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Abstract. For all but one positive integer triplet (a, b, c) with a 6 b 6 c
and b 6 6, we decide whether there are algebraic numbers α, β and
γ of degrees a, b and c, respectively, such that α + β + γ = 0. The
undecided case (6, 6, 8) will be included in another paper. These results
imply, for example, that the sum of two algebraic numbers of degree 6
can be of degree 15 but cannot be of degree 10. We also show that if a
positive integer triplet (a, b, c) satisfies a certain triangle-like inequality
with respect to every prime number then there exist algebraic numbers
α, β, γ of degrees a, b, c such that α+ β + γ = 0. We also solve a similar
problem for all (a, b, c) with a 6 b 6 c and b 6 6 by finding for which a, b, c
there exist number fields of degrees a and b such that their compositum
has degree c. Further, we have some results on the multiplicative version
of the first problem, asking for which triplets (a, b, c) there are algebraic
numbers α, β and γ of degrees a, b and c, respectively, such that αβγ = 1.

1. Introduction and results

The purpose of this paper is to propose the following problem:
Find all possible triplets (a, b, c) ∈ N3 for which there exist three algebraic
numbers α, β, γ, with degrees a, b, c (over Q), respectively, such that

α + β + γ = 0.

This is our abc degree problem for algebraic numbers. When such α, β, γ
exist, we say that the triplet (a, b, c) is sum-feasible. It seems that this abc
degree problem for sums of algebraic numbers is unrelated to the famous abc
conjecture for integers proposed by Oesterlé and Masser in 1985.

Even for small values of a, b and c it is sometimes very difficult to decide
whether the triplet (a, b, c) is sum-feasible. See, for instance, the proof of
Theorem 38, where we establish that (6, 6, 10) is not sum-feasible. With
the methods used here we were, however, unable to settle our abc degree
problem in the case (6, 6, 8). This case has now been shown elsewhere to not
be sum-feasible – see [6].
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We propose a similar problem for the compositum of fields by saying that
a triplet (a, b, c) ∈ N3 is compositum-feasible if there are number fields K
and L of degrees a and b, respectively, over the field of rationals Q such that
the degree of their compositum KL is c. For example, the triplet (2, 2, 4) is
compositum-feasible (K = Q(

√
2), L = Q(

√
3), KL = Q(

√
2,
√

3)), whereas
the triplet (2, 2, 5) is not compositum-feasible, since [KL : Q] cannot exceed
[K : Q] · [L : Q].

Similarly, we say that a triplet (a, b, c) ∈ N3 is product-feasible if there are
algebraic numbers α, β and γ of degrees (over Q) a, b and c, respectively,
such that αβγ = 1.

Note that if a triplet (a, b, c), a 6 b 6 c, is sum-feasible, compositum-
feasible or product-feasible then c 6 ab. If (a, b, c), a 6 b 6 c, is compositum-
feasible then a | c and b | c. These are obvious necessary conditions. In
Section 2 we give another simple necessary condition for a triplet to be sum-
feasible, compositum-feasible or product-feasible (see Lemma 14).

These three problems are related.

Proposition 1. If the triplet (a, b, c) ∈ N3 is compositum-feasible then it is
also sum-feasible and product-feasible.

Proof. Suppose that K and L are number fields. Then, by the primitive
element theorem, K = Q(α) and L = Q(β) for some α ∈ K and β ∈ L.
Furthermore, the compositum KL = Q(α, β) can be expressed as KL =
Q(α + tβ) and also as KL = Q(α(t + β)) for all but finitely many rational
numbers t. See the proof of Theorem 4.6 in [16] for the case α + tβ. The
proof for α(t+ β) is the same. Indeed, consider the field Kt = Q(α(t+ β)).
Since Q ⊆ Kt ⊆ Q(α, β), there are two distinct rational numbers t and t′

for which Kt = Kt′ . Assume without loss of generality that α(t′ + β) 6= 0.
Then, as the quotient of α(t + β) and α(t′ + β) belongs to Kt, we obtain
(t − t′)/(t′ + β) = (t + β)/(t′ + β) − 1 ∈ Kt. Thus β ∈ Kt. This implies
α ∈ Kt, so that Kt = Q(α, β).

Since [K : Q] = a, [L : Q] = b, [KL : Q] = c, choosing an appropriate
t ∈ Q, in the additive case we see that the degrees of α, tβ and −α− tβ are
a, b, c, respectively. In the multiplicative case, the degrees of α, t + β and
α−1(t+ β)−1 are a, b, c. �

The converse of Proposition 1 is false in general. Clearly, if the triplet
(a, b, c) is sum-feasible (resp. product-feasible) then for any permutation
{a′, b′, c′} of {a, b, c} the triplet (a′, b′, c′) is also sum-feasible (resp. product-
feasible). However, the compositum problem is not symmetric with respect
to a, b, c. The triplet (n, n, 1), n > 1, is not compositum-feasible, since the
degree of the compositum of two number fields of degree n is divisible by
n. Meanwhile (n, n, 1) is sum-feasible and product-feasible: for α = n

√
2,

β = −α, γ = 0 we have α + β + γ = 0, whereas α′ = n
√

2, β′ = α′−1, γ′ = 1
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gives α′β′γ′ = 1. The less trivial example (4, 4, 6) (which is sum-feasible and
product-feasible but not compositum-feasible) follows from Proposition 29
(ii) (Section 3). The reason for not being compositum-feasible is that 4
does not divide 6. We do not know of any example (a, b, c) ∈ N3 satisfying
a | c, b | c which is sum-feasible (or product-feasible) but is not compositum-
feasible.

We have found little in the literature directly related to our problem
apart from the ‘generic’ case (a, b, ab) which has long been known to be
compositum-feasible (and hence sum-feasible and product-feasible) - see Pro-
position 19 below. In particular, one result, due to Isaacs [11] who generalized
an earlier result of Kaplansky [15, p. 71], implies that if α has degree a (over
Q), β has degree b and gcd(a, b) = 1 then α+ β has degree ab. Let us state
this result in the following symmetric form.

Proposition 2 ([11]). If the triplet (a, b, c) ∈ N3 is sum-feasible and two
particular numbers from the list a, b, c are coprime then the third number is
the product of these two.

See also [2], [7] and [8], where some conditions for the degree of α + β
to be ‘maximal possible’ deg(α) · deg(β) are given without assumption that
deg(α) and deg(β) are coprime. (Throughout, we denote by deg(α) the
degree of an algebraic number α over Q.) In particular, it is remarked in [2,
p. 261] that the proof of Isaac’s result quoted above shows that if (a, b, ab) is
compositum-feasible then it is sum-feasible (i.e., a special case of Proposition
1).

We conjecture that

Conjecture 3. If the triplet (a, b, c) ∈ N3 is sum-feasible then it is also
product-feasible.

The converse of Conjecture 3 is false. The triplet (2, 3, 3) is not sum-
feasible, by Proposition 2. Hence (2, 3, 3) is not compositum-feasible either.
However, (2, 3, 3) is product-feasible. For example, the numbers

α = (−1− i
√

3)/4, β =
3
√

2, γ = (−1 + i
√

3)/
3
√

2

have product 1 and degrees 2, 3, 3, respectively.

Conjecture 4. If the triplets (a, b, c), (a′, b′, c′) ∈ N3 are sum-feasible (resp.
product-feasible, compositum-feasible) then the triplet (aa′, bb′, cc′) is also
sum-feasible (resp. product-feasible, compositum-feasible).

Some partial cases of Conjecture 4 are given in Lemma 26, Corollary 27,
Proposition 28 and Proposition 32.

The main result of this paper is the following.

Theorem 5. All the triplets (a, b, c) of positive integers with a 6 b 6 c,
b 6 6 that are sum-feasible are given in Table 1, with one possible exception
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(6, 6, 8). Every such triplet is also compositum-feasible, except for (4, 4, 6),
(4, 6, 6), (6, 6, 8), (6, 6, 9) and (6, 6, 15).

Table 1. Triplets (a, b, c), a 6 b 6 c, b 6 6, that are sum-
feasible. (Because of [6, Theorem 1], the case (6, 6, 8) does not
appear.)

b \ a 1 2 3 4 5 6

1 1

2 2 2, 4

3 3 6 3, 6, 9

4 4 4, 8 12 4, 6, 8,
12, 16

5 5 10 15 20 5, 10,
20, 25

6 6 6, 12 6, 12, 18 6, 12, 24 30 6, 9, 12,
15, 18, 24,

30, 36

By our observation above (Proposition 1), if the triplet (a, b, c) is not sum-
feasible then it is not compositum-feasible. For example, there are exactly
five triplets (a, b, c), a 6 b 6 c, with a = b = 4 that are sum-feasible, namely
(4, 4, 4), (4, 4, 6), (4, 4, 8), (4, 4, 12) and (4, 4, 16). However, since 6 is not a
multiple of 4, the triplet (4, 4, 6) is not compositum-feasible. Taking K =
Q(
√

2,
√

3) and L, say, Q(
√

2,
√

3), Q(
√

2,
√

5), Q(
√

5,
√

7) we see that the
triplets (4, 4, 4), (4, 4, 8), (4, 4, 16) are compositum-feasible. Further, taking
any quartic algebraic number α such that the Galois group of Q(α) over
Q is the full symmetric group S4 and its conjugate α′ 6= α, we see that
[Q(α) : Q] = [Q(α′) : Q] = 4 and [Q(α, α′) : Q] = 12. This shows that the
triplet (4, 4, 12) is also compositum-feasible.

Let p be a prime number. For a positive integer n we define the nonnegative
integer ordp(n) by

pordp(n) | n and pordp(n)+1 - n.
We say that a triplet (a, b, c) satisfies the exponent triangle inequality with
respect to a prime number p if

ordp(a) + ordp(b) > ordp(c), ordp(b) + ordp(c) > ordp(a) and
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ordp(a) + ordp(c) > ordp(b).

