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ABSTRACT

We discuss the connection between quantum Heisenberg XXZ spin
chain in the limiting case of zero anisotropy (∆→ 0) and some aspects
of enumerative combinatorics and the theory of partitions. The
representation of the Bethe wave functions via the Schur functions allows
to apply the theory of symmetric functions to calculation of the thermal
correlation functions as well as of the form-factors. The determinantal
expressions of the form-factors and of the thermal correlation functions
are obtained. We provide a combinatorial interpretation of the correlation
functions in terms of nests of the self-avoiding lattice paths. The
interpretation proposed is in turn related to enumeration of the boxed
plane partitions. The asymptotical behavior of the thermal correlation
functions is studied in the limit of small temperature provided that the
characteristic parameters of the system are large enough. The leading
asymptotics of the correlators are found to be proportional to the squared
numbers of boxed plane partitions.
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I. XXZ HEISENBERG MODEL AND ITS FREE FERMION LIMIT

∆ = 0

• • • Quantum XXZ Heisenberg model describes a chain of spins 1
2 . Its

Hamiltonian in absence of magnetic �eld takes the form:

ĤXXZ = −1

2

M∑
k=0

(σ−k+1σ
+
k + σ+

k+1σ
−
k +

∆

2
(σzk+1σ

z
k − 1)) ,

where ∆ ∈ R is the anisotropy, and M+1 is the number of sites. The
local spin operators σ±k = 1

2 (σxk ± iσ
y
k) and σzk, dependent on the lattice

argument k, are de�ned as (M + 1)-fold tensor products:

σ#
k = σ0 ⊗ · · · ⊗ σ0 ⊗ σ#︸︷︷︸

k

⊗σ0 ⊗ · · · ⊗ σ0 ,

where σ0 is 2× 2 unit matrix, and σ# at kth site is a Pauli matrix,
σ# ∈ su(2) (# is either x, y, z or ±). The commutation rules are:

[σ+
k , σ

−
l ] = δk,l σ

z
l , [σzk, σ

±
l ] = ±2 δk,l σ

±
l .



We introduce spin �up� and spin �down� states, |↑〉 ≡
(

1
0

)
and

|↓〉 ≡
( 0

1

)
. The Pauli operators act on |↑〉 and |↓〉 as follows:

σ− |↑〉 = |↓〉, σ− |↓〉 = 0 , σ− =

(
00
10

)
,

σ+ |↑〉 = 0, σ+ |↓〉 = |↑〉 , σ+ =

(
01
00

)
.

The lattice spin operators de�ned above act over the state-space

HM+1 =
M⊗
k=0

hk given by the product of M + 1 copies of linear spaces

hk ≡ C2. The state-space HM+1 is spanned over the state-vectors⊗M
k=0 |s〉k , where s =↑, ↓.
The periodic boundary conditions σ#

k+(M+1) = σ#
k are imposed.

**********************************



Let the sites with spin �down� states are labeled by decreasing
coordinates M ≥ µ1 > µ2 > . . . > µN ≥ 0, which constitute strict
partition µ = (µ1, µ2, . . . , µN ).
In the free-fermion limit, we de�ne N -excitation state-vectors |ΨN (u)〉:

|ΨN (u)〉 =
∑

λ⊆{MN}

Sλ(u2)

(
N∏
k=1

σ−µk

)
|⇑〉 ,

where λ = (λ1, λ2, . . . , λN ) is λ = µ− δN , where
δN = (N − 1, N − 2, . . . , 1, 0). Besides,
M≡M + 1−N ≥ λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0.

The parameters u = (u1, u2, . . . , uN ) and u2 ≡ (u2
1, u

2
2, . . . , u

2
N )

correspond to arbitrary complex numbers. The state |⇑〉 is the fully

polarized one with all spins �up�: |⇑〉 ≡
⊗M

n=0 |↑〉n.



The coe�cients of the state-vector |ΨN (u)〉 are given by the Schur

functions:

Sλ(x1, x2, . . . , xN ) ≡
det(xλk+N−k

j )1≤j,k≤N

det(xN−kj )1≤j,k≤N

= det(xλk+N−k
j )1≤j,k≤N

∏
1≤n<l≤N

(xl − xn)−1 .



In the free-fermion limit, ∆→ 0 the Hamiltonian is:

ĤXX ≡ −
1

2

M∑
k=0

(σ−k+1σ
+
k + σ+

k+1σ
−
k ) .

