generated by z and 1 in the
complex plane is the same as the lattice generated
by 2z’ and 1 (or, equivalently, z’ = (az+b)/(cz+d),
where a, b, ¢, d are ordinary integers such that
ad—be = 1). We can paraphrase this by saying that
the value j(z) depends only on, and characterizes,
the lattice generated by z and 1.

It turns out (by a theorem of Schneider) that
if an algebraic number o = x + iy with y > 0 has
the property that j(«) is also algebraic, then « is a
(complex) quadratic irrationality; and the converse
is also true. In particular, since a = 74 is such a
complex quadratic irrationality when d is negative,
we have that the value, j(74), of the j-function on
T4 is an algebraic number—in fact, an algebraic
integer. This will be of some importance for our
story. First, since the ring Ry as situated in the
complex plane is simply the lattice generated by
74 and 1, it follows from the previous paragraph
that this value j(74) will be the same if we replace
Tq by any element a of Ry, as long as the lattice
generated by a and 1 is the entire ring R;. More
importantly, j(74) is an algebraic integer of degree
roughly comparable with the class number of R.
In particular, it is an ordinary integer if and only if
the ring R4 has the unique factorization property.
(This result is one of the great applications of a
classical theory known as complex multiplication.)
In brief, here is yet another answer to the question
of when the unique factorization principle holds
for Ry when d is negative: if j(74) is an ordinary
integer, the answer is yes; otherwise it is no.

The search for the full list of negative values of d
for which R4 has the unique factorization property
makes a marvelous tale: there are precisely nine
values of d for which it occurs (see below), but for
over two decades number theorists, while know-
ing these nine, could prove only that there were no
more than ten. The history of how the nonezistence
of a possible tenth value of d was established, and
reestablished, is one of the thrilling chapters in
our subject. K. Heegner, in an article published
in 1934, provided what he claimed was a proof of
the nonexistence of the possible tenth wvalue of d.
However, Heegner’s proof was framed in somewhat
unfamiliar language and was not understood by the
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mathematicians of the time. His paper and his pur-
ported proof were largely forgotten until the late
1960s, when the nonexistence of the tenth field was
established (to the mathematical community’s sat-
isfaction) by Stark (1967) and independently, via a
different method, by Baker (1971). It was only then
that mathematicians took a second and closer look
at Heegner’s original article and discovered that he
had indeed proven exactly what he claimed. More-
over, his proof offered an elegant direct conceptual
road to an understanding of the underlying issue.
Here are the nine values of d:

d=—1, -2, -3, —7, —11, —19, —43, —67, —163.

And here are the corresponding nine values of
J(7a):

[ 5

j(7a) = 2°3%, 295%, 0, —3%5%, —215, 21933,
— 2183353 2153353113 _ 9183353933993,

As Stark once pointed out, if, for some of these
values of d, you simply “plug” 74 into the power
series expansion for j, you get rather surprising
formulas. For example, when d = —163, then

V163

e—QTrde = _¢™
is the first term of the power series for j(7_163) (see
formula (8.1)). Since j(7_163) = —2'¥3353233293
and since all the terms e?™7@ (n > 0) that appear
in the power series for the j-function are relatively
small, we find that e™V163 is incredibly close to an
integer. Indeed, it is 2'%3353233293 + 744 4 ...,
which works out as 262537412640768744 — e,
where the error term e is less than 7.5 x 10713,