For example, the triplet (6, 6, 10) satisfies the exponent triangle inequality
with respect to every prime number p except for p = 5.

Theorem 6. If a triplet of positive integers (a, b, c) satisfies the exponent
triangle inequality with respect to every prime number then the triplet (a, b, c)
is sum-feasible and product-feasible.

The exponent triangle inequality condition in Theorem 6 is not necessary.
For instance, the triplet (3, 3, 6) is sum-feasible and product-feasible (e.g.,
if α and α′ are two distinct roots of the polynomial x3 − x − 1 then the
degrees of α and α′−1 are 3, the degree of α′/α is 6 and α ·α′−1 · (α′/α) = 1),
while the exponent triangle inequality with respect to the prime number 2
is not satisfied. In fact, one can be ‘very far’ from the exponent triangle
inequality. By Proposition 29 (i) combined with Proposition 1, the triplet
(a, b, c) = (2m + 1, 2m + 1, 2m(2m + 1)) is sum-feasible, whereas

ord2(c)− ord2(b)− ord2(a) = m

can be arbitrarily large.
We remark that the condition of Theorem 6 is not sufficient for a triplet

to be compositum-feasible. For example, the triplet (6, 10, 15) satisfies the
exponent triangle inequality with respect to every prime number. However,
it is not compositum-feasible, because the compositum of two extensions of
Q of degrees 6 and 10 has degree divisible by lcm(6, 10) = 30.

More generally, an extra condition for a triplet (a, b, c) ∈ N3 to be compo-
situm-feasible can be written as

max{ ordp(a), ordp(b)} 6 ordp(c)

for every prime number p. This necessary condition becomes sufficient for
triplets (a, b, c) satisfying the exponent triangle inequality with respect to
any prime number. This result can readily be written in the following form.

Theorem 7. If a triplet of positive integers (a, b, c) satisfies

max{ ordp(a), ordp(b)} 6 ordp(c) 6 ordp(a) + ordp(b) (1)

for every prime number p then the triplet (a, b, c) is compositum-feasible.

Let (a, b, c) be any triplet of positive integers. It is easy to see that
the triplet

(
a(abc)n, b(abc)n, c(abc)n+1

)
satisfies (1) for all primes p pro-

vided that n is large enough. Therefore Theorem 7 implies that the triplet(
a(abc)n, b(abc)n, c(abc)n+1

)
is compositum-feasible (and hence sum-feasible

and product-feasible) for each sufficiently large n ∈ N.
Note that for p a prime number and t ∈ N the triplet (p, t, t) is sum-feasible

if and only if p | t. The necessity follows from Proposition 2, the sufficiency
from the example α = −2 · 21/p, β = 21/p + 3p/t, γ = 21/p − 3p/t, where t is a

5



positive integer divisible by p. In particular, for p = 2, the triplet (2, t, t) is
sum-feasible if and only if 2 | t. In case of the product we have the following
result.

Theorem 8. The triplet (2, t, t) ∈ N3 is product-feasible if and only if 2 | t
or 3 | t.

The paper is organized as follows. In Section 2 we prove auxiliary results
and some necessary conditions for a triplet to be sum-feasible or compositum-
feasible. Section 3 contains some explicit constructions for Table 1 as well
as the proofs of Theorems 6 and 7. In Section 4 we prove Theorem 8 and
provide impossibility proofs which are used in the proof of Theorem 5 later
on. The proof of Theorem 5 is divided into two parts. At the end of Section 3
we prove that each triplet given in Table 1 is sum-feasible. The proof that
no other triplets are sum-feasible is given at the end of Section 4.

2. Lemmas

Lemma 9 (Part of [23, Lemma 1]). Let α1, α2, α3 be distinct conjugate
algebraic numbers. Then α2 ± α3 6= ±2α1 for all four choices of signs ±.

Let α1, α2, . . . , αn be the roots of a nonzero separable polynomial f(x) ∈
Q[x] of degree n > 2. An additive relation between α1, α2, . . . , αn is a
relation of the kind

a1α1 + a2α2 + · · ·+ anαn ∈ Q,

where all the aj ∈ Q. We call this additive relation trivial if a1 = a2 = . . . =
an.

Recall that the Galois group G of f is 2-transitive if for any two pairs of the
roots of f , say, α, α′, α 6= α′, and αi, αj, αi 6= αj, there is an automorphism
σ ∈ G such that σ(α) = αi and σ(α′) = αj.

Lemma 10 (Part of Theorem 3 in [1] – see also [24]). Suppose that the Galois
group of a separable polynomial f(x) ∈ Q[x] of degree n is 2-transitive. Then
there are no nontrivial additive relations between the roots of f .

For a polynomial of prime degree we have the following.

Lemma 11 (Special case of [5, Theorem 2]). There are no nontrivial additive
relations between the roots α1, α2, . . . , αp of an irreducible polynomial f(x) ∈
Q[x] of prime degree p.

Lemma 12 ([16, Theorem 1.12]). If K and L are number fields and K/Q is
Galois then

[KL : Q] =
[K : Q] · [L : Q]

[K ∩ L : Q]
.
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Lemma 13 ([21]). Suppose that α is a root of an irreducible polynomial
f(x) ∈ Q[x]. Let r be the number of linear factors of f(x) over Q(α). Then
r divides the degree of f(x).

As usual, denote by lcm(a, b) and gcd(a, b) the least common multiple and
the greatest common divisor of positive integers a and b, respectively.

Lemma 14. Suppose that a triplet (a, b, c) is sum-feasible, product-feasible
or compositum-feasible. Then c | lcm(a, b) · t for some positive integer t 6
gcd(a, b).

Proof. Assume that a triplet (a, b, c) is sum-feasible, product-feasible or com-
positum-feasible. Then there exist algebraic numbers α, β, γ or degrees a,
b, c, respectively, such that α + β + γ = 0 or αβγ = 1 or Q(α, β) = Q(γ).
In either case, it is clear that the degree D of the compositum Q(α, β) is
divisible by lcm(a, b), since a | D and b | D, so that D = lcm(a, b) · t say.
Clearly,

D = [Q(α, β) : Q] = [Q(α, β) : Q(β)]·[Q(β) : Q] 6 [Q(α) : Q]·[Q(β) : Q] = ab.

Hence t 6 ab/lcm(a, b) = gcd(a, b). Finally, note that c | D, because Q(γ)
is a subfield of Q(α, β). �

3. Constructions

Let K be a number field of degree n over Q, with OK its ring of integers,
dK its discriminant, and σ1, . . . , σn be the n distinct Q-invariant embeddings
of K into C. If α is an arbitrary element of K then its discriminant, which
we shall denote by dK(α), is defined by

dK(α) =
∏

16i<j6n

(σi(α)− σj(α))2.

It is well-known that if α ∈ OK then dK(α) is a rational integer which is
divisible by dK (see [20, Proposition 2.13]).

Lemma 15 ([19, Exercise 4.5.4 and solution]). If α is a root of an irreducible
polynomial xn + ax+ b ∈ Z[x], n > 2, then

dK(α) = (−1)n(n−1)/2
(
nnbn−1 + (−1)n−1(n− 1)n−1an

)
where K = Q(α).

Lemma 16. For any positive integers n and D there exists an extension
K/Q of degree n whose discriminant dK is coprime to D.

Proof. If D = 1 then one can take any number field K of degree n. If n = 1
then one can take K = Q, since dQ = 1. So we can assume that D > 2 and
n > 2.
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Suppose that the set of primes that divide D is {p1, p2, . . . , pr, q1, q2, . . . , qs}
where pi | n and qj - n for i = 1, . . . , r and j = 1, . . . , s. Choose a prime
number q such that

q > max{p1, . . . , pr, q1, . . . , qs}.
Eisenstein’s Criterion implies the irreducibility of the polynomial

xn + qq1 · · · qsx+ q.

Let α be any root of this polynomial. Then, by Lemma 15, we obtain

dQ(α)(α) = (−1)n(n−1)/2 · qn−1
(
nn + (−1)n−1(n− 1)n−1q(q1 · . . . · qs)n

)
.

It is easy to see that the number dQ(α)(α) is coprime to p1 · . . . · prq1 · . . . · qs,
and therefore coprime to D. Hence the discriminant of the number field
K = Q(α), which is a divisor of dK(α), is coprime to D. �

Lemma 17 ([10, Theorem 87],[19, Exercise 6.5.14 and solution]). If K and
L are number fields, of degrees m and n, respectively, whose discriminants
are coprime numbers, then their compositum is a field of degree mn.

Lemma 18 (Part of [10, Theorem 88]). If K and L are number fields of
degrees m and n, respectively, with coprime discriminants dK and dL, re-
spectively, then the discriminant of their compositum KL is dnKd

m
L .

Proposition 19. For any positive integers a and b the triplet (a, b, ab) is
compositum-feasible and hence both sum-feasible and product-feasible.

Proof. Let K be a number field of degree a. By Lemma 16, there exists
an extension L/Q of degree b whose discriminant dL is coprime to dK . By
Lemma 17, we have [KL : Q] = ab, and hence (a, b, ab) is compositum-
feasible. By Proposition 1, the triplet (a, b, ab) is both sum-feasible and
product-feasible. �

Lemma 20. Suppose that α and β are algebraic numbers and that β is of
the same degree d over Q and over Q(α). Then for any conjugate α′ of α the
degree of β over Q(α′) is d.