The states |ΨN (u)〉 are the eigen-states,

ĤXX |ΨN (uN )〉 = EN |ΨN (uN )〉 ,

with eigen-values EN ≡ EXXN (I1, I2, . . . , IN ) = −
∑N
l=1 cos

(
2πIl
M+1

)
, if

and only if ul (1 ≤ l ≤ N) satisfy the Bethe equations:

u
2(M+1)
j = (−1)N−1 , u2

j = ei
2π
M+1 Ij , 1 ≤ j ≤ N .

where Ij are integers or half-integers: M ≥ I1 > I2 > · · · > IN ≥ 0.



The scalar products of the state-vectors of both limits are calculated by
means of the Binet�Cauchy formula:

PL/n(y,x) ≡
∑

λ⊆{(L/n)N}

Sλ(x2
1, . . . , x

2
N )Sλ(y2

1 , . . . , y
2
N )

=

( N∏
l=1

ynl x
n
l

)
det(Tjk)1≤j,k≤N∏

1≤k<j≤N
(
y2
j − y2

k

)∏
1≤m<l≤N (x2

l − x2
m)

,

where summation
∑

λ⊆{(L/n)N} is over non-strict partitions λ:
L ≥ λ1 ≥ λ2 ≥ · · · ≥ λN ≥ n, n ≥ 0. The entries Tjk take the form:

Tkj =
1− (xkyj)

N+L−n

1− xkyj
.
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II. FORM-FACTORS

• • • Central task is to calculate survival probability of domain wall :

F(θ g
N−n, n, β) ≡ 〈ΨN−n(θ g) | F̄+

n e
−βH F̄n |ΨN−n(θ g)〉

〈ΨN−n(θ g) | e−βH |ΨN−n(θ g)〉
, F̄n ≡

n−1∏
j=0

σ−j ,

where F̄n is the �eld operator, and β ∈ C.
The eigen-state |ΨN (θ)〉 ≡|ΨN (eiθ/2)〉 corresponds to N -particle

Bethe solution u2 = eiθ. The notation θ g = (θ g
1 , θ

g
2 , . . . , θ

g
N ) indicates

that the eigen-state |ΨN (θg)〉 ≡|ΨN (eiθ
g/2)〉 is calculated on

ground-state solution. As well, θ g
N−n = (θ g

1 , θ
g
2 , . . . , θ

g
N−n) corresponds

to (N − n)-particle solution of the Bethe equation for the ground state:

θ g
j =

2π

M + 1

(
N − n+ 1

2
− j
)
, 1 ≤ j ≤ N − n .

Besides, F(θ g
N−n, 0, β) = 1.



• • • Consider the form-factor of the �eld operator F̄n:

〈ΨN (v) | F̄n |ΨN−n(u)〉 .
Let us de�ne an auxiliary operator Dn(u) which acts on an expectation
〈·〉u considered as function of u as follows:

Dn(u) 〈·〉u ≡ DuN−n+1,uN−n+2,...,uN

(
VN (u2

N )

VN−n(u2
N−n)

× 〈·〉u
)
,

where DuN−n+1,uN−n+2,...,uN ≡ Dn−1
uN−n+1

◦ Dn−2
uN−n+2

◦ . . . ◦ D0
uN ,

DjuN−j
≡ lim

u2
N−j→0

1

j !

dj

d(u2
N−j)

j
, 0 ≤ j ≤ n− 1 .

Now we are ready to formulate the following

Proposition 1 The action of Dn(u) on 〈Ψ(vN ) |Ψ(uN )〉 gives the
form-factor of the �eld operator F̄n:

〈Ψ(vN ) | F̄n |Ψ(uN−n)〉 = Dn(u)〈Ψ(vN ) | Ψ(uN )〉 .



Proposition 1 enables us to obtain two summation rules for the products
of the Schur functions:

Proposition 2 The following sums of products of the Schur functions

take place:

∑
λ⊆{MN−n}

Sλ̂(v−2
N )Sλ(u2

N−n) =

(
N−n∏
l=1

u−2n
l

)
det(T̄kj)1≤k,j≤N

V(u2
N−n)V(v−2

N )
,

∑
λ⊆{MN−n}

Sλ(v−2
N−n)Sλ̂(u2

N ) =

(
N−n∏
l=1

v2n
l

)
det(T̃kj)1≤k,j≤N

V(v−2
N−n)V(u2

N )
,



where the entries of the matrices (T̄kj)1≤k,j≤N and (T̃kj)1≤k,j≤N are:

T̄kj = T o
kj , 1 ≤ k ≤ N − n, 1 ≤ j ≤ N ,

T̄kj = v
−2(N−k)
j , N − n+ 1 ≤ k ≤ N, 1 ≤ j ≤ N ,

and

T̃kj = T o
kj , 1 ≤ k ≤ N, 1 ≤ j ≤ N − n ,

T̃kj = u
2(N−k)
j , 1 ≤ k ≤ N, N − n+ 1 ≤ j ≤ N .