9 Representations of Prime
Numbers by Binary Quadratic
Forms

It happens more often than you might at first
expect that difficult and/or somewhat artificial
problems about ordinary integers can be translated
into natural and tractable problems about larger
rings of algebraic integers. My favorite elementary
example of this type is the theorem due to Fermat
that if a prime number p may be expressed as a
sum of two squares, p = a® + b? with 0 < a < b,
then it has only one such expression. (For exam-
ple, 124-10? is the only way of expressing the prime
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number 101 as the sum of two squares.) Moreover,
a prime number p can be expressed as a sum of two
squares if and only if p = 2 or p is of the form 4k+1.
(The “only if” part of this is easy to see: since any
square is congruent either to 0 or 1 mod 4, an odd
integer that is a sum of two squares is necessar-
ily congruent to 1 mod 4.) These statements about
ordinary integers can be translated into basic state-
ments about the ring of Gaussian integers. For if we
write a® +b% = (a+ib)(a —ib), with i = \/—1, then
we can view a? +b? as the norm of the (conjugate)
elements a + ib in the ring of Gaussian integers.
So, if p is a prime number that admits an expres-
sion as a sum of squares, p = a? + b2, it follows
that each of the elements a + ib has norm a prime
integer. It is easy to deduce that p is itself a prime
in the ring of Gaussian integers. Indeed, any fac-
torization of a +ib into a product of two Gaussian
integers would have the property that the norms
of the factors are ordinary integers which multiply
out to be the prime p, and this severely limits their
possibilities: one of them has to be a unit.
In other words, whenever p = a? + b2, then

p = (a+1ib)(a —ib)

is a factorization of the ordinary integer prime p
into a product of two Gaussian integer primes. The
uniqueness part of Fermat’s theorem then follows
from (in fact, it is readily seen to be equivalent to)
the unique factorization property of the ring R_;
of Gaussian integers. That any prime number p of
the form 4k 4+ 1 admits such an expression as a
sum of two squares follows from the splitting law
for primes p in the ring of Gaussian integers: an
odd prime number p is a norm, and hence splits
into the product of two distinct primes, in the ring
of Gaussian integers if and only if p is congruent
to 1 mod 4. This result is just the beginning of an
immense chapter of arithmetic.

10 Splitting Laws and the Race
Between Residues and
Nonresidues

The simple splitting law for ordinary prime integers
p in the ring of Gaussian integers—that p splits if
p =1 mod 4 and not if p = —1 mod 4—invites us
to ask how often each of these cases occurs (see Fig-
ure 1.4). Dirichlet proved a famous theorem that
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Figure 1.4. The higher of the two graphs in the fig-
ure represents the number of primes less than X that
remain prime in the ring of Gaussian integers, and the
lower represents the number of primes less than X that
split in the ring of Gaussian integers. The third graph
hovering around the xz-axis represents the difference
between the two numbers. We thank William Stein for
this data.

says that there are infinitely many primes in the
arithmetic progression ¢,m + ¢,2m + ¢, ... if the
integers m and c are relatively prime. A more pre-
cise version of his result gives a clear asymptotic
answer to the question we have just asked: as x
goes to infinity, the ratio of the number of primes
less than z that split to the number that do not
tends to 1.

For fun, one might ask a fussier question: which
type of prime less than x is actually in greater
abundance, the nonsplit primes or the split ones
(see Figure 1.4)?7 To put some perspective on this,
let us widen our query: for ¢ equal to either 4
or to an odd prime, let A(z) be the number of
primes ¢ < z that are quadratic residues mod-
ulo ¢ and let B(z) be the number of primes £ <
x that are quadratic nonresidues modulo g. Let
D(z) := A(z) — B(z) be the difference; what does
D(z) look like?

For an absorbing account of the history and sta-
tus of this problem, see the article “Prime Races”
by Andrew Granville and Greg Martin in Amer-

Editor’s note:
reference to be
added when
article
published!
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ican Mathematical Monthly.

11 Algebraic Numbers and
Algebraic Integers

Now that we have seen the algebraic integers j(74)
for negative values of d, and have touched on
trigonometric sums, we have a few hints that, as
with ordinary integers, the deep structure of these
rings of quadratic integers may be better under-
stood within a larger context of algebraic numbers.
So now let us deal with algebraic numbers in full
generality.