Proof. Assume that β has degree n, 1 6 n < d, over the field Q(α′), where
α′ is a conjugate of α. Then β is a root of a polynomial P of degree n
with coefficients in Q(α′). Take an automorphism σ of the Galois group of
Q(α, β)/Q which maps α′ to α. It maps P to a polynomial of degree n with
coefficients in Q(α) whose root is σ(β). So the conjugate β′ = σ(β) of β over
Q has degree at most n over Q(α), a contradiction. �

Proposition 21. Suppose that α and β are algebraic numbers of degrees m
and n over Q, respectively. Let α1 = α, α2, . . . , αm be the distinct conjugates
of α, and let β1 = β, β2, . . . , βn be the distinct conjugates of β. If β is of
degree n over Q(α) then all the numbers αi + βj (resp. αiβj), 1 6 i 6 m,
1 6 j 6 n, are conjugate over Q (although not necessarily distinct).
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Proof. Since β is of degree n over Q(α), for any j, 1 6 j 6 n, there exists an
automorphism of the Galois group of Q(α, β)/Q which fixes α and maps β
to βj. Hence all the numbers α + βj (resp. αβj), 1 6 j 6 n, are conjugate
over Q.

Note that [Q(α, β) : Q] = [Q(α) : Q] · [Q(α, β) : Q(α)] = mn, and therefore
α is of degree m over Q(β). By Lemma 20, α is of degree m over Q(βj) for
any j, 1 6 j 6 n. Now fix j, 1 6 j 6 n. For any i, 1 6 i 6 m, there exists
an automorphism of the Galois group of Q(α, β)/Q which fixes βj and maps
α to αi. Hence all mn numbers αi + βj (resp. αiβj), where 1 6 i 6 m and
1 6 j 6 n, are conjugate over Q. �

Lemma 22. Suppose that p is a prime number and u, v, w are nonnegative
integers such that max(u, v) 6 w 6 u + v. Then for any positive integer D
there exist number fields K and L of degrees pu and pv, respectively, such
that the degree of the compositum KL is pw and the discriminant dKL of KL
is coprime to D.

Proof. Set C = u+ v−w, A = w− v and B = w− u, so that A > 0, B > 0,
C > 0. By Lemma 16, there exist number fields K1, L1 and M of degrees
pC , pA and pB, respectively, such that

gcd(dK1 , D) = 1,
gcd(dL1 , D · dK1) = 1,
gcd(dM , D · dK1 · dL1) = 1.

Then, by Lemma 17, we have

[K1L1 : Q] = pC · pA = pu,

[K1M : Q] = pC · pB = pv,

[K1L1M : Q] = pC · pA · pB = pw.

Put K = K1L1 and L = K1M. Lemma 18 implies that the discriminant dKL
of the number field KL = K1L1M is coprime to D. �

Note that in Proposition 1 the algebraic numbers α, β and the rational
number t can be chosen so that α is not a conjugate of −α, t + β is not a
conjugate of −t − β and α−1(t + β)−1 is not a conjugate of −α−1(t + β)−1.
Combining this argument with Lemma 22, by choosing an appropriate α, β
and t ∈ Q in the multiplicative case, we obtain the following.

Corollary 23. Suppose that p is a prime number and u, v, w are nonnegative
integers such that max(u, v) 6 w 6 u + v. Then for any positive integer D
there exist algebraic numbers α, β, γ of degrees pu, pv, pw such that α+β+γ =
0 (resp. αβγ = 1) and the discriminant dQ(α,β) of the number field Q(α, β)
is coprime to D.
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Furthermore, in the multiplicative case, αβγ = 1, the numbers α, β and γ
can be chosen so that −α is not a conjugate of α, −β is not a conjugate of
β and −γ is not a conjugate of γ.

Note that one can also give an explicit construction illustrating Lemma 22
and Corollary 23 assuming that p does not divide D. Take u distinct prime
numbers p1, . . . , pu and v distinct prime numbers q1, . . . , qv so that the first
C = u + v − w (where w in the range max(u, v) 6 w 6 u + v) numbers in
those sets are the same

p1 = q1, . . . , pC = qC ,

i.e.,

{p1, p2, . . . , pu} ∩ {q1, q2, . . . , qv} = {p1, p2, . . . , pC}.
Assume that the prime numbers pi (1 6 i 6 u) and qi (1 6 i 6 v) are all
greater than p and D and that p does not divide D. Set

K = Q(p
1/p
1 , . . . , p1/pu ), L = Q(q

1/p
1 , . . . , q1/pv ).

Then

KL = Q(p
1/p
1 , . . . , p1/pu , q

1/p
C+1, . . . , q

1/p
v ).

Clearly, K is of degree pu, L is of degree pv and KL is of degree pupv−C = pw

with discriminant coprime to D.
To illustrate Corollary 23 we can take

α = p
1/p
1 + · · ·+ p1/pu , β = q

1/p
1 + · · ·+ q1/pv ,

and

γ = −2p
1/p
1 − · · · − 2p

1/p
C − p

1/p
C+1 − · · · − p

1/p
u − q

1/p
C+1 − · · · − q

1/p
v

for the sum and

α = (p
1/p
1 + 1) . . . (p1/pu + 1), β = (q

1/p
1 + 1) . . . (q1/pv + 1), γ = (αβ)−1

for the product. In both cases, deg(α) = pu, deg(β) = pv, deg(γ) = pupv−C =
pw.

Lemma 24. Suppose that α, β, γ, δ, µ and ν are algebraic numbers of degrees
a, b, c, a′, b′ and c′, respectively, such that α + β + γ = 0 (resp. αβγ = 1)
and δ + µ + ν = 0 (resp. δµν = 1 and, in addition, δ is not a conjugate of
−δ, µ is not a conjugate of −µ, ν is not a conjugate of −ν). If

gcd(dQ(α), dQ(δ)) = gcd(dQ(β), dQ(µ)) = gcd(dQ(γ), dQ(ν)) = 1

then the triplet (aa′, bb′, cc′) is sum-feasible (resp. product-feasible).

Proof. Let us first deal with the additive case when

α + β + γ = δ + µ+ ν = 0.
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Since gcd(dQ(α), dQ(δ)) = 1, by Lemma 17, we obtain [Q(α, δ) : Q] = aa′. We
claim that

Q(α, δ) = Q(α + δ). (2)

Indeed, let α1, α2, . . . , αa and δ1, δ2, . . . , δa′ be all the distinct conjugates of α
and δ, respectively. Without loss of generality we may assume that a, a′ > 2,
since otherwise (2) automatically holds.

By Proposition 21, all the numbers αi + δj, 1 6 i 6 a, 1 6 j 6 a′, are
conjugate. Suppose that Q(α, δ) 6= Q(α + δ). Then αi + δj = αk + δl with
certain i 6= k and j 6= l. So αi − αk = δl − δj. The difference of two distinct
conjugates of an algebraic number of degree at least two is irrational, e.g., by
trace consideration or by Hilbert’s theorem 90. (See [9] for the description of
all algebraic numbers expressible as the difference of two conjugate numbers.)
Therefore,

L := Q(α)Gal ∩Q(δ)Gal 6= Q, (3)

where KGal denotes the Galois closure of the number field K.
Since L = Q(α)Gal ∩Q(δ)Gal 6= Q, by Minkowski’s theorem, we must have

|dL| > 1. However, the discriminants of the fields Q(α)Gal and Q(δ)Gal are
both divisible by dL, which is impossible in view of gcd(dQ(α), dQ(δ)) = 1. (For
any prime number p we have p | dK if and only if p | dKGal ; see [20, p. 159].)
This proves (2).

Analogously, we obtain [Q(β, µ) : Q] = bb′ and Q(β, µ) = Q(β + µ). Also,
[Q(γ, ν) : Q] = cc′ and Q(γ, ν) = Q(γ + ν). Hence

deg(α + δ) = [Q(α, δ) : Q] = aa′, (4)

deg(β + µ) = [Q(β, µ) : Q] = bb′, (5)

deg(γ + ν) = [Q(γ, ν) : Q] = cc′ (6)

and (α + δ) + (β + µ) + (γ + ν) = 0. This completes the proof of additive
version of the lemma.

To prove the multiplicative version, where αβγ = δµν = 1, we first claim
that

Q(α, δ) = Q(αδ). (7)

As above, let α1, α2, . . . , αa and δ1, δ2, . . . , δa′ be all the distinct conjugates
of α and δ, respectively. We may also assume that a, a′ > 2, since otherwise
(7) certainly holds.

Suppose that Q(α, δ) 6= Q(αδ). Then αiδj = αkδl with some i 6= k and
j 6= l. So αi/αk = δl/δj. We shall prove that in this case (3) also holds.
Indeed, observe that the quotient of two distinct conjugate algebraic numbers
is rational if and only if it is a root of unity. The only such number distinct
from 1 is −1. So δl/δj ∈ Q if and only if δl = −δj which is impossible, by
our extra assumption that δ is not a conjugate of −δ. Now, exactly the same
argument as above leads to a contradiction and completes the proof of (7).
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Next, by the same argument, we must have [Q(β, µ) : Q] = bb′ and
Q(β, µ) = Q(βµ) and also [Q(γ, ν) : Q] = cc′ and Q(γ, ν) = Q(γν). Hence,
instead of (4)–(6), we obtain

deg(αδ) = [Q(α, δ) : Q] = aa′,

deg(βµ) = [Q(β, µ) : Q] = bb′,

deg(γν) = [Q(γ, ν) : Q] = cc′

and (αδ) · (βµ) · (γν) = 1. �

Remark 25. In fact, if α, β, γ, δ, µ and ν are algebraic numbers of degrees
a, b, c, a′, b′ and c′, respectively, such that α+ β + γ = 0 and δ + µ+ ν = 0
and if

[Q(α, δ)] = aa′, [Q(β, µ)] = bb′ and [Q(γ, ν)] = cc′

then there is a rational number t such that

deg(α + tδ) = aa′, deg(β + tµ) = bb′ and deg(γ + tν) = cc′.

Since (α+tδ)+(β+tµ)+(γ+tν) = 0, the triplet (aa′, bb′, cc′) is sum-feasible.