Here we use the notation:

T o
kj ≡

1− (u2
k/v

2
j )M+1

1− u2
k/v

2
j

.



III. CORRELATION FUNCTIONS

Let consider the following ratio of two averages at arbitrary values of
parameters:

F(θ g
N−n, n, β) ≡ 〈ΨN−n(θ g) | F̄+

n e
−βH F̄n |ΨN−n(θ g)〉

〈ΨN−n(θ g) | e−βH |ΨN−n(θ g)〉
, F̄n ≡

n−1∏
j=0

σ−j ,

〈ΨN−n(v) | F̄+
n e
−βH F̄n |ΨN−n(u)〉 =

= Dn(u)Dn(v−1)〈ΨN (v) | e−βH |ΨN (u)〉 =
1

VN−n(u2)VN−n(v−2)

×Dv−1
N−n+1,v

−1
N−n+2,...,v

−1
N
DuN−n+1,uN−n+2,...,uNdet

(
M∑

k,l=0

Fk; l(β)
u2l
i

v2k
j

)
1≤i,j≤N

.



IV. q-BINOMIAL DETERMINANTS AND GENERATING

FUNCTIONS OF PLANE PARTITIONS

• • • The correlators in question are related to the generating
functions of boxed plane partitions and self-avoiding lattice walks.

An array (πi,j)i,j≥1 of non-negative integers that are non-increasing
as functions of both i and j (i, j = 1, 2, . . . ) is called boxed plane
partition π. Plane partition is represented by cubes arranged as stacks
with coordinates (i, j) and with height equal to πi,j . The plane partition
is contained inside a box B(L,N,M) provided that i ≤ L, j ≤ N and
πi,j ≤M for all cubes of the plane partition.



The generating function of plane partitions inside B(L,N, P ) is de�ned
as formal series Zq(L,N, P ) ≡

∑
{π} q

|π| (summation over all partitions

inside the box), and it takes the form:

Zq(L,N, P ) =

L∏
j=1

N∏
k=1

P∏
i=1

1− qi+j+k−1

1− qi+j+k−2
=

L∏
j=1

N∏
k=1

1− qP+j+k−1

1− qj+k−1
.

The limit q → 1 leads to the MacMahon formula:

A(L,N, P ) =

L∏
j=1

N∏
k=1

P∏
i=1

i+ j + k − 1

i+ j + k − 2
=

L∏
j=1

N∏
k=1

P + j + k − 1

j + k − 1
.



• • • To study the asymptotical behavior of the correlation functions,
we need the determinant of a block-matrix (T̄)1≤j,k≤N given by entries:

T̄kj =
1− q(P+1)(j+k−1)

1− qj+k−1
, 1 ≤ k ≤ L, 1 ≤ j ≤ N ,

T̄kj = qj(N−k) , L+ 1 ≤ k ≤ N, 1 ≤ j ≤ N ,

where P and L ≤ N are arbitrary. The matrix (T̄)1≤j,k≤N consists of
two blocks of the sizes L×N and (N − L)×N .

Several de�nitions are in order.



The q-binomial determinant

(
a
b

)
q

is de�ned by

(
a
b

)
q

≡
(
a1, a2, . . . aS
b1, b2, . . . bS

)
q

≡ det

([
aj
bi

])
1≤i,j≤S

,

where a and b are ordered tuples: 0 ≤ a1 < a2 < · · · < aS and

0 ≤ b1 < b2 < · · · < bS . The entries

[
aj

bi

]
are the q-binomial coe�cients:

[
N
r

]
≡ (1− qN )(1− qN−1) . . . (1− qN−r+1)

(1− q)(1− q2) . . . (1− qr)
, q ∈ R .