By a monic polynomial, we mean a polynomial
of the form

PX)=X"+a X"+t a1 X +an,

i.e. a polynomial of degree n such that the coef-
ficient of X™ is 1. In general, the other coeffi-
cients are just assumed to be complex numbers.
If P(X) = X"+a1 X" P+ +a, 1X +a, is
such a polynomial, and if © is a complex number
such that P(©) = 0, or, equivalently, if © satisfies
the polynomial equation

0" +a10" 4+ 1,10 4 a, =0,

we say that © is a root of the polynomial P(X).
The FUNDAMENTAL THEOREM OF ALGEBRA, ini-
tially proved by Gauss, guarantees that any such
polynomial of degree n factors into a product of n
linear polynomials. That is,

P(X) = (X -601)(X = 6y) - (X - 6On)

for some complex numbers @1, 6, ..., 6, that are
in fact precisely the roots of the polynomial P(X).

If © is a root of such a polynomial P(X) =
X"4+a, X" 14+ 4a,-1X +a, and if in addition
the coefficients a; are rational numbers, then @ is
called an algebraic number. If the coefficients are
not just rational but are in fact integers, then ©
is called an algebraic integer. So, for example, the
square root of any rational number is an algebraic
number and the square root of any “ordinary” inte-
ger is an algebraic integer. The same holds true for
nth roots of ordinary integers, or of algebraic inte-
gers, for any natural number n. For an example of a
different sort, we have already mentioned the the-
orem that the values of the j-function on complex
quadratic irrational integers are algebraic integers.

For a (random) particular case of that theorem,
the complex number j(7_23) is a root of the monic
polynomial

X3 4+3491750X2 — 5151296875X
+ 12771880859 375.

An exercise: show that any algebraic number can
be expressed as an algebraic integer divided by an
ordinary integer.

12 Presentation of Algebraic
Numbers

In dealing with any mathematical concept, we con-
front, in one way or another, the dual problem of
the various forms in which it comes to us when it
arises in our work, and the various ways we can
present it so as to deal with it effectively. We have
already seen a bit of this at the outset of this arti-
cle, in our discussion of quadratic surds, and we
will continue to see it in our treatment of them
below, where the various modes in which quadratic
surds can be presented—as radicals, as eventually
recurrent continued fractions, or as trigonometric
sums—come together, all contributing to their uni-
fied theory.

This issue of presentation is all the more of a
problem with algebraic numbers in general, which
may come to us in a multitude of ways. For exam-
ple, they can arise as the coordinates of points
on specific algebraic varieties whose defining equa-
tions may not be easily available, or as special
values of functions like the j-function. It is nat-
ural, then, to look for some uniform way of pre-
senting algebraic numbers, and the history of the
subject shows how much effort has been devoted to
such a search. For example, consider the focus on
iterated radical expressions, as in the famous for-
mula for the solution to the general cubic equation
X3 =bX + c given by

c 2 ¥\ c 2 ¥\

X= (2+\/227> +<2 227) !
(12.1)

or the corresponding general solution to the fourth-
degree equation. These were major achievements
of sixteenth century Italian algebra, and they cul-

minated in the proof that the general fifth-degree
algebraic number could not be so expressed, which
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was a major achievement of the early nineteenth
century (see INSOLUBILITY OF THE QUINTIC). The
challenge to give some analytic expression for such
fifth-degree algebraic numbers was the source of a
classic book by Klein, The Icosahedron, written in
the late nineteenth century. Kronecker wrote that
it was the “dream of his youth” (his Jugendtraum)
to establish a uniform mode of presentation for a
class of algebraic numbers that interested him, by
expressing them as values of certain analytic func-
tions.

13 Roots of Unity

A central role in the theory of algebraic numbers is
played by the roots of unity, that is, the n complex
solutions of the equation X™ = 1, or equivalently
the n roots of the polynomial X" — 1. If we let
(o = €2™/™ then these roots are precisely ¢, and
its powers, so in particular they are algebraic inte-
gers. They give us the factorization

X" —1=(X-1)(X-¢)(X =) (X -7,

Now the powers of (,, form the vertices of a reg-
ular n-gon in the complex plane, centered at the
origin. This has the following consequence, noticed
by Gauss in his youth. It can be shown that com-
pass and straightedge constructions allow us, in
effect, to extract square roots, so whenever ¢, can
be given as an expression built out of just square
roots and the usual arithmetical operations, we
have, implicitly, a ruler-and-compass construction
of the regular n-gon, and conversely.