Lemma 26. Suppose that K1, L1, K2, L2 are number fields of degrees a1,
b1, a2, b2, respectively. Let c1 = [K1L1 : Q] and c2 = [K2L2 : Q], and
suppose that the discriminant dK1L1 of the compositum K1L1 is coprime to the
discriminant dK2L2 of K2L2. Then the triplet (a1a2, b1b2, c1c2) is compositum-
feasible.

Proof. It is well-known that if K is a subfield of a number field L then dK
divides dL (see, e.g., [20, Proposition 2.16]). So the discriminant of any
subfield of K1L1 is coprime to the discriminant of any subfield of K2L2.
Hence, by Lemma 17, we have

[K1K2 : Q] = a1a2,

[L1L2 : Q] = b1b2,

[K1L1K2L2 : Q] = c1c2.

Here K1L1K2L2 is the compositum of K1L1 and K2L2 which coincides with
the compositum of K1K2 and L1L2. Therefore the triplet (a1a2, b1b2, c1c2) is
compositum-feasible. �

Corollary 27. Suppose that p is a prime number and u, v, w are nonnegative
integers such that max(u, v) 6 w 6 u + v, and that the triplet (a, b, c) ∈ N3

is compositum-feasible. Then the triplet (apu, bpv, cpw) is also compositum-
feasible.
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Proof. Since the triplet (a, b, c) is compositum-feasible, there exist number
fields K1 and L1 of degrees a and b, respectively, such that the degree of the
compositum K1L1 is c. By Lemma 22 with D = dK1L1 , there exist number
fields K2 and L2 of degrees pu and pv, respectively, such that the degree of
the compositum K2L2 is pw and the discriminant dK2L2 of K2L2 is coprime
to the discriminant dK1L1 of K1L1. Then Lemma 26 implies that the triplet
(apu, bpv, cpw) is compositum-feasible. �

Proof of Theorem 6. Let p1 < p2 < · · · < ps be the primes dividing the
product abc. Only p1 can be even. Assume that the exponents of pi in a, b, c
are ui > 0, vi > 0, wi > 0, respectively, so that

a =
s∏
i=1

puii , b =
s∏
i=1

pvii , c =
s∏
i=1

pwi
i .

We start with p1 and, by Corollary 23 with D = D1 = 1, construct the
numbers α1, β1, γ1 of degrees pu11 , p

v1
1 , p

w1
1 , respectively, such that α1+β1+γ1 =

0 (resp. α1β1γ1 = 1). Set D2 = dQ(α1,β1). By Corollary 23 with D = D2 and
Lemma 24, there exist algebraic numbers α2, β2, γ2 of degrees pu22 , p

v2
2 , p

w2
2 ,

respectively, such that α2 + β2 + γ2 = 0 (resp. α2β2γ2 = 1). Moreover,
since p2 is odd, α2, β2, γ2 are of odd degree (so the multiplicative version of
Lemma 24 is applicable) and the degrees of α1 + α2, β1 + β2, γ1 + γ2 (resp.
α1α2, β1β2, γ1γ2) are pu11 p

u2
2 , pv11 p

v2
2 , p

w1
1 pw2

2 , respectively. Next, selecting
Di = dQ(α1,β1,...,αi−1,βi−1) for i = 3, . . . , s and continuing step-by-step in this
fashion (by Corollary 23 with D = Di at ith step and Lemma 24) we will
end up with the numbers

α = α1 + · · ·+ αs, β = β1 + · · ·+ βs, γ = γ1 + · · ·+ γs

(resp. α = α1 . . . αs, β = β1 . . . βs, γ = γ1 . . . γs) of degrees
∏s

i=1 p
ui
i = a,∏s

i=1 p
vi
i = b,

∏s
i=1 p

wi
i = c, respectively, satisfying α + β + γ = 0 (resp.

αβγ = 1.) �

Proof of Theorem 7. Assume that the inequality

max{ ordp(a), ordp(b)} 6 ordp(c)

holds for every prime number p. Now, as above, repeated application of Corol-
lary 27 (for primes dividing c) implies that the triplet (a, b, c) is compositum-
feasible. �

As a consequence of Corollary 23 and Lemma 24, we also state the following
proposition (which is a partial case of Conjecture 4).

Proposition 28. Suppose that the triplet (a, b, c) ∈ N3 satisfies the exponent
triangle inequality with respect to any prime number. Then for any sum-
feasible (resp. product-feasible) triplet (a′, b′, c′) ∈ N3 the triplet (aa′, bb′, cc′)
is also sum-feasible (resp. product-feasible).
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Proof. Suppose that the triplet (a′, b′, c′) is product-feasible. We can start
with the triplet α′, β′, γ′ of degrees a′, b′, c′ such that α′β′γ′ = 1 and with
D = dQ(α′,β′). Then, as above, we apply Corollary 23 and Lemma 24 for each
prime dividing abc. The proof in the additive case is the same except that
in this case we do not need to use the second part of Corollary 23. �

Proposition 29. Suppose that n > 2 is a positive integer.

(i) The triplets (n, n, n) and (n, n, n(n− 1)) are compositum-feasible.
(ii) The triplet (n, n, n(n− 1)/2) is sum-feasible and product-feasible, but

if n is even then it is not compositum-feasible.
(iii) The triplet (n, n, 2n) is compositum-feasible.

Proof. (i) Take K to be an arbitrary number field of degree n over Q. Then
the compositum KK = K also has degree n. Therefore the triplet (n, n, n)
is compositum-feasible for every n ∈ N.

Let α and α′ be two distinct conjugate algebraic numbers of degree n such
that the Galois group of their minimal polynomial is the symmetric group
Sn. We claim that the degree of α′ over Q(α) equals n− 1. Indeed, we have
[Q(α, α′) : Q] = [Q(α) : Q] · [Q(α, α′) : Q(α)] 6 n(n − 1). On the other
hand, if the degree of α′ over the field Q(α) were less than n − 1 then the
degree of the splitting field of the minimal polynomial of α is less than n!, a
contradiction. So [Q(α, α′) : Q] = n(n− 1), and therefore (n, n, n(n− 1)) is
compositum-feasible. Of course, combining this with Proposition 1, we also
have that the triplets (n, n, n), n ∈ N, and (n, n, n(n − 1)), n > 2, are both
sum-feasible and product-feasible.

(ii) Let α be an algebraic number of degree n such that the Galois group
of its minimal polynomial is Sn. Let α1 = α, α2, . . . , αn be distinct conjugates
of α over Q. Consider the following set

A = {αi + αj | i, j = 1, 2, . . . n, i < j}.
Each element of A is a conjugate of α1+α2, because Sn is 2-transitive. If two
numbers of A, say αi +αj and αk +αl with either i 6= k or j 6= l, were equal,
then we would have a nontrivial additive relation between the conjugates of
α, which is impossible in view of Lemma 10. So the set A contains exactly
n(n − 1)/2 distinct numbers, and therefore the triplet (n, n, n(n − 1)/2) is
sum-feasible.

For the product we cannot use Lemma 10 directly. Nevertheless, by the
same argument, considering the set

A1 = {αiαj | i, j = 1, 2, . . . n, i < j}
we will deduce that the triplet (n, n, n(n− 1)/2) is product-feasible. Indeed,
assume that αiαj = αkαl, where {i, j} 6= {k, l}. We have an immediate
contradiction, unless the list αi, αj, αk, αl contains four distinct numbers. In
this latter case, we must have n > 4. Since the Galois group of Q(α) over
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Q contains the transposition (i, l), from αiαj = αkαl we obtain αlαj = αkαi.
Thus α2

i = α2
l . Since αi 6= αl, this implies αi = −αl, which is impossible by

Lemma 10.
Note that if a triplet (a, b, c) is compositum-feasible then a | c and b | c.

However, n does not divide n(n− 1)/2 for even n > 2. Hence for n even the
triplet (n, n, n(n− 1)/2) is not compositum-feasible.

(iii) If n is even then the triplet (n, n, 2n) is compositum-feasible, by The-
orem 7.

Now suppose that n > 1 is odd. Let p > 2 be a prime number dividing n.
Proposition 5.5.2 of [13] implies that the dihedral group Dp can be realized
as a Galois group of a number field over Q, i.e., there exists a number field L
of degree 2p over Q whose Galois group is isomorphic to the dihedral group
Dp (also see [14, 18]). Let H be a subgroup of Dp of order 2 and let K ⊂ L be
the fixed field of H. By the primitive element theorem, K = Q(θ) for some
algebraic number θ of degree p. The extension K/Q is not Galois, because
H is not a normal subgroup of Dp. So there is a conjugate θ′ of θ such that
L = Q(θ, θ′). Therefore, the triplet (p, p, 2p) is compositum-feasible.

Let p1, p2, . . . , pk be the set of primes (not necessarily distinct) dividing
n/p, so that n/p = p1p2 · . . . · pk. Since the triplet (p, p, 2p) is compositum-
feasible, by Corollary 27, the triplet (pp1, pp1, 2pp1) is also compositum-
feasible. Now, the repeated application of Corollary 27 (for prime numbers
p2, p3, . . . , pk) implies that the triplet (pp1 · . . . ·pk, pp1 · . . . ·pk, 2pp1 · . . . ·pk) =
(n, n, 2n) is compositum-feasible. �

Proposition 29 can be generalized as follows. Let θ1, θ2, . . . , θn be distinct
conjugate algebraic numbers of degree n > 2 (over Q) such that the Galois
group of their minimal polynomial is the full symmetric group Sn. We shall
say that the triplet (a, b, c) ∈ N3 is symmetrically generated if there exist
algebraic numbers α, β and γ of degrees a, b and c, respectively, such that
α + β + γ = 0 and both α and β (and hence γ too) are linear forms in
conjugates of θ (of degree n with Galois group Sn), i.e., there exist xi, yi ∈ Z,
i = 1, 2, . . . , n, such that

α = x1θ1 + x2θ2 + . . .+ xnθn,

β = y1θ1 + y2θ2 + . . .+ ynθn.