The q-binomial coe�cients are replaced at q → 1 by the binomial

coe�cients

(
aj

bi

)
. The q-binomial determinant is transformed to the

binomial determinant:(
a
b

)
≡
(
a1, a2, . . . aS
b1, b2, . . . bS

)
= det

((
aj
bi

))
1≤i,j≤S

.

The binomial determinant is positive at bi ≤ ai, ∀i.



Ðèñ.: S-Tuple (w1, w2, . . . , wS) of self-avoiding walks for S = 5.

Binomial determinant gives the number of self-avoiding walks across
two-dimensional lattice. Each path wi from a tuple (w1, w2, . . . , wS)
goes from Ai = (0, ai) to Bi = (bi, bi), 1 ≤ i ≤ S. Only steps to north
and to east are allowed.



So, let us consider (T̄)1≤j,k≤N given by the entries:

T̄kj =
1− q(P+1)(j+k−1)

1− qj+k−1
, 1 ≤ k ≤ L, 1 ≤ j ≤ N ,

T̄kj = qj(N−k) , L+ 1 ≤ k ≤ N, 1 ≤ j ≤ N ,

where P and L ≤ N are arbitrary. Now we formulate the following

Proposition 3 Let the matrix (T̄)1≤j,k≤N , be de�ned by the entries

(32) with P
2 < N < P . The determinant of (T̄)1≤j,k≤N is given as:

q−
L
2 (L−1)(N−L) det(T̄)1≤j,k≤N

V(qN )V(qL/q)

= q−
N
2 (P−1)P

(
L+N, L+N + 1, . . . L+N + P − 1
L, L+ 1, . . . L+ P − 1

)
q

=

P∏
k=1

L∏
j=1

1− qj+k+N−1

1− qj+k−1
= Zq(L,N,P) ,

where P ≡ P −N + 1, and Zq(L,N,P) is the generating function of

plane partitions.



Proposition 3 relates det T̄ to the q-binomial determinant, which is
transformed at q → 1 to the binomial determinant equal, in turn, to the
number of P-tuples of lattice self-avoiding paths between the end points

Al = (0, N + L+ l − 1) and Bl = (L+ l − 1, L+ l − 1), 1 ≤ l ≤ P.

The Figure gives appropriate picture with end points Al and Bl at
P = L = 3 and N = 2.

Ðèñ.: Watermelon con�guration (lhs) and plane partition with gradient lines.



The generating function Zq(L,N,P) gives at q → 1 the number of plane
partitions A(L,N,P) inside B(L,N,P) :

Zq(L,N,P) =

L∏
j=1

N∏
k=1

1− qP+j+k−1

1− qj+k−1
−→
q→1

−→
q→1

A(L,N,P) = det

((
N + L+ i− 1
L+ j − 1

))
1≤i,j≤P

.

RHS expresses the fact that number of plane partitions A(L,N,P) is
equal to the number of self-avoiding lattice paths. Just the paths
constituting a P-tuple are in bi-jection with, so-called, gradient lines
corresponding to a plane partition inside B(L,N,P).



• • • The form-factor of F̄n taken in the q-parametrization,
v−2
N = qN ≡ (q, q2, . . . , qN ), u2

N = qN/q ≡ (1, q, . . . , qN−1), acquires
the form:

〈Ψ(q
− 1

2

N ) | F̄n |Ψ((qN−n/q)
1
2 )〉 =

= q
n
2 (N−n)(N−n−1)

∑
λ⊆{MN−n}

Sλ̂(qN )Sλ(qN−n/q) =
det T̄

V(qN )V(qN−n/q)
,

where T̄ is given as above with L = N − n and P = M . We obtain:

〈Ψ(q
− 1

2

N ) | F̄n |Ψ((qN−n/q)
1
2 )〉 = q

n
2 (N−n)(N−n−1)Zq(N − n,N,M) .

The form-factor is the generating function of plane partitions inside
B(N − n,N,M −N + 1). We obtain the MacMahon formula at q → 1:

lim
q→1
〈Ψ(q

− 1
2

N ) | F̄n |Ψ((qN−n/q)
1
2 )〉 = A(N − n,N,M −N + 1) .