To get some idea of why square roots are so
closely connected with these constructions, con-
sider this. If we have given ourselves a unit mea-
sure, which we can view as the distance between
the numbers 0 and 1 in the (complex) plane, and if
we have already constructed, by whatever device,
a specific point, = say, between 0 and 1 on the hor-
izontal axis of the plane, we can first “construct”
x/2 by straightedge and compass, and then go on
to form a right-angled triangle with hypotenuse of
length 1+ /2 and one of its other sides of length
1 — /2 (again using a straightedge and compass).
Pythagoras’s theorem gives us that the third side
of that triangle is of length /z. If one follows this
line of thought (but adapts it to deal with complex
quantities as well as the real number x as in the
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example we have just discussed), then one can see
that the equations

G=1i1+iV3), G=Vi

G =4(VE5-1)+ik(V5+5),
(6= —2(1+iV3)

provide (implicit) constructions of the equilateral
triangle, the square, the regular pentagon, and
the regular hexagon, respectively. By contrast, (7
cannot be expressed solely in terms of the arith-
metical operations and square roots (it is the root
of a quadratic equation with coefficients that are
rational expressions in the roots of the irreducible
cubic polynomial X3 — %X + 2—77), which already
suggests that the regular heptagon might fail to be
constructible by the standard classical means—and
indeed it does fail without some act of “angle tri-
section.” (In principle, though, the reader can work
out an expression for (7 in terms of square roots
and cube roots by means of the information pro-
vided in the parenthetical phrase above, together
with equation (12.1).)

Gauss showed that if n > 2 is a prime number
then the regular n-gon is classically constructible
if and only if n is a Fermat prime, that is, a prime
number of the form 22° + 1. So, for example, the
11-gon and 13-gon are not constructible by clas-
sical means, but since (y7 is expressible as nested
rational expressions of square roots, the 17-gon is,
famously, constructible.

So, not all roots of unity can be expressed as
iterated rational expressions of square roots. How-
ever, this inhospitability is not mutual, since all
square roots of integers can be expressed as inte-
ger combinations of roots of unity. More mysteri-
ously, the elusive fundamental units ¢4 (for d pos-
itive), for which there is no known formula, are
intimately related to a unit ¢4 in Ry which is an
explicit rational expression of roots of unity. (See
below: it is called a circular unit.) This satisfies the
elegant formula

ca = e, (13.1)

which establishes yet another explicit test of
unique factorization: the equality ¢4 = €4 is a
“litmus” requirement for the unique factorization
principle to hold in Ry.

To give the flavor of the formulas involved, let p
be an odd prime number and let a be an integer
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not divisible by p. Then define o,(a) to be +1 if
a is a quadratic residue modulo p, that is, if a is
congruent to the square of an integer modulo p,
and —1 if not. The simple trigonometric sums of
(1.1) and (2.1) generalize to quadratic Gauss sums:

FHPD2 = G+ 0,(2) 2 + 0p(3)C3 + -+
+op(p—2) 2+ op(p — 1)
(13.2)

This formula is not too hard to prove, apart from
determining which sign is correct in the initial =+,
but after considerable efforts Gauss managed to
work this out too. To see the connection between,
say, formula (2.1) and (13.2) note that when p = 5,
the left-hand side of (13.2) is /5 and the right-
hand side is
§5+fC52 7C5_2 +C5_1 = 2cos%7r72cos%7r.