Suppose that α is a linear form in conjugates of θ, i.e., there exists a
function f : {1, 2, . . . , n} → Z such that

α = f(1) · θ1 + f(2) · θ2 + . . .+ f(n) · θn.
Let

Af = {f(1), f(2), . . . , f(n)} \ {0}, mf = |Af |,
and for j ∈ Af let kj be the number of indices i in {1, 2, . . . , n} for which
f(i) = j. If Af = ∅ then α = 0, and therefore deg(α) = 1. Suppose that
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Af 6= ∅. Then in view of Lemma 10 it is easy to see that the degree of α
(over Q) is

deg(α) =
n · (n− 1) · . . . · (n−mf + 1)∏

j∈Af
kj!

. (8)

Similarly, writing

β = g(1) · θ1 + g(2) · θ2 + . . .+ g(n) · θn
and

γ = h(1) · θ1 + h(2) · θ2 + . . .+ h(n) · θn,
where h(x) = −f(x)− g(x), we find that

deg(β) =
n · (n− 1) · . . . · (n−mg + 1)∏

j∈Ag
kj!

(9)

and

deg(γ) =
n · (n− 1) · . . . · (n−mh + 1)∏

j∈Ah
kj!

. (10)

The triplet (deg(α), deg(β), deg(γ)) given in (8)–(10) is symmetrically gen-
erated for any functions f, g : {1, 2, . . . , n} → Z.

Consider an example with α = θ1 and β = θ2. Then α and β are both
of degree n while the degree of γ = −(α + β) = −θ1 − θ2 is n(n − 1)/2.
Analogously, α = θ1 and β = 2θ2 are both of degree n while the degree of
γ = −(α+β) = −θ1− 2θ2 is n(n− 1). So both triplets (n, n, n(n− 1)/2) and
(n, n, n(n− 1)) are symmetrically generated (see Proposition 29).

In order to get some new symmetrically generated triplets let us fix i, j ∈ N
satisfying i+ j 6 n and take

α = x1θ1 + · · ·+ xiθi, β = xi+1θi+1 + · · ·+ xi+jθi+j, γ = −(α + β).

Selecting x1 = x2 = · · · = xi+j = 1 we find that the triplet((
n

i

)
,

(
n

j

)
,

(
n

i+ j

))
is symmetrically generated. Selecting xk = k for k = 1, . . . , i + j we deduce
that the triplet (

i!

(
n

i

)
, j!

(
n

j

)
, (i+ j)!

(
n

i+ j

))
is symmetrically generated.

Lemma 30 ([3]). Suppose that α is a root of an irreducible trinomial f(x) =
xn + ax+ b ∈ Z[x]. Let ∆(f) be the discriminant of f, i.e.,

∆(f) = (−1)n(n−1)/2
(
nnbn−1 + (−1)n−1(n− 1)n−1an

)
.

If gcd(n, a) = gcd(a(n− 1), b) = 1 and |∆(f)| is not the square of an integer
then the Galois group of f is the full symmetric group Sn.
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Proposition 31. For any positive integers n > 1 and D there exists a num-
ber field K of degree n (over Q) whose normal closure L has Galois group
isomorphic to the full symmetric group Sn and whose discriminant dL of L/Q
is coprime to D.

Proof. Suppose that the set of primes that divide D is

{p1, p2, . . . , pr, q1, q2, . . . , qs},
where pi | n and qj - n for i = 1, . . . , r and j = 1, . . . , s. Set a = q1q2 . . . qs if
s > 1 and a = 1 otherwise. Consider the polynomial

f(x) = xn + ax+ q ∈ Z[x],

where q is a sufficiently large prime number.
Note that this condition guarantees the irreducibility of f(x) over Q.

Indeed, assume that f(x) is reducible over Q, so f(x) = u(x)v(x) with
u(x), v(x) ∈ Z[x], deg(u), deg(v) > 1. Since q is a prime number we have
either u(0) = ±1 or v(0) = ±1. So f(x) has a root x0 such that |x0| 6 1.
But then

q = | − ax0 − xn0 | 6 |a| · |x0|+ |x0|n 6 a+ 1 6 q1q2 . . . qs + 1,

which is false for q sufficiently large.
By Lemma 15 and the choice of a and q, the discriminant

∆(f) = (−1)n(n−1)/2
(
nnqn−1 + (−1)n−1(n− 1)n−1an

)
of f(x) is coprime to D. Suppose that α is a root of f(x) and K = Q(α). It is
well known that the discriminant dK of K divides ∆(f) (see Proposition 2.13
in [20]). Therefore, dK is also coprime to D.

It remains to show that there exists a prime q for which the Galois group
of the normal closure of K is isomorphic to the full symmetric group Sn.

Clearly, if n = 2 then the extension K/Q is normal and its Galois group
is S2. Suppose that n = 3. Then

|∆(f)| = 27q2 + 4a3 ≡ 3 (mod 4),

because q is odd. Hence |∆(f)| is not the square of an integer. Now,
Lemma 30 implies that the Galois group of the polynomial f(x) (and hence
the Galois group of the normal closure of K) is S3.

Assume that n > 4. We claim that for each sufficiently large prime number
q the Galois group of the normal closure of K is isomorphic to the full
symmetric group Sn. Let us check the the conditions of Lemma 30. Clearly
the condition

gcd(n, a) = gcd(a(n− 1), q) = 1

of Lemma 30 is satisfied for q sufficiently large. So it remains only to prove
that for each sufficiently large q the number

|∆(f)| = nnqn−1 + (−1)n−1(n− 1)n−1an
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is not the square of an integer.
Consider the curve

y2 = Axn−1 +B, (11)

where A = nn and B = (−1)n−1(n− 1)n−1an. The polynomial Axn−1 + B ∈
Z[x] is separable, and therefore the genus of the curve (11) is at least 1. By
a well-known theorem of Siegel (see [22]), the curve (11) has a finite number
of integer points. If the curve (11) does have integer solutions, let (x1, y1) be
the one with largest |x1|. Set x1 = 1 if the curve (11) has no integer solutions.
Then for any positive integer q > x1 the number |∆(f)| is not the square of
an integer. Now, selecting a sufficiently large prime number q we see that
the conditions of Lemma 30 are satisfied. So there exists a number field
K = Q(α) of degree n whose normal closure L has Galois group isomorphic
to Sn and the discriminant dK of K/Q is coprime to D.

Finally, as we already observed above, by [20, p. 159], if p is a prime
number then p | dK if and only if p | dL. Hence dL is coprime to D. �

In addition to Proposition 28 we obtain one more special case of Conjec-
ture 4 (see Section 1).

Proposition 32. Suppose that the triplet (a, b, c) ∈ N3 is sum-feasible. Then
for any symmetrically generated triplet (a′, b′, c′) ∈ N3 the triplet (aa′, bb′, cc′)
is also sum-feasible.

Proof. Fix any algebraic numbers α, β, γ of degrees a, b, c such that α+β+γ =
0. Suppose that D is the discriminant of the field Q(α, β, γ) = Q(α, β).
Since the triplet (a′, b′, c′) is symmetrically generated, there is an n ∈ N and
algebraic numbers α′, β′, γ′ of degrees a′, b′, c′ such that α′ + β′ + γ′ = 0 and
α′ and β′ are linear forms in conjugates of an algebraic number θ of degree
n > 2 whose Galois group is Sn.

By Proposition 31, there is a number field K of degree n (over Q) whose
normal closure L has the Galois group isomorphic to the full symmetric group
Sn and the discriminant dL of L is coprime to D. We can take K = Q(θ)
and then select α′, β′, γ′ of degrees a′, b′, c′ as linear forms in conjugates of θ.
Applying Lemmas 17 and 24, we find that the degrees of α+ α′, β + β′ and
γ + γ′ are aa′, bb′ and cc′, respectively, whereas their sum is zero. �

Proof of Theorem 5 (constructions). We first prove that the triplets displayed
in Table 1 are compositum-feasible except for

(4, 4, 6), (4, 6, 6), (6, 6, 8), (6, 6, 9), (6, 6, 15).

There are 40 such triplets. Then we show that the triplets (4, 4, 6), (4, 6, 6),
(6, 6, 9) and (6, 6, 15) are sum-feasible. (The triplet (6, 6, 8) is left undecided
here, but it is shown to be not sum feasible in [6].) The proof that no other
triplets are sum-feasible is given at the end of the next section.
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Theorem 7 shows that the following 33 triplets, given in Table 2, are
compositum-feasible.

Table 2. Compositum-feasible triplets from Theorem 7.

b \ a 1 2 3 4 5 6

1 1

2 2 2, 4

3 3 6 3, 9

4 4 4, 8 12 4, 8, 16

5 5 10 15 20 5, 25

6 6 6, 12 6, 18 12, 24 30 6, 12, 18,
36

The triplets (3, 3, 6), (4, 4, 12), (5, 5, 20) and (6, 6, 30) are compositum-
feasible, by Proposition 29. Since the triplet (3, 3, 6) is compositum-feasible,
Corollary 27 implies that the triplets (3, 6, 12) and (6, 6, 24) are both com-
positum-feasible. The triplet (5, 5, 10) is compositum-feasible, by Proposi-
tion 29 (iii). This gives 33 + 4 + 2 + 1 = 40 compositum-feasible triplets.

So all the triplets of Table 1 are compositum-feasible except for

(4, 4, 6), (4, 6, 6), (6, 6, 8), (6, 6, 9), (6, 6, 15).

(If a - c or b - c then the triplet (a, b, c) is not compositum-feasible.) This
completes the proof of the compositum part of Theorem 5.