**********************************



IV. LOW TEMPERATURE

• • • We assume that M � 1 and 1� N �M , and estimate the
thermal correlation function survival probability of domain wall :

F(θ g
N−n, n, β) ≡ 〈ΨN−n(θ g) | F̄n e−βH F̄n |ΨN−n(θ g)〉

〈ΨN−n(θ g) | e−βH |ΨN−n(θ g)〉
, F̄n ≡

n−1∏
j=0

σ−j ,

F(θ g
N−n, n, β) =

=
1

N 2(θ g
N−n)(M + 1)N−n

∑
{θN−n}

e−β(EN−n(θN−n)−EN−n(θ g
N−n))

×
∣∣∣V(eiθN−n)

∑
λ⊆{MN−n}

Sλ̂(e−iθN−n)Sλ(eiθ
g
N−n)

∣∣∣2 .



If the chain is long enough while the number of quasi-particles is
moderate, N �M , we replace the sums by the integrals since cos θ g

l ' 1
and cos θl ≈ 1, ∀l. At large β, we approximate for F(θ g

N−n, n, β):

F(θ g
N−n, n, β) ' A2(N − n,N,M −N + 1)

β
(N−n)2

2

IN−n
N 2(θ g

N−n)
,

where IN−n is the Mehta integral ,

IN ≡
1

N !

∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

e
− 1

2

N∑
l=1

x2
l
∏

1≤k<l≤N

∣∣xk − xl∣∣2 dx1dx2 . . . dxN
(2π)N

,

The low temperature decay of the correlator is governed by the critical
exponent (N − n)2/2. The estimate demonstrates that F(θ g

N−n, n, β) is
related to the matrix integrals of the theory of Gaussian Matrix Ensemble.



The integral IN is given as follows:

IN = eϕN , ϕN ≡
N∑
k=1

log
Γ(k)

(2π)1/2
.

Eventually, we estimate 1
N 2(θ g

N−n)
'
(

2π
M+1

)N2

e2ϕN , and express the

survival probability of domain wall:

F(θ g
N−n, n, β) ' A2(N − n,N,M −N + 1) eΦ(N,M,β) ,

Φ(N,M, β) ≡ N2 log
2π

M + 1
− N2

2
log β + 3ϕN .

The asymptotics of the correlator is proportional to the squared number
of plane partitions inside a box with rectangular bottom
B(N − n,N,M −N + 1).



To study the asymptotical behavior, it is convenient to express ϕN
through the Barnes G-function:

G(z + 1) = (2π)z/2e
−z
2 (z+1)− γ2 z

2
∞∏
n=1

(
1 +

z

n

)n
e−z+

z2

2n ,

which is an integral function satisfying the relations: G(1) = 1,
G(z + 1) = Γ(z)G(z), and

G(n+ 1) =
(n!)n

11 22 . . . nn
=

n∏
k=1

Γ(k) .

We obtain for ϕN and IN :

ϕN = logG(N + 1)− N

2
log 2π , IN =

G(N + 1)

(2π)N/2
.



We re-express the number of plane partitions inside
B(N − n,N,M −N + 1):

A(N − n,N,M −N + 1) =
G(N + 1)G(N − n+ 1)

G(2N − n+ 1)

× G(M + 2− n+N)G(M + 2−N)

G(M + 2− n)G(M + 2)
.

The asymptotics of logG(z + 1) at z →∞ is known. For instance, it
gives for ϕN at N � 1:

ϕN =
N2

2
logN − 3N2

4
+ O(logN) , N � 1 .



Eventually, the asymptotics of survival probability F(θ g
N−n, n, β):

logF(θ g
N−n, n, β) ' N2 log

(
A

N3/2

Mβ1/2

)
+

+ 2N(N − n) log

(
D
M − n
2N − n

)
.

When M and N increase and temperature T decreases,
T < const(M,N,n), the correlator F(θ g

N−n, n, β) also decreases.



CONCLUDING REMARKS

We have discussed the N -particle thermal correlation functions of the
XXZ Heisenberg model on a cyclic chain at ∆→ 0. We have considered
the domain wall creation operator F̄n =

∏n−1
j=0 σ

−
j . The combinatorial

aspects of the correlation functions of this operator are considered. The
calculations are based on the symmetric functions that allows us to
express the answers in the determinantal form. The representations for
the form-factors are related to the generating functions of self-avoiding
random walks and boxed plane partitions.
The asymptotical behavior of the thermal correlation functions in
question for the operator F̄n is estimated for low temperatures. The
asymptotical representation at low temperature demonstrates the
combinatorial pre-factor and is characterized by a power law decay. Its
critical exponent looks like the free energy appearing at small coupling for
large-N lattice gauge theory considered by Gross, Witten (1980).



THANKS !