As for the circular unit ¢, it is defined to be

(p—1)/2 (p—1)/2
IT G -¢ @@= ] sin(ra/p)™,
a=1 a=1

and this leads to further formulas. For example,
when p = 5, we have g, = 75 = (1 4+ V/5), and
since hs = 1, formula (1.4) for p = 5 tells us that

1+V5 G —¢ sin(n/5)
2 (2-¢? sin(2n/5)

14 The Degree of an Algebraic
Number

If © is an algebraic integer that is also a rational
number, then © is an “ordinary” integer. Here is
the proof of this fact. If © is a rational number,
then we may write © = C/D as a fraction in lowest
terms. If © is also an algebraic integer, then it is the
root of a monic polynomial with rational integer
coefficients, O™ 4+ a,0" ! +- .. +a,, so we have an
equation

(C/D)"+a:1(C/D)" '+ +an_1(C/D)+a, = 0.
Multiplying through by D™ we get
C"+a,C" 'D+---+a, 1.CD" ' +a,D" =0,

where all terms are (ordinary) integers, and all but
the first one is divisible by D. If D > 1 then it has

some prime factor p, so all terms apart from the
first are also divisible by p. Since the terms add up
to zero, it follows that p divides C™, which implies
that p divides C, which contradicts the assertion
that the fraction C/D is in its lowest terms. This
in turn contradicts the hypothesis that @ can be
expressed as a ratio of whole numbers in the first
place. As the reader may like to verify, this fact
implies the result attributed to Theaetetus above,
that v/A is irrational if and only if A is not a perfect
square.

The degree of an algebraic number © is defined
to be the smallest degree, n, of any polyno-
mial relation O™ + @0 ! + - + a,_10 +
a, = 0 that © satisfies, where the coefficients a;
are rational numbers. The corresponding polyno-
mial, P(X)=X"+a X" 1+ +a, 1X +a,
is unique, since if there were two of them then their
difference would be of smaller degree and would
also have @ as a root. (One could make it monic
by dividing it through by the leading coefficient.)
Let us call P(X) the minimal polynomial of ©. The
minimal polynomial is érreducible over the field of
rational numbers: that is, it cannot be factored as a
product of two polynomials, each of smaller degree
and having rational numbers as coefficients. (If it
could, then it would not be of minimal degree,
since one of its factors would have © as a root.)
The minimal polynomial P(X) of © is a factor of
any monic polynomial G(X) with rational coeffi-
cients that has @ as root. (The greatest common
divisor of P and G is another monic polynomial
with rational coefficients that has © as a root, so
it cannot be of degree smaller than that of P and
it must therefore be P). The minimal polynomial
P(X) of © has distinct roots. (If P(X) had mul-
tiple roots, then a little elementary calculus shows
that it would share a nontrivial factor with its
derivative, P'(X). Since the derivative is of lower
degree than P(X) and again has rational coefli-
cients, the greatest common divisor of P and P’
would provide a nontrivial factorization of P(X),
contradicting its irreducibility.)

A fundamental result due to Gauss is that the
nth root of unity ¢, = e2™/" is an algebraic integer
of degree precisely ¢(n), where ¢ is EULER’S ¢-
function. For example, if p is prime, the minimal
polynomial of ¢, is

XP -1

=XPl L XP 24 X +1
<1 + ++ X 41,
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which is of degree ¢(p) =p — 1.

15 Algebraic Numbers as Ciphers

Determined by their Minimal
Polynomials

We have expressly insisted that our algebraic num-
bers are complex numbers (of a certain sort).
But another possible attitude towards an alge-
braic number, ©, an attitude at times promoted
by Kronecker among others, is to deal with @ as
an unknown satisfying only the algebraic relations
implied by the fact that it is a root of its (unique
monic) minimal polynomial with rational coeffi-
cients. For example, if the minimal polynomial of
O is P(X) = X3 — X — 1, then, according to this
view, @ is just an algebraic symbol that comes with
the rule that any occurrence of ©3 may be replaced
by © + 1 (rather as the complex number i can be
regarded as a symbol with the property that i2
may be replaced by —1). Any root of the minimal
polynomial of @ satisfies all the same polynomial
relations with rational coefficients that © satisfies;
these roots are called conjugates of ©. If © is an
algebraic number of degree n, then © has n distinct
conjugates, all of them again, of course, algebraic
numbers.