For the sum-feasible part of Theorem 5, note that, by Proposition 1, if
the triplet is compositum-feasible then it is sum-feasible as well. So all the
triplets of Table 1, except possibly

(4, 4, 6), (4, 6, 6), (6, 6, 8), (6, 6, 9), (6, 6, 15),

are sum-feasible. It remains to show that the triplets

(4, 4, 6), (4, 6, 6), (6, 6, 9), (6, 6, 15)

are sum-feasible, the triplet (6, 6, 8) being left undecided. Indeed, the triplets
(4, 4, 6) and (6, 6, 15) are sum-feasible, by Proposition 29 (ii), while the
triplets (4, 6, 6) and (6, 6, 9) are sum-feasible, by Theorem 6. �

The proof that the remaining triplets (those not in Table 1) are not sum-
feasible is given at the end of the next section.
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4. Impossibility proofs

We first prove Theorem 8. Then we show that the four special cases from
the set

S = {(3, 6, 9), (4, 6, 8), (5, 5, 15), (6, 6, 10)} (12)

are not sum-feasible. At the end of the section we will complete the proof of
Theorem 5 by showing that each triplet (a, b, c), a 6 b 6 c, b 6 6 that is not
in Table 1 is not sum-feasible.

Proof of Theorem 8. Let t = 2n, where n ∈ N, and put α =
√
−1 and

β = t
√

2. Then αβ is conjugate to β, and so of degree t. Hence the triplet
(2, 2n, 2n) is product-feasible. Similarly, for t = 3n, α = e2πi/3 and β = t

√
2,

αβ is again conjugate to β, and so of degree t. Hence the triplet (2, 3n, 3n)
is product-feasible.

Suppose next that t is a positive integer that is not divisible by 2 or by 3.
Assume that the triplet (2, t, t) is product-feasible. Clearly t > 1. Then there
exist three algebraic numbers α, β and γ of degrees 2, t and t, respectively,
such that αβ = γ. The degree [Q(α, β) : Q] is divisible by 2 and by t, because
Q(α) and Q(β) are the subfields of Q(α, β). On the other hand,

[Q(α, β) : Q] = [Q(α, β) : Q(α)] · [Q(α) : Q] 6 [Q(α) : Q] · [Q(β) : Q] = 2t.

So [Q(α, β) : Q] = 2t and we have the following diagram.

Q(α)
t

Q

2

t

t

Q(γ)
2 Q(α, β)

Q(β)

2

Let β1 = β, β2, . . . , βt be the distinct conjugates of β over Q. ¿From
the diagram we see that β is of degree t over Q(α). Hence for every j ∈
{1, 2, . . . , t} there exists an automorphism σj in the Galois group of the
normal closure of Q(α, β, γ) = Q(α, β) over Q which fixes α and sends β = β1
to βj. On applying σj, j = 1, . . . t, to αβ = γ we obtain

αβ1 = γ1,
αβ2 = γ2,

...
αβt = γt,

(13)

where γj = σj(γ), 1 6 j 6 t. Then all the conjugates γj, 1 6 j 6 t,
are distinct. (If γi = γj with i 6= j then (13) implies βi = βj, which is
not the case.) On multiplying together all the equalities in (13) we obtain
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αt = r ∈ Q, because the numbers β1β2 · . . . · βt and γ1γ2 · . . . · γt are absolute
norms of β and γ, respectively. It follows that the quadratic algebraic number
α is a root of a polynomial p(x) = xt − r for some r ∈ Q. Let θ = r1/t be
the real root of p(x) (recall that t is odd and > 1) and let ε = e2πi/t be the
primitive tth root of unity. Then all the roots of p(x) are

θ, θε, θε2, . . . , θεt−1.

Let α′ 6= α be the (only) conjugate of α over Q. Then α′ also is a root of
p(x). So α = θεk and α′ = θεl with certain k, l ∈ {0, 1, . . . , t − 1}, k 6= l.
We claim that l = t − k. Indeed, note that αα′ = θ2εk+l ∈ Q. Since θ2 is
real, so is εk+l. Hence εk+l = ±1. This yields k + l ∈ {t/2, t, 3t/2}, since
0 < k + l < 2t. Therefore, k + l = t, because t is odd. This implies

α = θεk, α′ = θεt−k = θε−k.

It follows that α + α′ = θ(εk + ε−k) ∈ Q and αα′ = θ2 ∈ Q. Combining
this with θt ∈ Q, where t is odd, we deduce that θ ∈ Q. Hence εk + ε−k =
(α+ α′)/θ ∈ Q. The number εk + ε−k = 2 cos(2πk/t) is an algebraic integer,
so it must be a rational integer. Consequently,

εk + ε−k = 2 cos(2πk/t) ∈ {0, ±1, ±2}.
(See also [12] and [25].)

If 2 cos(2πk/t) = 0 then 2πk/t = π/2 + πs for some s ∈ Z. This yields
4k = t(2s+1) which is impossible, because t is odd. Next, 2 cos(2πk/t) = ±1
implies that t is divisible by 3, which is not the case. Finally, if 2 cos(2πk/t) =
±2 then 2πk/t = πs for some s ∈ Z. So εk = ε−k = (−1)s, and therefore
α = θεk = θε−k = α′, a contradiction. �

Now, step by step, we give all necessary impossibility proofs for Theorem 5.

Theorem 33. The triplet (3, 6, 9) is not sum-feasible.

Proof. Suppose that (3, 6, 9) is sum-feasible. Then there exist algebraic num-
bers α, β, γ of degrees 3, 6, 9, respectively, such that α+β+γ = 0. The degree
of Q(α, β) over Q is divisible by 9, because Q(γ) = Q(α+ β) is a subfield of
Q(α, β). Similarly, [Q(α, β) : Q] is divisible by 6, because Q(β) ⊂ Q(α, β).
On the other hand, [Q(α, β) : Q] 6 [Q(α) : Q] · [Q(β) : Q] = 18. Hence
[Q(α, β) : Q] = 18 and we have the following diagram.

Q(α)
6

Q

3

9

6

Q(γ)
2 Q(α, β)

Q(β)

3
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Let α1, α2, α3 be the distinct conjugates of α over Q, and let β1, β2, β3,
β4, β5, β6 be the distinct conjugates of β over Q. By the diagram, β is
of degree 6 over Q(α). Proposition 21 implies that all 18 (not necessarily
distinct) numbers αi + βj, 1 6 i 6 3, 1 6 j 6 6, are conjugate over Q. Put

Γi = {αi + β1, αi + β2, αi + β3, αi + β4, αi + β5, αi + β6}, i = 1, 2, 3.

Clearly, |Γi| = 6 for i = 1, 2, 3, because all six elements of the set Γi are
distinct.

We next claim that |Γ1 ∩ Γ2| = 3. Indeed, if |Γ1 ∩ Γ2| < 3 then

|Γ1 ∪ Γ2| = |Γ1|+ |Γ2| − |Γ1 ∩ Γ2| = 12− |Γ1 ∩ Γ2| > 9

which is impossible, because γ = −(α + β) is of degree 9 over Q.
On the other hand, if |Γ1 ∩ Γ2| > 4 then there exist distinct indices

j1, j2, j3, j4 and distinct indices k1, k2, k3, k4 such that

α1 + βj1 = α2 + βk1 , (14)

α1 + βj2 = α2 + βk2 , (15)

α1 + βj3 = α2 + βk3 ,

α1 + βj4 = α2 + βk4 ,

and {j1, j2, j3, j4, k1, k2, k3, k4} ⊆ {1, 2, 3, 4, 5, 6}. Evidently,

{j1, j2, j3, j4} ∩ {k1, k2, k3, k4} 6= ∅.
Assume without loss of generality that j1 = k2 (j1 = k1 would imply α1 = α2,
which is not the case). Subtracting (15) from (14) we get

2βj1 = βk1 + βj2 . (16)

If k1 = j2 then j1 = k1 and (14) implies α1 = α2, which is impossible. So βj1 ,
βk1 , βj2 are distinct conjugates. But then (16) contradicts Lemma 9. This
proves the inequality

|Γ1 ∩ Γ2| 6 3 (17)

and so completes the proof of |Γ1 ∩ Γ2| = 3. Analogously, |Γ1 ∩ Γ3| = 3 and
|Γ2 ∩ Γ3| = 3.

Since |Γ1 ∩ Γ2| = 3, after re-indexing the numbers β1, β2, β3, β4, β5, β6, if
necessary, we can write

α1 + β1 = α2 + βj1 , (18)

α1 + β2 = α2 + βj2 , (19)

α1 + β3 = α2 + βj3 . (20)

The indices j1, j2, j3 in these equations are distinct. We claim that the
set {j1, j2, j3} coincides with {4, 5, 6}. Indeed, assume the contrary, i.e.,
{j1, j2, j3} ∩ {1, 2, 3} 6= ∅. Then without loss of generality we can assume
that j1 = 2. Then (18) implies α1 − α2 = β2 − β1, whereas (19) implies
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α1 − α2 = βj2 − β2. So β2 − β1 = βj2 − β2, and therefore 2β2 = β1 + βj2 ,
contradicting Lemma 9.

Now, since {j1, j2, j3} = {4, 5, 6}, after re-indexing the numbers β4, β5, β6
, if necessary, we obtain

α1 + β1 = α2 + β4,
α1 + β2 = α2 + β5,
α1 + β3 = α2 + β6.

(21)

Similarly, since |Γ1 ∩ Γ3| = 3, we must have

α1 + βi1 = α3 + βj1 ,
α1 + βi2 = α3 + βj2 ,
α1 + βi3 = α3 + βj3 ,

(22)

with {i1, i2, i3, j1, j2, j3} = {1, 2, 3, 4, 5, 6}.We claim that {i1, i2, i3} = {4, 5, 6}.
Indeed, if, say i1 ∈ {1, 2, 3} then α1 + βi1 ∈ Γ1 ∩ Γ2 ∩ Γ3. However, this is
impossible, because

|Γ1∩Γ2∩Γ3| = |Γ1∪Γ2∪Γ3|−|Γ1|−|Γ2|−|Γ3|+|Γ1∩Γ2|+|Γ1∩Γ3|+|Γ2∩Γ3|
= 9− 6− 6− 6 + 3 + 3 + 3 = 0.

So i1 ∈ {4, 5, 6}. Analogously, i2, i3 ∈ {4, 5, 6}, so that {i1, i2, i3} = {4, 5, 6}.
Consequently, {j1, j2, j3} = {1, 2, 3} and, after rearranging the equalities in
(22), we obtain

α1 + β4 = α3 + βk1 ,
α1 + β5 = α3 + βk2 ,
α1 + β6 = α3 + βk3 ,

(23)

where {k1, k2, k3} = {1, 2, 3}.
Finally, by adding all six equalities in (21) and (23), we obtain

6α1 +
6∑
i=1

βi = 3α2 + 3α3 +
6∑
i=1

βi.

Thus 2α1 = α2 + α3, which contradicts Lemma 9. �

Remark 34. Recall that the triplet (3, 2, 3) is product-feasible (see Section 1
and Theorem 8). The triplet (1, 3, 3) satisfies the exponent triangle inequality
with respect to any prime number. Hence (3, 6, 9) = (3, 2, 3) · (1, 3, 3) is
product-feasible, by Proposition 28. Since 6 does not divide 9, the triplet
(3, 6, 9) is not compositum-feasible.

Theorem 35. The triplet (4, 6, 8) is not sum-feasible.

Proof. Suppose that (4, 6, 8) is sum-feasible, so that there exist algebraic
numbers α, β, γ of degrees 4, 6, 8, respectively, such that α+ β + γ = 0. The
degree of Q(α, β) over Q is divisible by 8, because Q(γ) = Q(α + β) is a
subfield of Q(α, β). Similarly, [Q(α, β) : Q] is divisible by 6, because Q(β) ⊂

23



Q(α, β). On the other hand, [Q(α, β) : Q] 6 [Q(α) : Q] · [Q(β) : Q] = 24.
Hence [Q(α, β) : Q] = 24 and we have the following diagram.

Q(α)
6

Q

4

8

6

Q(γ)
3 Q(α, β)

Q(β)

4

Let α1, α2, α3, α4 be the distinct conjugates of α over Q. Similarly, let β1,
β2, β3, β4, β5, β6 be the distinct conjugates of β over Q. By the diagram, β
is of degree 6 over Q(α). By Proposition 21, all 24 (not necessarily distinct)
numbers αi + βj, 1 6 i 6 4, 1 6 j 6 6, are conjugate over Q. Set

Γi = {αi + β1, αi + β2, αi + β3, αi + β4, αi + β5, αi + β6}, i = 1, 2, 3, 4.

We have |Γ1∪Γ2∪Γ3∪Γ4| = 8, because the number α+β = −γ is of degree
8 over Q.

If |Γ1 ∩ Γ2| 6 3 then

8 = |Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4| > |Γ1 ∪ Γ2| =

|Γ1|+ |Γ2| − |Γ1 ∩ Γ2| > 6 + 6− 3 = 9,

a contradiction. Hence |Γ1 ∩ Γ2| > 4. However, then we get a contradiction
in exactly the same way as in the proof of Theorem 33. (See the proof of
inequality (17); the degree of β over Q is 6 as in Theorem 33, and we only
use two distinct conjugates of α, i.e., α1 and α2.) �

Theorem 36. The triplet (5, 5, 15) is not compositum-feasible.

Proof. It is known (see [4, p. 60]) that the Galois group of the splitting field
of an irreducible polynomial of degree 5 is one of the following:

Group Generators Order

S5 (1 2 3 4 5), (1 2) 120

A5 (1 2 3 4 5), (1 2 3) 60

AGL1(5) (1 2 3 4 5), (2 3 5 4) 20

ASL1(5) (1 2 3 4 5), (2 5)(3 4) 10

C5 (1 2 3 4 5) 5
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Assume the contrary, i.e., that the triplet (5, 5, 15) is compositum-feasible.
Then there exist algebraic numbers α and β such that [Q(α) : Q] = [Q(β) :
Q] = 5 and [Q(α, β) : Q] = 15.

Denote by K and L the Galois closures of Q(α) and Q(β) over Q, re-
spectively. If neither the Galois group of K nor the Galois group of L is in
{A5, S5} then both numbers [K : Q] and [L : Q] are in {5, 10, 20}. Then, by
Lemma 12, the degree of the compositum

[KL : Q] =
[K : Q] · [L : Q]

[K ∩ L : Q]

is not divisible by 3. This is impossible, because the compositum KL has
a subfield Q(α, β) of degree 15 over Q. So either K/Q or L/Q has Galois
group in {A5, S5}.

Assume without loss of generality that the Galois group of K/Q is A5 or
S5. Now [Q(α, β) : Q] = 15 implies that α is cubic over Q(β) and β is cubic
over Q(α). Let P (x) ∈ Q[x] be the minimal polynomial of α over Q. We have
two possibilities:

(a) Two conjugates of α lie in Q(β), i.e.,

P (x) = (x− α′)(x− α′′)(x3 + ax2 + bx+ c),

where α′, α′′ ∈ Q(β) and x3 + ax2 + bx + c ∈ Q(β)[x] is irreducible
over Q(β).

(b) No conjugate of α belongs to Q(β), i.e.,

P (x) = (x2 + ax+ b)(x3 + cx2 + dx+ e),

where both polynomials x2 +ax+b ∈ Q(β)[x] and x3 +cx2 +dx+e ∈
Q(β)[x] are irreducible over Q(β).

Assume that (a) holds. Then α′ = f(β) for a certain polynomial f(x) ∈
Q[x]. So Q(β) has a subfield Q(α′) = Q(f(β)) which is of degree 5 over Q.
Thus Q(α′) = Q(β). Then P (x) has exactly two linear factors over Q(α′),
contradicting Lemma 13.

Suppose now that (b) holds. Denote the Galois group of K/Q by G.
Recall that G = A5 or S5. Assume that G acts on the set {α1, α2, α3, α4, α5}
of distinct conjugates of α as follows: if τ is a permutation of G then τ(αj) =
ατ(j), j = 1, 2, 3, 4, 5.

Suppose that α′ and α′′, α′ 6= α′′, are the conjugates of α that are quadratic
over Q(β). Then α′ + α′′ ∈ Q(β) and there exists a polynomial f(x) ∈ Q[x]
such that α′+α′′ = f(β). Since A5 and S5 are both 2-transitive groups, there
exists τ ∈ G such that τ(α′) = α1 and τ(α′′) = α2. Then

α1 + α2 = f(β1), (24)
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where β1 = τ(β) is a conjugate of β over Q. On applying the automorphisms
id, (23)(45), (24)(35), (25)(34), (123), (124) ∈ A5 ⊆ G to (24) we obtain

α1 + α2 = f(β1),
α1 + α3 = f(β2),
α1 + α4 = f(β3),
α1 + α5 = f(β4),
α2 + α3 = f(β5),
α2 + α4 = f(β6),

(25)

where β1, β2, β3, β4, β5, β6 are some conjugates of β. Since β is of degree 5
over Q then βi = βj for some i 6= j. Then ith and jth lines of (25) imply that
there is a nontrivial additive relation connecting at most 4 conjugates of α,
contradicting Lemma 11. �

Corollary 37. The triplet (5, 5, 15) is neither sum-feasible nor product-
feasible.

Proof. Suppose that (5, 5, 15) is either sum-feasible or product-feasible, with
algebraic numbers α, β, γ of degrees 5, 5, 15, respectively, such that α +
β + γ = 0 or αβγ = 1. In both cases, the degree of Q(α, β) over Q is
divisible by 15, because Q(γ) is a subfield of Q(α, β). On the other hand,
[Q(α, β) : Q] 6 [Q(α) : Q] · [Q(β) : Q] = 25. So [Q(α, β) : Q] = 15,
contradicting Theorem 36. �

Theorem 38. The triplet (6, 6, 10) is not sum-feasible.

Proof. Suppose that (6, 6, 10) is sum-feasible, with algebraic numbers α, β,
γ of degrees 6, 6, 10, respectively, such that α + β + γ = 0. The degree of
Q(α, β) over Q is divisible by 10, because Q(γ) = Q(α + β) is a subfield of
Q(α, β). Similarly, [Q(α, β) : Q] is divisible by 6, because Q(α) ⊆ Q(α, β).
Hence [Q(α, β) : Q] is divisible by 30. On the other hand, [Q(α, β) : Q] 6
[Q(α) : Q] · [Q(β) : Q] = 36. Consequently, [Q(α, β) : Q] = 30 and we have
the following diagram.

Q(α)
5

Q

6

10

6

Q(γ)
3 Q(α, β)

Q(β)

5

We see that β is of degree 5 over Q(α). Hence β has exactly one conjugate,
say, β1, which lies in Q(α). So β1 = f(α) for certain polynomial f(x) ∈ Q[x]
of degree at most 4. Let β1, β2, β3, β4, β5, β6 be all the distinct conjugates
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of β over Q. For every j = 1, 2, . . . , 6 there exists an automorphism σj of
the Galois group of Q(α, β)/Q which sends β1 to βj. On applying σj to
β1 = f(α) we obtain βj = f(αj), j = 1, 2, . . . , 6. Here α1 = α, α2, α3, α4, α5,
α6 are the (distinct) conjugates of α. Assume without loss of generality that
β = β2 = f(α2). Then −γ = α1 + f(α2).

The number field Q(α2) has a subfield Q(f(α2)) = Q(β2) of degree 6
over Q. Therefore, Q(β) = Q(f(α2)) = Q(α2) and we obtain the following
diagram.