16 A Few Remarks About the
Theory of Polynomials

Central to the theory of polynomials in one
variable—and, therefore, particularly to the theory
of algebraic numbers—is the general relationship
that roots have to coefficients:

n

H(X - T;)

i=1

n—1
= X"+ Y (AT, T, T) X
7=0

The polynomial A;(T1,T5,...,T,) is homogeneous
of degree j (this means that every monomial in it
has total degree j), has integer coefficients, and is
symmetric in (i.e. unchanged by any permutation
of) the variables Ty, Ts, ..., T),.

The constant term is the product of the roots:

AT, T, ..., T) =Ty - Tp - - T,
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which is known as the norm form. The coefficient
of X1 is the sum of the roots:

Al(T17T27"'7Tn) :Tl +T2++Tn7

and this is the trace form.

When n = 2 the norm and trace are all the sym-
metric polynomials in the list. For n = 3, beyond
the norm and trace we also have the symmetric
polynomial of degree two:

Ay(Th, T, T3)
=TTy + ToTs + T5T}
=M+ T+ T3)° — (TE+ T35 + T3)}.

It is of major importance to this theory, and
more specifically to Galois theory, that the sym-
metry properties of the conjugate roots are nicely
reflected in these symmetric polynomials. In par-
ticular, we have the fundamental result that
any symmetric polynomial in Ty,T5,...,T, with
rational coefficients can be expressed as a poly-
nomial with rational coefficients in the symmetric
polynomials A;(T4,T5,...,T,), and similarly with
integral coefficients. For example, the equation
above shows that T? + T3 + T3 can be expressed
as
Ay (T, T, Ts)? — 2A5(T1, T, Ts).

17 Fields of Algebraic Numbers,
Rings of Algebraic Integers

The inverse of a nonzero algebraic number is again
an algebraic number; the sum, difference, and
product of two algebraic numbers are algebraic
numbers; the sum, difference, and product of two
algebraic integers are algebraic integers. The neat
proofs of these (latter) facts are a good demon-
stration of the power of LINEAR ALGEBRA, and in
particular of Cramer’s rule. This states that any
matrix with integer coefficients (and therefore also
any linear transformation of a finite-dimensional
vector space that preserves an integer lattice) satis-
fies a monic polynomial identity with integer coef-
ficients.

To see just how useful this remark is for find-
ing polynomial relations, and more specifically for
showing that the collection of algebraic numbers
and algebraic integers are closed under sums and
products, try your hand at showing that v/2 + /3
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is an algebraic integer. One way to do it is to search
for the monic fourth-degree polynomial equation
that it satisfies. But this is hardly a beautiful cal-
culation! If, however, you are familiar with lin-
ear algebra, then a less painful route is to form
the four-dimensional vector space over the rational
numbers, generated by 1, v/2, v/3, and /6 (which
are linearly independent when the scalars are
rational). Multiplication by V2 + /3 defines a lin-
ear transformation T of this vector space, and one
can compute its characteristic polynomial P. The
Cayley—Hamilton theorem says that P(T) = 0, and
this translates into the statement that v/2 4+ v/3 is
a root of P.

These “closure properties” we have just dis-
cussed lead us to study, in complete generality,
FIELDS of algebraic numbers and RINGS of algebraic
integers. A number field is a field that is generated
(as a field) by finitely many algebraic numbers. A
standard result tells us that any number field K
can in fact be generated by a single carefully cho-
sen algebraic number. The degree of this algebraic
number equals the degree of K, which is defined to
be the dimension of K when K is viewed as a vector
space over the field Q of rational numbers. One of
the main introductory observations of Galois the-
ory is that if K is a number field of degree n, then
there are exactly n distinct ring-homomorphisms
(“imbeddings”) ¢ : K — C from K into the field
of complex numbers. (This means that ¢ sends 1
to 1 and respects the addition and multiplication
laws within K. That is, ¢(z + y) = u(x) + t(y)
and «(z - y) = ¢(z) - t(y).) From these imbeddings,
we can construct some very useful rational-valued
functions on K. For any element x in K, we form
the n complex numbers x1, xo,...,x, that are the
images of z under the n different imbeddings of K
into C. We then let

a](x) = A]'(th?a e axn)a

where A;(X3, Xs,...,X,,) is the jth symmetric
polynomial of Section 14 above. (Because the poly-
nomials A; are symmetric, we do not have to worry
about the order of the images x1, x2, ..., %, in the
above expression.) It is not immediately obvious
that the values of a; are rational numbers, but
there is a theorem that tells us this.

If an algebraic number © in K generates K (as
a field), then the rational numbers a;(©) are the
coefficients of its minimal polynomial; in general
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they are the coefficients of a power of its min-
imal polynomial. The most prominent of these
functions are the multiplicative function a,(z) =
T1-Xg----- Ty, called the norm function, usually
denoted  — Ng/g(x), and the additive function
a1(x) = z1+x2+- - -+ 2y, called the trace function,
usually denoted 2 — traces g(x).

The trace function can be used to define a funda-
mental symmetric BILINEAR FORM on the Q-vector
space K,

<xay> = traceK/Q(x : y)a

which turns out to be nondegenerate. This nonde-
generacy, together with the fact that if z, y are
both algebraic integers, then (z,y) is an ordinary
integer, can be used to show that the ring O(K)
of all algebraic integers in K is finitely generated
as an additive group. More specifically, there is a
basis of algebraic integers in K, that is, a finite
set {©1,604,...,0,}, such that any other algebraic
integer in K can be expressed as an “ordinary”
integer combination of the numbers ©;.

Let us summarize this structure. The number
field K is a finite-dimensional vector space over Q
and comes equipped with a nondegenerate bilinear
symmetric form (x,y) — (z,y), and also with a
lattice O(K) C K. Moreover, the restriction of the
bilinear form to O(K) takes on integral values.

The discriminant of K, denoted D(K), is
defined to be the determinant of the matrix whose
ij-entry is (©;,0;), for {61,0,,...,60,} a basis
of the lattice O(K); this determinant does not
depend on the basis chosen.

The discriminant represents important informa-
tion about the number field K. For one thing, there
is a natural generalization to any number field of
the notions of splitting and ramification that we
discussed for quadratic fields, and the prime divi-
sors p of D(K) are precisely those prime numbers
that ramify in the field extension K. By a theorem
of MINKOWSKI, the absolute value of the discrim-
inant D(K) of a number field K of degree n is
always greater than

(3)-(5)

This is greater than 1 unless K is the field of
rational numbers. It follows that any nontrivial
extension of the field of rational numbers has some
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prime that ramifies in it, a result that would be
very hard to prove without the help of the alge-
braic structures we have just defined. This integer
D(K) really is quite a discriminating “tag” for our
number field K, for, by a theorem of HERMITE,
given any integer D there are only finitely many
different number fields with discriminant equal to
D. (Not all integers can be discriminants: as is true
for quadratic number fields, the integers D that are
discriminants are either divisible by 4 or else con-
gruent to 1 modulo 4.)