Q(α1)
5

Q

6

10

6

Q(α1 + f(α2))
3 Q(α1, α2)

Q(α2)

5

Similarly, Q(βj) = Q(f(αj)) = Q(αj) for j = 1, 2, . . . , 6. We claim that
each αi is of degree 5 over every Q(αj), j ∈ {1, 2, . . . , 6} \ {i}. Indeed, fix
j ∈ {2, 3, 4, 5, 6}. Since α2 is of degree 5 over Q(α1) (see the last diagram),
the number αj is conjugate to α2 over the field Q(α1). Hence there exists an
automorphism σ of the Galois group of Q(α, β)/Q which fixes α1 and sends
α2 to αj. Thus σ(−γ) = σ(α1 + f(α2)) = α1 + f(αj) is a conjugate of −γ.
It follows that α1 + f(αj) is of degree 10 over Q, and therefore we have the
following diagram. (Recall that, as above, Q(βj) = Q(f(αj)) = Q(αj).)

Q(α1)

5

Q

6

10

6

Q(α1 + f(αj))
3 Q(α1, αj)

Q(αj)

5

Now, we see that α1 is of degree 5 over Q(αj) and all the numbers in
{α1, α2, . . . , α6} \ {αj} are conjugate to α1 over Q(αj). Therefore, each αi,
i ∈ {1, 2, . . . , 6}\{j}, is of degree 5 over Q(αj). Consequently, all the numbers
αi + f(αj), where i 6= j, are conjugate over Q.
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Consider the following table of numbers which are conjugate to α1 +
f(α2) = −γ.

α1 + f(α2)
α1 + f(α3) α2 + f(α3)
α1 + f(α4) α2 + f(α4) α3 + f(α4)
α1 + f(α5) α2 + f(α5) α3 + f(α5) α4 + f(α5)
α1 + f(α6) α2 + f(α6) α3 + f(α6) α4 + f(α6) α5 + f(α6).

(26)

The table contains 15 numbers, while the degree of −γ over Q is 10. Hence

αa + f(αb) = αc + f(αt) (27)

with certain a < b, c < t and either a 6= c or b 6= t (because deg f 6 4). We
claim that a 6= c and b 6= t. Indeed, if b = t then αa = αc, and therefore
a = c, which is impossible. Similarly, if a = c then f(αb) = f(αt) which
implies βb = βt, and hence b = t, a contradiction. So a 6= c and b 6= t.
Assume without loss of generality that a < c. Then a < c < t, and therefore
t /∈ {a, b, c}.

Consider the Galois group G of the normal closure of Q(α1) over Q as
acting as a subgroup of S6 on the set of indices {1, 2, 3, 4, 5, 6}, i.e., if σ ∈
G then σ(αj) = ασ(j), j = 1, 2, 3, 4, 5, 6. The order of G is divisible by 5,
because [Q(α1, α2) : Q] = 30. By Cauchy’s Theorem (see, e.g., [17, Section
40, Theorem 2]), there exists an automorphism τ ∈ G of order 5 in G.
Then τ (an element of S6) is a cycle, say, τ = (i1 i2 i3 i4 i5) with distinct
numbers i1, i2, i3, i4, i5 ∈ {1, 2, 3, 4, 5, 6}. Assume without loss of generality
that 6 /∈ {i1, i2, i3, i4, i5}. There exists an automorphism σ in G which maps
αt to α6. On applying σ to (27) we obtain

αi + f(αj) = αk + f(α6) (28)

with i, j, k ∈ {1, 2, 3, 4, 5}. Now, from (28) and τ(α6) = α6 we deduce that

ατ(i) + f(ατ(j)) = ατ(k) + f(α6),
ατ2(i) + f(ατ2(j)) = ατ2(k) + f(α6),
ατ3(i) + f(ατ3(j)) = ατ3(k) + f(α6),
ατ4(i) + f(ατ4(j)) = ατ4(k) + f(α6).

(29)

The orbits
{i, τ(i), τ 2(i), τ 3(i), τ 4(i)},
{j, τ(j), τ 2(j), τ 3(j), τ 4(j)},
{k, τ(k), τ 2(k), τ 3(k), τ 4(k)}

coincide with the set {1, 2, 3, 4, 5}, because {i, j, k} ⊂ {i1, i2, i3, i4, i5}. Thus
adding (28) and all four equalities of (29) we find that

5∑
i=1

αi +
5∑
i=1

f(αi) =
5∑
i=1

αi + 5f(α6),
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and hence

6β6 = 6f(α6) = f(α1) + f(α2) + f(α3) + f(α4) + f(α5) + f(α6)

= β1 + β2 + β3 + β4 + β5 + β6 ∈ Q,
a contradiction. �

Proof of Theorem 5(impossibility). Recall that if a triplet (a, b, c) ∈ N3 is
sum-feasible then c 6 ab. Denote by A the set of triplets (a, b, c) of positive
integers satisfying a 6 b 6 c, b 6 6 and c 6 ab. The set A contains

6∑
b=1

b∑
a=1

(ab− b+ 1) =
6∑
b=1

(b2(b+ 1)/2− b(b− 1)) =
1

2

6∑
b=1

b(b2 − b+ 2)

=
1

2

(
2 + 8 + 24 + 56 + 110 + 192

)
= 196

triplets.
Let T be the set of triplets given in the Table 1. It contains 45 triplets

(including (6, 6, 8)). At the end of the previous section we showed that each
triplet in T , except perhaps for (6, 6, 8), is sum-feasible. So it remains to
prove that none of the 196− 45 = 151 triplets in A \ T is sum-feasible.

We first distinguish the set of 4 special triplets S defined in (12). The
triplets of this set (3, 6, 9), (4, 6, 8), (5, 5, 15) and (6, 6, 10) are not sum-
feasible by Theorem 33, Theorem 35, Corollary 37 and Theorem 38, re-
spectively.

So we are left with the set A\ (T ∪S) consisting of 151− 4 = 147 triplets.
We next show that each triplet from the set A \ (T ∪ S) is not sum-feasible
either by Proposition 2 or by Lemma 14. Those triplets in A \ (T ∪ S) that
are not sum-feasible by Proposition 2 are given in Table 3. In each case, the
triplet contains a pair of coprime numbers but the third number is not their
product.

There are exactly 124 triplets in Table 3. It remains to check the ‘surviving’
147− 124 = 23 triplets that are in A\ (T ∪S) but not in Table 3. These are
listed in Table 4.

One can easily check that each of those triplets is not sum-feasible, by
Lemma 14. �

Remark 39. Recall that triplet (3, 3, 2) is product-feasible (see Section 1).
The triplet (2, 2, 4) satisfies the exponent triangle inequality with respect to
any prime number. Hence the triplet (6, 6, 8) = (3, 3, 2) · (2, 2, 4) is product-
feasible, by Proposition 28.
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Table 3. Triplets that are not sum-feasible by Proposition 2.

(2, 2, 3) (2, 3, 3) (2, 3, 4) (2, 3, 5) (2, 4, 5) (2, 4, 7) (2, 5, 5) (2, 5, 6)
(2, 5, 7) (2, 5, 8) (2, 5, 9) (2, 6, 7) (2, 6, 9) (2, 6, 11)

(3, 3, 4) (3, 3, 5) (3, 3, 7) (3, 3, 8) (3, 4, 4) (3, 4, 5) (3, 4, 6) (3, 4, 7)
(3, 4, 8) (3, 4, 9) (3, 4, 10) (3, 4, 11) (3, 5, 5) (3, 5, 6) (3, 5, 7) (3, 5, 8)
(3, 5, 9) (3, 5, 10) (3, 5, 11) (3, 5, 12) (3, 5, 13) (3, 5, 14) (3, 6, 7) (3, 6, 8)
(3, 6, 10) (3, 6, 11) (3, 6, 13) (3, 6, 14) (3, 6, 16) (3, 6, 17)

(4, 4, 5) (4, 4, 7) (4, 4, 9) (4, 4, 11) (4, 4, 13) (4, 4, 15) (4, 5, 5) (4, 5, 6)
(4, 5, 7) (4, 5, 8) (4, 5, 9) (4, 5, 10) (4, 5, 11) (4, 5, 12) (4, 5, 13) (4, 5, 14)
(4, 5, 15) (4, 5, 16) (4, 5, 17) (4, 5, 18) (4, 5, 19) (4, 6, 7) (4, 6, 9) (4, 6, 11)
(4, 6, 13) (4, 6, 15) (4, 6, 17) (4, 6, 19) (4, 6, 21) (4, 6, 23)

(5, 5, 6) (5, 5, 7) (5, 5, 8) (5, 5, 9) (5, 5, 11) (5, 5, 12) (5, 5, 13) (5, 5, 14)
(5, 5, 16) (5, 5, 17) (5, 5, 18) (5, 5, 19) (5, 5, 21) (5, 5, 22) (5, 5, 23) (5, 5, 24)
(5, 6, 6) (5, 6, 7) (5, 6, 8) (5, 6, 9) (5, 6, 10) (5, 6, 11) (5, 6, 12) (5, 6, 13)
(5, 6, 14) (5, 6, 15) (5, 6, 16) (5, 6, 17) (5, 6, 18) (5, 6, 19) (5, 6, 20) (5, 6, 21)
(5, 6, 22) (5, 6, 23) (5, 6, 24) (5, 6, 25) (5, 6, 26) (5, 6, 27) (5, 6, 28) (5, 6, 29)

(6, 6, 7) (6, 6, 11) (6, 6, 13) (6, 6, 17) (6, 6, 19) (6, 6, 23) (6, 6, 25) (6, 6, 29)
(6, 6, 31) (6, 6, 35)

Table 4. The 23 triplets that are not sum-feasible by Lemma 14.

(2, 4, 6) (2, 6, 8) (2, 6, 10)

(3, 6, 15)

(4, 4, 10) (4, 4, 14) (4, 6, 10) (4, 6, 14) (4, 6, 16) (4, 6, 18) (4, 6, 20) (4, 6, 22)

(6, 6, 14) (6, 6, 16) (6, 6, 20) (6, 6, 21) (6, 6, 22) (6, 6, 26) (6, 6, 27) (6, 6, 28)
(6, 6, 32) (6, 6, 33) (6, 6, 34)
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