18 On the Size(s) of the Absolute
Values of All Conjugates of an
Algebraic Integer

As we have just seen, the coefficients of the mini-
mal polynomial for an algebraic integer © are given
by the ordinary integers a;(©1, s, ..., 6, ), where
the numbers ©; are all the conjugates of @. The
sizes of all these coefficients must therefore all be
less than some universal number M that depends
only on the degree of @ and the largest absolute
value of any of its conjugates. As a consequence,
given any n and any positive number B, there are
only finitely many algebraic integers @ of degree
less than n such that the absolute values of © and
its conjugates are all less than B. (This is because
for any n and M there are only finitely many poly-
nomials of degree less than or equal to n with the
absolute values of all their integer coefficients at
most M.) This finiteness result is the key to the
following observation, due to Kronecker: if © is an
algebraic number and if the absolute values of @
and of all of its conjugates are equal to 1, then @
is a root of unity. Indeed, all the powers of © have
degree at most that of @, and they enjoy the same
property: their absolute value, and that of all their
conjugates, is equal to 1. Consequently, there are
only finitely many such algebraic numbers, from
which it follows that there must be at least one
coincidence of the form ©% = @° for different a
and b. But this can happen only if © is a root of
unity.

19 Weil Numbers

To follow this thread for just a bit, let us gen-
eralize the hypothesis of Kronecker’s observation,
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and define a Weil number? of absolute value 7 to
be a nonzero algebraic integer such that it and all
of its conjugates have the same absolute value r.
By the discussion in the previous section there are
only finitely many distinct Weil numbers of given
degree and absolute value. By Kronecker’s theo-
rem, which we have just described, the Weil num-
bers of absolute value 1 are precisely the roots
of unity. Here are further basic facts that you
might try to prove. First, the quadratic Weil num-
bers w are precisely those quadratic algebraic inte-
gers such that [trace(w)| < 2¢/|N(w)| = 2/Jww],
where w’ is the (algebraic) conjugate of w. Sec-
ond, if p is prime then a quadratic Weil number
w of absolute value ,/p is a prime element of the
(unique) ring of quadratic integers Rq that con-
tains w, and therefore gives a prime factorization
ww’ = £p of the integer p in that ring.

Weil numbers of absolute value p*/2, where p
is again a prime number and v is a natural num-
ber, are extremely important in arithmetic: they
hold the key to counting numbers of rational solu-
tions of systems of polynomial equations over finite
fields. For just one concrete example, the Gauss-

ian integer w := —1 41 and its algebraic conjugate
(which, in this instance, is also its complex con-
jugate) @ = —1 —i are Weil numbers (of absolute

value 2) that control the number of solutions of the
equation y2 —y = x® — x over all finite fields of size
a power of 2. Specifically, the number of solutions
of that equation over a field of order 2¥ is given by

the formula
2V — (=1 —1)" = (-14+1)"

(which is an ordinary integer). This leads to
another immense chapter of mathematics.

20 Epilogue

The single symmetry a — o', the algebraic conju-
gation in the rings Ry that we have discussed, gave
birth, thanks to ABEL and GALOIS in the begin-
ning of the nineteenth century, to the rich study
of (Galois) groups of symmetries of general num-
ber fields (see THE INSOLUBILITY OF THE QUIN-
TIC). This study continues with great intensity,

3This is a weaker condition than is usually required for
Weil numbers but our deviation from standard usage should
not be the cause of too much confusion.
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since these Galois groups and their linear represen-
tations hold the key to a very detailed understand-
ing of number fields. In its modern dress, algebraic
number theory is closely connected with what is
often called ARITHMETIC ALGEBRAIC GEOMETRY.
Kronecker’s dream of getting explicit control of
a wealth of algebraic number theoretic material
by expressing algebraic numbers in terms of natu-
ral analytic functions has not yet been fully real-
ized. Nevertheless, the scope of this dream (and,
one might also add, the supply of natural ana-
lytic and algebraic functions) has expanded sub-
stantially: the full range of algebraic geometry and
group representation theory is now being brought
to bear on it. This is done, for example, by the
LANGLANDS PROGRAM, which among other things
works with objects known as Shimura varieties. On
the one hand, these VARIETIES have close connec-
tions with the theory of group representations and
classical algebraic geometry, which greatly helps us
to understand them. On the other hand, they are
a rich source of concrete linear representations of
Galois groups of number fields. This program, one
of the glories of current mathematics, will, I expect,
make a terrific chapter for a Companion to Math-
ematics volume to be written at the beginning of
the next century.
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